1
|
Hong JK, Gao L, Singh J, Goh T, Ruhoff AM, Neto C, Waterhouse A. Evaluating medical device and material thrombosis under flow: current and emerging technologies. Biomater Sci 2020; 8:5824-5845. [DOI: 10.1039/d0bm01284j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the importance of flow in medical device thrombosis and explores current and emerging technologies to evaluate dynamic biomaterial Thrombosis in vitro.
Collapse
Affiliation(s)
- Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- School of Medical Sciences
- Faculty of Medicine and Health
| | - Lingzi Gao
- Heart Research Institute
- Newtown
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jasneil Singh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Tiffany Goh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Alexander M. Ruhoff
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- School of Medical Sciences
- Faculty of Medicine and Health
- The University of Sydney
- Australia
- Heart Research Institute
| |
Collapse
|
2
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
3
|
Szema AM, Dang S, Li JC. Emerging Novel Therapies for Heart Failure. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 9:57-64. [PMID: 26512208 PMCID: PMC4603524 DOI: 10.4137/cmc.s29735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022]
Abstract
Heart function fails when the organ is unable to pump blood at a rate proportional to the body’s need for oxygen or when this function leads to elevated cardiac chamber filling pressures (cardiogenic pulmonary edema). Despite our sophisticated knowledge of heart failure, even so-called ejection fraction-preserved heart failure has high rates of mortality and morbidity. So, novel therapies are sorely needed. This review discusses current standard therapies for heart failure and launches an exploration into emerging novel treatments on the heels of recently-approved sacubitril and ivbradine. For example, Vasoactive Intestinal Peptide (VIP) is protective of the heart, so in the absence of VIP, VIP knockout mice have dysregulation in key heart failure genes: 1) Force Generation and Propagation; 2) Energy Production and Regulation; 3) Ca+2 Cycling; 4) Transcriptional Regulators. VIP administration leads to coronary dilation in human subjects. In heart failure patients, VIP levels are elevated as a plausible endogenous protective effect. With the development of elastin polymers to stabilize VIP and prevent its degradation, VIP may therefore have a chance to satisfy the unmet need as a potential treatment for acute heart failure.
Collapse
Affiliation(s)
- Anthony M Szema
- Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, USA. ; Department of Occupational Medicine, Preventive Medicine, and Epidemiology, Hofstra North Shore-LIJ School of Medicine, Hofstra University, Hempstead, NY, USA. ; The Stony Brook Medicine SUNY, Stony Brook Internal Medicine Residency Program, John T. Mather Memorial Hospital, Port Jefferson, NY, USA. ; Three Village Allergy and Asthma, PLLC South Setauket, NY, USA
| | - Sophia Dang
- Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan C Li
- Three Village Allergy and Asthma, PLLC South Setauket, NY, USA. ; Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Jeong JH, Joo NS, Hwang PH, Wine JJ. Mucociliary clearance and submucosal gland secretion in the ex vivo ferret trachea. Am J Physiol Lung Cell Mol Physiol 2014; 307:L83-93. [PMID: 24793168 DOI: 10.1152/ajplung.00009.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In many species submucosal glands are an important source of tracheal mucus, but the extent to which mucociliary clearance (MCC) depends on gland secretion is unknown. To explore this relationship, we measured basal and agonist-stimulated MCC velocities in ex vivo tracheas from adult ferrets and compared the velocities with previously measured rates of ferret glandular mucus secretion (Cho HJ, Joo NS, Wine JJ. Am J Physiol Lung Cell Mol Physiol 299: L124-L136, 2010). Stimulated MCC velocities (mm/min, means ± SE for 10- to 35-min period poststimulation) were as follows: 1 μM carbachol: 19.1 ± 3.3 > 10 μM phenylephrine: 15.3 ± 2.4 ≈ 10 μM isoproterenol: 15.0 ± 1.9 ≈ 10 μM forskolin: 14.6 ± 3.1 > 1 μM vasoactive intestinal peptide (VIP): 10.2 ± 2.2 >> basal (t15): 1.8 ± 0.3; n = 5-10 for each condition. Synergistic stimulation of MCC was observed between low concentrations of carbachol (100 nM) and isoproterenol (300 nM). Bumetanide inhibited carbachol-stimulated MCC by ~70% and abolished the increase in MCC stimulated by forskolin + VIP, whereas HCO3 (-)-free solutions did not significantly inhibit MCC to either intracellular Ca(2+) concentration or intracellular cAMP concentration ([cAMP]i)-elevating agonists. Stimulation and inhibition of MCC and gland secretion differed in several respects: most importantly, elevating [cAMP]i increased MCC much more effectively than expected from its effects on gland secretion, and bumetanide almost completely inhibited [cAMP]i-stimulated MCC while it had a smaller effect on gland secretion. We conclude that changes in glandular fluid secretion are complexly related to MCC and discuss possible reasons for this.
Collapse
Affiliation(s)
- Jin Hyeok Jeong
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California; Department of Otolaryngology-Head and Neck Surgery, Hanyang University School of Medicine, Seoul, Korea; and
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California
| | - Jeffrey J Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California;
| |
Collapse
|
5
|
Lee RJ, Chen B, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Cohen NA. Vasoactive intestinal peptide regulates sinonasal mucociliary clearance and synergizes with histamine in stimulating sinonasal fluid secretion. FASEB J 2013; 27:5094-103. [PMID: 23934280 DOI: 10.1096/fj.13-234476] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mucociliary clearance (MCC) is the primary physical airway defense against inhaled pathogens and particulates. MCC depends on both proper fluid/mucus homeostasis and epithelial ciliary beating. Vasoactive intestinal peptide (VIP) is a neurotransmitter expressed in the sinonasal epithelium that is up-regulated in allergy. However, the effects of VIP on human sinonasal physiology are unknown, as are VIP's interactions with histamine, a major regulator of allergic disease. We imaged ciliary beat frequency, mucociliary transport, apical Cl(-) permeability, and airway surface liquid (ASL) height in primary human sinonasal air-liquid-interface cultures to investigate the effects of VIP and histamine. VIP stimulated an increase in ciliary beat frequency (EC50 0.5 μM; maximal increase ∼40% compared with control) and cystic fibrosis transmembrane conductance regulator (CFTR)-dependent and Na(+)K(+)2Cl(-) cotransporter-dependent fluid secretion, all requiring cAMP/PKA signaling. Histamine activated Ca(2+) signaling that increased ASL height but not ciliary beating. Low concentrations of VIP and histamine had synergistic effects on CFTR-dependent fluid secretion, revealed by increased ASL heights. An up-regulation of VIP in histamine-driven allergic rhinitis would likely enhance mucosal fluid secretion and contribute to allergic rhinorrhea. Conversely, a loss of VIP-activated secretion in patients with CF may impair mucociliary transport, contributing to increased incidences of sinonasal infections and rhinosinusitis.
Collapse
Affiliation(s)
- Robert J Lee
- 1Department of Otorhinolaryngology, Head and Neck Surgery, Hospital of the University of Pennsylvania, Ravdin Bldg, 5th Floor, 3400 Spruce St., Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Li D, Jiao J, Shatos MA, Hodges RR, Dartt DA. Effect of VIP on intracellular [Ca2+], extracellular regulated kinase 1/2, and secretion in cultured rat conjunctival goblet cells. Invest Ophthalmol Vis Sci 2013; 54:2872-84. [PMID: 23518767 DOI: 10.1167/iovs.12-11264] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To determine the intracellular signaling pathways that vasoactive intestinal peptide (VIP) uses to stimulate high molecular weight glycoconjugate secretion from cultured rat conjunctival goblet cells. METHODS Goblet cells from rat bulbar and forniceal conjunctiva were grown in organ culture. Presence and localization of VIP receptors (VPAC1 and 2) were determined by RT-PCR, immunofluorescence microscopy and Western blot analysis. Intracellular [Ca(2+)] ([Ca(2+)]i) was measured using fura-2. Extracellular signal-regulated kinase (ERK)-1/2 activity was determined by Western blot analysis. High molecular weight glycoconjugate secretion was measured with an enzyme-linked lectin assay on cultured goblet cells that were serum-starved for 2 hours before stimulation with VIP, VPAC1-, or VPAC2-specific agonists. Inhibitors were added 30 minutes prior to VIP. Activation of epidermal growth factor receptor (EGFR) was measured by immunoprecipitation using an antibody against pTyr followed by Western blot analysis with an antibody against EGFR. RESULTS Both VIP receptors were present in rat conjunctiva and cultured goblet cells. VIP- and VPAC-specific agonists increased [Ca(2+)]i and secretion in a concentration-dependent manner. VIP also increased ERK1/2 activity, VIP-stimulated increase in [Ca(2+)]i. Secretion, but not ERK1/2 activity, was inhibited by the protein kinase A inhibitor, H89. VIP-stimulated secretion was inhibited by siRNA for ERK2 but not by siRNA for EGFR. VIP did not increase the phosphorylation of the EGFR. CONCLUSIONS In conclusion, in cultured rat conjunctival goblet cells, VPAC1 and 2 receptors are functional. VIP stimulates a cAMP-dependent increase in [Ca(2+)]i and glycoconjugate secretion, but not ERK1/2 activation. VIP does not activate with EGFR.
Collapse
Affiliation(s)
- Dayu Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
7
|
Bankir L, Bouby N, Ritz E. Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat Rev Nephrol 2013; 9:223-39. [PMID: 23438973 DOI: 10.1038/nrneph.2013.22] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
After several decades during which little attention was paid to vasopressin and/or urine concentration in clinical practice, interest in vasopressin has renewed with the availability of new, potent, orally active vasopressin-receptor antagonists--the vaptans--and with the results of epidemiological studies evaluating copeptin (a surrogate marker of vasopressin) in large population-based cohorts. Several experimental studies in rats and mice had previously shown that vasopressin, acting via vasopressin V2 antidiuretic receptors, contributes to the progression of chronic kidney disease; in particular, to autosomal dominant polycystic kidney disease. New epidemiological studies now suggest a role for vasopressin in the pathogenesis of diabetes mellitus and metabolic disorders via activation of hepatic V1a and/or pancreatic islet V1b receptors. The first part of this Review describes the adverse effects of vasopressin, as revealed by clinical and experimental studies in kidney diseases, hypertension, diabetes and the metabolic syndrome. The second part provides insights into vasopressin physiology and pathophysiology that may be relevant to the understanding of these adverse effects and that are linked to the excretion of concentrated nitrogen wastes and associated hyperfiltration. Collectively, the studies reviewed here suggest that more attention should be given to the vasopressin-thirst-urine concentration axis in clinical investigations and in patient care. Whether selective blockade of the different vasopressin receptors may provide therapeutic benefits beyond their present indication in hyponatraemia requires new clinical trials.
Collapse
Affiliation(s)
- Lise Bankir
- INSERM UMRS 872, Equipe 2, Centre de Recherche des Cordeliers, Paris, France.
| | | | | |
Collapse
|
8
|
Aoki A, Kawamoto T, Aoki K, Inokuchi T, Kudoh A, Nagahama K, Baba Y, Suzuki S, Ohya K, Moriyama K. Amount of bone lengthening affects blood flow recovery and bone mineralization after distraction osteogenesis in a canine cleft palate model. Cleft Palate Craniofac J 2010; 47:303-13. [PMID: 20426679 DOI: 10.1597/08-019.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Distraction osteogenesis has been applied to the craniofacial region. To reduce the cleft width of patients with cleft lip and palate, alveolar bones are distracted toward the cleft. However, no reports have described limitations to the amount of lengthening that can be achieved by distraction osteogenesis in this area. Therefore, we investigated the healing process following different extents of distraction osteogenesis using a canine cleft palate model. METHODS A 10-mm bone defect was made in the palates. A bony segment including the canine was prepared and translocated into the defect area at a rate of 1 mm/d for 6 or 10 days, resulting in two groups (6- and 10-mm groups). Canine pulpal blood flow was monitored for 100 days with Doppler flowmetry. Then, the animals were sacrificed and the regenerated bone area was evaluated radiologically and histologically. Statistical significance was confirmed with the Mann-Whitney rank test. RESULTS Pulpal blood flow in the 6-mm group recovered to original levels earlier than in the 10-mm group. Cortical bone density in the regenerated bone, measured by peripheral quantitative computed tomography, was significantly greater in the 6-mm group than in the 10-mm group. The amount of regenerated bone in histologic sections was also significantly greater in the 6-mm group. CONCLUSION We clearly showed that healing progress depends on the extent of distraction osteogenesis, highlighting the importance of limited distraction osteogenesis in the alveolar area.
Collapse
|
9
|
Lee RJ, Foskett JK. cAMP-activated Ca2+ signaling is required for CFTR-mediated serous cell fluid secretion in porcine and human airways. J Clin Invest 2010; 120:3137-48. [PMID: 20739756 DOI: 10.1172/jci42992] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/01/2010] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF), which is caused by mutations in CFTR, affects many tissues, including the lung. Submucosal gland serous acinar cells are primary sites of fluid secretion and CFTR expression in the lung. Absence of CFTR in these cells may contribute to CF lung pathogenesis by disrupting fluid secretion. Here, we have isolated primary serous acinar cells from wild-type and CFTR-/- pigs and humans without CF to investigate the cellular mechanisms and regulation of fluid secretion by optical imaging. Porcine and human serous cells secrete fluid in response to vasoactive intestinal polypeptide (VIP) and other agents that raise intracellular cAMP levels; here, we have demonstrated that this requires CFTR and a cAMP-dependent rise in intracellular Ca2+ concentration ([Ca2+]i). Importantly, cAMP induced the release of Ca2+ from InsP3-sensitive Ca2+ stores also responsive to cAMP-independent agonists such as cholinergic, histaminergic, and purinergic agonists that stimulate CFTR-independent fluid secretion. This provides two types of synergism that strongly potentiated cAMP-mediated fluid secretion but differed in their CFTR dependencies. First, CFTR-dependent secretion was strongly potentiated by low VIP and carbachol concentrations that individually were unable to stimulate secretion. Second, higher VIP concentrations more strongly potentiated the [Ca2+]i responses, enabling ineffectual levels of cholinergic stimulation to strongly activate CFTR-independent fluid secretion. These results identify important molecular mechanisms of cAMP-dependent secretion, including a requirement for Ca2+ signaling, and suggest new therapeutic approaches to correct defective submucosal gland secretion in CF.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | | |
Collapse
|
10
|
Ratliff B, Rodebaugh J, Sekulic M, Solhaug M. Glomerular eNOS gene expression during postnatal maturation and AT1 receptor inhibition. Pediatr Nephrol 2007; 22:1135-42. [PMID: 17437130 DOI: 10.1007/s00467-007-0489-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 02/11/2007] [Accepted: 02/28/2007] [Indexed: 11/29/2022]
Abstract
Glomerular maturation increases from immature superficial to advanced juxtamedullary nephrons, while nephrogenesis continues postnatally in porcine kidneys. Endothelial NOS, eNOS, shows significant postnatal renal developmental regulation, perhaps mediated by Angiotensin II (AII). The objective was to compare eNOS mRNA gene expression between superficial and juxtamedullary glomeruli obtained from piglets and adult pigs utilizing laser capture microdissection during basal conditions and, to determine the role of the AII AT1 receptor, AT1, after chronic AT1 inhibition (AT1X) with candesartan. Superficial glomerular eNOS expression was lowest in newborns (NB) and at 7 days, and was highest in 14, 21 day old piglets and adults. Juxtamedullary glomerular eNOS, while similar in NB, 14, 21 day and adult, dipped to the lowest level at 7 days. Juxtamedullary glomerular eNOS expression in the NB was 7 fold greater than in superficial glomeruli. AT1X did not change eNOS expression in adult glomeruli. AT1X significantly reduced NB eNOS expression in both superficial, 90+/-10%, and juxtamedullary glomeruli, 89+/-5% respectively. In conclusion, eNOS gene expression demonstrates significant differences between NB superficial and juxtamedullary glomeruli, significant postnatal developmental regulation of both glomerular locations, and this expression may be mediated in the NB by AII via the AT1 receptor.
Collapse
Affiliation(s)
- Brian Ratliff
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501-1980, USA
| | | | | | | |
Collapse
|
11
|
Groneberg DA, Rabe KF, Fischer A. Novel concepts of neuropeptide-based drug therapy: vasoactive intestinal polypeptide and its receptors. Eur J Pharmacol 2006; 533:182-94. [PMID: 16473346 DOI: 10.1016/j.ejphar.2005.12.055] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 11/26/2022]
Abstract
Chronic inflammatory airway diseases such as bronchial asthma or chronic obstructive pulmonary disease (COPD) are major contributors to the global burden of disease. Although inflammatory cells play the central role in the pathogenesis of the diseases, recent observations indicate that also resident respiratory cells represent important targets for pulmonary drug development. Especially targeting airway neuromediators offers a possible mechanism by which respiratory diseases may be treated in the future. Among numerous peptide mediators such as tachykinins, calcitonin gene-related peptide, neurotrophins or opioids, vasoactive intestinal polypeptide (VIP) is one of the most abundant molecules found in the respiratory tract. In human airways, it influences many respiratory functions via the receptors VPAC1, VPAC2 and PAC1. VIP-expressing nerve fibers are present in the tracheobronchial smooth muscle layer, submucosal glands and in the walls of pulmonary and bronchial arteries and veins. Next to its strong bronchodilator effects, VIP potently relaxes pulmonary vessels, and plays a pivotal role in the mediation of immune mechanisms. A therapy utilizing the respiratory effects of VIP would offer potential benefits in the treatment of obstructive and inflammatory diseases and long acting VIP-based synthetic non-peptide compounds may represent a novel target for drug development.
Collapse
Affiliation(s)
- David A Groneberg
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
12
|
Evans RG, Majid DSA, Eppel GA. Mechanisms mediating pressure natriuresis: what we know and what we need to find out. Clin Exp Pharmacol Physiol 2006; 32:400-9. [PMID: 15854149 DOI: 10.1111/j.1440-1681.2005.04202.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. It is well established that pressure natriuresis plays a key role in long-term blood pressure regulation, but our understanding of the mechanisms underlying this process is incomplete. 2. Pressure natriuresis is chiefly mediated by inhibition of tubular sodium reabsorption, because both total renal blood flow and glomerular filtration rate are efficiently autoregulated. Inhibition of active sodium transport within both the proximal and distal tubules likely makes a contribution. Increased renal interstitial hydrostatic pressure (RIHP) likely inhibits sodium reabsorption by altering passive diffusion through paracellular pathways in 'leaky' tubular elements. 3. Nitric oxide and products of cytochrome P450-dependent arachidonic acid metabolism are key signalling mechanisms in pressure natriuresis, although their precise roles remain to be determined. 4. The key unresolved question is, how is increased renal artery pressure 'sensed' by the kidney? One proposal rests on the notion that blood flow in the renal medulla is poorly autoregulated, so that increased renal artery pressure leads to increased renal medullary blood flow (MBF), which, in turn, leads to increased RIHP. An alternative proposal is that the process of autoregulation of renal blood flow leads to increased shear stress in the preglomerular vasculature and, so, release of nitric oxide and perhaps products of cytochrome P450-dependent arachidonic acid metabolism, which, in turn, drive the cascade of events that inhibit sodium reabsorption. 5. Central to the arguments underlying these opposing hypotheses is the extent to which MBF is autoregulated. This remains highly controversial, largely because of the limitations of presently available methods for measurement of MBF.
Collapse
Affiliation(s)
- Roger G Evans
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
13
|
Abstract
There is strong evidence that the renal medullary circulation plays a key role in long-term blood pressure control. This, and evidence implicating sympathetic overactivity in development of hypertension, provides the need for understanding how sympathetic nerves affect medullary blood flow (MBF). The precise vascular elements that regulate MBF under physiological conditions are unknown, but likely include the outer medullary portions of descending vasa recta and afferent and efferent arterioles of juxtamedullary glomeruli, all of which receive dense sympathetic innervation. Many early studies of the impact of sympathetic drive on MBF were flawed, both because of the methods used for measuring MBF and because single and often intense neural stimuli were tested. Recent studies have established that MBF is less sensitive than cortical blood flow (CBF) to electrical renal nerve stimulation, particularly at low stimulus intensities. Indeed, MBF appears to be refractory to increases in endogenous renal sympathetic nerve activity within the physiological range in all but the most extreme cases. Multiple mechanisms appear to operate in concert to blunt the impact of sympathetic drive on MBF, including counter-regulatory roles of nitric oxide and perhaps even paradoxical angiotensin II-induced vasodilatation. Regional differences in the geometry of glomerular arterioles are also likely to predispose MBF to be less sensitive than CBF to any given vasoconstrictor stimulus. Failure of these mechanisms would promote reductions in MBF in response to physiological activation of the renal nerves, which could, in turn, lead to salt and water retention and hypertension.
Collapse
Affiliation(s)
- Gabriela A Eppel
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
14
|
Dérand R, Montoni A, Bulteau-Pignoux L, Janet T, Moreau B, Muller JM, Becq F. Activation of VPAC1 receptors by VIP and PACAP-27 in human bronchial epithelial cells induces CFTR-dependent chloride secretion. Br J Pharmacol 2004; 141:698-708. [PMID: 14744818 PMCID: PMC1574226 DOI: 10.1038/sj.bjp.0705597] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. In the human airway epithelium, VIP/PACAP receptors are distributed in nerve fibers and in epithelial cells but their role in transepithelial ion transport have not been reported. Here, we show that human bronchial epithelial Calu-3 cells expressed the VPAC(1) receptor subtype which shares similar high affinity for VIP and PACAP-27. 2. The stoichiometric binding parameters characterizing the (125)I-VIP and (125)I-PACAP-27 binding to these receptors were determined. 3. We found that VIP (EC(50) approximately 7.6 nM) and PACAP-27 (EC(50) approximately 10 nM) stimulated glibenclamide-sensitive and DIDS-insensitive iodide efflux in Calu-3 cells. 4. The protein kinase A (PKA) inhibitor, H-89 and the protein kinase C (PKC) inhibitor, chelerythrine chloride prevented activation by both peptides demonstrating that PKA and PKC are part of the signaling pathway. This profile corresponds to the pharmacological signature of CFTR. 5. In the cystic fibrosis airway epithelial IB3-1 cell lacking functional CFTR but expressing VPAC(1) receptors, neither VIP, PACAP-27 nor forskolin stimulated chloride transport. 6. Ussing chamber experiments demonstrated stimulation of CFTR-dependent short-circuit currents by VIP or PACAP-27 applied to the basolateral but not to the apical side of Calu-3 cells monolayers. 7. This study shows the stimulation in human bronchial epithelial cells of CFTR-dependent chloride secretion following activation by VIP and PACAP-27 of basolateral VPAC(1) receptors.
Collapse
Affiliation(s)
- Renaud Dérand
- Laboratoire des Biomembranes et Signalisation Cellulaire, UMR 6558 CNRS, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
| | - Alicia Montoni
- Laboratoire des Biomembranes et Signalisation Cellulaire, UMR 6558 CNRS, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
| | - Laurence Bulteau-Pignoux
- Laboratoire des Biomembranes et Signalisation Cellulaire, UMR 6558 CNRS, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
| | - Thierry Janet
- Laboratoire des Biomembranes et Signalisation Cellulaire, UMR 6558 CNRS, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
| | - Bertrand Moreau
- Laboratoire des Biomembranes et Signalisation Cellulaire, UMR 6558 CNRS, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
| | - Jean-Marc Muller
- Laboratoire des Biomembranes et Signalisation Cellulaire, UMR 6558 CNRS, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
| | - Frédéric Becq
- Laboratoire des Biomembranes et Signalisation Cellulaire, UMR 6558 CNRS, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
- Author for correspondence:
| |
Collapse
|
15
|
Billington CK, Penn RB. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res 2003. [DOI: 10.1186/1465-9921-4-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
16
|
Sadowski J, Dobrowolski L. The renal medullary interstitium: focus on osmotic hypertonicity. Clin Exp Pharmacol Physiol 2003; 30:119-26. [PMID: 12603338 DOI: 10.1046/j.1440-1681.2003.03810.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. There has been continued interest in the functional role of the renal medullary interstitium and intense research in this area has furnished new information regarding the extent, dynamics and mechanisms determining fluctuations in medullary osmotic hypertonicity. 2. Any change in the tonicity (interstitial solute concentration) indicates an imbalance of the rate of solute delivery to the interstitium (by tubular transport) and solute removal therefrom (by the microcirculation). It is often difficult to establish whether alteration of the delivery or removal triggered the change in medullary tissue tonicity. 3. Newer in vivo studies have confirmed earlier predictions and indirect evidence indicating that the rate of NaCl transport in the ascending limb of the loop of Henle is the major determinant of medullary ionic hypertonicity. 4. The hypothesis of a 'washout' of medullary solutes during increased medullary blood flow (MBF) has been re-evaluated. A novel experimental approach has provided direct evidence of a modest dissipation of medullary solutes with increasing MBF and a modest accumulation of solutes with decreasing MBF. 5. Increasing evidence is reviewed indicating that medullary tonicity is not only a regulated variable, but also that it may itself modulate the activity of multiple local endocrine and paracrine control systems and thereby affect local microcirculation and the function of medullary interstitial and tubular cells.
Collapse
Affiliation(s)
- Janusz Sadowski
- Laboratory of Renal and Body Fluid Physiology, M Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | |
Collapse
|
17
|
Abstract
Vasoactive intestinal polypeptide (VIP) is one of the most abundant, biologically active peptides found in the human lung. VIP is a likely neurotransmitter or neuromodulator of the inhibitory non-adrenergic non-cholinergic airway nervous system and influences many aspects of pulmonary biology. In human airways VIP-immunoreactive nerve fibres are present in the tracheobronchial airway smooth muscle layer, the walls of pulmonary and bronchial vessels and around submucosal glands. Next to its prominent bronchodilatory effects, VIP potently relaxes pulmonary vessels. The precise role of VIP in the pathogenesis of asthma is still uncertain. Although a therapy using the strong bronchodilatory effects of VIP would offer potential benefits, the rapid inactivation of the peptide by airway peptidases has prevented effective VIP-based drugs so far and non-peptide VIP-agonists did not reach clinical use.
Collapse
Affiliation(s)
- D A Groneberg
- Division of Allergy Research, Department of Pediatric Pneumology and Immunology, Humboldt-University, Berlin, Germany.
| | | | | |
Collapse
|
18
|
Spicuzza L, Belvisi MG, Birrell MA, Barnes PJ, Hele DJ, Giembycz MA. Evidence that the anti-spasmogenic effect of the beta-adrenoceptor agonist, isoprenaline, on guinea-pig trachealis is not mediated by cyclic AMP-dependent protein kinase. Br J Pharmacol 2001; 133:1201-12. [PMID: 11498504 PMCID: PMC1621162 DOI: 10.1038/sj.bjp.0704213] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The spasmolytic and anti-spasmogenic activity of beta-adrenoceptor agonists on airways smooth muscle is thought to involve activation of the cyclic AMP/cyclic AMP-dependent protein kinase (PKA) cascade. Here we have tested the hypothesis that PKA mediates the anti-spasmogenic activity of isoprenaline and other cyclic AMP-elevating agents in guinea-pig isolated trachea by utilizing a number of cell permeant cyclic AMP analogues that act as competitive 'antagonists' of PKA. 2. Anion-exchange chromatography of guinea-pig tracheae resolved two peaks of PKA activity that corresponded to the type I ( approximately 5%) and type II ( approximately 93%) isoenzymes. 3. Pre-treatment of tracheae with zardaverine (30 microM), vasoactive intestinal peptide (VIP) (1 microM) and the non-selective activator of PKA, Sp-8-CPT-cAMPS (10 microM), produced a non-parallel rightwards shift in the concentration-response curves that described acetylcholine (ACh)-induced tension generation. The type II-selective PKA inhibitor, Rp-8-CPT-cAMPS (300 microM), abolished this effect. 4. Pre-treatment of tracheae with Sp-8-Br-PET-cGMPS (30 microM) produced a non-parallel rightwards shift of the concentration-response curves that described ACh-induced tension generation. The selective cyclic GMP-dependent protein kinase (PKG) inhibitor, Rp-8-pCPT-cGMPS (300 microM), abolished this effect. 5. Pre-treatment of tracheae with isoprenaline (1 microM) produced a 10 fold shift to the right of the ACh concentration-response curve by a mechanism that was unaffected by Rp-8-Br-cAMPS (300 microM, selective inhibitor of type I PKA), Rp-8-CPT-cAMPS (300 microM) and Rp-8-pCPT-cGMPS (300 microM). 6. We conclude that the anti-spasmogenic activity of Sp-8-CPT-cAMPS, zardaverine and VIP in guinea-pig trachea is attributable to activation of the cyclic AMP/PKA cascade whereas isoprenaline suppresses ACh-induced contractions by a mechanism(s) that is independent of PKA and PKG.
Collapse
Affiliation(s)
- Lucia Spicuzza
- Department of Thoracic Medicine, Imperial College School of Medicine, National Heart & Lung Institute, Dovehouse Street, London SW3 6LY
| | - Maria G Belvisi
- Department of Cardiothoracic Surgery, Imperial College School of Medicine, National Heart & Lung Institute, Dovehouse Street, London SW3 6LY
| | - Mark A Birrell
- Department of Cardiothoracic Surgery, Imperial College School of Medicine, National Heart & Lung Institute, Dovehouse Street, London SW3 6LY
| | - Peter J Barnes
- Department of Thoracic Medicine, Imperial College School of Medicine, National Heart & Lung Institute, Dovehouse Street, London SW3 6LY
| | - David J Hele
- Department of Cardiothoracic Surgery, Imperial College School of Medicine, National Heart & Lung Institute, Dovehouse Street, London SW3 6LY
| | - Mark A Giembycz
- Department of Thoracic Medicine, Imperial College School of Medicine, National Heart & Lung Institute, Dovehouse Street, London SW3 6LY
- Author for correspondence:
| |
Collapse
|
19
|
Groneberg DA, Hartmann P, Dinh QT, Fischer A. Expression and distribution of vasoactive intestinal polypeptide receptor VPAC(2) mRNA in human airways. J Transl Med 2001; 81:749-55. [PMID: 11351046 DOI: 10.1038/labinvest.3780283] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
SUMMARY Vasoactive intestinal polypeptide (VIP) is a putative neurotransmitter of the inhibitory non-adrenergic non-cholinergic nervous system and influences many aspects of mammalian airway function. VIP binds to two G-protein-coupled VPAC receptors that are highly homologous structurally but distinguished by their different affinities for peptide analogues of VIP. As VIP binding sites in the respiratory tract have only been examined by ligand binding and cytochemical techniques, we studied the distribution of the mRNA that encodes the inducible receptor subtype VPAC(2) in the human respiratory tract. Northern blots demonstrated the expression of VPAC(2) mRNA in human airways and other tissues. A human-specific VPAC(2) cRNA probe was used to detect VPAC(2) mRNA expression in human lung by nonradioactive in situ hybridization. In larger airways, positive VPAC(2) mRNA signals were localized to tracheal and bronchial ciliated epithelial cells. There was also marked staining of mucous and serous cells of submucosal glands. No signals were obtained in airway and vascular smooth muscle myocytes and endothelial cells. In peripheral lung tissues, VPAC(2) mRNA expression was localized to epithelial cells of the bronchioles. Specific staining was detected in immune cells and alveolar macrophages. In summary, VPAC(2) is localized in airway epithelial, glandular, and immune cells of the lung but not in airway and vascular smooth muscle. The absence of VPAC(2) mRNA in vascular and airway smooth muscle myocytes may indicate that the effects of VIP on vasodilation and bronchodilation are mediated by VPAC(1) or undefined receptors. However, a paracrine modulation of the two most prominent effects of VIP in the respiratory tract by VPAC(2) cannot be excluded.
Collapse
Affiliation(s)
- D A Groneberg
- Research Division of Allergy, Department of Pediatrics, Charité, Humboldt-University, Berlin, Germany
| | | | | | | |
Collapse
|
20
|
Rudenstam J, Creutz J, Göthberg G, Karlström G, Bergström G. Regional renal haemodynamics of angiotensin II infusion under prostaglandin, kinin or converting enzyme inhibition in the Wistar rat. Blood Press 2000; 9:169-75. [PMID: 10855742 DOI: 10.1080/080370500453528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
AIMS Renal medullary blood flow is important in blood pressure regulation and is surprisingly unaffected by the vasoconstrictor action of angiotensin II (Ang II). This study tested if the effect of Ang II on the renal papillary circulation is modulated by bradykinins, prostaglandins or NO (NO). In anaesthetised Wistar rats, total renal blood flow (RBF) was measured, as was cortical (CBF) and papillary (PBF) blood flow, using the laser-Doppler technique, in responses to Ang II (30 ng kg(-1) min(-1)) alone and after ACE inhibition (enalapril) or bradykinin/prostaglandin synthesis inhibition (ketoprofen, aprotinin). PBF was also measured after blockade of NO formation with or without pretreatment with an Ang II receptor antagonist (losartan). MAJOR FINDINGS (i) PBF did not change in response to Ang II infusion but MAP increased (+ 10%) and RBF and CBF decreased. (ii) Treatment with aprotinin and ketoprofen left MAP, RBF and CBF unchanged but decreased PBF. Ang II did not decrease PBF further but a significant increase in MAP was seen. (iii) Enalapril treatment left PBF unchanged but decreased MAP and increased RBF and CBF. When Ang II was infused PBF and MAP increased markedly. (iv) L-NAME reduced PBF independently of losartan treatment. PRINCIPAL CONCLUSION Bradykinin and prostaglandins do not appear to cause the lack of renal papillary vasoconstriction to Ang II. However, the increase in PBF to Ang II seen after enalapril treatment suggests that enalapril treatment, possibly via its effects on kinin breakdown and subsequent NO formation, might affect the sensitivity of renal papillary autoregulation. This may be an important aspect of the blood pressure lowering effect of ACE inhibitors.
Collapse
Affiliation(s)
- J Rudenstam
- Institute of Physiology and Pharmacology, Department of Physiology, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
21
|
Olsson R, Jansson L, Andersson A, Carlsson PO. Local blood flow regulation in transplanted rat pancreatic islets: influence of adenosine, angiotensin II, and nitric oxide inhibition. Transplantation 2000; 70:280-7. [PMID: 10933149 DOI: 10.1097/00007890-200007270-00007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transplanted islets lack endothelial cells immediately after implantation and therefore depend on an adequate revascularization for their survival and function. However, the functional properties of the newly formed islet graft microvessels are largely unknown. This study aimed to investigate the blood flow regulation of transplanted pancreatic islets. METHODS Pancreatic islets were syngeneically transplanted beneath the renal capsule of control and streptozotocin-diabetic rats. Blood flow measurements were performed 4 weeks later using laser-Doppler flowmetry. Adenosine (0.6 mg x kg(-1) x min(-1), angiotensin II (AT II; 0.17 microg x kg(-1) x min(-1)) and the nitric oxide synthase inhibitor NG-nitro-L-arginine (25 mg/ kg) were given to each animal. RESULTS An increased basal blood flow and basal vascular conductance in the islet grafts, but not in the renal cortex, were seen in diabetic rats compared with control rats. Adenosine increased, and AT II decreased, the vascular conductance of the islet grafts in both nondiabetic and diabetic animals. A more pronounced circulatory response to AT II was observed in kidneys of diabetic animals, whereas there was no difference in the islet graft blood flow response between nondiabetic and diabetic animals. NG-Nitro-L-arginine decreased islet graft blood flow and vascular conductance in both nondiabetic and diabetic recipients, but the effect was more pronounced in the non-diabetic animals. CONCLUSIONS Islet graft blood flow was influenced by adenosine, AT II, and nitric oxide inhibition in all animals. However, diabetic animals were less dependent on nitric oxide to maintain a basal blood flow in the islet graft.
Collapse
Affiliation(s)
- R Olsson
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | | | | | |
Collapse
|
22
|
Evans RG, Madden AC, Cotterill E. ET-receptor subtypes: roles in regional renal vascular actions of exogenous and endogenous endothelins in anesthetized rabbits. J Cardiovasc Pharmacol 2000; 35:677-85. [PMID: 10813367 DOI: 10.1097/00005344-200005000-00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The roles of endothelin (ET)-receptor subtypes, in the regional renal vascular effects of exogenous and endogenous ETs, were examined in pentobarbitone-anesthetized rabbits. The effects of renal arterial infusion of ET-1 (0.05-12.8 ng/kg/min) and the ET(B)-agonist [Ala1,3,11,15]-ET-1 (12.5-800 ng/kg/min) were compared. We then tested the effects of the ET(A)-antagonist BQ610 and the ET(B)-antagonist BQ788 (both 200 microg/kg plus 100 microg/kg/h, i.v.) on basal hemodynamics and on responses to renal arterial ET-1. Both ET-1 and [Ala1,3,11,15]-ET-1 dose-dependently reduced total renal blood flow (RBF) and cortical blood flow (CBF), but not medullary blood flow (MBF). ET-1 was 34-fold more potent than [Ala1,3,11,15-ET-1. BQ610 reduced mean arterial pressure (MAP; 14%), and increased RBF (21%) and CBF (12%), but not MBF. BQ788 increased MAP (13%), and reduced RBF (29%) and CBF (15%) but not MBF. Coadministration of both agents increased RBF (18%) and CBF (9%), without significantly affecting MAP. Neither antagonist (alone or combined) significantly affected responses to renal arterial ET-1. We conclude that the predominant renal vascular effects of exogenous and endogenous ETs are cortical vasoconstriction, but not at vascular sites controlling MBF. ET(A)-receptors contribute to the renal vasoconstrictor effects of endogenous ETs. ET(B2)-like receptors appear to contribute to the vasoconstrictor effects of [Ala1,3,11,15]-ET-1.
Collapse
Affiliation(s)
- R G Evans
- Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
23
|
Lancelot E, Idée JM, Couturier V, Vazin V, Corot C. Influence of the viscosity of iodixanol on medullary and cortical blood flow in the rat kidney: a potential cause of Nephrotoxicity. J Appl Toxicol 1999; 19:341-6. [PMID: 10513679 DOI: 10.1002/(sici)1099-1263(199909/10)19:5<341::aid-jat584>3.0.co;2-u] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to investigate the effects of four iodinated contrast media on cortical, inner medullary and outer medullary blood flow in the rat kidney by using laser-Doppler flowmetry. The high-osmolar contrast medium diatrizoate did not significantly modify medullary perfusion but moderately decreased the cortical blood flow when injected at a dose of 1600 mg iodine kg(-1). Similar effects were obtained with the low-osmolar contrast media ioxaglate and iobitridol. In contrast, the new iso-osmolar contrast medium iodixanol induced a dose-dependent reduction of perfusion in all regions tested. This effect was accompanied by concomitant hypotension. The reduction of inner medullary and cortical blood flow induced by iodixanol was partially alleviated by heating the solution prior to injection and subsequently reducing its viscosity. In the outer medulla, however, this procedure did not improve blood flow. These results suggest that lowering the viscosity may palliate the harmful effects of iodixanol on the inner medulla and cortex, but may not protect the outer medulla from hypoxic injury.
Collapse
Affiliation(s)
- E Lancelot
- Guerbet, Research Division, F-95943 Roissy Charles de Gaulle, France.
| | | | | | | | | |
Collapse
|
24
|
Liu YC, Patel HJ, Khawaja AM, Belvisi MG, Rogers DF. Neuroregulation by vasoactive intestinal peptide (VIP) of mucus secretion in ferret trachea: activation of BK(Ca) channels and inhibition of neurotransmitter release. Br J Pharmacol 1999; 126:147-58. [PMID: 10051131 PMCID: PMC1565792 DOI: 10.1038/sj.bjp.0702288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1998] [Revised: 10/09/1998] [Accepted: 10/13/1998] [Indexed: 11/08/2022] Open
Abstract
1. The aims of this study were to determine: (1) whether vasoactive intestinal peptide (VIP) regulates cholinergic and 'sensory-efferent' (tachykininergic) 35SO4 labelled mucus output in ferret trachea in vitro, using a VIP antibody, (2) the class of potassium (K+) channel involved in VIP-regulation of cholinergic neural secretion using glibenclamide (an ATP-sensitive K+ (K(ATP)) channel inhibitor), iberiotoxin (a large conductance calcium activated K+ (BK(ca)) channel blocker), and apamin (a small conductance K(ca) (SK(ca)) channel blocker), and (3) the effect of VIP on cholinergic neurotransmission using [3H]-choline overflow as a marker for acetylcholine (ACh) release. 2. Exogenous VIP (1 and 10 microM) alone increased 35SO4 output by up to 53% above baseline, but suppressed (by up to 80% at 1 microM) cholinergic and tachykininergic neural secretion without altering secretion induced by ACh or substance P (1 microM each). Endogenous VIP accounted for the minor increase in non-adrenergic, non-cholinergic (NANC), non-tachykininergic neural secretion, which was compatible with the secretory response of exogenous VIP. 3. Iberiotoxin (3 microM), but not apamin (1 microM) or glibenclamide (0.1 microM), reversed the inhibition by VIP (10 nM) of cholinergic neural secretion. 4. Both endogenous VIP (by use of the VIP antibody; 1:500 dilution) and exogenous VIP (0.1 microM), the latter by 34%, inhibited ACh release from cholinergic nerve terminals and this suppression was completely reversed by iberiotoxin (0.1 microM). 5. We conclude that, in ferret trachea in vitro, endogenous VIP has dual activity whereby its small direct stimulatory action on mucus secretion is secondary to its marked regulation of cholinergic and tachykininergic neurogenic mucus secretion. Regulation is via inhibition of neurotransmitter release, consequent upon opening of BK(Ca) channels. In the context of neurogenic mucus secretion, we propose that VIP joins NO as a neurotransmitter of i-NANC nerves in ferret trachea.
Collapse
Affiliation(s)
- Yu-Chih Liu
- Thoracic Medicine, Chang Gung Memorial Hospital, 199 Tun-Hwa North Road, Taipei, Taiwan, R.O.C
| | - Hema J Patel
- Thoracic Medicine, National Heart & Lung Institute (Imperial College), Dovehouse Street, London SW3 6LY, U.K
| | - Aamir M Khawaja
- Thoracic Medicine, National Heart & Lung Institute (Imperial College), Dovehouse Street, London SW3 6LY, U.K
| | - Maria G Belvisi
- Thoracic Medicine, National Heart & Lung Institute (Imperial College), Dovehouse Street, London SW3 6LY, U.K
| | - Duncan F Rogers
- Thoracic Medicine, National Heart & Lung Institute (Imperial College), Dovehouse Street, London SW3 6LY, U.K
| |
Collapse
|
25
|
Evans RG, Bergström G, Lawrence AJ. Effects of the vasopressin V1 agonist [Phe2,Ile3,Orn8]] vasopressin on regional kidney perfusion and renal excretory function in anesthetized rabbits. J Cardiovasc Pharmacol 1998; 32:571-81. [PMID: 9781925 DOI: 10.1097/00005344-199810000-00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To test whether renal V1-receptors selectively influence blood flow in the renal medulla, we compared the effects of infusion of [Phe2,Ile3,Orn8]vasopressin (3-30 ng/kg/min) by the intravenous, renal arterial, and renal medullary interstitial routes in anesthetized rabbits. Intravenous [Phe2,Ile3,Orn8]vasopressin (30 ng/kg/min) reduced renal medullary perfusion (MBF) by 36 +/- 5% but did not significantly affect cortical perfusion (CBF). MBF was also reduced with the renal arterial (35 +/- 5%) and renal medullary interstitial (40 +/- 7%) routes but, in contrast to the intravenous infusion, CBF was also reduced, by 21 +/- 3% and 15 +/- 3%, respectively. Urine flow and sodium excretion were increased by [Phe2,Ile3,Orn8]vasopressin, and with direct intrarenal administration, this effect was similar for both the infused (left) and noninfused (right) kidneys. After a 20-min renal medullary interstitial infusion of [3H]norepinephrine, radiolabel concentration was approximately fivefold greater in the left medulla than in the left cortex. We conclude that [Phe2,Ile3,Orn8]vasopressin acts on V1-receptors to alter regional kidney blood flow and tubular salt and water handling. The V1-receptors involved are almost certainly within the kidney itself, but given the contrasting effects of the different infusion routes on MBF and CBF, we cannot exclude the possibility that some of the observed effects of [Phe2,Ile3,Orn8]vasopressin are mediated by activation of extra-renal V1-receptors.
Collapse
Affiliation(s)
- R G Evans
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
26
|
Pallone TL, Silldorff EP, Turner MR. Intrarenal blood flow: microvascular anatomy and the regulation of medullary perfusion. Clin Exp Pharmacol Physiol 1998; 25:383-92. [PMID: 9673811 DOI: 10.1111/j.1440-1681.1998.tb02220.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The microcirculation of the kidney is arranged in a manner that facilitates separation of blood flow to the cortex, outer medulla and inner medulla. 2. Resistance vessels in the renal vascular circuit include arcuate and interlobular arteries, glomerular afferent and efferent arterioles and descending vasa recta. 3. Vasoactive hormones that regulate smooth muscle cells of the renal circulation can originate outside the kidney (e.g. vasopressin), can be generated from nearby regions within the kidney (e.g. kinins, endothelins, adenosine) or they can be synthesized by adjacent endothelial cells (e.g. nitric oxide, prostacyclin, endothelins). 4. Vasoactive hormones released into the renal inner medullary microcirculation may be trapped by countercurrent exchange to act upon descending vasa recta within outer medullary vascular bundles. 5. Countercurrent blood flow within the renal medulla creates a hypoxic environment. Relative control of inner versus outer medullary blood flow may play a role to abrogate the hypoxia that arises from O2 consumption by the thick ascending limb of Henle. 6. Cortical blood flow is autoregulated. In contrast, the extent of autoregulation of medullary blood flow appears to be influenced by the volume status of the animal. Lack of medullary autoregulation during volume expansion may be part of fundamental processes that regulate salt and water excretion.
Collapse
Affiliation(s)
- T L Pallone
- Division of Nephrology, University of Maryland at Baltimore, USA.
| | | | | |
Collapse
|
27
|
de Girolamo P, Arcamone N, Rosica A, Gargiulo G. Vasoactive intestinal polypeptide immunoreactive nerves in the gill arch of teleost fish, Carassius auratus L. Acta Histochem 1997; 99:13-22. [PMID: 9150792 DOI: 10.1016/s0065-1281(97)80003-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The localization of vasoactive intestinal polypeptide (VIP)-immunoreactive (ir) nerve cell bodies and fibers has been studied in the gill arches of goldfish (Carassius auratus, L.) using the peroxidase-antiperoxidase (PAP) immunohistochemical method. It was found that VIP-ir nerve cell bodies are localized in connective tissue on the oral side of the gill arch; these cells were present as single cells, in couples or as small clusters. Moreover, a dense network of VIP-ir fibers was observed beneath the lining epithelium of the raker cushion. The possible involvement of this peptide in mucus secretion in the gill arches of teleost is discussed.
Collapse
Affiliation(s)
- P de Girolamo
- Department of Structures, Functions and Biological Technologies, University of Naples, Federico II, Italy
| | | | | | | |
Collapse
|
28
|
Palermo MS, Vermeulen ME, Giordano MN. Human antibody-dependent cellular cytotoxicity mediated by interferon gamma-activated neutrophils is impaired by vasoactive intestinal peptide. J Neuroimmunol 1996; 69:123-8. [PMID: 8823383 DOI: 10.1016/0165-5728(96)00078-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to evaluate the effect of vasoactive intestinal peptide (VIP) on the expression and activity of receptors for the Fc portion of IgG (Fc gamma R) in human neutrophils. Cells were assayed under basal conditions and following in vitro stimulation with interferon gamma (IFN gamma). Antibody dependent-cellular cytotoxicity (ADCC) was chosen as a means of evaluating Fc gamma R activity. The results indicated that incubation with VIP (10(-6) M) during 18 h slightly diminished cytotoxicity of non stimulated neutrophils. In contrast, VIP exerted a marked inhibitory effect on neutrophils activated with IFN gamma. Similar results were obtained with forskolin, another agent that increases intracellular cAMP. Finally, using monoclonal antibodies and flow cytometry analysis, we found decreased membrane expression of Fc gamma R after VIP incubation. Taken together, these results show that VIP is able to act on human neutrophils, partially blocking IFN gamma-activation of Fc gamma R mediated functions. Modulation of neutrophil cytotoxic response by VIP may have an important role in limiting tissue injury during inflammation.
Collapse
Affiliation(s)
- M S Palermo
- Division of Immunology, National Academy of Medicine, Buenos Aires, Argentina
| | | | | |
Collapse
|
29
|
Affiliation(s)
- S J Lolait
- Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
30
|
Kumamoto K, Matsuura T, Amagai T, Kawata M. Oxytocin-producing and vasopressin-producing eosinophils in the mouse spleen: immunohistochemical, immuno-electron-microscopic and in situ hybridization studies. Cell Tissue Res 1995; 281:1-10. [PMID: 7621516 DOI: 10.1007/bf00307953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Oxytocin-like and vasopressin-like immunoreactive cells, and the cells expressing mRNAs for these peptides in the spleen of the C57BL/6 mouse were studied by immunohistochemistry, immuno-electron microscopy and in situ hybridization. Immunoreactive cells were distributed mainly in the splenic cord and marginal zone, whereas there were few in the lymphocyte-packed periarteriolar-lymphoid sheath, lymphoid follicle and germinal center. More numerous vasopressin-positive cells were seen in the splenic cord. The colocalization of oxytocin-like and vasopressin-like immunoreactivity in the same cells was identified by the investigation of mirror sections. By the pre-embedding immuno-electron-microscopic method using antisera against oxytocin and vasopressin, immunopositive reaction products were localized in the matrix around the specific granules, small clear vesicles and mitochondrial membrane of the eosinophils. No immunoreactivity to these peptides was found within the specific granules of the eosinophils. In situ hybridization with synthetic oligonucleotide probes labeled with 32P revealed the presence of mRNAs for oxytocin and vasopressin in the cells of the spleen, the distribution of the mRNAs for these peptides being the same as that of immunopositive cells. These observations suggest that eosinophils synthesize both oxytocin and vasopressin and store them in the matrix. Possible differences in the mechanism of synthesis and storage of these peptides between peripheral eosinophils and hypothalamic neurons are discussed.
Collapse
Affiliation(s)
- K Kumamoto
- Department of Anatomy, Meiji College of Oriental Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
31
|
Abstract
We review evidence supporting the conclusion that renal dysfunction underlies the development of all forms of hypertension in humans and experimental animals. Indexes of global renal function are generally normal in the early stages of most genetic forms of hypertension, but renal function is clearly impaired in long-established hypertension. Studies in our laboratory over the past decade summarized below have established that the renal medulla plays an important role in sodium and water homeostasis and in the long-term control of arterial pressure. Development of implanted optical fibers for measurement of cortical and medullary blood flows with laser-Doppler flowmetry and techniques for delivery of vasoactive compounds into the medullary interstitial space enabled us to examine determinants of medullary flow (nitric oxide, atrial natriuretic peptides, kinins, eicosanoids, vasopressin, renal sympathetic nerves, etc). We have shown in spontaneously hypertensive rats that the initial changes of renal function begin as a reduction of medullary blood flow in the absence of changes of cortical flow. Long-term medullary interstitial infusion of captopril, which preferentially increased medullary blood flow, resulted in a lowering of arterial pressure. In normal Sprague-Dawley rats, selective reduction of medullary flow with medullary interstitial or intravenous infusion of small amounts of NG-nitro-L-arginine methyl ester resulted in hypertension. These and other studies we review show that although blood flow to the inner renal medulla comprises less than 1% of the total renal blood flow, changes in flow to this region can have a major effect on sodium and water homeostasis and on the long-term control of arterial blood pressure.
Collapse
Affiliation(s)
- A W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee 53226-0509, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Sensory afferent nerves relay impulses from the airways to the central nervous system so that appropriate changes in bronchomotor tone and breathing patterns may occur. The dominant efferent control of airways smooth muscle is exerted via bronchoconstrictor parasympathetic cholinergic nerves. In some species this is opposed by bronchodilator sympathetic noradrenergic nerves. In addition, there exist both excitatory bronchoconstrictor and inhibitory bronchodilator non-adrenergic, non-cholinergic pathways. This review examines the role of the different branches of the autonomic nervous system in the control of airways smooth muscle tone with particular reference to modulation of these branches and the interactions which may exist between them.
Collapse
Affiliation(s)
- Y D Pendry
- Department of Cardiovascular and Respiratory Pharmacology, Glaxo Group Research, Ware, Hertfordshire, U.K
| |
Collapse
|
33
|
Bell J, Adler MW, Greenstein JI, Liu-Chen LY. Identification and characterization of [125I]arginine vasopressin binding sites on human peripheral blood mononuclear cells. Life Sci 1993; 52:95-105. [PMID: 8417282 DOI: 10.1016/0024-3205(93)90292-b] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Arginine vasopressin (AVP) is a nonapeptide that has been shown to be released from the posterior pituitary during stress. Although noted primarily for its hemodynamic and homeostatic properties, AVP also appears to have an effect on the immune system. It may modulate cellular immunity via its enhancement of the autologous mixed lymphocyte response (AMLR), an effect which we have demonstrated to occur over a wide dose range with a maximum at 10(-7) M. In this study, we examined the binding of [125I]AVP, and AVP analogues to human peripheral blood mononuclear cells (PBMC). AVP inhibited [125I]AVP (0.2 nM) binding on PBMC in a dose-dependent manner with maximal inhibition being reached at 10(-8) M. Specific [125I]AVP binding, as defined as that which could be displaced by 1 x 10(-6) M AVP, was saturable, time-dependent, and linear to cell concentration. Specific binding reached saturation at approximately 1000 pM in 45 minutes. From Scatchard analysis of saturation experiments it appeared to be a homogeneous population of binding sites with KD of approximately 0.5 nM and Bmax of approximately 7.6 fmole/8 x 10(6) cells, corresponding to approximately 527 binding sites/cell. There was a good correlation between AVP binding and cell number. AVP failed to dissociate completely from its binding sites in 60 minutes, perhaps because of the formation of a high-affinity ligand-binding site complex. From competitive binding studies with various AVP antagonists and analogues, it was found that the AVP binding site appeared to be V1-like. AVP binding occurred predominantly on B-cells and macrophages. Having provided evidence for the existence of specific, high affinity, and saturable V1-like AVP binding sites, we suggest a potential modulatory role for AVP in the communication between the neuroendocrine and immune systems.
Collapse
Affiliation(s)
- J Bell
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | | | | | | |
Collapse
|
34
|
|
35
|
Morel A, O'Carroll AM, Brownstein MJ, Lolait SJ. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature 1992; 356:523-6. [PMID: 1560825 DOI: 10.1038/356523a0] [Citation(s) in RCA: 392] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neurohypophyseal hormone arginine vasopressin has diverse actions, including the inhibition of diuresis, contraction of smooth muscle, stimulation of liver glycogenolysis and modulation of adrenocorticotropic hormone release from the pituitary. Arginine vasopressin receptors are G protein-coupled and have been divided into at least three types; the V1a (vascular/hepatic) and V1b (anterior pituitary) receptors which act through phosphatidylinositol hydrolysis to mobilize intracellular Ca2+, and the V2 (kidney) receptor which is coupled to adenylate cyclase. We report here the cloning of a complementary DNA encoding the hepatic V1a arginine vasopressin receptor. The liver cDNA encodes a protein with seven putative transmembrane domains, which binds arginine vasopressin and related compounds with affinities similar to the native rat V1a receptor. The messenger RNA corresponding to the cDNA is distributed in rat tissues known to contain V1a receptors.
Collapse
Affiliation(s)
- A Morel
- Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
36
|
Abstract
1. In addition to the classical cholinergic bronchoconstrictor and adrenergic bronchodilator neural mechanisms, there is a large volume of evidence to suggest the existence of neural pathways within the airways of a variety of species which are neither adrenergic nor cholinergic, the non-adrenergic, non-cholinergic (NANC) mechanisms. With respect to airway smooth muscle tone, NANC neural responses may induce either contraction (excitatory, e-NANC) or relaxation (inhibitory, i-NANC). Early investigations of NANC mechanisms in both human and other animal airways suggested a role for neuropeptides as the putative neurotransmitters. 2. Excitatory NANC (e-NANC) bronchoconstrictor responses are believed to be mediated by the release of sensory neuropeptides from a subpopulation of non-myelinated C-fibre primary afferent neurones in the airways. e-NANC nerves, which release tachykinins such as substance P (SP), neurokinin A (NKA) and the peptide calcitonin gene-related peptide (CGRP, produced as a result of alternative splicing of the calcitonin gene) are selectively degenerated by the nerve toxin capsaicin (an extract from hot peppers), with the subsequent abolition of the e-NANC responses. Tachykinin receptors have been detected by radio-ligand receptor binding studies and visualized by autoradiographic mapping, and exogenous addition of these peptides elicits a bronchoconstrictor response in both human and other animal airways. In addition to these effects on airway smooth muscle tone, tachykinins produce an increase in microvascular permeability (and associated oedema formation), mucus hypersecretion and cause an exaggerated cholinergic bronchoconstrictor response. Thus, tachykinins may play a role in the inflammatory process and contribute to the neurogenic inflammation as seen in asthma.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
37
|
Affiliation(s)
- J A Nadel
- Cardiovascular Research Institute, University of California, San Francisco 94143-0130
| |
Collapse
|
38
|
Affiliation(s)
- S I Said
- Department of Medicine, University of Illinois, Chicago College of Medicine
| |
Collapse
|
39
|
Kummer W, Fischer A, Couraud J, Heym C. Immunohistochemistry of peptides (substance P and VIP) and peptide receptors in the trachea. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0165-1838(91)90156-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Abstract
A comparison was made of the vascular actions of two hormones having a renal site of action, angiotensin II and vasopressin, using laser Doppler flowmetry to measure perfusion of the cortical and papillary regions of the kidney. Angiotensin II infusion caused dose-related increases in blood pressure and reductions in cortical perfusion, the latter responses being potentiated in the presence of the converting enzyme inhibitor, cilazapril. However, angiotensin II had no effect on papillary perfusion either before or following cilazapril. The reasons for this differing vasoconstrictor ability of angiotensin II at the cortex and papilla are unclear, but it could be due to medullary generation of prostaglandin or bradykinin. Administration of equipressor doses of vasopressin caused graded reductions in both cortical and papillary perfusions, and subsequent cilazapril significantly enhanced the papillary responses. This study demonstrates that the regulation of blood flow through the different regions of the kidney can be differentially regulated by the peptide hormones angiotensin II and vasopressin.
Collapse
Affiliation(s)
- G Davis
- Department of Physiology, Medical School, Birmingham, UK
| | | |
Collapse
|
41
|
Kalubi B, Yamano M, Ohhata K, Matsunaga T, Tohyama M. Presence of VIP fibers of sensory origin in the rat trachea. Brain Res 1990; 522:107-11. [PMID: 2224501 DOI: 10.1016/0006-8993(90)91583-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The presence of vasoactive intestinal peptide (VIP) immunoreactive nerve fibers (LI) in the respiratory tract of mammals is well documented. These fibers are known to originate from parasympathetic postganglionic neurons and to be associated with blood vessels, submucosal glands, and with smooth muscle. We found that, in addition to this, the epithelial layer of the rat trachea also contains VIP-LI fibers. Vagotomy or ligation of the cervical portion of the vagus nerve resulted respectively in a decrease of VIP-LI fibers within the epithelium or in the accumulation of VIP in axons proximal to the site of transection or ligation, whereas no changes were seen in other parts of the trachea. On the other hand, capsaicin pretreatment also caused similar changes to the surgical procedures. These findings indicate that VIP-LI fibers in the tracheal epithelium of the rat are supplied by the sensory ganglia of the vagus nerve.
Collapse
Affiliation(s)
- B Kalubi
- Department of Otolaryngology, Osaka University Medical School, Kita-ku, Japan
| | | | | | | | | |
Collapse
|
42
|
Kummer W. Simultaneous immunohistochemical demonstration of vasoactive intestinal polypeptide and its receptor in human colon. THE HISTOCHEMICAL JOURNAL 1990; 22:249-56. [PMID: 1723721 DOI: 10.1007/bf01387180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study reports an immunohistochemical approach for localizing the immunoreactivity of vasoactive intestinal polypeptide (VIP) receptor in the human colon, by using a monoclonal antibody which recognizes the VIP-receptor of a human colonic adenocarcinoma cell line. Simultaneous demonstration of immunoreactive VIP-receptor of a human colonic adenocarcinoma cell line. Simultaneous demonstration of immunoreactive VIP-receptor and VIP was achieved by a double-labelling procedure employing immunogold silver staining for VIP-receptor, and a biotinylated secondary antibody followed by streptavidin-Texas Red, to visualize VIP. The immunoreactive VIP receptor was found at two locations receiving dense VIP innervation: myenteric ganglia and mucosal epithelium. Epithelial cells displayed intense labelling at the basolateral membrane, which confirmed earlier binding studies on fractionated membranes. A small number of enteroendocrine cells was also recognized by the VIP-receptor antibody. Smooth muscle and cells of the immune system were not stained by the monoclonal antibody, indicating that it recognized an epitope not common to VIP-receptors of all locations. Thus, the immunohistochemical approach of VIP-receptor localization differs from autoradiography in (a) precise cellular localization, (b) possibility of simultaneous demonstration of receptor and ligand immunoreactivity, and (c) selectivity to a certain receptor population which, however, is presently not fully characterized.
Collapse
Affiliation(s)
- W Kummer
- Institute for Anatomy and Cell Biology, University of Heidelberg, Germany
| |
Collapse
|
43
|
Affiliation(s)
- J D Lundgren
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Md
| | | |
Collapse
|
44
|
Affiliation(s)
- P J Barnes
- Department of Thoracic Medicine, National Heart and Lung Institute, London, U.K
| |
Collapse
|
45
|
Van Valen F, Jürgens H, Winkelmann W, Keck E. Vasoactive intestinal peptide receptor regulation of cAMP accumulation and glycogen hydrolysis in the human Ewing's sarcoma cell line WE-68. Cell Signal 1989; 1:435-46. [PMID: 2561912 DOI: 10.1016/0898-6568(89)90029-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study describes functional characteristics of receptors for vasoactive intestinal peptide (VIP) on human Ewing's sarcoma WE-68 cells. These characteristics include 125I-VIP binding capacity, cellular cAMP generation, glycogen hydrolysis, and pharmacological specificity. Binding studies with 125I-VIP showed specific, saturable, binding sites for VIP in WE-68 cells. Scatchard analysis revealed the presence of a single class of high-affinity binding sites that exhibited a dissociation constant (Kd) of 90 pM and a maximal binding capacity (Bmax) of 24 fmol/mg of protein. VIP and VIP-related peptides competed for 125I-VIP binding in the following order of potency: human (h) VIP greater than human peptide with N-terminal histidine and C-terminal methionine (PHM) greater than chicken secretin much greater than porcine secretin. Glucagon and the C-terminal fragments VIP[10-28] and VIP[16-28] and the VIP analogue (D-Phe2)VIP did not inhibit 125I-VIP binding. Addition of hVIP to WE-68 cells provoked marked stimulation of cAMP accumulation, hVIP stimulated increases in cAMP content were rapid, concentration-dependent, and potentiated by 3-isobutyl-l-methylxanthine (IBMX). Half-maximal stimulation (EC50) occurred at 150 nM hVIP. The ability of hVIP and analogues to stimulate cAMP generation paralleled their potencies in displacing 125I-VIP binding. (D-Phe2)VIP, VIP[10-28], VIP[16-28], and (p-Cl-D-Phe6, Leu17)VIP, a putative VIP receptor antagonist, affected neither basal cAMP levels nor hVIP-induced cAMP accumulation. WE-68 cell responses to hVIP were desensitized by prior exposure to hVIP. Desensitization to hVIP did not modify the cAMP response to beta-adrenergic stimulation, and beta-adrenergic agonist desensitization did not modify responses to hVIP. hVIP also induced a time- and concentration-dependent hydrolysis of 3H-glycogen newly formed from 3H-glucose in WE-68 cultures. hVIP maximally decreased 3H-glycogen content by 36% with an EC50 value of about 8 nM. The order of potency of structurally related peptides of hVIP for stimulation of glycogenolysis correlated with their order of potency for inhibition of 125I-VIP binding. IBMX potentiated the glycogenolytic action of hVIP and PHM. The simultaneous presence of the calcium channel antagonist verapamil or the calcium ionophore A 23187 did not influence the glycogenolytic and cAMP stimulatory effects of hVIP. Collectively, these data indicate that Ewing's sarcoma (WE-68) cells are endowed with genuine VIP receptors which are coupled to the formation of cAMP that probably serves a second messenger role in stimulating glycogen hydrolysis in these cells in response to VIP.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
46
|
|
47
|
Elgavish A, Pillion DJ, Meezan E. Evidence for vasoactive intestinal peptide receptors in apical membranes from tracheal epithelium. Life Sci 1989; 44:1037-42. [PMID: 2538697 DOI: 10.1016/0024-3205(89)90555-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
[125I]VIP (vasoactive intestinal peptide) bound to apical membranes isolated from the bovine tracheal epithelium with a half maximal inhibition by unlabeled VIP (IC50) of 0.6 x 10(-9)M and binding was reversible. Glucagon did not affect [125I]VIP binding to the membranes. [125I]VIP was covalently cross-linked to tracheal membrane proteins using disuccinimidyl suberate. SDS-polyacrylamide gel electrophoresis of labeled tracheal membranes revealed one major [125I]-receptor complex of Mr = 71,000 to which binding of [125I]VIP was inhibited by 10 microM unlabeled VIP. These results are consistent with the presence of a specific, high-affinity receptor for VIP, with a Mr = 71,000, in apical membrane vesicles isolated from the bovine tracheal epithelium.
Collapse
Affiliation(s)
- A Elgavish
- Department of Pharmacology, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
48
|
Heinz-Erian P, Said SI. Vasoactive intestinal peptide as a regulator of exocrine function and as a possible factor in cystic fibrosis. Ann N Y Acad Sci 1988; 527:568-73. [PMID: 3291701 DOI: 10.1111/j.1749-6632.1988.tb27009.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- P Heinz-Erian
- Department of Medicine, University of Illinois College of Medicine, Chicago
| | | |
Collapse
|
49
|
Affiliation(s)
- S I Said
- University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
50
|
Affiliation(s)
- P J Barnes
- Department of Clinical Pharmacology, Brompton Hospital, London, U.K
| |
Collapse
|