1
|
Aria H, Rezaei M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed Pharmacother 2023; 161:114503. [PMID: 36921539 DOI: 10.1016/j.biopha.2023.114503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Immunogenic Cell Death (ICD) is a type of cell death that kills tumor cells by stimulating the adaptive immune response against other tumor cells. ICD depends on the endoplasmic reticulum (ER) stress and the secretion of Damage-Associated Molecular Patterns (DAMP) by the dying tumor cell. DAMPs recruit innate immune cells such as Dendritic Cells (DC), triggering a cancer-specific immune response such as cytotoxic T lymphocytes (CTLs) to eliminate remaining cancer cells. ICD is accompanied by several hallmarks in dying cells, such as surface translocation of ER chaperones, calreticulin (CALR), and extracellular secretion of DAMPs such as high mobility group protein B1 (HMGB1) and adenosine triphosphate (ATP). Therapeutic peptides can kill bacteria and tumor cells thus affecting the immune system. They have high specificity and affinity for their targets, small size, appropriate cell membrane penetration, short half-life, and simple production processes. Peptides are interesting agents for immunomodulation since they may overcome the limitations of other therapeutics. Thus, the development of peptides affecting the TME and active antitumoral immunity has been actively pursued. On the other hand, several peptides have been recently identified to trigger ICD and anti-cancer responses. In the present review, we review previous studies on peptide-induced ICD, their mechanism, their targets, and markers. They include anti-microbial peptides (AMPs), cationic or mitochondrial targeting, checkpoint inhibitors, antiapoptotic inhibitors, and "don't eat me" inhibitor peptides. Also, peptides will be investigated potentially inducing ICD that is divided into ER stressors, ATPase inhibitors, and anti-microbial peptides.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Gohar EY, Pollock DM. Functional Interaction of Endothelin Receptors in Mediating Natriuresis Evoked by G Protein-Coupled Estrogen Receptor 1. J Pharmacol Exp Ther 2021; 376:98-105. [PMID: 33127751 PMCID: PMC7788354 DOI: 10.1124/jpet.120.000322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
The G protein-coupled estrogen receptor 1 (GPER1) mediates rapid estrogenic signaling. We recently reported that activation of GPER1 in the renal medulla evokes endothelin-1-dependent natriuresis in female, but not male, rats. However, the involvement of the ET receptors, ETA and ETB, underlying GPER1 natriuretic action remain unclear. In this study, we used genetic and pharmacologic methods to identify the contributions of ETA and ETB in mediating this female-specific natriuretic effect of renal medullary GPER1. Infusion of the GPER1-selective agonist G1 (5 pmol/kg per minute) into the renal medulla for 40 minutes increased Na+ excretion and urine flow in anesthetized female ETB-deficient (ETB def) rats and littermate controls but did not affect blood pressure or urinary K+ excretion in either group. Pretreatment with the selective ETA inhibitor ABT-627 (5 mg/kg, intravenous) abolished G1-induced natriuresis in ETB def rats. To further isolate the effects of inhibiting either receptor alone, we conducted the same experiments in anesthetized female Sprague-Dawley (SD) rats pretreated or not with ABT-627 and/or the selective ETB inhibitor A-192621 (10 mg/kg, intravenous). Neither antagonism of ETA nor antagonism of ETB receptor alone affected the G1-induced increase in Na+ excretion and urine flow in SD rats. However, simultaneous antagonism of both receptors completely abolished these effects. These data suggest that ETA and ETB receptors can mediate the natriuretic and diuretic response to renal medullary GPER1 activation in female rats. SIGNIFICANCE STATEMENT: Activation of G protein-coupled estrogen receptor 1 (GPER1) in the renal medulla of female rats evokes natriuresis via endothelin receptors A and/or B, suggesting that GPER1 and endothelin signaling pathways help efficient sodium excretion in females. Thus, GPER1 activation could be potentially useful to mitigate salt sensitivity in females.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama (E.Y.G, D.M.P); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (E.Y.G)
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama (E.Y.G, D.M.P); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (E.Y.G)
| |
Collapse
|
3
|
Zhang W, Wu YE, Yang XY, Shi J, van den Anker J, Song LL, Zhao W. Oral drugs used to treat persistent pulmonary hypertension of the newborn. Expert Rev Clin Pharmacol 2020; 13:1295-1308. [PMID: 33180564 DOI: 10.1080/17512433.2020.1850257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction:Persistent Pulmonary Hypertension of the Newborn (PPHN) is a life-threatening neonatal condition, mostly treated with inhaled nitric oxide (iNO), intravenous prostaglandins, oral bosentan, sildenafil and tadalafil. However, the utility of non-oral agents is limited in PPHN for their side effects and inconvenient deliveries. Therefore, oral agents such as bosentan, sildenafil and tadalafil are becoming appealing for their satisfactory efficacy, easy mode of administration and acceptable side effects. Areas covered: We conducted a comprehensive search on Pubmed, Scopus, Web of Sciences concerning the use of bosentan, sildenafil and tadalafil to treat PPHN and summarized their efficacy, safety and pharmacokinetics. Expert opinion: Current randomized controlled trials (RCTs) have demonstrated the favorable responses and tolerable side effects of bosentan and sildenafil. Nevertheless, those RCTs are small and only one study has described the pharmacokinetics of sildenafil in neonates. Accordingly, bosentan, sildenafil and tadalafil remain off-label in clinical use. More well-designed RCTs with large samples and long-term follow-up and pharmacometrics studies are needed to demonstrate the efficacy, safety and pharmacokinetics of bosentan, sildenafil and tadalafil in PPHN.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, China
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, China
| | - Xiao-Yan Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University , Chengdu, China
| | - Jing Shi
- Department of Pediatrics, West China Second University Hospital, Sichuan University , Chengdu, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital , Washington, DC, USA.,Departments of Pediatrics, Pharmacology & Physiology, Genomics & Precision Medicine, The George Washington University School of Medicine and Health Sciences , Washington, DC, USA.,Department of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital , Basel, Switzerland
| | - Lin-Lin Song
- Department of Clinical Pharmacy, Clinical Trial Center, Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University , Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, China.,Department of Clinical Pharmacy, Clinical Trial Center, Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University , Jinan, China
| |
Collapse
|
4
|
The endothelin system as target for therapeutic interventions in cardiovascular and renal disease. Clin Chim Acta 2020; 506:92-106. [DOI: 10.1016/j.cca.2020.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
|
5
|
Gohar EY, Daugherty EM, Aceves JO, Sedaka R, Obi IE, Allan JM, Soliman RH, Jin C, De Miguel C, Lindsey SH, Pollock JS, Pollock DM. Evidence for G-Protein-Coupled Estrogen Receptor as a Pronatriuretic Factor. J Am Heart Assoc 2020; 9:e015110. [PMID: 32390531 PMCID: PMC7660860 DOI: 10.1161/jaha.119.015110] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Background The novel estrogen receptor, G-protein-coupled estrogen receptor (GPER), is responsible for rapid estrogen signaling. GPER activation elicits cardiovascular and nephroprotective effects against salt-induced complications, yet there is no direct evidence for GPER control of renal Na+ handling. We hypothesized that GPER activation in the renal medulla facilitates Na+ excretion. Methods and Results Herein, we show that infusion of the GPER agonist, G1, to the renal medulla increased Na+ excretion in female Sprague Dawley rats, but not male rats. We found that GPER mRNA expression and protein abundance were markedly higher in outer medullary tissues from females relative to males. Blockade of GPER in the renal medulla attenuated Na+ excretion in females. Given that medullary endothelin 1 is a well-established natriuretic factor that is regulated by sex and sex steroids, we hypothesized that GPER activation promotes natriuresis via an endothelin 1-dependent pathway. To test this mechanism, we determined the effect of medullary infusion of G1 after blockade of endothelin receptors. Dual endothelin receptor subtype A and endothelin receptor subtype B antagonism attenuated G1-induced natriuresis in females. Unlike males, female mice with genetic deletion of GPER had reduced endothelin 1, endothelin receptor subtype A, and endothelin receptor subtype B mRNA expression compared with wild-type controls. More important, we found that systemic GPER activation ameliorates the increase in mean arterial pressure induced by ovariectomy. Conclusions Our data uncover a novel role for renal medullary GPER in promoting Na+ excretion via an endothelin 1-dependent pathway in female rats, but not in males. These results highlight GPER as a potential therapeutic target for salt-sensitive hypertension in postmenopausal women.
Collapse
MESH Headings
- Animals
- Cyclopentanes/pharmacology
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Estradiol/metabolism
- Estrogens/pharmacology
- Female
- Kidney Medulla/drug effects
- Kidney Medulla/metabolism
- Male
- Mice, Knockout
- Natriuresis/drug effects
- Ovariectomy
- Quinolines/pharmacology
- Rats, Sprague-Dawley
- Receptor, Endothelin A/genetics
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/genetics
- Receptor, Endothelin B/metabolism
- Receptors, Estrogen/deficiency
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Sex Factors
- Signal Transduction
Collapse
Affiliation(s)
- Eman Y. Gohar
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | | | - Jeffrey O. Aceves
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Randee Sedaka
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Ijeoma E. Obi
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - J. Miller Allan
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Reham H. Soliman
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Chunhua Jin
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Carmen De Miguel
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Sarah H. Lindsey
- Department of PharmacologySchool of MedicineTulane UniversityNew OrleansLA
| | - Jennifer S. Pollock
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - David M. Pollock
- Division of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| |
Collapse
|
6
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Burat B, Faucher Q, Čechová P, Arnion H, Di Meo F, Sauvage F, Marquet P, Essig M. Cyclosporine A inhibits MRTF-SRF signaling through Na +/K + ATPase inhibition and actin remodeling. FASEB Bioadv 2019; 1:561-578. [PMID: 32123851 PMCID: PMC6996406 DOI: 10.1096/fba.2019-00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 03/22/2019] [Accepted: 07/25/2019] [Indexed: 01/07/2023] Open
Abstract
Calcineurin inhibitors (CNI) are the pillars of immunosuppression in transplantation. However, they display a potent nephrotoxicity whose mechanisms remained widely unsolved. We used an untargeted quantitative proteomic approach (iTRAQ technology) to highlight new targets of CNI in renal proximal tubular cells (RPTCs). CNI-treated RPTCs proteome displayed an over-representation of actin-binding proteins with a CNI-specific expression profile. Cyclosporine A (CsA) induced F-actin remodeling and depolymerization, decreased F-actin-stabilizing, polymerization-promoting cofilin (CFL) oligomers, and inhibited the G-actin-regulated serum response factor (SRF) pathway. Inhibition of CFL canonical phosphorylation pathway reproduced CsA effects; however, S3-R, an analogue of the phosphorylation site of CFL prevented the effects of CsA which suggests that CsA acted independently from the canonical CFL regulation. CFL is known to be regulated by the Na+/K+-ATPase. Molecular docking calculations identified two inhibiting sites of CsA on Na+/K+-ATPase and a 23% decrease in Na+/K+-ATPase activity of RPTCs was observed with CsA. Ouabain, a specific inhibitor of Na+/K+-ATPase also reproduced CsA effects on actin organization and SRF activity. Altogether, these results described a new original pathway explaining CsA nephrotoxicity.
Collapse
Affiliation(s)
- Bastien Burat
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Quentin Faucher
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Petra Čechová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
| | - Hélène Arnion
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Florent Di Meo
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - François‐Ludovic Sauvage
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| | - Pierre Marquet
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
- Department of Pharmacology and ToxicologyLimoges University HospitalLimogesFrance
| | - Marie Essig
- Centre for Biology & Health Research, UMR INSERM 1248 IPPRIT (Individual Profiling and Prevention of RIsks in Transplantation)Limoges UniversityLimogesFrance
| |
Collapse
|
8
|
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev 2019; 99:235-309. [PMID: 30354966 DOI: 10.1152/physrev.00055.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The thick ascending limb plays a key role in maintaining water and electrolyte balance. The importance of this segment in regulating blood pressure is evidenced by the effect of loop diuretics or local genetic defects on this parameter. Hormones and factors produced by thick ascending limbs have both autocrine and paracrine effects, which can extend prohypertensive signaling to other structures of the nephron. In this review, we discuss the role of the thick ascending limb in the development of hypertension, not as a sole participant, but one that works within the rich biological context of the renal medulla. We first provide an overview of the basic physiology of the segment and the anatomical considerations necessary to understand its relationship with other renal structures. We explore the physiopathological changes in thick ascending limbs occurring in both genetic and induced animal models of hypertension. We then discuss the racial differences and genetic defects that affect blood pressure in humans through changes in thick ascending limb transport rates. Throughout the text, we scrutinize methodologies and discuss the limitations of research techniques that, when overlooked, can lead investigators to make erroneous conclusions. Thus, in addition to advancing an understanding of the basic mechanisms of physiology, the ultimate goal of this work is to understand our research tools, to make better use of them, and to contextualize research data. Future advances in renal hypertension research will require not only collection of new experimental data, but also integration of our current knowledge.
Collapse
Affiliation(s)
| | - Fara Saez
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Casandra M Monzon
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jessica Asirwatham
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
9
|
Shao W, Rosales CB, Gonzalez C, Prieto MC, Navar LG. Effects of serelaxin on renal microcirculation in rats under control and high-angiotensin environments. Am J Physiol Renal Physiol 2018; 314:F70-F80. [PMID: 28978531 DOI: 10.1152/ajprenal.00201.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serelaxin is a novel recombinant human relaxin-2 that has been investigated for the treatment of acute heart failure. However, its effects on renal function, especially on the renal microcirculation, remain incompletely characterized. Our immunoexpression studies localized RXFP1 receptors on vascular smooth muscle cells and endothelial cells of afferent arterioles and on principal cells of collecting ducts. Clearance experiments were performed in male and female normotensive rats and Ang II-infused male rats. Serelaxin increased mean arterial pressure slightly and significantly increased renal blood flow, urine flow, and sodium excretion rate. Group analysis of all serelaxin infusion experiments showed significant increases in GFR. During infusion with subthreshold levels of Ang II, serelaxin did not alter mean arterial pressure, renal blood flow, GFR, urine flow, or sodium excretion rate. Heart rates were elevated during serelaxin infusion alone (37 ± 5%) and in Ang II-infused rats (14 ± 2%). In studies using the in vitro isolated juxtamedullary nephron preparation, superfusion with serelaxin alone (40 ng/ml) significantly dilated afferent arterioles (10.8 ± 1.2 vs. 13.5 ± 1.1 µm) and efferent arterioles (9.9 ± 0.9 vs. 11.9 ± 1.0 µm). During Ang II superfusion, serelaxin did not alter afferent or efferent arteriolar diameters. During NO synthase inhibition (l-NNA), afferent arterioles also did not show any vasodilation during serelaxin infusion. In conclusion, serelaxin increased overall renal blood flow, urine flow, GFR, and sodium excretion and dilated the afferent and efferent arterioles in control conditions, but these effects were attenuated or prevented in the presence of exogenous Ang II and NO synthase inhibitors.
Collapse
Affiliation(s)
- Weijian Shao
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine , New Orleans, Louisiana
| | - Carla B Rosales
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine , New Orleans, Louisiana
| | - Camila Gonzalez
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine , New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine , New Orleans, Louisiana
| | - L Gabriel Navar
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine , New Orleans, Louisiana
| |
Collapse
|
10
|
T cells upon activation promote endothelin 1 production in monocytes via IFN-γ and TNF-α. Sci Rep 2017; 7:14500. [PMID: 29101349 PMCID: PMC5670167 DOI: 10.1038/s41598-017-14202-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023] Open
Abstract
Endothelin 1 (ET-1), mainly produced from vascular endothelial cells, induces vasoconstriction in physiological conditions. The endothelin receptor antagonist is among the most effective agents for pulmonary hypertension. However, little is known about the production source of ET-1 in inflammation and immunity. Here, we studied whether T cell-mediated ET-1 production system exists and operates independent of the production system in vascular endothelial cells. ET-1 production was readily detectable in the culture supernatant of human PBMCs and murine spleen cells stimulated with anti-CD3 antibody. Immunocytostaining showed that ET-1-producing cells emerged only in PBMCs stimulated with anti-CD3 antibody. Using the Transwell system, both murine and human monocytes sorted with magnetic beads in the inner chamber produced ET-1 when T cells were activated with antigen or anti-CD3 antibody in the outer chamber. This ET-1 production was inhibited by anti-IFN-γ and/or TNF-α antibody. Furthermore, monocytes purified from ETflox/flox;Tie2-Cre( + ) mice, which conditionally lack ET-1 in hematopoietic stem cells and vascular endothelial cells, did not produce ET-1 even when stimulated by antigen-specific T cell activation. This study demonstrates the existence of an immune-mediated ET-1 production induced by T cells upon activation through IFN-γ and TNF-α.
Collapse
|
11
|
Tokonami N, Cheval L, Monnay I, Meurice G, Loffing J, Feraille E, Houillier P. Endothelin-1 mediates natriuresis but not polyuria during vitamin D-induced acute hypercalcaemia. J Physiol 2017; 595:2535-2550. [PMID: 28120456 DOI: 10.1113/jp273610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/16/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism. A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)-1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia-induced effects. In the present study, we demonstrate that, during vitamin D-induced hypercalcaemia, the activation of ET system by increased ET-1 is responsible for natriuresis but not for polyuria. Vitamin D-treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited. We have identified an original pathway that specifically mediates the effects of vitamin D-induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. ABSTRACT Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D-induced hypercalcaemia increases the renal expression of endothelin (ET)-1, we hypothesized that ET-1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8-week-old, parathyroid hormone-supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT-treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET-1 and the transcription factors CCAAT-enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT-treated mice. To examine the role of the ET system in hypercalcaemia-induced natriuresis and polyuria, mice were treated with the ET-1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT-treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT-treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D-induced hypercalcaemia increases the renal production of ET-1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria.
Collapse
Affiliation(s)
- Natsuko Tokonami
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| | - Lydie Cheval
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| | - Isabelle Monnay
- University of Geneva, Department of Cell Physiology and Metabolism, Service of Nephrology University Medical Center, Geneva, Switzerland
| | - Guillaume Meurice
- Bioinformatic Core Facility, UMS AMMICA, INSERM US23, CNRS UMS3665, Gustave Roussy, Villejuif, France
| | | | - Eric Feraille
- University of Geneva, Department of Cell Physiology and Metabolism, Service of Nephrology University Medical Center, Geneva, Switzerland
| | - Pascal Houillier
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| |
Collapse
|
12
|
Al Alam N, Kreydiyyeh SI. FTY720P inhibits hepatic Na(+)-K(+) ATPase via S1PR2 and PGE2. Biochem Cell Biol 2016; 94:371-7. [PMID: 27501354 DOI: 10.1139/bcb-2016-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) was found previously to inhibit Na(+)-K(+) ATPase in HepG2 cells. Whether fingolimod (FTY720), a S1P receptor (S1PR) agonist, similarly inhibits the ATPase is a question that needs to be addressed. The aim of this work was to study the effect of FTY720P, the active form of the drug, on the activity of Na(+)-K(+) ATPase in HepG2 cells and determine its mechanism of action. The activity of the ATPase was assayed by measuring the amount of inorganic phosphate liberated in the presence and the absence of ouabain. FTY720-P (7.5 nmol/L, 15 min) significantly reduced the activity of the ATPase. This effect disappeared completely in the presence of JTE-013, which is a specific blocker of sphingosine-1-phosphate receptor 2 (S1PR2), as well as in the presence of calphostin and indomethacin, which are inhibitors of protein kinase C (PKC) and COX-2, respectively. The effect of FTY720P was mimicked by prostaglandin E2 (PGE2) and PMA, but abrogated by NF-κB inhibition. When NF-κB was inhibited, the effect of exogenous PGE2 still appeared, but that of PMA did not manifest, suggesting that NF-κB is upstream of PGE2 and downstream of PKC. It was concluded that FTY720P activates via S1PR2, PKC, and NF-κB. The latter induces PGE2 generation and inhibits Na(+)-K(+) ATPase.
Collapse
Affiliation(s)
- Nadine Al Alam
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, 11-0236, Lebanon.,Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, 11-0236, Lebanon
| | - Sawsan Ibrahim Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, 11-0236, Lebanon.,Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, 11-0236, Lebanon
| |
Collapse
|
13
|
Abstract
The renal tubular epithelial cells produce more endothelin-1 (ET-1) than any other cell type in the body. Moving down the nephron, the amount of ET-1 produced appears fairly consistent until reaching the inner medullary collecting duct, which produces at least 10 times more ET-1 than any other segment. ET-1 inhibits Na(+) transport in all parts of the nephron through activation of the ETB receptor, and, to a minor extent, the ETA receptor. These effects are most prominent in the collecting duct where ETB-receptor activation inhibits activity of the epithelial Na(+) channel. Effects in other parts of the nephron include inhibition of Na(+)/H(+) exchange in the proximal tubule and the Na(+), K(+), 2Cl(-) co-transporter in the thick ascending limb. In general, the renal epithelial ET-1 system is an integral part of the body's response to a high salt intake to maintain homeostasis and normal blood pressure. Loss of ETB-receptor function results in salt-sensitive hypertension. The role of renal ET-1 and how it affects Na(+) and water transport throughout the nephron is reviewed.
Collapse
Affiliation(s)
- Joshua S Speed
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Brandon M Fox
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jermaine G Johnston
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
14
|
Lynch IJ, Welch AK, Gumz ML, Kohan DE, Cain BD, Wingo CS. Effect of mineralocorticoid treatment in mice with collecting duct-specific knockout of endothelin-1. Am J Physiol Renal Physiol 2015; 309:F1026-34. [PMID: 26400543 DOI: 10.1152/ajprenal.00220.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/16/2015] [Indexed: 02/02/2023] Open
Abstract
Aldosterone increases blood pressure (BP) by stimulating sodium (Na) reabsorption within the distal nephron and collecting duct (CD). Aldosterone also stimulates endothelin-1 (ET-1) production that acts within the CD to inhibit Na reabsorption via a negative feedback mechanism. We tested the hypothesis that this renal aldosterone-endothelin feedback system regulates electrolyte balance and BP by comparing the effect of a high-salt (NaCl) diet and mineralocorticoid stimulation in control and CD-specific ET-1 knockout (CD ET-1 KO) mice. Metabolic balance and radiotelemetric BP were measured before and after treatment with desoxycorticosterone pivalate (DOCP) in mice fed a high-salt diet with saline to drink. CD ET-1 KO mice consumed more high-salt diet and saline and had greater urine output than controls. CD ET-1 KO mice exhibited increased BP and greater fluid retention and body weight than controls on a high-salt diet. DOCP with high-salt feeding further increased BP in CD ET-1 KO mice, and by the end of the study the CD ET-1 KO mice were substantially hypernatremic. Unlike controls, CD ET-1 KO mice failed to respond acutely or escape from DOCP treatment. We conclude that local ET-1 production in the CD is required for the appropriate renal response to Na loading and that lack of local ET-1 results in abnormal fluid and electrolyte handling when challenged with a high-salt diet and with DOCP treatment. Additionally, local ET-1 production is necessary, under these experimental conditions, for renal compensation to and escape from the chronic effects of mineralocorticoids.
Collapse
Affiliation(s)
- I Jeanette Lynch
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Amanda K Welch
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida; Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida; and
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center and Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida; and
| | - Charles S Wingo
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida; Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida; Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida;
| |
Collapse
|
15
|
Ko B, Bergsland K, Gillen DL, Evan AP, Clark DL, Baylock J, Coe FL, Worcester EM. Sex differences in proximal and distal nephron function contribute to the mechanism of idiopathic hypercalcuria in calcium stone formers. Am J Physiol Regul Integr Comp Physiol 2015; 309:R85-92. [PMID: 25947170 DOI: 10.1152/ajpregu.00071.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/30/2015] [Indexed: 11/22/2022]
Abstract
Idiopathic hypercalciuria (IH) is a common familial trait among patients with calcium nephrolithiasis. Previously, we have demonstrated that hypercalciuria is primarily due to reduced renal proximal and distal tubule calcium reabsorption. Here, using measurements of the clearances of sodium, calcium, and endogenous lithium taken from the General Clinical Research Center, we test the hypothesis that patterns of segmental nephron tubule calcium reabsorption differ between the sexes in IH and normal subjects. When the sexes are compared, we reconfirm the reduced proximal and distal calcium reabsorption. In IH women, distal nephron calcium reabsorption is decreased compared to normal women. In IH men, proximal tubule calcium reabsorption falls significantly, with a more modest reduction in distal calcium reabsorption compared to normal men. Additionally, we demonstrate that male IH patients have lower systolic blood pressures than normal males. We conclude that women and men differ in the way they produce the hypercalciuria of IH, with females reducing distal reabsorption and males primarily reducing proximal tubule function.
Collapse
Affiliation(s)
- Benjamin Ko
- Department of Medicine, University of Chicago School of Medicine, Chicago, Illinois;
| | - Kristin Bergsland
- Department of Medicine, University of Chicago School of Medicine, Chicago, Illinois
| | - Daniel L Gillen
- Department of Statistics, University of California, Irvine, California; and
| | - Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel L Clark
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jaime Baylock
- Department of Medicine, University of Chicago School of Medicine, Chicago, Illinois
| | - Fredric L Coe
- Department of Medicine, University of Chicago School of Medicine, Chicago, Illinois
| | - Elaine M Worcester
- Department of Medicine, University of Chicago School of Medicine, Chicago, Illinois
| |
Collapse
|
16
|
Abstract
Diabetic kidney disease (DKD) remains the most common cause of chronic kidney disease and multiple therapeutic agents, primarily targeted at the renin-angiotensin system, have been assessed. Their only partial effectiveness in slowing down progression to end-stage renal disease, points out an evident need for additional effective therapies. In the context of diabetes, endothelin-1 (ET-1) has been implicated in vasoconstriction, renal injury, mesangial proliferation, glomerulosclerosis, fibrosis and inflammation, largely through activation of its endothelin A (ETA) receptor. Therefore, endothelin receptor antagonists have been proposed as potential drug targets. In experimental models of DKD, endothelin receptor antagonists have been described to improve renal injury and fibrosis, whereas clinical trials in DKD patients have shown an antiproteinuric effect. Currently, its renoprotective effect in a long-time clinical trial is being tested. This review focuses on the localization of endothelin receptors (ETA and ETB) within the kidney, as well as the ET-1 functions through them. In addition, we summarize the therapeutic benefit of endothelin receptor antagonists in experimental and human studies and the adverse effects that have been described.
Collapse
|
17
|
Reichetzeder C, Tsuprykov O, Hocher B. Endothelin receptor antagonists in clinical research — Lessons learned from preclinical and clinical kidney studies. Life Sci 2014; 118:141-8. [DOI: 10.1016/j.lfs.2014.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/18/2014] [Accepted: 02/19/2014] [Indexed: 11/25/2022]
|
18
|
Goldfarb-Rumyantzev AS, Alper SL. Short-term responses of the kidney to high altitude in mountain climbers. Nephrol Dial Transplant 2014; 29:497-506. [PMID: 23525530 PMCID: PMC3938295 DOI: 10.1093/ndt/gft051] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/24/2013] [Indexed: 01/07/2023] Open
Abstract
In high-altitude climbers, the kidneys play a crucial role in acclimatization and in mountain sickness syndromes [acute mountain sickness (AMS), high-altitude cerebral edema, high-altitude pulmonary edema] through their roles in regulating body fluids, electrolyte and acid-base homeostasis. Here, we discuss renal responses to several high-altitude-related stresses, including changes in systemic volume status, renal plasma flow and clearance, and altered acid-base and electrolyte status. Volume regulation is considered central both to high-altitude adaptation and to maladaptive development of mountain sickness. The rapid and powerful diuretic response to the hypobaric hypoxic stimulus of altitude integrates decreased circulating concentrations of antidiuretic hormone, renin and aldosterone, increased levels of natriuretic hormones, plasma and urinary epinephrine, norepinephrine, endothelin and urinary adrenomedullin, with increased insensible fluid losses and reduced fluid intake. The ventilatory and hormonal responses to hypoxia may predict susceptibility to AMS, also likely influenced by multiple genetic factors. The timing of altitude increases and adaptation also modifies the body's physiologic responses to altitude. While hypovolemia develops as part of the diuretic response to altitude, coincident vascular leak and extravascular fluid accumulation lead to syndromes of high-altitude sickness. Pharmacological interventions, such as diuretics, calcium blockers, steroids, phosphodiesterase inhibitors and β-agonists, may potentially be helpful in preventing or attenuating these syndromes.
Collapse
Affiliation(s)
- Alexander S. Goldfarb-Rumyantzev
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Transplant Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seth L. Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
|
20
|
Kohan DE. Role of collecting duct endothelin in control of renal function and blood pressure. Am J Physiol Regul Integr Comp Physiol 2013; 305:R659-68. [PMID: 23986358 DOI: 10.1152/ajpregu.00345.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Over 26,000 manuscripts have been published dealing with endothelins since their discovery 25 years ago. These peptides, and particularly endothelin-1 (ET-1), are expressed by, bind to, and act on virtually every cell type in the body, influencing multiple biological functions. Among these actions, the effects of ET-1 on arterial pressure and volume homeostasis have been most extensively studied. While ET-1 modulates arterial pressure through regulation of multiple organ systems, the peptide's actions in the kidney in general, and the collecting duct in particular, are of unique importance. The collecting duct produces large amounts of ET-1 that bind in an autocrine manner to endothelin A and B receptors, causing inhibition of Na(+) and water reabsorption; absence of collecting duct ET-1 or its receptors is associated with marked salt-sensitive hypertension. Collecting duct ET-1 production is stimulated by Na(+) and water loading through local mechanisms that include sensing of salt and other solute delivery as well as shear stress. Thus the collecting duct ET-1 system exists, at least in part, to detect alterations in, and maintain homeostasis for, extracellular fluid volume. Derangements in collecting duct ET-1 production may contribute to the pathogenesis of genetic hypertension. Blockade of endothelin receptors causes fluid retention due, in large part, to inhibition of the action of ET-1 in the collecting duct; this side effect has substantially limited the clinical utility of this class of drugs. Herein, the biology of the collecting duct ET-1 system is reviewed, with particular emphasis on key issues and questions that need addressing.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
21
|
Kittikulsuth W, Sullivan JC, Pollock DM. ET-1 actions in the kidney: evidence for sex differences. Br J Pharmacol 2013; 168:318-26. [PMID: 22372527 DOI: 10.1111/j.1476-5381.2012.01922.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hypertension and chronic kidney disease are more common in men than in premenopausal women at the same age. In animal models, females are relatively protected against genetic or pharmacological procedures that produce high blood pressure and renal injury. Overactivation or dysfunction of the endothelin (ET) system modulates the progression of hypertension or kidney diseases with the ET(A) receptor primarily mediating vasoconstriction, injury and anti-natriuresis, and ET(B) receptors having opposite effects. The purpose of this review is to examine the role of the ET system in the kidney with a focus on the inequality between the sexes associated with the susceptibility to and progression of hypertension and kidney diseases. In most animal models, males have higher renal ET-1 mRNA expression, greater ET(A) -mediated responses, including renal medullary vasoconstriction, and increased renal injury. These differences are reduced following gonadectomy suggesting a role for sex hormones, mainly testosterone. In contrast, females are relatively protected from high blood pressure and kidney damage via increased ET(B) versus ET(A) receptor function. Furthermore, ET(A) receptors may have a favourable effect on sodium excretion and reducing renal damage in females. In human studies, the genetic polymorphisms of the ET system are more associated with hypertension and renal injury in women. However, the knowledge of sex differences in the efficacy or adverse events of ET(A) antagonists in the treatment of hypertension and kidney disease is poorly described. Increased understanding how the ET system acts differently in the kidneys between sexes, especially with regard to receptor subtype function, could lead to better treatments for hypertension and renal disease. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- W Kittikulsuth
- Experimental Medicine, Department of Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
22
|
Lynch IJ, Welch AK, Kohan DE, Cain BD, Wingo CS. Endothelin-1 inhibits sodium reabsorption by ET(A) and ET(B) receptors in the mouse cortical collecting duct. Am J Physiol Renal Physiol 2013; 305:F568-73. [PMID: 23698114 DOI: 10.1152/ajprenal.00613.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The collecting duct (CD) is a major renal site for the hormonal regulation of Na homeostasis and is critical for systemic arterial blood pressure control. Our previous studies demonstrated that the endothelin-1 gene (edn1) is an early response gene to the action of aldosterone. Because aldosterone and endothelin-1 (ET-1) have opposing actions on Na reabsorption (JNa) in the kidney, we postulated that stimulation of ET-1 by aldosterone acts as a negative feedback mechanism, acting locally within the CD. Aldosterone is known to increase JNa in the CD, in part, by stimulating the epithelial Na channel (ENaC). In contrast, ET-1 increases Na and water excretion through its binding to receptors in the CD. To date, direct measurement of the quantitative effect of ET-1 on transepithelial JNa in the isolated in vitro microperfused mouse CD has not been determined. We observed that the CD exhibits substantial JNa in male and female mice that is regulated, in part, by a benzamil-sensitive pathway, presumably ENaC. ENaC-mediated JNa is greater in the cortical CD (CCD) than in the outer medullary CD (OMCD); however, benzamil-insensitive JNa is present in the CCD and not in the OMCD. In the presence of ET-1, ENaC-mediated JNa is significantly inhibited. Blockade of either ETA or ETB receptor restored JNa to control rates; however, only ETA receptor blockade restored a benzamil-sensitive component of JNa. We conclude 1) Na reabsorption is mediated by ENaC in the CCD and OMCD and also by an ENaC-independent mechanism in the CCD; and 2) ET-1 inhibits JNa in the CCD through both ETA and ETB receptor-mediated pathways.
Collapse
Affiliation(s)
- I Jeanette Lynch
- Research Service, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608.
| | | | | | | | | |
Collapse
|
23
|
Pandit MM, Strait KA, Matsuda T, Kohan DE. Na delivery and ENaC mediate flow regulation of collecting duct endothelin-1 production. Am J Physiol Renal Physiol 2012; 302:F1325-30. [PMID: 22357920 PMCID: PMC3362067 DOI: 10.1152/ajprenal.00034.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/21/2012] [Indexed: 11/22/2022] Open
Abstract
Collecting duct (CD) endothelin-1 (ET-1) is an important autocrine inhibitor of Na and water transport. CD ET-1 production is stimulated by extracellular fluid volume expansion and tubule fluid flow, suggesting a mechanism coupling CD Na delivery and ET-1 synthesis. A mouse cortical CD cell line, mpkCCDc14, was subjected to static or flow conditions for 2 h at 2 dyn/cm(2), followed by determination of ET-1 mRNA content. Flow with 300 mosmol/l NaCl increased ET-1 mRNA to 65% above that observed under static conditions. Increasing perfusate osmolarity to 450 mosmol/l with NaCl or Na acetate increased ET-1 mRNA to ∼184% compared with no flow, which was not observed when osmolarity was increased using mannitol or urea. Reducing Na concentration to 150 mosmol/l while maintaining total osmolarity at 300 mosmol/l with urea or mannitol decreased the flow response. Inhibition of epithelial Na channel (ENaC) with amiloride or benzamil abolished the flow response, suggesting involvement of ENaC in flow-regulated ET-1 synthesis. Aldosterone almost doubled the flow response. Since Ca(2+) enhances CD ET-1 production, the involvement of plasma membrane and mitochondrial Na/Ca(2+) exchangers (NCX) was assessed. SEA0400 and KB-R7943, plasma membrane NCX inhibitors, did not affect the flow response. However, CGP37157, a mitochondrial NCX inhibitor, abolished the response. In summary, the current study indicates that increased Na delivery, leading to ENaC-mediated Na entry and mitochondrial NCX activity, is involved in flow-stimulated CD ET-1 synthesis. This constitutes the first report of either ENaC or mitochondrial NCX regulation of an autocrine factor in any biologic system.
Collapse
Affiliation(s)
- Meghana M Pandit
- Division of Nephrology, University of Utah Health Sciences Center, 1900 East, 30 North, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
24
|
Endothelin and endothelin receptors in the renal and cardiovascular systems. Life Sci 2012; 91:490-500. [PMID: 22480517 DOI: 10.1016/j.lfs.2012.03.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/12/2012] [Accepted: 03/16/2012] [Indexed: 01/08/2023]
Abstract
Endothelin-1 (ET-1) is a multifunctional hormone which regulates the physiology of the cardiovascular and renal systems. ET-1 modulates cardiac contractility, systemic and renal vascular resistance, salt and water renal reabsorption, and glomerular function. ET-1 is responsible for a variety of cellular events: contraction, proliferation, apoptosis, etc. These effects take place after the activation of the two endothelin receptors ET(A) and ET(B), which are present - among others - on cardiomyocytes, fibroblasts, smooth muscle and endothelial cells, glomerular and tubular cells of the kidney. The complex and numerous intracellular pathways, which can be contradictory in term of functional response depending on the receptor type, cell type and physiological situation, are described in this review. Many diseases share an enhanced ET-1 expression as part of the pathophysiology. However, the use of endothelin blockers is currently restricted to pulmonary arterial hypertension, and more recently to digital ulcer. The complexity of the endothelin system does not facilitate the translation of the molecular knowledge to clinical applications. Endothelin antagonists can prevent disease development but secondary undesirable effects limit their usage. Nevertheless, the increasing understanding of the effects of ET-1 on the cardiac and renal physiology maintains the endothelin system as a promising therapeutic target.
Collapse
|
25
|
Zhang Y, Jose PA, Zeng C. Regulation of sodium transport in the proximal tubule by endothelin. CONTRIBUTIONS TO NEPHROLOGY 2011; 172:63-75. [PMID: 21893989 DOI: 10.1159/000328684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human essential hypertension and rodent genetic hypertension are associated with increased sodium transport in the renal proximal tubule and medullary thick ascending limb of Henle. The proximal tubule, which secretes endothelin (ET), expresses the ET(B) receptor. Low (nM) concentrations of ET, via the ET(B) receptor, inhibit sodium and water transport and ATP-driven drug secretion in the proximal tubule. In contrast, very low (pM) and high nM concentrations of ET increase renal proximal sodium transport, but the receptor involved remains to be determined. The natriuretic effect of ET(B) receptor stimulation is impaired in spontaneously hypertensive rats, due in part to a defective interaction with D(3) dopamine and angiotensin II type 1 receptors. Impaired ET(B) receptor function in the renal proximal tubule may be important in the pathogenesis of genetic hypertension.
Collapse
|
26
|
Fenhammar J, Andersson A, Forestier J, Weitzberg E, Sollevi A, Hjelmqvist H, Frithiof R. Endothelin receptor A antagonism attenuates renal medullary blood flow impairment in endotoxemic pigs. PLoS One 2011; 6:e21534. [PMID: 21760895 PMCID: PMC3132177 DOI: 10.1371/journal.pone.0021534] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/31/2011] [Indexed: 12/30/2022] Open
Abstract
Background Endothelin-1 is a potent endogenous vasoconstrictor that contributes to renal microcirculatory impairment during endotoxemia and sepsis. Here we investigated if the renal circulatory and metabolic effects of endothelin during endotoxemia are mediated through activation of endothelin-A receptors. Methods and Findings A randomized experimental study was performed with anesthetized and mechanically ventilated pigs subjected to Escherichia coli endotoxin infusion for five hours. After two hours the animals were treated with the selective endothelin receptor type A antagonist TBC 3711 (2 mg⋅kg−1, n = 8) or served as endotoxin-treated controls (n = 8). Renal artery blood flow, diuresis and creatinine clearance decreased in response to endotoxemia. Perfusion in the cortex, as measured by laser doppler flowmetry, was reduced in both groups, but TBC 3711 attenuated the decrease in the medulla (p = 0.002). Compared to control, TBC 3711 reduced renal oxygen extraction as well as cortical and medullary lactate/pyruvate ratios (p<0.05) measured by microdialysis. Furthermore, TBC 3711 attenuated the decline in renal cortical interstitial glucose levels (p = 0.02) and increased medullary pyruvate levels (p = 0.03). Decreased creatinine clearance and oliguria were present in both groups without any significant difference. Conclusions These results suggest that endothelin released during endotoxemia acts via endothelin A receptors to impair renal medullary blood flow causing ischemia. Reduced renal oxygen extraction and cortical levels of lactate by TBC 3711, without effects on cortical blood flow, further suggest additional metabolic effects of endothelin type A receptor activation in this model of endotoxin induced acute kidney injury.
Collapse
Affiliation(s)
- Johan Fenhammar
- Department of Anaesthesiology & Intensive Care, Karolinska University Hospital Huddinge, Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
27
|
Garvin JL, Herrera M, Ortiz PA. Regulation of renal NaCl transport by nitric oxide, endothelin, and ATP: clinical implications. Annu Rev Physiol 2011; 73:359-76. [PMID: 20936940 DOI: 10.1146/annurev-physiol-012110-142247] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NaCl absorption along the nephron is regulated not just by humoral factors but also by factors that do not circulate or act on the cells where they are produced. Generally, nitric oxide (NO) inhibits NaCl absorption along the nephron. However, the effects of NO in the proximal tubule are controversial and may be biphasic. Similarly, the effects of endothelin on proximal tubule transport are biphasic. In more distal segments, endothelin inhibits NaCl absorption and may be mediated by NO. Adenosine triphosphate (ATP) inhibits sodium bicarbonate absorption in the proximal tubule, NaCl absorption in thick ascending limbs via NO, and water reabsorption in collecting ducts. Defects in the effects of NO, endothelin, and ATP increase blood pressure, especially in a NaCl-sensitive manner. In diabetes, disruption of NO-induced inhibition of transport may contribute to increased blood pressure and renal damage. However, our understanding of how NO, endothelin, and ATP work, and of their role in pathology, is rudimentary at best.
Collapse
Affiliation(s)
- Jeffrey L Garvin
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
28
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
29
|
Zhang Y, Fu C, Ren H, He D, Wang X, Asico LD, Jose PA, Zeng C. Impaired stimulatory effect of ETB receptor on D₃ receptor in immortalized renal proximal tubule cells of spontaneously hypertensive rats. Kidney Blood Press Res 2011; 34:75-82. [PMID: 21228598 DOI: 10.1159/000323135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 11/23/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Activation of renal D₃ receptor induces natriuresis and diuresis in Wistar-Kyoto (WKY) rats; in the presence of ETB receptor antagonist, the natriuretic effect of D₃ receptor in WKY rats is reduced. We hypothesize that ETB receptor activation may regulate D₃ receptor expression in renal proximal tubule (RPT) cells from WKY rats, which is impaired in RPT cells from spontaneously hypertensive rats (SHRs). METHODS D₃ receptor expression was determined by immunoblotting; the D₃/ETB receptor linkage was checked by coimmunoprecipitation; Na(+)-K(+)-ATPase activity was determined as the rate of inorganic phosphate released in the presence or absence of ouabain. RESULTS In RPT cells from WKY rats, the ETB receptor agonist BQ3020 increased D₃ receptor protein. In contrast, in RPT cells from SHRs, BQ3020 did not increase D₃ receptor. There was coimmunoprecipitation between D₃ and ETB receptors in RPT cells from WKY and SHRs. Activation of ETB receptor increased D₃/ETB coimmunoprecipitation in RPT cells from WKY rats, but not from SHRs. The basal levels of D₃/ETB receptor coimmunoprecipitation were greater in RPT cells from WKY rats than in those from SHRs. Stimulation of D₃ receptor inhibited Na(+)-K(+)-ATPase activity, which was augmented by the pretreatment with the ETB receptor agonist BQ3020 in WKY RPT cells, but not in SHR RPT cells. CONCLUSION ETB receptors regulate and physically interact with D₃ receptors differently in WKY rats and SHRs. The impaired natriuretic effect in SHRs may be, in part, related to impaired ETB and D₃ receptor interactions.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
32
|
Lyon-Roberts B, Strait KA, van Peursem E, Kittikulsuth W, Pollock JS, Pollock DM, Kohan DE. Flow regulation of collecting duct endothelin-1 production. Am J Physiol Renal Physiol 2010; 300:F650-6. [PMID: 21177779 DOI: 10.1152/ajprenal.00530.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Collecting duct (CD) endothelin-1 (ET-1) is an important autocrine inhibitor of CD Na(+) reabsorption. Salt loading is thought to increase CD ET-1 production; however, definitive evidence of this, as well as understanding of the mechanisms transducing this effect, is lacking. Tubule fluid flow increases in response to Na(+) loading; hence, we studied flow modulation of CD ET-1 production. Three days of a high-salt diet increased mouse and rat inner medullary CD (IMCD) ET-1 mRNA expression. Acute furosemide infusion increased urinary ET-1 excretion in anesthetized rats. Primary cultures of mouse or rat IMCD detached in response to flow using a closed perfusion chamber, consequently a CD cell line (mpkCCDcl4) was examined. Flow increased ET-1 mRNA at shear stress rates exceeding 1 dyne/cm(2), with the maximal effect seen between 2 and 10 dyne/cm(2). Induction of ET-1 mRNA was first evident after 1 h, and most apparent after 2 h, of flow. Inhibition of calmodulin or dihydropyridine-sensitive Ca(2+) channels did not alter the flow response; however, chelation of intracellular Ca(2+) or removal of extracellular Ca(2+) largely prevented flow-stimulated ET-1 mRNA accumulation. Downregulation of protein kinase C (PKC) using phorbol 12-myristate 13-acetate, or PKC inhibition with calphostin C, markedly reduced flow-stimulated ET-1 mRNA levels. Flow-stimulated ET-1 mRNA accumulation was abolished by inhibition of phospholipase C (PLC). Taken together, these data indicate that flow increases CD ET-1 production and this is dependent on extracellular and intracellular Ca(2+), PKC, and PLC. These studies suggest a novel pathway for coupling alterations in extracellular fluid volume to CD ET-1 production and ultimately control of CD Na(+) reabsorption.
Collapse
Affiliation(s)
- Brianna Lyon-Roberts
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah; and Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Boesen EI, Pollock DM. Cooperative role of ETA and ETB receptors in mediating the diuretic response to intramedullary hyperosmotic NaCl infusion. Am J Physiol Renal Physiol 2010; 299:F1424-32. [PMID: 20844020 DOI: 10.1152/ajprenal.00015.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute intramedullary infusion of hyperosmotic NaCl, used to simulate a high-salt diet-induced increase of medullary osmolality, increases urine production and endothelin release from the kidney. To determine whether endothelin mediates this diuretic and natriuretic response, urine flow and Na(+) excretion rate were measured during acute intramedullary infusion of hyperosmotic NaCl in anesthetized rats, with or without endothelin receptor antagonism. Isosmotic NaCl was infused into the left renal medulla during an equilibration period and 30-min baseline period, followed by hyperosmotic NaCl for two additional 30-min periods. Hyperosmotic NaCl infusion significantly increased urine flow of vehicle-treated rats (from 5.9 ± 0.9 to 11.1 ± 1.8 μl/min). Systemic ET(B) receptor blockade enhanced this effect (A-192621; from 7.7 ± 1.1 to 18.7 ± 2.9 μl/min; P < 0.05), ET(A) receptor blockade (ABT-627) had no significant effect alone, but the diuresis was markedly attenuated by combined ABT-627 and A-192621 administration (from 4.4 ± 0.7 to 5.4 ± 0.9 μl/min). Mean arterial pressures overall were not significantly different between groups. Surprisingly, the natriuretic response to hyperosmotic NaCl infusion was not significantly altered by systemic endothelin receptor blockade, and furthermore, intramedullary ET(B) receptor blockade enhanced the diuretic and natriuretic response to hyperosmotic NaCl infusion. ET(A) receptor blockade significantly attenuated both the diuretic and natriuretic responses to hyperosmotic NaCl infusion in ET(B) receptor-deficient sl/sl rats. These results demonstrate an important role of endothelin in mediating diuretic responses to intramedullary infusion of hyperosmotic NaCl. Moreover, these data suggest ET(A) and ET(B) receptors are both required for the full diuretic and natriuretic actions of endothelin.
Collapse
Affiliation(s)
- Erika I Boesen
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd., Augusta, GA 30912, USA.
| | | |
Collapse
|
34
|
Strait KA, Stricklett PK, Kohan RM, Kohan DE. Identification of two nuclear factor of activated T-cells (NFAT)-response elements in the 5'-upstream regulatory region of the ET-1 promoter. J Biol Chem 2010; 285:28520-8. [PMID: 20647310 DOI: 10.1074/jbc.m110.153189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Collecting duct-derived ET-1 regulates salt excretion and blood pressure. We have reported the presence of an inner medullary collecting duct (IMCD)-specific enhancer region in the 5'-upstream ET-1 promoter (Strait, K. A., Stricklett, P. K., Kohan, J. L., Miller, M. B., and Kohan, D. E. (2007) Am. J. Physiol. Renal Physiol. 293, F601-F606). The current studies provide further characterization of the ET-1 5'-upstream distal promoter to identify the IMCD-specific enhancer elements. Deletion studies identified two regions of the 5'-upstream ET-1 promoter, -1725 to -1319 bp and -1319 to -1026 bp, which were required for maximal promoter activity in transfected rat IMCD cells. Transcription factor binding site analysis of these regions identified two consensus nuclear factor of activated T-cells (NFAT) binding sites at -1263 and -1563. EMSA analysis using nuclear extracts from IMCD cells showed that both the -1263 and the -1563 NFAT sites in the ET-1 distal promoter competed for NFAT binding to previously identified NFAT sites in the IL-2 and TNF genes. Gel supershift analysis showed that each of the NFAT binding sites in the ET-1 promoter bound NFAT proteins derived from IMCD nuclear extracts, but they selectively bound different NFAT isoforms; ET-1263 bound NFATc1, whereas ET-1563 bound NFATc3. Site-directed mutagenesis of either the ET-1263 or the ET-1563 sites prevented NFAT binding and reduced ET-1 promoter activity. Thus, NFAT appears to be an important regulator of ET-1 transcription in IMCD cells, and thus, it may play a role in controlling blood pressure through ET-1 regulation of renal salt excretion.
Collapse
Affiliation(s)
- Kevin A Strait
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
35
|
Gallicchio MA, Bach LA. Advanced glycation end products inhibit Na+ K+ ATPase in proximal tubule epithelial cells: role of cytosolic phospholipase A2alpha and phosphatidylinositol 4-phosphate 5-kinase gamma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:919-30. [PMID: 20435073 DOI: 10.1016/j.bbamcr.2010.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 11/18/2022]
Abstract
Chronic hyperglycaemia during diabetes leads to non-enzymatic glycation of proteins to form advanced glycation end products (AGEs) that contribute to nephropathy. In diabetes, renal Na+ K+ ATPase (NKA) activity is downregulated and phosphoinositide metabolism is upregulated. We examined the effects of AGEs on NKA activity in porcine LLC-PK1 and human HK2 proximal tubule epithelial cells. AGE-BSA increased cellular phosphoinositol 4,5 bisphosphate (PIP2) production as determined by immunofluorescence microscopy and thin layer chromatography. AGE-BSA (40 microM) induced 3H-arachidonic acid release and reactive oxygen species (ROS) production via cytosolic phospholipase A2 (cPLA2) activation. Within minutes, AGE-BSA significantly inhibited NKA surface expression and activity in a dose- and time-dependent manner as determined by immunofluorescence staining and [86Rb+] uptake, respectively, suggesting AGEs inhibit NKA by stimulating its endocytosis. The AGE-BSA-induced decrease in cell surface NKA was reversed by a cPLA2alpha inhibitor, neomycin, a PIP2 inhibitor, and PP2, a Src inhibitor. AGE-BSA increased binding of NKA to the alpha-adaptin but not beta2- or mu2-adaptin subunits of the AP-2 clathrin pit adaptor complex. Transfection of HK2 cells with PIP5Kgamma siRNA prevented AGE-BSA inhibition of NKA activity. AGEs may stimulate PIP5Kgamma to increase PIP2 production, which may enhance AP-2 localisation to clathrin pits, increase clathrin pit formation, enhance NKA cargo recognition by AP-2 and/or stimulate cPLA2alpha activity. These results suggest AGEs modulate arachidonic acid and phosphoinositide metabolism to inhibit NKA via clathrin-mediated endocytosis. Elucidation of new intracellular AGE signaling pathways may lead to improved therapies for diabetic nephropathy.
Collapse
Affiliation(s)
- Marisa A Gallicchio
- Monash University, Department of Medicine, Alfred Hospital, Commercial Rd., Prahran, 3004, Australia
| | | |
Collapse
|
36
|
D3 dopamine receptor regulation of ETB receptors in renal proximal tubule cells from WKY and SHRs. Am J Hypertens 2009; 22:877-83. [PMID: 19390510 DOI: 10.1038/ajh.2009.80] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The dopaminergic and endothelin systems, by regulating sodium transport in the renal proximal tubule (RPT), participate in the control of blood pressure. The D(3) and ETB receptors are expressed in RPTs, and D(3) receptor function in RPTs is impaired in spontaneously hypertensive rats (SHRs). Therefore, we tested the hypothesis that D(3) receptors can regulate ETB receptors, and that D(3) receptor regulation of ETB receptors in RPTs is impaired in SHRs. METHODS ETB receptor expression in RPT cells was measured by immunoblotting and reverse transcriptase-PCR and ETB receptor function by measuring Na(+)-K(+) ATPase activity. D(3)/ETB receptor interaction was studied by co-immunoprecipitation. RESULTS In Wistar-Kyoto (WKY) RPT cells, the D(3) receptor agonist, PD128907, increased ETB receptor protein expression, effects that were blocked by removal of calcium in the culture medium. The stimulatory effect of D(3) on ETB receptor mRNA and protein expression was also blocked by nicardipine. In contrast, in SHR RPT cells, PD128907 decreased ETB receptor expression. Basal D(3)/ETB receptor co-immunoprecipitation was three times greater in WKY than in SHRs. The absolute amount of D(3)/ETB receptor co-immunoprecipitation induced by a D(3) receptor agonist was also greater in WKY than in SHRs. Stimulation of ETB receptors decreased Na(+)-K(+) ATPase activity in WKY but not in SHR cells. Pretreatment with PD128907 augmented the inhibitory effect of BQ3020 on Na(+)-K(+) ATPase activity in WKY but not in SHR cells. CONCLUSIONS D(3) receptors regulate ETB receptors by physical receptor interaction and govern receptor expression and function. D(3) receptor regulation of ETB receptors is aberrant in RPT cells from SHRs.
Collapse
|
37
|
|
38
|
Abstract
The collecting duct endothelin (ET) system, involving ET-1 and its two receptors, is involved in the physiologic regulation of renal sodium (Na), water, and acid excretion. Based on in vitro studies and experiments using genetically engineered rodents, the physiology of this system in the collecting duct is being elucidated. Activation of endothelin B (ETB) receptors on principal cells causes inhibition of Na transport through signaling pathways involving src kinase, MAPK1/2, nitric oxide, and possibly prostaglandin E2 (PGE2). Principal-cell ETB receptors also cause inhibition of water transport through protein kinase C-mediated inhibition of AVP-dependent cAMP accumulation. ETB receptors expressed on intercalated cells augment acid secretion, possibly through nitric oxide-dependent mechanisms. The role of endothelin A (ETA) receptors in the collecting duct remains unclear; however, recent evidence suggests that these receptors can exert natriuretic and diuretic effects. Further complexity is lent to this system by studies indicating that ETA and ETB receptors can homo- and hetero-dimerize, with possible functional consequences. This brief review will describe our current state of knowledge about this complex regulatory system in the collecting duct, and will identify clinically relevant issues that need addressing.
Collapse
|
39
|
Phylogeny, taxonomy, and evolution of the endothelin receptor gene family. Mol Phylogenet Evol 2009; 52:677-87. [PMID: 19410007 DOI: 10.1016/j.ympev.2009.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/28/2009] [Accepted: 04/23/2009] [Indexed: 01/29/2023]
Abstract
A gene phylogeny provides the natural historical order to classify genes and to understand their functional, structural, and genomic diversity. The gene family of endothelin receptors (EDNR) is responsible for many key physiological and developmental processes of tetrapods and teleosts. This study provides a well-defined gene phylogeny for the EDNR family, which is used to classify its members and to assess their evolution. The EDNR phylogeny supports the recognition of the EDNRA, EDNRB, and EDNRC subfamilies, as well as more lineage-specific duplicates of teleosts and the African clawed frog. The duplications for these nominal genes are related to the various whole-genome amplifications of vertebrates, jawed vertebrates, fishes, and frog. The EDNR phylogeny also identifies several gene losses, including that of EDNRC from placental and marsupial (therian) mammals. When coupled with structural and biochemical information, site-specific analyses of evolutionary rate shifts reveal two distinct patterns of potential functional changes at the sequence level between therian versus non-therian EDNRA and EDNRB (i.e., between groups without and with EDNRC). An analysis of linkage maps and tetrapod synteny further suggests that the loss of therian EDNRC may be related to a chromosomal deletion in its common ancestor.
Collapse
|
40
|
Ellahham SH, Charlon V, Abassi Z, Calis KA, Choucair WK. Bosentan and the endothelin system in congestive heart failure. Clin Cardiol 2009; 23:803-7. [PMID: 11097125 PMCID: PMC6655168 DOI: 10.1002/clc.4960231128] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endothelin system appears to play an important role in the pathophysiology of congestive heart failure (CHF). Endothelin receptor antagonists represent a novel class of agents that are being evaluated for their potential benefits in treating various cardiovascular disorders. Bosentan is an orally active endothelin receptor antagonist that has been studied for the treatment of CHF. Early clinical experience with bosentan has confirmed some benefits on hemodynamic parameters in patients with CHF. Its role in slowing the progression of the disease and improving survival remains to be elucidated.
Collapse
Affiliation(s)
- S H Ellahham
- Division of Cardiology, Washington Hospital Center, DC 20010, USA
| | | | | | | | | |
Collapse
|
41
|
Seheult RD, Ruh K, Foster GP, Anholm JD. Prophylactic bosentan does not improve exercise capacity or lower pulmonary artery systolic pressure at high altitude. Respir Physiol Neurobiol 2009; 165:123-30. [DOI: 10.1016/j.resp.2008.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/12/2008] [Accepted: 10/06/2008] [Indexed: 11/29/2022]
|
42
|
Nakano D, Pollock DM. Contribution of endothelin A receptors in endothelin 1-dependent natriuresis in female rats. Hypertension 2009; 53:324-30. [PMID: 19104001 PMCID: PMC2678242 DOI: 10.1161/hypertensionaha.108.123687] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 12/01/2008] [Indexed: 11/16/2022]
Abstract
Renal medullary endothelin B receptors contribute to blood pressure regulation by facilitating salt excretion. Premenopausal females have relatively less hypertension than males; therefore, we examined whether there is a sex difference in the natriuretic response to renal medullary infusion of endothelin peptides in the rat. All of the experiments were conducted in anesthetized wild-type (wt) or endothelin B-deficient (sl/sl) rats. Infusion of endothelin 1 (ET-1) significantly increased sodium excretion (U(Na)V) in female, but not male, wt rats (Delta U(Na)V: 0.41+/-0.07 versus -0.04+/-0.06 micromol/min, respectively). The endothelin B receptor agonist sarafotoxin 6c produced similar increases in U(Na)V in both male (Delta 0.58+/-0.15 micromol/min) and female (Delta 0.67+/-0.18 micromol/min) wt rats. Surprisingly, ET-1 markedly increased U(Na)V in female (Delta 0.70+/-0.11 micromol/min) but not male sl/sl rats (Delta 0.00+/-0.05 micromol/min). ET-1 had no effect on medullary blood flow in females, although medullary blood flow was significantly reduced to a similar extent in males of both strains. These results suggest that the lack of a natriuretic response to ET-1 in male rats is because of reductions in medullary blood flow. Treatment with ABT-627, an endothelin A receptor antagonist, or N(G)-propyl-L-arginine, an NO synthase 1 inhibitor, prevented the increase in U(Na)V observed in female rats. Gonadectomy eliminated the sex difference in the U(Na)V and medullary blood flow response to ET-1. These findings demonstrate that there is no sex difference in endothelin B-dependent natriuresis, and the endothelin A receptor contributes to ET-1-dependent natriuresis in female rats, an effect that requires NO synthase 1. These findings provide a possible mechanism for why premenopausal women are more resistant to salt-dependent hypertension.
Collapse
Affiliation(s)
- Daisuke Nakano
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | | |
Collapse
|
43
|
Effects of environmental salinity on gill endothelin receptor expression in the killifish, Fundulus heteroclitus. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:58-65. [DOI: 10.1016/j.cbpa.2008.08.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 08/27/2008] [Accepted: 08/27/2008] [Indexed: 11/22/2022]
|
44
|
Yamamoto T, Suzuki H, Kubo Y, Matsumoto A, Uemura H. Endothelin A receptor-like immunoreactivity on the basal infoldings of rat renal tubules and collecting ducts. ACTA ACUST UNITED AC 2008; 71:77-87. [PMID: 18974600 DOI: 10.1679/aohc.71.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the distribution of endothelin A (ET(A)) receptor-like immunoreactivity in the rat kidney using affinity-purified antibodies against amino acid residues 403-417 of the rat ET(A) receptor modified by the multiple antigen peptide complex system. Western blot analysis using the affinity-purified anti-ET(A) antibody detected bands of approximately 47.3 and 64.5 kDa in the rat kidney. By light microscopy, ET(A) receptor-like immunoreactivity was seen in the basal side of the renal tubules and collecting ducts. The most intense immunoreactivity was present in the distal renal tubules and inner medullary collecting ducts. In addition to the basal infoldings, immunoreactive puncta were scattered in the epithelial cells of the renal tubules and collecting ducts. Specimens prepared using the pre-embedding method were examined by electron microscopy, and some immunopositive signals were seen on the basal infodings of the renal tubules and collecting ducts. The lengths of immunopositive cytoplasmic membrane were far longer in the distal tubules and inner medullary collecting ducts than in the proximal tubules and outer medullary collecting ducts. Immunopositive signals were also sometimes observed in the thick portion of Henle's loop, but never in the thin portion. We have not previously detected immunopositive signals on the renal vascular systems with the antibody used here. These results suggest that endothelin acts on the basal infoldings through the ET(A) receptor, particularly in the distal tubules and inner medullary collecting ducts, although involvement of the ET(B) receptor cannot be excluded.
Collapse
|
45
|
Ge Y, Huang Y, Kohan DE. Role of the renin-angiotensin-aldosterone system in collecting duct-derived endothelin-1 regulation of blood pressure. Can J Physiol Pharmacol 2008; 86:329-36. [PMID: 18516095 DOI: 10.1139/y08-028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Renal collecting duct (CD)-specific knockout of endothelin-1 (ET-1) causes hypertension and impaired Na excretion. A previous study noted failure to suppress the renin-angiotensin-aldosterone axis in these knockout (KO) mice, hence the current investigation was undertaken to examine the role of this system in CD ET-1 KO. Renal renin content was similar in kidneys from CD ET-1 KO and control mice during normal Na intake; high-Na intake suppressed renal renin content to a similar degree in KO and control. Plasma renin concentrations paralleled changes in renal renin content. Valsartan, an angiotensin receptor blocker (ARB), abolished the hypertension in CD ET-1 KO mice during normal Na intake. High-Na intake + ARB treatment increased blood pressure in CD ET-1 KO, but not in controls. High-Na intake was associated with reduced Na excretion in CD ET-1 KO animals, but no changes in water excretion or creatinine clearance were noted. Spironolactone, an aldosterone antagonist, also normalized blood pressure in CD ET-1 KO mice during normal Na intake, whereas high-Na intake + spironolactone raised blood pressure only in CD ET-1 KO animals. In summary, hypertension in CD ET-1 KO is partly due to angiotensin II and aldosterone. We speculate that CD-derived ET-1 may regulate, via a novel pathway, renal renin production.
Collapse
Affiliation(s)
- Yuqiang Ge
- Division of Nephrology, University of Utah Health Sciences Center, 1900 East 30 North, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
46
|
Ge Y, Bagnall A, Stricklett PK, Webb D, Kotelevtsev Y, Kohan DE. Combined knockout of collecting duct endothelin A and B receptors causes hypertension and sodium retention. Am J Physiol Renal Physiol 2008; 295:F1635-40. [PMID: 18784261 DOI: 10.1152/ajprenal.90279.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The collecting duct (CD) endothelin (ET) system regulates blood pressure (BP) and Na excretion. CD-specific knockout (KO) of ET-1 causes hypertension, CD-specific KO of the ETA receptor does not alter BP, while CD-specific KO of the ETB receptor increases BP to a lesser extent than CD ET-1 KO. These findings suggest a paracrine role for CD-derived ET-1; however, they do not exclude compensation for the loss of one ET receptor by the other. To examine this, mice with CD-specific KO of both ETA and ETB receptors were generated (CD ETA/B KO). CD ETA/B KO mice excreted less urinary Na than controls during acute or chronic Na loading. Urinary aldosterone excretion and plasma renin concentration were similar during Na intake and both fell comparably during Na loading. On a normal sodium diet, CD ETA/B KO mice had increased BP, which increased further with high salt intake. The degree of BP elevation during normal Na intake was similar to CD ET-1 KO mice and higher than CD ETB KO animals. During 1 wk of Na loading, CD ETA/B KO mice had higher BPs than CD ETB KO, while BP was less than CD ET-1 KOs until the latter days of Na loading. These studies suggest that 1) CD ETA/B deficiency causes salt-sensitive hypertension, 2) CD ETA/B KO-associated Na retention is associated with failure to suppress the renin-angiotensin-aldosterone system, and 3) CD ETA and ETB receptors exerts a combined hypotensive effect that exceeds that of either receptor alone.
Collapse
Affiliation(s)
- Yuqiang Ge
- Division of Nephrology, Univ. of Utah Health Sciences Center, 1900 East, 30 North, Salt Lake City, UT 84132, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zeng C, Asico LD, Yu C, Villar VAM, Shi W, Luo Y, Wang Z, He D, Liu Y, Huang L, Yang C, Wang X, Hopfer U, Eisner GM, Jose PA. Renal D3 dopamine receptor stimulation induces natriuresis by endothelin B receptor interactions. Kidney Int 2008; 74:750-9. [PMID: 18547994 DOI: 10.1038/ki.2008.247] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dopaminergic and endothelin systems participate in the control blood pressure by regulating sodium transport in the renal proximal tubule. Disruption of either the endothelin B receptor (ETB) or D(3) dopamine receptor gene in mice produces hypertension. To examine whether these two receptors interact we studied the Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats by selectively infusing reagents into the right kidney of anesthetized rats. The D(3) receptor agonist (PD128907) caused natriuresis in WKY rats which was partially blocked by the ETB receptor antagonist. In contrast, PD128907 blunted sodium excretion in the SHRs. We found using laser confocal microscopy that the ETB receptor was mainly located in the cell membrane in control WKY cells. Treatment with the D(3) receptor antagonist caused its internalization into intracellular compartments that contained the D(3) receptors. Combined use of D(3) and ETB antagonists failed to internalize ETB receptors in cells from WKY rats. In contrast in SHR cells, ETB receptors were found mainly in internal compartments under basal condition and thus were likely prevented from interacting with the agonist-stimulated, membrane-bound D(3) receptors. Our studies suggest that D(3) receptors physically interact with proximal tubule ETB receptors and that the blunted natriuretic effect of dopamine in SHRs may be explained, in part, by abnormal D(3)/ETB receptor interactions.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Evans DH. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 2008; 295:R704-13. [PMID: 18525009 DOI: 10.1152/ajpregu.90337.2008] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the 1930s, August Krogh, Homer Smith, and Ancel Keys knew that teleost fishes were hyperosmotic to fresh water and hyposmotic to seawater, and, therefore, they were potentially salt depleted and dehydrated, respectively. Their seminal studies demonstrated that freshwater teleosts extract NaCl from the environment, while marine teleosts ingest seawater, absorb intestinal water by absorbing NaCl, and excrete the excess salt via gill transport mechanisms. During the past 70 years, their research descendents have used chemical, radioisotopic, pharmacological, cellular, and molecular techniques to further characterize the gill transport mechanisms and begin to study the signaling molecules that modulate these processes. The cellular site for these transport pathways was first described by Keys and is now known as the mitochondrion-rich cell (MRC). The model for NaCl secretion by the marine MRC is well supported, but the model for NaCl uptake by freshwater MRC is more unsettled. Importantly, these ionic uptake mechanisms also appear to be expressed in the marine gill MRC, for acid-base regulation. A large suite of potential endocrine control mechanisms have been identified, and recent evidence suggests that paracrines such as endothelin, nitric oxide, and prostaglandins might also control MRC function.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
49
|
Nakano D, Pollock JS, Pollock DM. Renal medullary ETB receptors produce diuresis and natriuresis via NOS1. Am J Physiol Renal Physiol 2008; 294:F1205-11. [PMID: 18305094 PMCID: PMC2826891 DOI: 10.1152/ajprenal.00578.2007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelin-1 (ET-1) plays an important role in the regulation of salt and water excretion in the kidney. Considerable in vitro evidence suggests that the renal medullary ET(B) receptor mediates ET-1-induced inhibition of electrolyte reabsorption by stimulating nitric oxide (NO) production. The present study was conducted to test the hypothesis that NO synthase 1 (NOS1) and protein kinase G (PKG) mediate the diuretic and natriuretic effects of ET(B) receptor stimulation in vivo. Infusion of the ET(B) receptor agonist sarafotoxin S6c (S6c: 0.45 microg x kg(-1) x h(-1)) in the renal medulla of anesthetized, male Sprague-Dawley rats markedly increased the urine flow (UV) and urinary sodium excretion (UNaV) by 67 and 120%, respectively. This was associated with an increase in medullary cGMP content but did not affect blood pressure. In addition, S6c-induced diuretic and natriuretic responses were absent in ET(B) receptor-deficient rats. Coinfusion of N(G)-propyl-l-arginine (10 microg x kg(-1) x h(-1)), a selective NOS1 inhibitor, suppressed S6c-induced increases in UV, UNaV, and medullary cGMP concentrations. Rp-8-Br-PET-cGMPS (10 microg x kg(-1) x h(-1)) or RQIKIWFQNRRMKWKK-LRK(5)H-amide (18 microg x kg(-1) x h(-1)), a PKG inhibitor, also inhibited S6c-induced increases in UV and UNaV. These results demonstrate that renal medullary ET(B) receptor activation induces diuretic and natriuretic responses through a NOS1, cGMP, and PKG pathway.
Collapse
Affiliation(s)
- Daisuke Nakano
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd., Augusta, GA 30912, USA
| | | | | |
Collapse
|
50
|
Schneider MP, Ge Y, Pollock DM, Pollock JS, Kohan DE. Collecting duct-derived endothelin regulates arterial pressure and Na excretion via nitric oxide. Hypertension 2008; 51:1605-10. [PMID: 18391099 DOI: 10.1161/hypertensionaha.107.108126] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mice with a collecting duct-specific deletion of endothelin-1 are hypertensive and have impaired Na excretion. Because endothelin-1 activates NO synthase (NOS) in the collecting duct, we hypothesized that impaired renal NO production in knockout mice exacerbates the hypertensive state. Control and knockout mice were treated chronically with N(G)-nitro-l-arginine methyl ester, and blood pressure (BP) and urinary nitrate/nitrite excretion were assessed. On a normal Na diet, knockout systolic BP was 18 mm Hg greater than in controls. N(G)-nitro-l-arginine methyl ester increased BP in control mice by 30 mm Hg and 10 mm Hg in collecting duct-specific deletion of endothelin-1 knockout mice, thereby abolishing the difference in systolic BP between the groups. A high-Na diet increased BP similarly in both groups. Urinary nitrate/nitrite excretion was lower in knockout mice than in controls on normal or high Na intake. In separate experiments, renal perfusion pressure was adjusted in anesthetized mice, and urinary nitrate/nitrite and Na excretion were determined. Similar elevations of BP increased urinary Na and nitrate/nitrite excretion in control mice but to a significantly lesser extent in knockout mice. Isoform-specific NOS activity and expression were determined in renal inner medulla homogenates from control and knockout mice. NOS1 and NOS3 activities were lower in knockout than in control mice given normal or high-Na diets. However, NOS1 or NOS3 protein expressions were similar in both groups on normal or high-Na intake. These data demonstrate that collecting duct-derived endothelin-1 is important in the following: (1) chronic N(G)-nitro-l-arginine methyl ester-induced hypertension; (2) full expression of pressure-dependent changes in sodium excretion; and (3) control of inner medullary NOS1 and NOS3 activity.
Collapse
|