1
|
Wu SY, Shen Y, Shkolnikov I, Campbell RE. Fluorescent Indicators For Biological Imaging of Monatomic Ions. Front Cell Dev Biol 2022; 10:885440. [PMID: 35573682 PMCID: PMC9093666 DOI: 10.3389/fcell.2022.885440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Monatomic ions play critical biological roles including maintaining the cellular osmotic pressure, transmitting signals, and catalyzing redox reactions as cofactors in enzymes. The ability to visualize monatomic ion concentration, and dynamic changes in the concentration, is essential to understanding their many biological functions. A growing number of genetically encodable and synthetic indicators enable the visualization and detection of monatomic ions in biological systems. With this review, we aim to provide a survey of the current landscape of reported indicators. We hope this review will be a useful guide to researchers who are interested in using indicators for biological applications and to tool developers seeking opportunities to create new and improved indicators.
Collapse
Affiliation(s)
- Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Irene Shkolnikov
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Beesetty P, Rockwood J, Kaitsuka T, Zhelay T, Hourani S, Matsushita M, Kozak JA. Phagocytic activity of splenic macrophages is enhanced and accompanied by cytosolic alkalinization in TRPM7 kinase-dead mice. FEBS J 2021; 288:3585-3601. [PMID: 33354894 DOI: 10.1111/febs.15683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a unique protein functioning as a cation channel as well as a serine/threonine kinase and is highly expressed in immune cells such as lymphocytes and macrophages. TRPM7 kinase-dead (KD) mouse model has been used to investigate the role of this protein in immune cells; these animals display moderate splenomegaly and ectopic hemopoiesis. The basal TRPM7 current magnitudes in peritoneal macrophages isolated from KD mice were higher; however, the maximum currents, achieved after cytoplasmic Mg2+ washout, were not different. In the present study, we investigated the consequences of TRPM7 kinase inactivation in splenic and peritoneal macrophages. We measured the basal phagocytic activity of splenic macrophages using fluorescent latex beads, pHrodo zymosan bioparticles, and opsonized red blood cells. KD macrophages phagocytized more efficiently and had slightly higher baseline calcium levels compared to WT cells. We found no obvious differences in store-operated Ca2+ entry between WT and KD macrophages. By contrast, the resting cytosolic pH in KD macrophages was significantly more alkaline than in WT. Pharmacological blockade of sodium hydrogen exchanger 1 (NHE1) reversed the cytosolic alkalinization and reduced phagocytosis in KD macrophages. Basal TRPM7 channel activity in KD macrophages was also reduced after NHE1 blockade. Cytosolic Mg2+ sensitivity of TRPM7 channels measured in peritoneal macrophages was similar in WT and KD mice. The higher basal TRPM7 channel activity in KD macrophages is likely due to alkalinization. Our results identify a novel role for TRPM7 kinase as a suppressor of basal phagocytosis and a regulator of cellular pH.
Collapse
Affiliation(s)
- Pavani Beesetty
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Jananie Rockwood
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Siham Hourani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| |
Collapse
|
3
|
Conter C, Oppici E, Dindo M, Rossi L, Magnani M, Cellini B. Biochemical properties and oxalate-degrading activity of oxalate decarboxylase from bacillus subtilis at neutral pH. IUBMB Life 2019; 71:917-927. [PMID: 30806021 PMCID: PMC6850040 DOI: 10.1002/iub.2027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 11/05/2022]
Abstract
Oxalate decarboxylase (OxDC) from Bacillus subtilis is a Mn-dependent hexameric enzyme that converts oxalate to carbon dioxide and formate. OxDC has greatly attracted the interest of the scientific community, mainly due to its biotechnological and medical applications in particular for the treatment of hyperoxaluria, a group of pathologic conditions caused by oxalate accumulation. The enzyme has an acidic optimum pH, but most of its applications involve processes occurring at neutral pH. Nevertheless, a detailed biochemical characterization of the enzyme at neutral pH is lacking. Here, we compared the structural-functional properties at acidic and neutral pH of wild-type OxDC and of a mutant form, called OxDC-DSSN, bearing four amino acid substitutions in the lid (Ser161-to-Asp, Glu162-to-Ser, Asn163-toSer, and Ser164-to-Asn) that improve the oxalate oxidase activity and almost abolish the decarboxylase activity. We found that both enzymatic forms do not undergo major structural changes as a function of pH, although OxDC-DSSN displays an increased tendency to aggregation, which is counteracted by the presence of an active-site ligand. Notably, OxDC and OxDC-DSSN at pH 7.2 retain 7 and 15% activity, respectively, which is sufficient to degrade oxalate in a cellular model of primary hyperoxaluria type I, a rare inherited disease caused by excessive endogenous oxalate production. The significance of the data in the light of the possible use of OxDC as biological drug is discussed. © 2019 IUBMB Life, 1-11, 2019.
Collapse
Affiliation(s)
- Carolina Conter
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Mirco Dindo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Foote JR, Levine AP, Behe P, Duchen MR, Segal AW. Imaging the Neutrophil Phagosome and Cytoplasm Using a Ratiometric pH Indicator. J Vis Exp 2017. [PMID: 28448042 PMCID: PMC5564471 DOI: 10.3791/55107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are crucial to host innate defense and, consequently, constitute an important area of medical research. The phagosome, the intracellular compartment where the killing and digestion of engulfed particles take place, is the main arena for neutrophil pathogen killing that requires tight regulation. Phagosomal pH is one aspect that is carefully controlled, in turn regulating antimicrobial protease activity. Many fluorescent pH-sensitive dyes have been used to visualize the phagosomal environment. S-1 has several advantages over other pH-sensitive dyes, including its dual emission spectra, its resistance to photo-bleaching, and its high pKa. Using this method, we have demonstrated that the neutrophil phagosome is unusually alkaline in comparison to other phagocytes. By using different biochemical conjugations of the dye, the phagosome can be delineated from the cytoplasm so that changes in the size and shape of the phagosome can be assessed. This allows for further monitoring of ionic movement.
Collapse
Affiliation(s)
- Juliet R Foote
- Centre for Molecular Medicine, Division of Medicine, University College London
| | - Adam P Levine
- Centre for Molecular Medicine, Division of Medicine, University College London
| | - Philippe Behe
- Centre for Molecular Medicine, Division of Medicine, University College London
| | | | - Anthony W Segal
- Centre for Molecular Medicine, Division of Medicine, University College London;
| |
Collapse
|
5
|
Richter C, Schneider C, Quick MT, Volz P, Mahrwald R, Hughes J, Dick B, Alexiev U, Ernsting NP. Dual-fluorescence pH probe for bio-labelling. Phys Chem Chem Phys 2016; 17:30590-7. [PMID: 26524563 DOI: 10.1039/c5cp05454k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although seminaphtorhodafluor (SNARF) dyes are already widely used to measure pH in cells and at biofilms, their synthesis has low yield and results in an unspecific position of a carboxy-group. The separation of 5'- and 6'-carboxy-SNARF reveals a pKa difference of 0.15, calling into question pH measurements with the (commercially available) mixture. Here we replace the bulky external dicarboxyphenyl ring with a propionate group and evaluate the spectral properties of the new derivative. Proceeding to the ethyl-iodoacetamide, covalent linkage to cysteine protein sites is achieved efficiently as shown with a cyanobacterial phytochrome, extending the scarce application of SNARF in bio-labelling in the current literature. Application in fluorescence lifetime imaging is demonstrated both with the lifetime-based and ratiometric-yield method.
Collapse
Affiliation(s)
- C Richter
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| | - C Schneider
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany.
| | - M T Quick
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| | - P Volz
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany.
| | - R Mahrwald
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| | - J Hughes
- Institute for Plantphysiology, Justus-Liebig Universität, 35390 Giessen, Germany
| | - B Dick
- Institute for Physical and Theoretical Chemistry, Universität Regensburg, 93053 Regensburg, Germany
| | - U Alexiev
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany.
| | - N P Ernsting
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany.
| |
Collapse
|
6
|
Undem C, Luke T, Shimoda LA. Contribution of elevated intracellular calcium to pulmonary arterial myocyte alkalinization during chronic hypoxia. Pulm Circ 2016; 6:93-102. [PMID: 27076907 PMCID: PMC4809666 DOI: 10.1086/685053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the lung, exposure to chronic hypoxia (CH) causes pulmonary hypertension, a debilitating disease. Development of this condition arises from increased muscularity and contraction of pulmonary vessels, associated with increases in pulmonary arterial smooth muscle cell (PASMC) intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i). In this study, we explored the interaction between pHi and [Ca(2+)]i in PASMCs from rats exposed to normoxia or CH (3 weeks, 10% O2). PASMC pHi and [Ca(2+)]i were measured with fluorescent microscopy and the dyes BCECF and Fura-2. Both pHi and [Ca(2+)]i levels were elevated in PASMCs from hypoxic rats. Exposure to KCl increased [Ca(2+)]i and pHi to a similar extent in normoxic and hypoxic PASMCs. Conversely, removal of extracellular Ca(2+) or blockade of Ca(2+) entry with NiCl2 or SKF 96365 decreased [Ca(2+)]i and pHi only in hypoxic cells. Neither increasing pHi with NH4Cl nor decreasing pHi by removal of bicarbonate impacted PASMC [Ca(2+)]i. We also examined the roles of Na(+)/Ca(2+) exchange (NCX) and Na(+)/H(+) exchange (NHE) in mediating the elevated basal [Ca(2+)]i and Ca(2+)-dependent changes in PASMC pHi. Bepridil, dichlorobenzamil, and KB-R7943, which are NCX inhibitors, decreased resting [Ca(2+)]i and pHi only in hypoxic PASMCs and blocked the changes in pHi induced by altering [Ca(2+)]i. Exposure to ethyl isopropyl amiloride, an NHE inhibitor, decreased resting pHi and prevented changes in pHi due to changing [Ca(2+)]i. Our findings indicate that, during CH, the elevation in basal [Ca(2+)]i may contribute to the alkaline shift in pHi in PASMCs, likely via mechanisms involving reverse-mode NCX and NHE.
Collapse
Affiliation(s)
- Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Trevor Luke
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Jaafari N, Vogt KE, Saggau P, Leslie LM, Zecevic D, Canepari M. Combining Membrane Potential Imaging with Other Optical Techniques. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:103-25. [PMID: 26238050 DOI: 10.1007/978-3-319-17641-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane potential imaging using voltage-sensitive dyes can be combined with other optical techniques for a variety of applications. Combining voltage imaging with Ca2+ imaging allows correlating membrane potential changes with intracellular Ca2+ signals or with Ca2+ currents. Combining voltage imaging with uncaging techniques allows analyzing electrical signals elicited by photorelease of a particular molecule. This approach is also a useful tool to calibrate the change in fluorescence intensity in terms of membrane potential changes from different sites permitting spatial mapping of electrical activity. Finally, combining voltage imaging with optogenetics, in particular with channelrhodopsin stimulation, opens the gate to novel investigations of brain circuitries by allowing measurements of synaptic signals mediated by specific sets of neurons. Here we describe in detail the methods of membrane potential imaging in combination with other optical techniques and discus some important applications.
Collapse
Affiliation(s)
- Nadia Jaafari
- Inserm U836, Grenoble Institute of Neuroscience, Team 3, Grenoble Cedex 09, France
| | | | | | | | | | | |
Collapse
|
8
|
Martinez-Zaguilan R, Tompkins LS, Gillies RJ, Lynch RM. Simultaneous analysis of intracellular pH and Ca²⁺ from cell populations. Methods Mol Biol 2013; 937:253-71. [PMID: 23007592 DOI: 10.1007/978-1-62703-086-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although changes in both pH(in) and [Ca(2+)](i) have been observed in response to a variety of agonists, it is not clear whether these ionic events work independently or are coordinated to lead to a specific physiological response. One of the fundamental problems in studying these ionic events is that changes in pH(in) modify Ca(2+) regulatory mechanisms and changes in Ca(2+) may modify pH regulation. It is desirable to use a technique that allows concomitant monitoring of these two ions in cell populations with high time resolution. Furthermore, like many Ca(2+) binding proteins, all Ca(2+)-sensitive fluoroprobes are inherently sensitive to pH owing to competition of H(+) for the Ca(2+)-binding sites. This chapter describes experimental paradigms that provide optimum conditions for simultaneous measurement of pH from the fluorescence emission of snarf-1, and Ca(2+) using fura-2. The fluorescence spectra of these compounds are sufficiently different to allow simultaneous measurement of pH and Ca(2+) both in vitro and in vivo. Moreover, the ratio of the H(+)-sensitive wavelengths of snarf-1 is unaffected by Ca(2+), or the concomitant presence of fura-2 in cells. Although the fluorescence ratio of fura-2 is insensitive to the presence of snarf-1, it is affected by pH, as indicated above. We describe procedures to correct for this effect and to obtain calibration parameters for fura-2 and snarf-1 required to facilitate analysis of pH and Ca(2+) concentrations within cell populations.
Collapse
Affiliation(s)
- Raul Martinez-Zaguilan
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | | | |
Collapse
|
9
|
Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg JM, Sloane BF, Johnson J, Gatenby RA, Gillies RJ. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 2013; 73:1524-35. [PMID: 23288510 DOI: 10.1158/0008-5472.can-12-2796] [Citation(s) in RCA: 914] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pH of solid tumors is acidic due to increased fermentative metabolism and poor perfusion. It has been hypothesized that acid pH promotes local invasive growth and metastasis. The hypothesis that acid mediates invasion proposes that H(+) diffuses from the proximal tumor microenvironment into adjacent normal tissues where it causes tissue remodeling that permits local invasion. In the current work, tumor invasion and peritumoral pH were monitored over time using intravital microscopy. In every case, the peritumoral pH was acidic and heterogeneous and the regions of highest tumor invasion corresponded to areas of lowest pH. Tumor invasion did not occur into regions with normal or near-normal extracellular pH. Immunohistochemical analyses revealed that cells in the invasive edges expressed the glucose transporter-1 and the sodium-hydrogen exchanger-1, both of which were associated with peritumoral acidosis. In support of the functional importance of our findings, oral administration of sodium bicarbonate was sufficient to increase peritumoral pH and inhibit tumor growth and local invasion in a preclinical model, supporting the acid-mediated invasion hypothesis. Cancer Res; 73(5); 1524-35. ©2012 AACR.
Collapse
Affiliation(s)
- Veronica Estrella
- Departments of Cancer Imaging and Metabolism, Radiology, and Analytic Microscopy Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mai J, Miller H, Hatch AV. Spatiotemporal mapping of concentration polarization induced pH changes at nanoconstrictions. ACS NANO 2012; 6:10206-10215. [PMID: 23061977 DOI: 10.1021/nn304005p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Under an applied electric field, concentration polarization (CP) arises from ion permselectivity of most nanoporous materials and biological ion channels. We present novel methods to quantitatively assess CP-induced spatiotemporal changes of pH that may significantly impact transport dynamics, device functionality, and physicochemical properties of molecular analytes in devices with nanofluidic constrictions. We measured pH fluctuations of >1.5 pH units and changes extending over 100's of micrometers from nanoconstrictions. The degree of change depends on key system parameters including buffer composition, surface charge, and strength of electric field. The results highlight the importance of neglected contributions of pH changes, and the approach can aid characterization and manipulation of mass transport in nanofluidic systems.
Collapse
Affiliation(s)
- Junyu Mai
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, California 94551, United States
| | | | | |
Collapse
|
11
|
Cunningham J, Estrella V, Lloyd M, Gillies R, Frieden BR, Gatenby R. Intracellular electric field and pH optimize protein localization and movement. PLoS One 2012; 7:e36894. [PMID: 22623963 PMCID: PMC3356409 DOI: 10.1371/journal.pone.0036894] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/11/2012] [Indexed: 01/25/2023] Open
Abstract
Mammalian cell function requires timely and accurate transmission of information from the cell membrane (CM) to the nucleus (N). These pathways have been intensively investigated and many critical components and interactions have been identified. However, the physical forces that control movement of these proteins have received scant attention. Thus, transduction pathways are typically presented schematically with little regard to spatial constraints that might affect the underlying dynamics necessary for protein-protein interactions and molecular movement from the CM to the N. We propose messenger protein localization and movements are highly regulated and governed by Coulomb interactions between: 1. A recently discovered, radially directed E-field from the NM into the CM and 2. Net protein charge determined by its isoelectric point, phosphorylation state, and the cytosolic pH. These interactions, which are widely applied in elecrophoresis, provide a previously unknown mechanism for localization of messenger proteins within the cytoplasm as well as rapid shuttling between the CM and N. Here we show these dynamics optimize the speed, accuracy and efficiency of transduction pathways even allowing measurement of the location and timing of ligand binding at the CM –previously unknown components of intracellular information flow that are, nevertheless, likely necessary for detecting spatial gradients and temporal fluctuations in ligand concentrations within the environment. The model has been applied to the RAF-MEK-ERK pathway and scaffolding protein KSR1 using computer simulations and in-vitro experiments. The computer simulations predicted distinct distributions of phosphorylated and unphosphorylated components of this transduction pathway which were experimentally confirmed in normal breast epithelial cells (HMEC).
Collapse
Affiliation(s)
- Jessica Cunningham
- Department of Radiology, Moffitt Cancer Center, Tampa, Florida, United States of America
- Department of Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Veronica Estrella
- Department of Radiology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Mark Lloyd
- Department of Analytic Microscopy, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Robert Gillies
- Department of Radiology, Moffitt Cancer Center, Tampa, Florida, United States of America
- Department of Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - B. Roy Frieden
- College of Optical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Robert Gatenby
- Department of Radiology, Moffitt Cancer Center, Tampa, Florida, United States of America
- Department of Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
12
|
Krizaj D, Mercer AJ, Thoreson WB, Barabas P. Intracellular pH modulates inner segment calcium homeostasis in vertebrate photoreceptors. Am J Physiol Cell Physiol 2010; 300:C187-97. [PMID: 20881233 DOI: 10.1152/ajpcell.00264.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal metabolic and electrical activity is associated with shifts in intracellular pH (pH(i)) proton activity and state-dependent changes in activation of signaling pathways in the plasma membrane, cytosol, and intracellular compartments. We investigated interactions between two intracellular messenger ions, protons and calcium (Ca²(+)), in salamander photoreceptor inner segments loaded with Ca²(+) and pH indicator dyes. Resting cytosolic pH in rods and cones in HEPES-based saline was acidified by ∼0.4 pH units with respect to pH of the superfusing saline (pH = 7.6), indicating that dissociated inner segments experience continuous acid loading. Cytosolic alkalinization with ammonium chloride (NH₄Cl) depolarized photoreceptors and stimulated Ca²(+) release from internal stores, yet paradoxically also evoked dose-dependent, reversible decreases in [Ca²(+)](i). Alkalinization-evoked [Ca²(+)](i) decreases were independent of voltage-operated and store-operated Ca²(+) entry, plasma membrane Ca²(+) extrusion, and Ca²(+) sequestration into internal stores. The [Ca²(+)](i)-suppressive effects of alkalinization were antagonized by the fast Ca²(+) buffer BAPTA, suggesting that pH(i) directly regulates Ca²(+) binding to internal anionic sites. In summary, this data suggest that endogenously produced protons continually modulate the membrane potential, release from Ca²(+) stores, and intracellular Ca²(+) buffering in rod and cone inner segments.
Collapse
Affiliation(s)
- David Krizaj
- Department of Ophthalmology, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, 84132, USA.
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Junyan Han
- Department of Chemistry, Texas A&M University, Box 30012, College Station, Texas 77841, USA
| | | |
Collapse
|
14
|
Burke JM, Smith CD, Ivory CF. Development of a membrane-less dynamic field gradient focusing device for the separation of low-molecular-weight molecules. Electrophoresis 2010; 31:902-9. [PMID: 20191553 PMCID: PMC2919354 DOI: 10.1002/elps.200900589] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dynamic field gradient focusing uses an electric field gradient generated by controlling the voltage profile of an electrode array to separate and concentrate charged analytes according to their individual electrophoretic mobilities. This study describes a new instrument in which the electrodes have been placed within the separation channel. The major challenge faced with this device is that when applied voltages to the electrodes are larger than the redox potential of water, electrolysis will occur, producing hydrogen ions (H+) plus oxygen gas on the anodes and hydroxide (OH(-)) plus hydrogen gas on the cathodes. The resulting gas bubbles and pH excursions can cause problems with system performance and reproducibility. An on-column, degassing system that can remove gas bubbles "on-the-fly" is described. In addition, the use of a high capacity, low-conductivity buffer to address the problem of the pH shift that occurs due to the production of H+ on the anodes is illustrated. Finally, the successful separation of three, low-molecular-weight dyes (amaranth, bromophenol blue and methyl red) is described.
Collapse
Affiliation(s)
- Jeffrey M Burke
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-2710, USA
| | | | | |
Collapse
|
15
|
Hinton A, Sennoune SR, Bond S, Fang M, Reuveni M, Sahagian GG, Jay D, Martinez-Zaguilan R, Forgac M. Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 2009; 284:16400-16408. [PMID: 19366680 DOI: 10.1074/jbc.m901201200] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It has previously been shown that highly invasive MDA-MB231 human breast cancer cells express vacuolar proton-translocating ATPase (V-ATPases) at the cell surface, whereas the poorly invasive MCF7 cell line does not. Bafilomycin, a specific V-ATPase inhibitor, reduces the in vitro invasion of MB231 cells but not MCF7 cells. Targeting of V-ATPases to different cellular membranes is controlled by isoforms of subunit a. mRNA levels for a subunit isoforms were measured in MB231 and MCF7 cells using quantitative reverse transcription-PCR. The results show that although all four isoforms are detectable in both cell types, levels of a3 and a4 are much higher in MB231 than in MCF7 cells. Isoform-specific small interfering RNAs (siRNA) were employed to selectively reduce mRNA levels for each isoform in MB231 cells. V-ATPase function was assessed using the fluorescent indicators SNARF-1 and pyranine to monitor the pH of the cytosol and endosomal/lysosomal compartments, respectively. Cytosolic pH was decreased only on knockdown of a3, whereas endosome/lysosome pH was increased on knockdown of a1, a2, and a3. Treatment of cells with siRNA to a4 did not affect either cytosolic or endosome/lysosome pH. Measurement of invasion using an in vitro transwell assay revealed that siRNAs to both a3 and a4 significantly inhibited invasion of MB231 cells. Immunofluorescence staining of MB231 cells for V-ATPase distribution revealed extensive intracellular staining, with plasma membrane staining observed in approximately 18% of cells. Knockdown of a4 had the greatest effect on plasma membrane staining, leading to a 32% reduction. These results suggest that the a4 isoform may be responsible for targeting V-ATPases to the plasma membrane of MB231 cells and that cell surface V-ATPases play a significant role in invasion. However, other V-ATPases affecting the pH of the cytosol and intracellular compartments, particularly those containing a3, are also involved in invasion.
Collapse
Affiliation(s)
- Ayana Hinton
- From the Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Souad R Sennoune
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University, Lubbock, Texas 79430
| | - Sarah Bond
- From the Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Min Fang
- From the Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Moshe Reuveni
- Department of Ornamental Horticulture, ARO Volcani Center, Bet Dagan 50250, Israel
| | - G Gary Sahagian
- From the Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Daniel Jay
- From the Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Raul Martinez-Zaguilan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University, Lubbock, Texas 79430
| | - Michael Forgac
- From the Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111.
| |
Collapse
|
16
|
Willets KA. Surface-enhanced Raman scattering (SERS) for probing internal cellular structure and dynamics. Anal Bioanal Chem 2009; 394:85-94. [DOI: 10.1007/s00216-009-2682-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/29/2009] [Accepted: 02/04/2009] [Indexed: 11/29/2022]
|
17
|
Jin J, Jones AT. The pH sensitive probe 5-(and-6)-carboxyl seminaphthorhodafluor is a substrate for the multidrug resistance-related protein MRP1. Int J Cancer 2009; 124:233-8. [PMID: 18924151 DOI: 10.1002/ijc.23892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cellular function is dependent on tight regulation of intracellular pH and numerous reports show cancer cells have abnormal pH values in the cytosol and organelles, such as lysosomes. 5-(and-6)-carboxyl seminaphthorhodafluor (SNARF-1) is a commonly used pH sensitive probe and was used here to determine cytosolic pH of HL-60 leukemia cells and a drug-resistant variant overexpressing multidrug-resistance related protein 1 (MRP1). Resistant cells accumulated significantly less SNARF-1 compared to parental cells but near control levels of probe accumulation were observed by preincubating cells with the specific MRP1 inhibitor MK571. Two new drug-resistant cell lines were generated following exposure to doxorubicin or daunorubicin and these upregulated MRP1 or P-glycoprotein expression, respectively. Experiments in these cells showed that reduced SNARF-1 accumulation was specific to MRP1 overexpression, as cells upregulating P-glycoprotein accumulated control levels of the probe. Confirmation that SNARF-1 is a MRP1 substrate was obtained using K562 and KG1a cells that have been shown to, respectively, constitutively express MRP1 and P-glycoprotein. Together, the data suggest that SNARF-1 is a substrate for MRP1 but not P-glycoprotein, and could therefore be used as a probe to distinguish between expression and activity of these 2 efflux proteins. Finally, we confirm that doxorubicin but not daunorubicin challenged MRP1 overexpressing HL-60 cells have elevated cytosolic pH.
Collapse
Affiliation(s)
- Jing Jin
- Welsh School of Pharmacy, Cardiff University, Cardiff, Wales, United Kingdom
| | | |
Collapse
|
18
|
Ross JL, Howlett SE. Beta-adrenoceptor stimulation exacerbates detrimental effects of ischemia and reperfusion in isolated guinea pig ventricular myocytes. Eur J Pharmacol 2008; 602:364-72. [PMID: 19056376 DOI: 10.1016/j.ejphar.2008.11.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/20/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
We investigated whether beta-adrenoceptor stimulation exacerbates detrimental effects of ischemia and reperfusion on electrical and contractile function and on intracellular Ca(2+) homeostasis in isolated guinea pig ventricular myocytes. Myocytes were exposed to 20 min of simulated ischemia (37 degrees C) in the absence or presence of isoproterenol (10 nM, applied prior to and during ischemia) and reperfused with Tyrode's solution for 30 min. Unloaded cell shortening, Ca(2+) transients (fura-2), and cell viability were recorded at 5 min intervals in field-stimulated cells (2 Hz). In experiments using microelectrodes, membrane potentials, contractions, and transmembrane currents also were recorded at 5 min intervals. In the absence of ischemia, 10 nM isoproterenol had little effect on either contractile function or Ca(2+) homeostasis. In contrast, when cells were exposed to ischemia, isoproterenol increased the size of contractions and Ca(2+) transients and augmented the increase in diastolic Ca(2+) concentration during ischemia in field-stimulated myocytes. Exposure to isoproterenol also promoted contractile depression in reperfusion. In voltage clamp experiments, isoproterenol abolished the decrease in the magnitude of L-type Ca(2+) current caused by ischemia. Isoproterenol also increased the incidence of abnormal contractile activity and induced delayed afterdepolarizations and the arrhythmogenic transient inward current in ischemia. Additionally, the decline in cell viability in ischemia and reperfusion was exacerbated by isoproterenol. This study shows that beta-adrenoceptor stimulation strongly potentiates adverse effects of ischemia and reperfusion on electrical and contractile function. These adverse effects of isoproterenol are likely caused by an increase in intracellular Ca(2+) accumulation during ischemia.
Collapse
Affiliation(s)
- Jenna L Ross
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
19
|
Chernysh O, Condrescu M, Reeves JP. Sodium-dependent inactivation of sodium/calcium exchange in transfected Chinese hamster ovary cells. Am J Physiol Cell Physiol 2008; 295:C872-82. [PMID: 18550702 DOI: 10.1152/ajpcell.00221.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High concentrations of cytosolic Na(+) ions induce the time-dependent formation of an inactive state of the Na(+)/Ca(2+) exchanger (NCX), a process known as Na(+)-dependent inactivation. NCX activity was measured as Ca(2+) uptake in fura 2-loaded Chinese hamster ovary (CHO) cells expressing the wild-type (WT) NCX or mutants that are hypersensitive (F223E) or resistant (K229Q) to Na(+)-dependent inactivation. As expected, 1) Na(+)-dependent inactivation was promoted by high cytosolic Na(+) concentration, 2) the F223E mutant was more susceptible than the WT exchanger to inactivation, whereas the K229Q mutant was resistant, and 3) inactivation was enhanced by cytosolic acidification. However, in contrast to expectations from excised patch studies, 1) the WT exchanger was resistant to Na(+)-dependent inactivation unless cytosolic pH was reduced, 2) reducing cellular phosphatidylinositol-4,5-bisphosphate levels did not induce Na(+)-dependent inactivation in the WT exchanger, 3) Na(+)-dependent inactivation did not increase the half-maximal cytosolic Ca(2+) concentration for allosteric Ca(2+) activation, 4) Na(+)-dependent inactivation was not reversed by high cytosolic Ca(2+) concentrations, and 5) Na(+)-dependent inactivation was partially, but transiently, reversed by an increase in extracellular Ca(2+) concentration. Thus Na(+)-dependent inactivation of NCX expressed in CHO cells differs in several respects from the inactivation process measured in excised patches. The refractoriness of the WT exchanger to Na(+)-dependent inactivation suggests that this type of inactivation is unlikely to be a strong regulator of exchange activity under physiological conditions but would probably act to inhibit NCX-mediated Ca(2+) influx during ischemia.
Collapse
Affiliation(s)
- Olga Chernysh
- Department of Pharmacology and Physiology, Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
20
|
Combining voltage and calcium imaging from neuronal dendrites. Cell Mol Neurobiol 2008; 28:1079-93. [PMID: 18500551 DOI: 10.1007/s10571-008-9285-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
The ability to monitor membrane potential (V(m)) and calcium (Ca(2+)) transients at multiple locations on the same neuron can facilitate further progress in our understanding of neuronal function. Here we describe a method to combine V(m) and Ca(2+) imaging using styryl voltage sensitive dyes and Fura type UV-excitable Ca(2+) indicators. In all cases V(m) optical signals are linear with membrane potential changes, but the calibration of optical signals on an absolute scale is presently possible only in some neurons. The interpretation of Ca(2+) optical signals depends on the indicator Ca(2+) buffering capacity relative to the cell endogenous buffering capacity. In hippocampal CA1 pyramidal neurons, loaded with JPW-3028 and 300 microM Bis-Fura-2, V(m) optical signals cannot be calibrated and the physiological Ca(2+) dynamics are compromised by the presence of the indicator. Nevertheless, at each individual site, relative changes in V (m) and Ca(2+) fluorescence signals under different conditions can provide meaningful new information on local dendritic integration. In cerebellar Purkinje neurons, loaded with JPW-1114 and 1 mM Fura-FF, V(m) optical signals can be calibrated in terms of mV and Ca(2+) optical signals quantitatively reveal the physiological changes in free Ca(2+). Using these two examples, the method is explained in detail.
Collapse
|
21
|
Liimatta E, Kantola AM, Hassinen IE. Dual probe fluorescence monitoring of intracellular free calcium during ischemia in mouse heart by using continuous compensation for pH dependence of the dissociation constant of Fura-2, and the interference of myoglobin. ACTA ACUST UNITED AC 2007; 70:547-54. [PMID: 17316820 DOI: 10.1016/j.jbbm.2007.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 12/14/2006] [Accepted: 01/05/2007] [Indexed: 11/22/2022]
Abstract
Mitochondrial damage is the main source of cellular injury upon ischemia-reperfusion, and calcium loading has been implicated in this phenomenon. The use of optical probes for calcium monitoring of the intact heart is hampered by internal filter effects of intracellular hemoproteins, endogenous fluorescence, and their sensitivity to pH. We describe here a method for measurement of intracellular free calcium in isolated myoglobin-deficient perfused mouse hearts under conditions of large intracellular pH fluctuations by simultaneous fluorescence monitoring of the calcium-probe Fura-2 and the pH probe BCECF through dual wavelength excitation of both probes. In myoglobin-containing mouse heart endogenous chromophores interfere with Fura-2 fluorometry. It is shown that a paradoxical decrease in Fura-2 fluorescence occurs during ischemia in isolated mouse hearts. Simultaneous recording of BCECF fluorescence (calibrated against pH measurement with phosphorus NMR) and data reduction based on continual recalculation of the apparent dissociation constant of the calcium-probe complex revealed that a marked increase in intracellular free calcium occurs, and that the Fura-2 fluorescence decrease was caused by an increase in dissociation constant due to intracellular acidification. Intracellular free calcium rose almost linearly during a 20-min period of ischemia and returned to basal values rapidly upon the commencement of perfusion.
Collapse
Affiliation(s)
- Erkki Liimatta
- Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland
| | | | | |
Collapse
|
22
|
Zilli L, Schiavone R, Storelli C, Vilella S. Analysis of calcium concentration fluctuations in hepatopancreatic R cells of Marsupenaeus japonicus during the molting cycle. THE BIOLOGICAL BULLETIN 2007; 212:161-8. [PMID: 17438208 DOI: 10.2307/25066593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study we examined the fluctuations of the intracellular calcium concentration in isolated hepatopancreatic R cells during the four molting stages of the prawn Marsupenaeus japonicus. In addition, we used the Fura-2-AM fluorescence technique to investigate the release of calcium from mitochondria and ATP-sensitive calcium stores (endoplasmic reticulum (ER), Golgi, and nucleus) into cytoplasm during the molting cycle. Results demonstrate that both the cytosolic free calcium concentration and the total cell calcium (free, bound to calcium-binding proteins, and stored in amorphous form) in the R cells strictly depend upon the molting cycle. Interestingly, the total cell calcium was higher (approximately 10 mmol l(-1)) in postmolt than in premolt (approximately 1 mmol l(-1)) and intermolt (approximately 0.3 mmol l(-1)). The calcium released from mitochondria was higher during premolt than during postmolt and intermolt, but the amount of calcium released from ATP-sensitive calcium stores was similar during all four stages. All together, our results suggest that the mitochondria-ATP-sensitive calcium stores system does not play a key role in calcium storage during the molting cycle but that it is involved in transcellular calcium flux. We hypothesize that lysosome or membrane-clad concretion vacuoles could represent the main site of calcium storage in hepatopancreatic R cells.
Collapse
Affiliation(s)
- Loredana Zilli
- Laboratory of General and Comparative Physiology, Department of Biological and Environmental Sciences and Technologies, University of Lecce, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | | | | | | |
Collapse
|
23
|
Kelly T, Church J. Relationships Between Calcium and pH in the Regulation of the Slow Afterhyperpolarization in Cultured Rat Hippocampal Neurons. J Neurophysiol 2006; 96:2342-53. [PMID: 16885515 DOI: 10.1152/jn.01269.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca2+-dependent slow afterhyperpolarization (AHP) is an important determinant of neuronal excitability. Although it is established that modest changes in extracellular pH (pHo) modulate the slow AHP, the relative contributions of changes in the priming Ca2+ signal and intracellular pH (pHi) to this effect remain poorly defined. To gain a better understanding of the modulation of the slow AHP by changes in pHo, we performed simultaneous recordings of intracellular free calcium concentration ([Ca2+]i), pHi, and the slow AHP in cultured rat hippocampal neurons coloaded with the Ca2+- and pH-sensitive fluorophores fura-2 and SNARF-5F, respectively, and whole cell patch-clamped using the perforated patch technique. Decreasing pHo from 7.2 to 6.5 lowered pHi, reduced the magnitude of depolarization-evoked [Ca2+]i transients, and inhibited the subsequent slow AHP; opposite effects were observed when pHo was increased from 7.2 to 7.5. Although decreases and increases in pHi (at a constant pHo) reduced and augmented, respectively, the slow AHP in the absence of marked changes in preceding [Ca2+]i transients, the inhibition of the slow AHP by decreases in pHo was correlated with low pHo-dependent reductions in [Ca2+]i transients rather than the decreases in pHi that accompanied the decreases in pHo. In contrast, high pHo-induced increases in the slow AHP were correlated with the accompanying increases in pHi rather than high pHo-dependent increases in [Ca2+]i transients. The results indicate that changes in pHo modulate the slow AHP in a manner that depends on the direction of the pHo change and substantiate a role for changes in pHi in modulating the slow AHP during changes in pHo.
Collapse
Affiliation(s)
- Tony Kelly
- Department of Cellular and Physiological Sciences, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C., Canada V6T 1Z3
| | | |
Collapse
|
24
|
Aguilera-Aguirre L, González-Hernández JC, Pérez-Vázquez V, Ramírez J, Clemente-Guerrero M, Villalobos-Molina R, Saavedra-Molina A. Role of intramitochondrial nitric oxide in rat heart and kidney during hypertension. Mitochondrion 2005; 1:413-23. [PMID: 16120294 DOI: 10.1016/s1567-7249(02)00002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2001] [Revised: 12/18/2001] [Accepted: 12/20/2001] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) is an important reactive molecule in many organisms. A mitochondrial nitric oxide synthase has been described; however, the role of NO in this organelle is not yet fully clear. We tested the effect of intramitochondrial NO on various functions from spontaneously hypertensive rats (SHR) and their normotensive genetic control, Wistar-Kyoto (WKY) rats. While the stimulation of intramitochondrial NOS increased calcium- and phosphate-induced permeability transition pore opening, its inhibition partially prevented it, without affecting membrane potential. Matrix free calcium and the pH decreased with NOS inhibition. Basal [NO] was lower in SHR than in WKY. Our data suggest that intramitochondrial NO plays an important role in mitochondrial regulation during hypertension.
Collapse
Affiliation(s)
- Leopoldo Aguilera-Aguirre
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3. CU, Morelia, Mich. 58030, Mexico
| | | | | | | | | | | | | |
Collapse
|
25
|
Sánchez-Armáss S, Sennoune SR, Maiti D, Ortega F, Martínez-Zaguilán R. Spectral imaging microscopy demonstrates cytoplasmic pH oscillations in glial cells. Am J Physiol Cell Physiol 2005; 290:C524-38. [PMID: 16135543 DOI: 10.1152/ajpcell.00290.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glial cells exhibit distinct cellular domains, somata, and filopodia. Thus the cytoplasmic pH (pH(cyt)) and/or the behavior of the fluorescent ion indicator might be different in these cellular domains because of distinct microenvironments. To address these issues, we loaded C6 glial cells with carboxyseminaphthorhodafluor (SNARF)-1 and evaluated pH(cyt) using spectral imaging microscopy. This approach allowed us to study pH(cyt) in discrete cellular domains with high temporal, spatial, and spectral resolution. Because there are differences in the cell microenvironment that may affect the behavior of SNARF-1, we performed in situ titrations in discrete cellular regions of single cells encompassing the somata and filopodia. The in situ titration parameters apparent acid-base dissociation constant (pK'(a)), maximum ratio (R(max)), and minimum ratio (R(min)) had a mean coefficient of variation approximately six times greater than those measured in vitro. Therefore, the individual in situ titration parameters obtained from specific cellular domains were used to estimate the pH(cyt) of each region. These studies indicated that glial cells exhibit pH(cyt) heterogeneities and pH(cyt) oscillations in both the absence and presence of physiological HCO(3)(-). The amplitude and frequency of the pH(cyt) oscillations were affected by alkalosis, by acidosis, and by inhibitors of the ubiquitous Na(+)/H(+) exchanger- and HCO(3)(-)-based H(+)-transporting mechanisms. Optical imaging approaches used in conjunction with BCECF as a pH probe corroborated the existence of pH(cyt) oscillations in glial cells.
Collapse
Affiliation(s)
- Sergio Sánchez-Armáss
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | | | | | | |
Collapse
|
26
|
Kelly T, Church J. The weak bases NH3 and trimethylamine inhibit the medium and slow afterhyperpolarizations in rat CA1 pyramidal neurons. Pflugers Arch 2005; 451:418-27. [PMID: 16047153 DOI: 10.1007/s00424-005-1483-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
The weak bases NH(3) and trimethylamine (TMeA), applied externally, are widely used to investigate the effects of increasing intracellular pH (pH(i)) on neuronal function. However, potential effects of the compounds independent from increases in pH(i) are not usually considered. In whole-cell patch-clamp recordings from rat CA1 pyramidal neurons, bath application of 1-40 mM NH(4)Cl or TMeA HCl reduced resting membrane potential and input resistance, inhibited the medium and slow afterhyperpolarizations (AHPs) and their respective underlying currents, mI(ahp) and sI(ahp), and led to the development of depolarizing current-evoked burst firing. Examined in the presence of 1 microM TTX and 5 mM TEA with 10 mM Hepes in the recording pipette, NH(3) and TMeA increased pH(i) and the magnitudes of depolarization-evoked intracellular [Ca(2+)] transients, Ca(2+)-dependent depolarizing potentials, and inward Ca(2+) currents but reduced the slow AHP and sI(ahp). When internal H(+) buffering power was raised by including 100 mM tricine in the patch pipette, the effects of NH(3) and TMeA to increase pH(i) and augment Ca(2+) influx were attenuated whereas the reductions in the slow AHP and sI(ahp) (as well as membrane potential and input resistance) were maintained. The findings indicate that increases in pH(i) contribute to the increases in Ca(2+) influx observed in the presence of NH(3) and TMeA but not to the reductions in membrane potential, input resistance or the magnitudes of AHPs. The results have implications for the interpretation of data from experiments in which pH(i) is manipulated by the external application of NH(3) or TMeA.
Collapse
Affiliation(s)
- Tony Kelly
- Department of Cellular and Physiological Sciences, University of British Columbia, 2177 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
27
|
Sheldon C, Cheng YM, Church J. Concurrent measurements of the free cytosolic concentrations of H+ and Na+ ions with fluorescent indicators. Pflugers Arch 2005; 449:307-18. [PMID: 15452716 DOI: 10.1007/s00424-004-1344-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a method for the concurrent measurement of intracellular [Na+] ([Na+ ]i) and pH (pHi) in cells co-loaded with SBFI, a Na+-sensitive fluorophore, and either carboxy SNARF-1 or SNARF-5F, H+-sensitive fluorophores. With the optical filters specified, fluorescence emissions from SBFI and either SNARF derivative were sufficiently distinct to allow the accurate measurement of [Na+]i and pHi in rat hippocampal neurons. Neither the Na+ sensitivity of SBFI nor the pH sensitivities of carboxy SNARF-1 or SNARF-5F was affected by the presence of a SNARF derivative or SBFI, respectively. In addition, the calibration parameters obtained in neurons single-loaded with SBFI, carboxy SNARF-1 or SNARF-5F were not significantly influenced by the presence of a second fluorophore. In contrast to the established weak sensitivity of SBFI for protons, both SNARF derivatives appeared essentially insensitive to changes in [Na+]i. The utility of the technique was demonstrated in neurons co-loaded with SBFI and SNARF-5F, which was found to have a lower p Ka in situ than carboxy SNARF-1. There were no significant differences in the changes in [Na+]i and pHi observed in response either to intracellular acid loads imposed by the NH4+ prepulse technique or to transient periods of anoxia in neurons single-loaded with SBFI or SNARF-5F or co-loaded with both probes. The findings support the feasibility of using SBFI in conjunction with either carboxy SNARF-1 or SNARF-5F to concurrently and accurately measure [Na+]i and pHi.
Collapse
Affiliation(s)
- Claire Sheldon
- Department of Physiology, University of British Columbia, 2177 Wesbrook Mall, Vancouver, B.C. V6T 1Z3, Canada
| | | | | |
Collapse
|
28
|
Abstract
Acid-base balance is altered in a variety of common pathologies, including COPD, ischemia, renal failure, and cancer. Because of robust cellular pH homeostatic mechanisms, most of the pathological alterations in pH are expressed as changes in the extracellular, systemic pH. There are data to indicate that altered pH is not simply an epiphenomenon of metabolic or physiologic imbalance but that chronic pH alterations can have important sequelae. MRSI and MRI measurements indicate that pH gradients of up to 1.0 pH unit can exit within 1-cm distance. Although measurement of blood pH can indicate systemic problems, it cannot pinpoint the lesion or quantitatively assess the magnitude of excursion from normal pHe. Hence, there is a need to develop pHe measurement methods with high spatiotemporal resolution. The two major approaches being investigated include magnetization transfer methods and relaxation methods. pH-dependent MT effects can observed with endogenous signals or exogenously applied CEST agents. While endogenous signals have the advantage of being fully noninvasive and relatively straightforward to apply, they lack a full biophysical characterization and dynamic range that might be afforded by future CEST agents. pH-dependent relaxivity also requires the injection or infusion of exogenous contrast reagents. In both MT and relaxographic approaches, the magnitude of the effect, and, thus, the ability to quantify pHe, depends on a spatially and temporally varying concentration of the CR. A number of approaches have been proposed to solve this problem and, once it is solved, pH imaging methods will be applicable to human clinical pathologies.
Collapse
Affiliation(s)
- Robert J Gillies
- Department of Biochemistry, Arizona Cancer Center, Tucson 85724-5024, USA.
| | | | | | | |
Collapse
|
29
|
Louch WE, Ferrier GR, Howlett SE. Attentuation of cardiac stunning by losartan in a cellular model of ischemia and reperfusion is accompanied by increased sarcoplasmic reticulum Ca2+ stores and prevention of cytosolic Ca2+ elevation. J Pharmacol Exp Ther 2004; 312:238-47. [PMID: 15316090 DOI: 10.1124/jpet.104.072769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigates whether protective effects of an angiotensin II type 1 receptor antagonist (losartan) in ischemia and reperfusion are mediated by actions on Ca(2+) cycling. Effects of exposure to losartan (10 microM) in ischemia were evaluated in isolated guinea pig ventricular myocytes exposed to simulated ischemia and reperfusion at 37 degrees C. Field-stimulated myocytes were exposed to 30 min of simulated ischemia (hypoxia, acidosis, lactate, hyperkalemia, and glucose-free) and reperfusion with Tyrode's solution for 40 min. Cell shortening was measured with a video edge detector, and Ca(2+) concentration was measured with fura-2. Field-stimulated myocytes exhibited stunning in reperfusion, which was abolished in cells exposed to losartan. In microelectrode studies, losartan did not alter the responses of resting potentials or action potentials to ischemia and reperfusion. In the absence of losartan, diastolic Ca(2+) increased in ischemia, and Ca(2+) transients exhibited a rebound overshoot in early reperfusion. Losartan did not affect amplitudes of Ca(2+) transients in ischemia but prevented elevations in diastolic Ca(2+) in ischemia. Furthermore, losartan prevented the overshoot of Ca(2+) transients in early reperfusion and increased the magnitude of Ca(2+) transients in late reperfusion. Sarcoplasmic reticulum (SR) Ca(2+) stores, determined as Ca(2+) released by rapid application of 10 mM caffeine, were not altered in ischemia and reperfusion. However, losartan increased SR Ca(2+) stores in late reperfusion, even in cells that were not exposed to simulated ischemia. We conclude that losartan abolishes stunning in reperfusion by preserving normal diastolic Ca(2+) in ischemia and by increasing Ca(2+) transients through elevation of releasable SR Ca(2+).
Collapse
Affiliation(s)
- William E Louch
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
30
|
Rojas JD, Sennoune SR, Martinez GM, Bakunts K, Meininger CJ, Wu G, Wesson DE, Seftor EA, Hendrix MJC, Martínez-Zaguilán R. Plasmalemmal vacuolar H+-ATPase is decreased in microvascular endothelial cells from a diabetic model. J Cell Physiol 2004; 201:190-200. [PMID: 15334654 DOI: 10.1002/jcp.20059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Angiogenesis requires invasion of extracellular matrix (ECM) proteins by endothelial cells and occurs in hypoxic and acidic environments that are not conducive for cell growth and survival. We hypothesize that angiogenic cells must exhibit a unique system to regulate their cytosolic pH in order to cope with these harsh conditions. The plasmalemmal vacuolar type H(+)-ATPase (pmV-ATPase) is used by cells exhibiting an invasive phenotype. Because angiogenesis is impaired in diabetes, we hypothesized that pmV-ATPase is decreased in microvascular endothelial cells from diabetic rats. The in vitro angiogenesis assays demonstrated that endothelial cells were unable to form capillary-like structures in diabetes. The proton fluxes were slower in cells from diabetic than normal model, regardless of the presence or absence of Na(+) and HCO(3) (-) and were suppressed by V-H(+)-ATPase inhibitors. Immunocytochemical data revealed that pmV-ATPases were inconspicuous at the plasma membrane of cells from diabetic whereas in normal cells were prominent. The pmV-ATPase activity was lower in cells from diabetic than normal models. Inhibition of V-H(+)-ATPase suppresses invasion/migration of normal cells, but have minor effects in cells from diabetic models. These novel observations suggest that the angiogenic abnormalities in diabetes involve a decrease in pmV-ATPase in microvascular endothelial cells.
Collapse
Affiliation(s)
- Jose D Rojas
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bouyer P, Zhou Y, Boron WF. An increase in intracellular calcium concentration that is induced by basolateral CO2 in rabbit renal proximal tubule. Am J Physiol Renal Physiol 2003; 285:F674-87. [PMID: 12812914 DOI: 10.1152/ajprenal.00107.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Working with isolated perfused S2 proximal tubules, we asked whether the basolateral CO2 sensor acts, in part, by raising intracellular Ca2+ concentration ([Ca2+]i), monitored with the dye fura 2 (or fura-PE3). In paired experiments, adding 5% CO2/22 mM HCO3- (constant pH 7.40) to the bath (basolateral) solution caused [Ca2+]i to increase from 57 +/- 3 to 97 +/- 9 nM(n = 8, P < 0.002), whereas the same maneuver in the lumen had no effect. Intracellular pH (pHi), measured with the dye BCECF, fell by 0.54 +/- 0.08 (n = 14) when we added CO2/HCO3- to the lumen. In 14 tubules in which we added CO2/HCO3- to the bath, pHi fell by 0.55 +/- 0.11 in 9 with a high initial pHi, but rose by 0.28 +/- 0.07 in the other 5 with a low initial pHi. Thus it cannot be a pHi change that triggers the [Ca2+]i increase. Introducing to the bath an out-of-equilibrium (OOE) solution containing 20% CO2/no HCO3-/pH 7.40 caused [Ca2+]i to rise by 62 +/- 17 nM (n = 10), whereas an OOE solution containing 0% CO2/22 mM HCO3-/pH 7.40 caused only a trivial increase. Removing Ca2+ from the lumen and bath, or adding 10 microM nifedipine (L- and T-type Ca2+-channel blocker) or 2 microM thapsigargin [sarco-(endo) plasmic reticulum Ca2+-ATPase inhibitor] or 4 microM rotenone (mitochondrial inhibitor) to the lumen and bath, failed to reduce the CO2-induced increase in [Ca2+]i. Adding 10 mM caffeine (ryanodine-receptor agonist) had no effect on [Ca2+]i. Thus basolateral CO2, presumably via a basolateral sensor, triggers the release of Ca2+ from a nonconventional intracellular pool.
Collapse
Affiliation(s)
- Patrice Bouyer
- Department of Cellular and Molecular Physiology, Yale University, School of Medicine, 333 Cedar St., PO Box 208026, New Haven, CT 06520-8026, USA.
| | | | | |
Collapse
|
32
|
Espinosa-Tanguma R, Guevara C, González J, Ortega F, Ramírez-Zacarías JL, Hernández AE, Mandeville P, Sánchez-Armass S. [Ca2+]i changes in guinea pig tracheal smooth muscle cells in culture: effects of Na+ and ouabain. J Physiol Biochem 2003; 59:25-33. [PMID: 12903902 DOI: 10.1007/bf03179865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The objective of this work was to confirm that the contractile effects of ouabain and Na(+)-free solutions in guinea pig tracheal rings are associated with increments in the cytosolic free Ca2+ concentration ([Ca2+]i) in cultured tracheal smooth muscle (TSM) cells. Cultured cells were alpha-actin positive. Histamine (50 microM) and Na(+)-free solution elicited a transient increase in [Ca2+]i, while the responses to thapsigargin (1 microM) and ouabain (1 mM) were long lasting. However, carbachol (10, 200, and 500 mM) and high K(+)-solution produced no effect on [Ca2+]i, suggesting that cultured guinea pig TSM cells display a phenotype change but maintain some of the tracheal rings physiological properties. The transient rise in [Ca2+]i in response to the absence of extracellular Na+ and the effect of ouabain may indicate the participation of the Na(+)/Ca2+ exchanger (NCX) in the regulation of [Ca2+]i.
Collapse
Affiliation(s)
- R Espinosa-Tanguma
- Departamento de Fisiología y Farmacología, Facultad de Medicina de la Universidad Autónoma de San Luis Potosí, Av. V. Carranza 2405, San Luis Potosí, 78210, S.L.P., México
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Smith RD, Eisner DA, Wray S. PH-induced changes in calcium: functional consequences and mechanisms of action in guinea pig portal vein. Am J Physiol Heart Circ Physiol 2002; 283:H2518-26. [PMID: 12427597 DOI: 10.1152/ajpheart.01102.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of changing extracellular (pH(o)) and intracellular pH (pH(i)) on force and the mechanisms involved in the guinea pig portal vein were investigated to better understand the control of tone in this vessel. When pH(o) was altered, the effects on force and calcium were the same irrespective of whether force had been produced spontaneously by high-K depolarization or by norepinephrine; alkalinization increased tone, and acidification reduced it. Because pH(o) changes also lead to changes in pH(i), we determined whether the effects on force could be explained by these induced pH(i) changes. It was found, however, that only with spontaneous activity did intracellular alkalinization increase force. In depolarized preparations, force was decreased, and, with norepinephrine, force was initially decreased and then increased. Thus the effects of pH(o) cannot be explained solely by changes in pH(i). The role of the sarcoplasmic reticulum (SR) and surface membrane Ca(2+)-ATPase on the mechanism were investigated and shown not to be involved. Therefore, it is concluded that both pH(o) and pH(i) can have powerful modulatory effects on portal vein tone, that these effects are not identical, and that they are likely to be due to effects of pH on ion channels rather than the SR or plasma membrane Ca(2+)-ATPase.
Collapse
Affiliation(s)
- R D Smith
- Department of Physiology, The University of Liverpool, United Kingdom.
| | | | | |
Collapse
|
34
|
Salvi A, Quillan JM, Sadée W. Monitoring intracellular pH changes in response to osmotic stress and membrane transport activity using 5-chloromethylfluorescein. AAPS PHARMSCI 2002; 4:E21. [PMID: 12645993 PMCID: PMC2751310 DOI: 10.1208/ps040421] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Intracellular free H+ concentration (pHi) responds to numerous extracellular stimuli. The use of fluorescent indicator dyes to measure pHi is strongly influenced by the ability of target cells to retain activated dye within the cytoplasmic compartment. Here, 3 pH-sensitive indicator dye - acetoxymethyl (AM) esters of SNARF-1 and BCECF, and the thiol-reactive 5-chloromethyfluorescein (CMFDA) - were examined for monitoring pHi. The stability of pH measurements was strongly affected by temperature, cell type, indicator dye, and use of transport inhibitors to prevent dye export. Cellular retention of CMFDA, which forms covalent complexes, was sufficient to permit monitoring of transient pHi changes over extended time periods in a multi-well plate assay format. In human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells, increasing osmotic pressure caused a significant rise in pHi. In contrast, activation of native or transfected beta-adrenergic, cholinergic, and d and m opioid receptors did not measurably affect pHi in HEK293 cells. Decreases in pHi were observed in CHO cells expressing the human H+/peptide transporter PEPT1 upon addition of dipeptide substrates. The use of CMFDA in multi-well formats should facilitate study of osmotic and transport activity and screening for drugs that affect pHi.
Collapse
Affiliation(s)
- Aline Salvi
- Department of Biopharmaceutical Sciences, University of California, 94143-0446 San Francisco, CA
- Department of Pharmaceutical Chemistry, University of California, 94143-0446 San Francisco, CA
- Department of Pharmacology, College of Medicine and Public Health, Ohio State University, 43210-1239 Columbus, OH USA
| | - J. Mark Quillan
- Department of Biopharmaceutical Sciences, University of California, 94143-0446 San Francisco, CA
- Department of Pharmaceutical Chemistry, University of California, 94143-0446 San Francisco, CA
- Department of Pharmacology, College of Medicine and Public Health, Ohio State University, 43210-1239 Columbus, OH USA
| | - Wolfgang Sadée
- Department of Biopharmaceutical Sciences, University of California, 94143-0446 San Francisco, CA
- Department of Pharmaceutical Chemistry, University of California, 94143-0446 San Francisco, CA
- Department of Pharmacology, College of Medicine and Public Health, Ohio State University, 43210-1239 Columbus, OH USA
| |
Collapse
|
35
|
Louch WE, Ferrier GR, Howlett SE. Changes in excitation-contraction coupling in an isolated ventricular myocyte model of cardiac stunning. Am J Physiol Heart Circ Physiol 2002; 283:H800-10. [PMID: 12124230 DOI: 10.1152/ajpheart.00020.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate cardiac stunning, we recorded intracellular [Ca(2+)], contractions, and electrical activity in isolated guinea pig ventricular myocytes exposed to simulated ischemia and reperfusion. After equilibration, ischemia was simulated by exposing myocytes to hypoxia, acidosis, hyperkalemia, hypercapnia, lactate accumulation, and substrate deprivation for 30 min at 37 degrees C. Reperfusion was simulated by exposure to Tyrode solution. Field-stimulated myocytes exhibited stunning upon reperfusion. By 10 min of reperfusion, contraction amplitude decreased to 43.0 +/- 5.5% of preischemic values (n = 15, P < 0.05), although action potential configuration and sarcoplasmic reticulum Ca(2+) stores, assessed with caffeine, were normal. Diastolic [Ca(2+)] and Ca(2+) transients (fura 2) were also normal in stunned myocytes. In voltage-clamped cells, peak L-type Ca(2+) current was reduced to 47.4 +/- 4.5% of preischemic values at 10 min of reperfusion (n = 21, P < 0.05). Contractions elicited by Ca(2+)-induced Ca(2+) release and the voltage-sensitive release mechanism were both depressed in reperfusion. Our observations suggest that stunning is associated with reduced L-type Ca(2+) current but that alterations in Ca(2+) homeostasis and release are not directly responsible for stunning.
Collapse
Affiliation(s)
- William E Louch
- Cardiovascular Research Laboratories, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
36
|
Leaver EV, Pappone PA. Beta-adrenergic potentiation of endoplasmic reticulum Ca(2+) release in brown fat cells. Am J Physiol Cell Physiol 2002; 282:C1016-24. [PMID: 11940517 DOI: 10.1152/ajpcell.00204.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We find that the adrenergic agonist isoproterenol increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in cultured rat brown adipocytes. At the concentration used (10 microM), isoproterenol-induced Ca(2+) responses were sensitive to block by either alpha(1)- or beta-adrenergic antagonists, suggesting an interaction between these receptor subtypes. Despite reliance on beta-adrenoceptor activation, the Ca(2+) response was not due solely to increases in cAMP because, administered alone, the selective beta(3)-adrenergic agonist BRL-37344 or forskolin did not increase [Ca(2+)](i). However, increased cAMP elicited vigorous [Ca(2+)](i) increases in the presence of barely active concentrations of the alpha-adrenergic agonist phenylephrine or the P2Y receptor agonist UTP. Consistent with isoproterenol recruiting only inositol 1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) stores, endoplasmic reticulum store depletion by thapsigargin blocked isoproterenol-induced Ca(2+) increases, but removal of external Ca(2+) did not. These results argue that increases in cAMP sensitize the IP(3)-mediated Ca(2+) release system in brown adipocytes.
Collapse
Affiliation(s)
- Eric V Leaver
- Section of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616, USA
| | | |
Collapse
|
37
|
Nazarov V, Aquino-DeJesus J, Apkon M. Extracellular pH, Ca(2+) influx, and response of vascular smooth muscle cells to 5-hydroxytryptamine. Stroke 2000; 31:2500-7. [PMID: 11022085 DOI: 10.1161/01.str.31.10.2500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral vascular smooth muscle cells (VSMCs) contract on extracellular pH (pH(o)) increases and relax on pH(o) decreases. These changes in tone are believed to result from changes in [Ca(2+)](i), although the responsible mechanisms are not fully understood. VSMCs also contract in response to 5-hydroxytryptamine (5-HT), which increases [Ca(2+)](i) via both Ca(2+) release and influx. We hypothesized that examining effects of pH(o) decreases on 5-HT-induced [Ca(2+)](i) changes would allow us to identify mechanisms whereby pH(o) influences tone. Accordingly, we compared [Ca(2+)](i) increases in cerebral VSMCs, evoked by 5-HT, with increases evoked by increased pH(o) and examined 5-HT-dependent [Ca(2+)](i) increases at normal and decreased pH(o). METHODS We monitored [Ca(2+)](i,), using the Ca(2+)-sensitive dye fura 2, in cultured rat cerebral VSMCs obtained by enzymatic digestion of middle cerebral arteries and their branches (passages 1 to 3) grown on glass coverslips and superfused with physiological saline. RESULTS Increasing pH(o) from 7.3 to 7.8 increased [Ca(2+)](i), and these increases were prevented in Ca(2+)-free solutions. Decreasing pH(o) from 7.3 to 6.9 did not alter [Ca(2+)](i) unless [Ca(2+)](i) was first raised by treatment with 5-HT (10 micromol/L). 5-HT resulted in biphasic [Ca(2+)](i) increases characterized by transient peaks blocked by the Ca(2+)-ATPase inhibitor thapsigargin (10 nmol/L) and prolonged plateaus blocked by the Ca(2+) channel blocker Ni(2+) (1 mmol/L). Acidification did not alter the transient peaks but significantly reduced 5-HT-induced Ca(2+) influx. CONCLUSIONS We conclude that increasing pH(o) induces Ca(2+) influx in rat cerebral VSMCs and decreasing pH(o) inhibits 5-HT-stimulated Ca(2+) entry but not intracellular Ca(2+) release.
Collapse
Affiliation(s)
- V Nazarov
- Departments of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
38
|
Meininger CJ, Marinos RS, Hatakeyama K, Martinez-Zaguilan R, Rojas JD, Kelly KA, Wu G. Impaired nitric oxide production in coronary endothelial cells of the spontaneously diabetic BB rat is due to tetrahydrobiopterin deficiency. Biochem J 2000; 349:353-6. [PMID: 10861247 PMCID: PMC1221156 DOI: 10.1042/0264-6021:3490353] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endothelial cells (EC) from diabetic BioBreeding (BB) rats have an impaired ability to produce NO. This deficiency is not due to a defect in the constitutive isoform of NO synthase in EC (ecNOS) or alterations in intracellular calcium, calmodulin, NADPH or arginine levels. Instead, ecNOS cannot produce sufficient NO because of a deficiency in tetrahydrobiopterin (BH(4)), a cofactor necessary for enzyme activity. EC from diabetic rats exhibited only 12% of the BH(4) levels found in EC from normal animals or diabetes-prone animals which did not develop disease. As a result, NO synthesis by EC of diabetic rats was only 18% of that for normal animals. Increasing BH(4) levels with sepiapterin increased NO production, suggesting that BH(4) deficiency is a metabolic basis for impaired endothelial NO synthesis in diabetic BB rats. This deficiency is due to decreased activity of GTP-cyclohydrolase I, the first and rate-limiting enzyme in the de novo biosynthesis of BH(4). GTP-cyclohydrolase activity was low because of a decreased expression of the protein in the diabetic cells.
Collapse
Affiliation(s)
- C J Meininger
- Cardiovascular Research Institute and Department of Medical Physiology, The Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
To a certain extent, all cellular, physiological, and pathological phenomena that occur in cells are accompanied by ionic changes. The development of techniques allowing the measurement of such ion activities has contributed substantially to our understanding of normal and abnormal cellular function. Digital video microscopy, confocal laser scanning microscopy, and more recently multiphoton microscopy have allowed the precise spatial analysis of intracellular ion activity at the subcellular level in addition to measurement of its concentration. It is well known that Ca2+ regulates numerous physiological cellular phenomena as a second messenger as well as triggering pathological events such as cell injury and death. A number of methods have been developed to measure intracellular Ca2+. In this review, we summarize the advantages and pitfalls of a variety of Ca2+ indicators used in both optical and nonoptical techniques employed for measuring intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- A Takahashi
- Department of Cellular and Structural Biology, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
40
|
Sinha SR, Saggau P. Simultaneous optical recording of membrane potential and intracellular calcium from brain slices. Methods 1999; 18:204-14, 175. [PMID: 10356352 DOI: 10.1006/meth.1999.0773] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Optical recording techniques provide a constantly evolving and increasingly powerful set of tools for investigations of cellular physiology. These techniques rely on the use of optical indicators, molecules that change their optical properties depending on the cellular parameter of interest. In this paper we discuss some of the general considerations involved in recording optical signals from multiple indicators. Specifically, we describe a technique for simultaneously recording transients of membrane potential and intracellular calcium concentration, two parameters that have a very complex interrelationship in neuronal functioning. This technique relies on the use of two fluorescent indicators (the voltage-sensitive dye RH-414 and the calcium-sensitive dye Calcium Orange) that have overlapping excitation spectra but separable emission spectra. This fact, in combination with the use of fast, spatially resolving photodetectors (10 x 10-element photodiode matrices), allows for truly simultaneous recording of these transients from brain slices with high spatial ( approximately 200 x 200 microm with a 10x microscope objective) and temporal ( approximately 500 micros) resolution. Furthermore, the quality of the signals obtained is sufficient to allow for recording of spontaneous synchronized activity such as epileptiform activity induced by the potassium channel blocker 4-aminopyridine. The nature of the signals obtained by these indicators recorded from guinea pig hippocampal slices and some applications of this technique are discussed.
Collapse
Affiliation(s)
- S R Sinha
- Division of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
41
|
Raghunand N, He X, van Sluis R, Mahoney B, Baggett B, Taylor CW, Paine-Murrieta G, Roe D, Bhujwalla ZM, Gillies RJ. Enhancement of chemotherapy by manipulation of tumour pH. Br J Cancer 1999; 80:1005-11. [PMID: 10362108 PMCID: PMC2363059 DOI: 10.1038/sj.bjc.6690455] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The extracellular (interstitial) pH (pHe) of solid tumours is significantly more acidic compared to normal tissues. In-vitro, low pH reduces the uptake of weakly basic chemotherapeutic drugs and, hence, reduces their cytotoxicity. This phenomenon has been postulated to contribute to a 'physiological' resistance to weakly basic drugs in vivo. Doxorubicin is a weak base chemotherapeutic agent that is commonly used in combination chemotherapy to clinically treat breast cancers. This report demonstrates that MCF-7 human breast cancer cells in vitro are more susceptible to doxorubicin toxicity at pH 7.4, compared to pH 6.8. Furthermore 31P-magnetic resonance spectroscopy (MRS) has shown that the pHe of MCF-7 human breast cancer xenografts can be effectively and significantly raised with sodium bicarbonate in drinking water. The bicarbonate-induced extracellular alkalinization leads to significant improvements in the therapeutic effectiveness of doxorubicin against MCF-7 xenografts in vivo. Although physiological resistance to weakly basic chemotherapeutics is well-documented in vitro and in theory, these data represent the first in vivo demonstration of this important phenomenon.
Collapse
Affiliation(s)
- N Raghunand
- Arizona Cancer Center, Tucson 85724-5024, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jørgensen NK, Petersen SF, Damgaard I, Schousboe A, Hoffmann EK. Increases in [Ca2+]i and changes in intracellular pH during chemical anoxia in mouse neocortical neurons in primary culture. J Neurosci Res 1999; 56:358-70. [PMID: 10340744 DOI: 10.1002/(sici)1097-4547(19990515)56:4<358::aid-jnr4>3.0.co;2-g] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of chemical anoxia (azide) in the presence of glucose on the free intracellular Ca2+ concentration ([Ca2+]i) and intracellular pH (pHi) in mouse neocortical neurons was investigated using Fura-2 and BCECF. Anoxia induced a reversible increase in [Ca2+]i which was significantly inhibited in nominally Ca2+-free medium. A change in pHo (8.2 or 6.6), or addition of NMDA and non-NMDA receptor antagonists (D-AP5 and CNQX) in combination, significantly reduced the increase in [Ca2+]i, pointing to a protective effect of extracellular alkalosis or acidosis, and involvement of excitatory amino acids. An initial anoxia-induced acidification was observed under all experimental conditions. In the control situation, this acidification was followed by a recovery/alkalinization of pHi in about 50% of the cells, a few cells showed no recovery, and some showed further acidification. EIPA, an inhibitor of Na+/H+ exchangers, prevented alkalinization, pointing towards anoxia-induced activation of a Na+/H+ exchanger. In a nominally Ca2+-free medium, the initial acidification was followed by a significant alkalinization. At pHo 8.2, the alkalinization was significantly increased, while at pHo 6.2, the initial acidification was followed by further acidification in about 50% of the cells, and by no further change in the remaining cells.
Collapse
Affiliation(s)
- N K Jørgensen
- Biochemical Department, The August Krogh Institute, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
43
|
Martínez-Zaguilán R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B, Smith D, Dalton WS, Gillies RJ. pH and drug resistance. I. Functional expression of plasmalemmal V-type H+-ATPase in drug-resistant human breast carcinoma cell lines. Biochem Pharmacol 1999; 57:1037-46. [PMID: 10796074 DOI: 10.1016/s0006-2952(99)00022-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major obstacle for the effective treatment of cancer is the phenomenon of multidrug resistance (MDR) exhibited by many tumor cells. Many, but not all, MDR cells exhibit membrane-associated P-glycoprotein (P-gp), a drug efflux pump. However, most mechanisms of MDR are complex, employing P-gp in combination with other, ill-defined activities. Altered cytosolic pH (pHi) has been implicated to play a role in drug resistance. In the current study, we investigated mechanisms of pHi regulation in drug-sensitive (MCF-7/S) and drug-resistant human breast cancer cells. Of the drug-resistant lines, one contained P-gp (MCF-7/DOX; also referred to as MCF-7/D40) and one did not (MCF-7/MITOX). The resting steady-state pHi was similar in the three cell lines. In addition, in all the cell lines, HCO3- slightly acidified pHi and increased the rates of pHi recovery after an acid load, indicating the presence of anion exchanger (AE) activity. These data indicate that neither Na+/H+ exchange nor AE is differentially expressed in these cell lines. The presence of plasma membrane vacuolar-type H+-ATPase (pmV-ATPase) activity in these cell lines was then investigated. In the absence of Na+ and HCO3-, MCF-7/S cells did not recover from acid loads, whereas MCF-7/MITOX and MCF-7/DOX cells did. Furthermore, recovery of pHi was inhibited by bafilomycin A1 and NBD-Cl, potent V-ATPase inhibitors. Attempts to localize V-ATPase immunocytochemically at the plasma membranes of these cells were unsuccessful, indicating that V-ATPase is not statically resident at the plasma membrane. Consistent with this was the observation that release of endosomally trapped dextran was more rapid in the drug-resistant, compared with the drug-sensitive cells. Furthermore, the drug-resistant cells entrapped doxorubicin into intracellular vesicles whereas the drug-sensitive cells did not. Hence, it is hypothesized that the measured pmV-ATPase activity in the drug-resistant cells is a consequence of rapid endomembrane turnover. The potential impact of this behavior on drug resistance is examined in a companion manuscript.
Collapse
Affiliation(s)
- R Martínez-Zaguilán
- Department of Biochemistry, University of Arizona Health Sciences Center, Tucson 85724-5042, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hudson CA, Rojas JD, Sarvazyan N, Wesson DE, Martínez-Zaguilán R. Interactions between benzylamiloride and fura-2: studies in vitro and in cardiac myocytes. Arch Biochem Biophys 1998; 356:25-34. [PMID: 9681987 DOI: 10.1006/abbi.1998.0749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amiloride derivatives are commonly used inhibitors of Na+/H+- and Na+/Ca2+-exchange. Because they are fluorescent molecules the use of benzylamiloride (BZA), an inhibitor of Na+/Ca2+ exchange, in conjunction with Fura-2, a commonly used fluorescent Ca2+ indicator, might complicate interpretation of fluorescence data obtained. In vitro data show that BZA decreases the Fura-2 fluorescence at all useful wavelengths in a concentration-dependent manner. The Fura-2 ratio 340/380 (used to estimate intracellular Ca2+ ([Ca2+]in)) also decreased with increasing BZA concentrations. The Stern-Volmer relation suggests that this phenomenon is due to either static or dynamic quenching. Varying temperatures from 4 to 37 degreesC did not alter Stern-Volmer constants, consistent instead with fluorescence resonance energy transfer (FRET). The in situ relevance of these interactions was evaluated in adult rat cardiac myocytes which exhibit Na+/Ca2+ exchange reflected by rapid [Ca2+]in increase following Na+ removal. Pretreatment with BZA >/= 25 microM decreased the magnitude of Fura-2 changes induced by Na+ removal. Analysis of the individual Fura-2 useful wavelengths indicated that >/= 25 microM BZA altered the Fura-2 signal in a manner consistent with the quenching effects noted in vitro. Together, these data show that BZA interacts with Fura-2 in vitro and in situ and suggest caution when interpreting Fura-2 fluorescence data derived in conjunction with BZA.
Collapse
Affiliation(s)
- C A Hudson
- Department of Physiology, Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, Texas, 79430, USA
| | | | | | | | | |
Collapse
|
45
|
Martínez-Zaguilán R, Martinez GM, Gomez A, Hendrix MJ, Gillies RJ. Distinct regulation of pHin and [Ca2+]in in human melanoma cells with different metastatic potential. J Cell Physiol 1998; 176:196-205. [PMID: 9618159 DOI: 10.1002/(sici)1097-4652(199807)176:1<196::aid-jcp21>3.0.co;2-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated whether alterations in the mechanisms involved in intracellular pH (pHin) and intracellular calcium ([Ca2+]in) homeostasis are associated with the metastatic potential of poorly (A375P) and highly (C8161) metastatic human melanoma cells. We monitored pHin and [Ca2+]in simultaneously, using the fluorescence of SNARF-1 and Fura-2, respectively. Our results indicated that steady-state pHin and [Ca2+]in between these cell types were not significantly different. Treatment of cells with NH4Cl resulted in larger pHin increases in highly than in poorly metastatic cells, suggesting that C8161 cells have a lower H+ buffering capacity than A375P. NH4Cl treatment also increased [Ca2+]in only in C8161 cells. To determine if the changes in [Ca2+]in triggered by NH4Cl treatment were due to alterations in either H+- or Ca2+-buffering capacity, cells were treated with the Ca2+-ionophore 4Br-A23187, to alter [Ca2+]in. The magnitude of the ionophore-induced [Ca2+]in increase was slightly greater in C8161 cells than in A375P. Moreover, A375P cells recover from the ionophore-induced [Ca2+]in load, whereas C8161 cells did not, suggesting that A375P may exhibit distinct [Ca2+]in regulatory mechanisms than C8161 cells, to recover from Ca2+ loads. Removal of extracellular Ca2+ ([Ca2+]ex) decreased [Ca2+]in in both cell types at the same extent. Ionophore treatment in the absence of [Ca2+]ex transiently increased [Ca2+]in in C8161, but not in A375P cells. Endoplasmic reticulum (ER) Ca2+-ATPase inhibitors such as cyclopiazonic acid (CPA) and thapsigargin (TG) increased steady-state [Ca2+]in only in C8161 cells. Together, these data suggest that the contribution of intracellular Ca2+ stores for [Ca2+]in homeostasis is greater in highly than in poorly metastatic cells. Bafilomycin treatment, to inhibit V-type H+-ATPases, corroborated our previous results that V-H+-ATPases are functionally expressed at the plasma membranes of highly metastatic, but not in poorly metastatic cells (Martínez-Zaguilán et al., 1993). Collectively, these data suggest that distinct pHin and [Ca2+]in regulatory mechanisms are present in poorly and highly metastatic human melanoma cells.
Collapse
Affiliation(s)
- R Martínez-Zaguilán
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock 79430, USA.
| | | | | | | | | |
Collapse
|
46
|
Santi CM, Santos T, Hernández-Cruz A, Darszon A. Properties of a novel pH-dependent Ca2+ permeation pathway present in male germ cells with possible roles in spermatogenesis and mature sperm function. J Gen Physiol 1998; 112:33-53. [PMID: 9649582 PMCID: PMC2229410 DOI: 10.1085/jgp.112.1.33] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rises of intracellular Ca2+ ([Ca2+]i) are key signals for cell division, differentiation, and maturation. Similarly, they are likely to be important for the unique processes of meiosis and spermatogenesis, carried out exclusively by male germ cells. In addition, elevations of [Ca2+]i and intracellular pH (pHi) in mature sperm trigger at least two events obligatory for fertilization: capacitation and acrosome reaction. Evidence implicates the activity of Ca2+ channels modulated by pHi in the origin of these Ca2+ elevations, but their nature remains unexplored, in part because work in individual spermatozoa are hampered by formidable experimental difficulties. Recently, late spermatogenic cells have emerged as a model system for studying aspects relevant for sperm physiology, such as plasmalemmal ion fluxes. Here we describe the first study on the influence of controlled intracellular alkalinization on [Ca2+]i on identified spermatogenic cells from mouse adult testes. In BCECF [(2',7')-bis(carboxymethyl)- (5, 6)-carboxyfluorescein]-AM-loaded spermatogenic cells, a brief (30-60 s) application of 25 mM NH4Cl increased pHi by approximately 1.3 U from a resting pHi approximately 6.65. A steady pHi plateau was maintained during NH4Cl application, with little or no rebound acidification. In fura-2-AM-loaded cells, alkalinization induced a biphasic response composed of an initial [Ca2+]i drop followed by a two- to threefold rise. Maneuvers that inhibit either Ca2+ influx or intracellular Ca2+ release demonstrated that the majority of the Ca2+ rise results from plasma membrane Ca2+ influx, although a small component likely to result from intracellular Ca2+ release was occasionally observed. Ca2+ transients potentiated with repeated NH4Cl applications, gradually obliterating the initial [Ca2+]i drop. The pH-sensitive Ca2+ permeation pathway allows the passage of other divalents (Sr2+, Ba2+, and Mn2+) and is blocked by inorganic Ca2+ channel blockers (Ni2+ and Cd2+), but not by the organic blocker nifedipine. The magnitude of these Ca2+ transients increased as maturation advanced, with the largest responses being recorded in testicular sperm. By extrapolation, these findings suggest that the pH-dependent Ca2+ influx pathway could play significant roles in mature sperm physiology. Its pharmacology and ion selectivity suggests that it corresponds to an ion channel different from the voltage-gated T-type Ca2+ channel also present in spermatogenic cells. We postulate that the Ca2+ permeation pathway regulated by pHi, if present in mature sperm, may be responsible for the dihydropyridine-insensitive Ca2+ influx required for initiating the acrosome reaction and perhaps other important sperm functions.
Collapse
Affiliation(s)
- C M Santi
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria México City, D.F. 04510, México
| | | | | | | |
Collapse
|
47
|
Speake T, Elliott AC. Modulation of calcium signals by intracellular pH in isolated rat pancreatic acinar cells. J Physiol 1998; 506 ( Pt 2):415-30. [PMID: 9490869 PMCID: PMC2230720 DOI: 10.1111/j.1469-7793.1998.415bw.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. We have investigated the interactions between intracellular pH (pH1) and the intracellular free calcium concentration ([Ca2+]i) in isolated rat pancreatic acinar cells. The fluorescent dyes fura-2 and BCECF were used to measure [Ca2+]i and pHi, respectively. 2. Sodium acetate and ammonium chloride (NH4Cl) were used to acidify and alkalinize pHi, respectively. Cytosolic acidification had no effect on [Ca2+]i in resting pancreatic acinar cells, whereas cytosolic alkalinization released Ca2+ from intracellular stores. 3. Cytosolic acidification using either acetate or a CO2-HCO3(-)-buffered medium enhanced Ca2+ signals evoked by acetylcholine (ACh) and cholecystokinin (CCK). In contrast, both NH4Cl and trimethylamine (TMA) inhibited Ca2+ signals during stimulation with either ACh or CCK. This inhibitory effect was also observed in the absence of extracellular Ca2+, and was therefore not due to changes in Ca2+ entry. 4. Calcium oscillations evoked by physiological concentrations of CCK were enhanced by cytosolic acidification and inhibited by cytosolic alkalinization. 5. In order to determine the effects of pHi upon Ca2+ handling by intracellular Ca2+ stores, intraorganellar [Ca2+] was monitored using the low affinity Ca2+ indicator mag-fura-2 in permeabilized cells. Addition of NH4Cl, which is expected to alkalinize intraorganellar pH, did not alter intraorganellar [Ca2+] in permeabilized cells, suggesting that changing intraorganellar pH does not release Ca2+ from intracellular stores. Addition of NH4Cl or acetate also did not affect the rate of Ca2+ release induced by inositol 1,4,5-trisphosphate (InsP3). 6. Modification of extraorganellar ('cytosolic') pH did not affect the rate of ATP-dependent Ca2+ uptake into stores, but did modify the rate of Ca2+ release evoked by submaximal concentrations of InsP3. The rate of Ca2+ release was increased at more alkaline extraorganellar pHs. These results would suggest that manipulation of intraorganellar pH does not affect Ca2+ handling by the intracellular stores. In contrast, extraorganellar ('cytosolic') pH does affect InsP3-induced Ca2+ release from the stores. 7. In conclusion, changes in intracellular pH in pancreatic acinar cells can profoundly alter cytosolic [Ca2+]. This may shed light on earlier observations whereby cell-permeant weak acids and bases can modulate fluid secretion in epithelia.
Collapse
Affiliation(s)
- T Speake
- Cell Physiology Group, School of Biological Sciences (G.38), University of Manchester, UK
| | | |
Collapse
|
48
|
Hooijdonk CAEM, Colbers RML, Piek J, Erp PEJ. Demonstration of an Na+/H+exchanger in mouse keratinocytes measured by the novel pH‐sensitive fluorochrome SNARF‐calcein. Cell Prolif 1997. [DOI: 10.1111/j.1365-2184.1997.tb00947.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - R. M. L. Colbers
- Department of Dermatology, University Hospital Nijmegen, The Netherlands
| | - J. Piek
- Department of Dermatology, University Hospital Nijmegen, The Netherlands
| | - P. E. J. Erp
- Department of Dermatology, University Hospital Nijmegen, The Netherlands
| |
Collapse
|
49
|
Srivastava A, Krishnamoorthy G. Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH. Anal Biochem 1997; 249:140-6. [PMID: 9212865 DOI: 10.1006/abio.1997.2164] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Estimation of intracellular pH by fluorescence ratiometry overcomes many of the limitations such as variations in the pathlength of observation and concentration of the probe, light scattering, and photobleaching. However, binding of probes to membranes and macromolecules is generally not taken into account. By using time-resolved fluorescence microscopy on a variety of cell types, we have shown that the dual-emission fluorescent pH probe carboxy SNARF-1 binds to cellular components in significant levels. The bound population could be resolved in the timescale since its fluorescence lifetime (approximately 3 ns) is significantly larger than that of the free probe. Intracellular pH was estimated from the relative amplitudes corresponding to free probes. This procedure was validated in simple model systems where carboxy SNARF-1 was present in solutions of bovine serum albumin. It was shown that the intracellular pH could be overestimated by as much as 1 pH unit in the absence of correction for probe binding.
Collapse
Affiliation(s)
- A Srivastava
- Chemical Physics Group, Tata Institute of Fundamental Research, Mumbai, India
| | | |
Collapse
|
50
|
Zoran DL, Barhoumi R, Burghardt RC, Chapkin RS, Lupton JR. Diet and carcinogen alter luminal butyrate concentration and intracellular pH in isolated rat colonocytes. Nutr Cancer 1997; 27:222-30. [PMID: 9101550 DOI: 10.1080/01635589709514530] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A 2 x 2 factorial experiment was conducted to examine the effects of two different dietary fibers and carcinogen treatment on colonic luminal short-chain fatty acid (SCFA) concentrations and intracellular pH (pHi) in rats. Twenty-four male Sprague-Dawley rats were divided into four groups, injected with a carcinogen [azoxymethane (AOM)] or normal saline (Sal), and fed one of two diets differing only in the type of dietary fiber [cellulose (Cell) or pectin (Pect)]. After 38 weeks of consuming these diets, the rats were euthanized, luminal contents were collected for analysis of SCFA concentrations, and colonocytes were isolated from the proximal and distal colon for subsequent determination of pHi. Changes in pHi after the addition of exogenous sodium butyrate to the culture medium were also tested. The highest concentrations of SCFAs were produced by the control rats (saline injected) consuming the pectin diet. Luminal butyrate concentrations were reduced in three of four colonic segments of carcinogen-injected groups [proximal and distal cellulose (Prox Cell and Dist Cell) and distal pectin (Dist Pect)] compared with saline controls. The pHi was consistently higher in colonocytes isolated from carcinogen-injected rats (Prox Cell/AOM = 6.95 vs. Prox Cell/Sal = 6.65, Prox Pect/AOM = 6.75 vs. Prox Pect/Sal = 6.65, Dist Cell/AOM = 6.94 vs. Dist Cell/AOM = 6.85, Dist Pect/AOM = 6.92 vs. Dist Pect/Sal = 6.79) than in cells from saline-injected rats. Furthermore, in the majority of rats, pHi was lower in the proximal than in the distal colon. Addition of butyrate to cultured colonocytes consistently lowered pHi, but the effect was more pronounced in the carcinogen-injected animals. These data identify changes that occur intraluminally and intracellularly in colons of rats injected with AOM and suggest that, during tumorigenesis, alterations in butyrate production and basic colonocyte physiology may play an important role in the process.
Collapse
Affiliation(s)
- D L Zoran
- Faculty of Nutrition, Texas A & M University, College Station 77843-2471, USA
| | | | | | | | | |
Collapse
|