1
|
Tate BN, Deys MM, Gutierrez-Oviedo FA, Ferguson AD, Zang Y, Bradford BJ, Deme P, Haughey NJ, McFadden JW. Subcutaneous lysophosphatidylcholine administration promotes a febrile and immune response in Holstein heifer calves. J Dairy Sci 2024; 107:3973-3987. [PMID: 38101738 DOI: 10.3168/jds.2023-23688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023]
Abstract
Lysophosphatidylcholine (LPC) is immunomodulatory in nonruminants; however, the actions of LPC on immunity in cattle are undefined. Our objective was to study the effects of LPC administration on measures of immunity, liver health, and growth in calves. Healthy Holstein heifer calves (n = 46; age 7 ± 3 d) were randomly assigned to 1 of 4 treatments (n = 10 to 11 calves/treatment): a milk replacer diet unsupplemented with lecithin in the absence (CON) or presence of subcutaneously (s.c.) administered mixed (mLPC; 69% LPC-16:0, 25% LPC-18:0, 6% other) or pure LPC (pLPC; 99% LPC-18:0), or a milk replacer diet supplemented with 3% lecithin enriched in lysophospholipids containing LPC in the absence of s.c.-administered LPC (LYSO) for 5 wk. Calves received 5 s.c. injections of vehicle (10 mL of phosphate-buffered saline containing 20 mg of bovine serum albumin/mL; CON and LYSO) or vehicle containing mLPC or pLPC to provide 10 mg of total LPC per kilogram of BW per injection every 12 h during wk 2 of life. Calves were fed a milk replacer containing 27% crude protein and 24% fat at 1.75% of BW per day (dry matter basis) until wk 6 of life (start of weaning). Starter grain and water were provided ad libitum. Body measurements were recorded weekly, and clinical observations were recorded daily. Blood samples were collected weekly before morning feeding and at 0, 5, and 10 h, relative to the final s.c. injection of vehicle or LPC. Data were analyzed using a mixed model, with repeated measures including fixed effects of treatment, time, and their interaction. Dunnett's test was used to compare treatments to CON. Peak rectal temperatures were higher in mLPC or pLPC, relative to CON. Plasma LPC concentrations were greater in mLPC and LYSO calves 5 h and 10 h after the final injection, relative to CON. Calves receiving mLPC and pLPC also had higher circulating serum amyloid A concentrations, relative to CON. Calves receiving mLPC had greater serum aspartate aminotransferase, γ-glutamyltransferase, and glutamate dehydrogenase concentrations, relative to CON. Calves provided mLPC experienced lower average daily gain (ADG) after weaning, relative to CON. The LYSO treatment did not modify rectal temperatures, ADG, or measures of liver health, relative to CON. We conclude that LPC administered as s.c. injections induced an acute febrile response, modified measures of liver and immune function, and impaired growth in calves.
Collapse
Affiliation(s)
- B N Tate
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - M M Deys
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | | | - A D Ferguson
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Y Zang
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - B J Bradford
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - P Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - N J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
2
|
Ma Y, Gou S, Zhu Z, Sun J, Shahbazi MA, Si T, Xu C, Ru J, Shi X, Reis RL, Kundu SC, Ke B, Nie G, Xiao B. Transient Mild Photothermia Improves Therapeutic Performance of Oral Nanomedicines with Enhanced Accumulation in the Colitis Mucosa. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309516. [PMID: 38085512 DOI: 10.1002/adma.202309516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The treatment outcomes of oral medications against ulcerative colitis (UC) have long been restricted by low drug accumulation in the colitis mucosa and subsequent unsatisfactory therapeutic efficacy. Here, high-performance pluronic F127 (P127)-modified gold shell (AuS)-polymeric core nanotherapeutics loading with curcumin (CUR) is constructed. Under near-infrared irradiation, the resultant P127-AuS@CURs generate transient mild photothermia (TMP; ≈42 °C, 10 min), which facilitates their penetration through colonic mucus and favors multiple cellular processes, including cell internalization, lysosomal escape, and controlled CUR release. This strategy relieves intracellular oxidative stress, improves wound healing, and reduces immune responses by polarizing the proinflammatory M1-type macrophages to the anti-inflammatory M2-type. Upon oral administration of hydrogel-encapsulating P127-AuS@CURs plus intestinal intralumen TMP, their therapeutic effects against acute and chronic UC are demonstrated to be superior to those of a widely used clinical drug, dexamethasone. The treatment of P127-AuS@CURs (+ TMP) elevates the proportions of beneficial bacteria (e.g., Lactobacillus and Lachnospiraceae), whose metabolites can also mitigate colitis symptoms by regulating genes associated with antioxidation, anti-inflammation, and wound healing. Overall, the intestinal intralumen TMP offers a promising approach to enhance the therapeutic outcomes of noninvasive medicines against UC.
Collapse
Affiliation(s)
- Ya Ma
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Shuangquan Gou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhenhua Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, Netherlands
| | - Tieyan Si
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Cheng Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, 4800-058, Portugal
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Zhang Y, Li Z, Huang Y, Zou B, Xu Y. Amplifying cancer treatment: advances in tumor immunotherapy and nanoparticle-based hyperthermia. Front Immunol 2023; 14:1258786. [PMID: 37869003 PMCID: PMC10587571 DOI: 10.3389/fimmu.2023.1258786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
In the quest for cancer treatment modalities with greater effectiveness, the combination of tumor immunotherapy and nanoparticle-based hyperthermia has emerged as a promising frontier. The present article provides a comprehensive review of recent advances and cutting-edge research in this burgeoning field and examines how these two treatment strategies can be effectively integrated. Tumor immunotherapy, which harnesses the immune system to recognize and attack cancer cells, has shown considerable promise. Concurrently, nanoparticle-based hyperthermia, which utilizes nanotechnology to promote selective cell death by raising the temperature of tumor cells, has emerged as an innovative therapeutic approach. While both strategies have individually shown potential, combination of the two modalities may amplify anti-tumor responses, with improved outcomes and reduced side effects. Key studies illustrating the synergistic effects of these two approaches are highlighted, and current challenges and future prospects in the field are discussed. As we stand on the precipice of a new era in cancer treatment, this review underscores the importance of continued research and collaboration in bringing these innovative treatments from the bench to the bedside.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Foster SL, Dutton AJ, Yerzhan A, March LB, Barry K, Seehus CR, Huang X, Talbot S, Woolf CJ. A Preliminary Study of Mild Heat Stress on Inflammasome Activation in Murine Macrophages. Cells 2023; 12:1189. [PMID: 37190098 PMCID: PMC10137183 DOI: 10.3390/cells12081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Inflammation and mitochondrial-dependent oxidative stress are interrelated processes implicated in multiple neuroinflammatory disorders, including Alzheimer's disease (AD) and depression. Exposure to elevated temperature (hyperthermia) is proposed as a non-pharmacological, anti-inflammatory treatment for these disorders; however, the underlying mechanisms are not fully understood. Here we asked if the inflammasome, a protein complex essential for orchestrating the inflammatory response and linked to mitochondrial stress, might be modulated by elevated temperatures. To test this, in preliminary studies, immortalized bone-marrow-derived murine macrophages (iBMM) were primed with inflammatory stimuli, exposed to a range of temperatures (37-41.5 °C), and examined for markers of inflammasome and mitochondrial activity. We found that exposure to mild heat stress (39 °C for 15 min) rapidly inhibited iBMM inflammasome activity. Furthermore, heat exposure led to decreased ASC speck formation and increased numbers of polarized mitochondria. These results suggest that mild hyperthermia inhibits inflammasome activity in the iBMM, limiting potentially harmful inflammation and mitigating mitochondrial stress. Our findings suggest an additional potential mechanism by which hyperthermia may exert its beneficial effects on inflammatory diseases.
Collapse
Affiliation(s)
- Simmie L. Foster
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Abigail J. Dutton
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Adina Yerzhan
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsay B. March
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Barry
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Corey R. Seehus
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xudong Huang
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Analysis of Therapeutic Targets of A Novel Peptide Athycaltide-1 in the Treatment of Isoproterenol-Induced Pathological Myocardial Hypertrophy. Cardiovasc Ther 2022; 2022:2715084. [PMID: 35599721 PMCID: PMC9085328 DOI: 10.1155/2022/2715084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial hypertrophy is a pathological feature of many heart diseases. This is a complex process involving all types of cells in the heart and interactions with circulating cells. This study is aimed at identifying the differentially expressed proteins (DEPs) in myocardial hypertrophy rats induced by isoprenaline (ISO) and treated with novel peptide Athycaltide-1 (ATH-1) and exploring the mechanism of its improvement. ITRAQ was performed to compare the three different heart states in control group, ISO group, and ATH-1 group. Pairwise comparison showed that there were 121 DEPs in ISO/control (96 upregulated and 25 downregulated), 47 DEPs in ATH-1/ISO (27 upregulated and 20 downregulated), and 116 DEPs in ATH-1/control (77 upregulated and 39 downregulated). Protein network analysis was then performed using the STRING software. Functional analysis revealed that Hspa1 protein, oxidative stress, and MAPK signaling pathway were significantly involved in the occurrence and development of myocardial hypertrophy, which was further validated by vivo model. It is proved that ATH-1 can reduce the expression of Hspa1 protein and the level of oxidative stress in hypertrophic myocardium and further inhibit the phosphorylation of p38 MAPK, JNK, and ERK1/2.
Collapse
|
6
|
Brunt VE, Minson CT. Heat therapy: mechanistic underpinnings and applications to cardiovascular health. J Appl Physiol (1985) 2021; 130:1684-1704. [PMID: 33792402 DOI: 10.1152/japplphysiol.00141.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and novel therapies are drastically needed to prevent or delay the onset of CVD to reduce the societal and healthcare burdens associated with these chronic diseases. One such therapy is "heat therapy," or chronic, repeated use of hot baths or saunas. Although using heat exposure to improve health is not a new concept, it has received renewed attention in recent years as a growing number of studies have demonstrated robust and widespread beneficial effects of heat therapy on cardiovascular health. Here, we review the existing literature, with particular focus on the molecular mechanisms that underscore the cardiovascular benefits of this practice.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado.,Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
7
|
Chauhan A, Midha S, Kumar R, Meena R, Singh P, Jha SK, Kuanr BK. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles. Biomater Sci 2021; 9:2972-2990. [PMID: 33635305 DOI: 10.1039/d0bm01705a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among conventional cancer therapies, radio-frequency magnetic hyperthermia (MHT) has widely been investigated for use with magnetic nanoparticles (MNPs). However, the majority of in vivo biodistribution studies have tested very low MNP dosages (equivalent to magnetic resonance imaging (MRI) applications) to check for clearance rate; which is far below the clinical dose of MHT. Due to this poor validation in preclinical scenarios, quite a few MNPs already in clinical use were later discontinued, on grounds of unexpected clinical outcomes in terms of inflammation, and prolonged clearance in vivo. By exploiting an economical method of synthesis, we have developed chitosan-coated Fe3O4 nanoparticles with high heating efficiency performance. Their anti-tumor response was evaluated in an ectopic tumor model of C6 glioblastoma by MHT. The intratumoral injection of MNPs on days 1 and 7 resulted in rapid tumor inhibition rate of 69.4% within 8 days, with complete inhibition within 32 days, and no recurrence recorded over a 5-month follow-up. Notably, the MNP-mediated MHT therapy achieved the highest degree of therapeutic efficacy required for complete tumor ablation by combining controlled temperature range (<44 °C), reduced MNP dosage; much lower than in most reported studies, and AMF parameters (time of exposure and frequency) within the clinical safety limit. Periodic body weight measurements confirmed negligible adverse side effects in rats. The anti-tumor activity was validated by severe apoptosis (TUNEL, cleaved Caspase-3), reduced proliferation (Ki 67) and disrupted vasculature (CD 31) in the Fe3O4-MHT-treated group. Real-time gene expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1α, IL-1β) confirmed the intratumoral activation of IL-6, suggesting the role of immunomodulation in triggering the adaptive immune response for faster tumor regression in the treated group. In addition, the biodistribution and clearance rate of MNPs monitored using ICP-OES confirmed their time-dependent biodegradation via excretion (urine, feces), phagocytosis (liver) and circulatory system (blood), with negligible deposition in other major organs (kidney, heart, lungs). Although we could not show complete clearance of our MNPs within the time frame tested, future studies should focus on combining MHT with immunotherapy, and target tumors at a much-reduced iron dose, consequently improving in vivo clearance rate, and hence overcoming the limitations of MHT in clinical therapy.
Collapse
Affiliation(s)
- Anjali Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Swati Midha
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ravindra Meena
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Pooja Singh
- National Institute of Plant Genome research, New Delhi-110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
8
|
Sunderic K, Li C, Ahmed AHR, Dawkins D, Azar T, Cardoso L, Wang S. Tuning Thermal Dosage to Facilitate Mesenchymal Stem Cell Osteogenesis in Pro-Inflammatory Environment. J Biomech Eng 2021; 143:011006. [PMID: 32601701 PMCID: PMC7580656 DOI: 10.1115/1.4047660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/16/2020] [Indexed: 01/21/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can replicate and differentiate to different lineages, potentiating their use as integral components in regenerated mesenchymal tissues. Our previous work and other studies have indicated that mild heat shock enhances osteogenesis. However, the influence of pro-inflammatory cytokines on osteogenic differentiation during mildly elevated temperature conditions remains to be fully explored. In this study, human MSCs (hMSCs) were cultured with tumor necrosis factor-alpha (TNF-α), an important mediator of the acute phase response, and interleukin-6 (IL-6) which plays a role in damaging chronic inflammation, then heat shocked at 39 °C in varying frequencies-1 h per week (low), 1 h every other day (mild), and 1 h intervals three times per day every other day (high). DNA data showed that periodic mild heating inhibited suppression of cell growth caused by cytokines and induced maximal proliferation of hMSCs while high heating had the opposite effect. Quantitative osteogenesis assays show significantly higher levels of alkaline phosphatase (ALP) activity and calcium precipitation in osteogenic cultures following mild heating compared to low heating or nonheated controls. These results demonstrate that periodic mild hyperthermia may be used to facilitate bone regeneration using hMSCs, and therefore may influence the design of heat-based therapies in vivo.
Collapse
Affiliation(s)
- Kristifor Sunderic
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - Chenghai Li
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - A. H. Rezwanuddin Ahmed
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - Dionne Dawkins
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - Tala Azar
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - Luis Cardoso
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| | - Sihong Wang
- Department of Biomedical Engineering, City University of New York—City College, 160 Convent Avenue, New York, NY 10031
| |
Collapse
|
9
|
Heat Shock Protein 70 Protects the Heart from Ischemia/Reperfusion Injury through Inhibition of p38 MAPK Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3908641. [PMID: 32308802 PMCID: PMC7142395 DOI: 10.1155/2020/3908641] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Background Heat shock protein 70 (Hsp70) has been shown to exert cardioprotection. Intracellular calcium ([Ca2+]i) overload induced by p38 mitogen-activated protein kinase (p38 MAPK) activation contributes to cardiac ischemia/reperfusion (I/R) injury. However, whether Hsp70 interacts with p38 MAPK signaling is unclear. Therefore, this study investigated the regulation of p38 MAPK by Hsp70 in I/R-induced cardiac injury. Methods Neonatal rat cardiomyocytes were subjected to oxygen-glucose deprivation for 6 h followed by 2 h reoxygenation (OGD/R), and rats underwent left anterior artery ligation for 30 min followed by 30 min of reperfusion. The p38 MAPK inhibitor (SB203580), Hsp70 inhibitor (Quercetin), and Hsp70 short hairpin RNA (shRNA) were used prior to OGD/R or I/R. Cell viability, lactate dehydrogenase (LDH) release, serum cardiac troponin I (cTnI), [Ca2+]i levels, cell apoptosis, myocardial infarct size, mRNA level of IL-1β and IL-6, and protein expression of Hsp70, phosphorylated p38 MAPK (p-p38 MAPK), sarcoplasmic/endoplasmic reticulum Ca2+-ATPase2 (SERCA2), phosphorylated signal transducer and activator of transcription3 (p-STAT3), and cleaved caspase3 were assessed. Results Pretreatment with a p38 MAPK inhibitor, SB203580, significantly attenuated OGD/R-induced cell injury or I/R-induced myocardial injury, as evidenced by improved cell viability and lower LDH release, resulted in lower serum cTnI and myocardial infarct size, alleviation of [Ca2+]i overload and cell apoptosis, inhibition of IL-1β and IL-6, and modulation of protein expressions of p-p38 MAPK, SERCA2, p-STAT3, and cleaved-caspase3. Knockdown of Hsp70 by shRNA exacerbated OGD/R-induced cell injury, which was effectively abolished by SB203580. Moreover, inhibition of Hsp70 by quercetin enhanced I/R-induced myocardial injury, while SB203580 pretreatment reversed the harmful effects caused by quercetin. Conclusions Inhibition of Hsp70 aggravates [Ca2+]i overload, inflammation, and apoptosis through regulating p38 MAPK signaling during cardiac I/R injury, which may help provide novel insight into cardioprotective strategies.
Collapse
|
10
|
Costantino MD, Schuster A, Helmholz H, Meyer-Rachner A, Willumeit-Römer R, Luthringer-Feyerabend BJC. Inflammatory response to magnesium-based biodegradable implant materials. Acta Biomater 2020; 101:598-608. [PMID: 31610341 DOI: 10.1016/j.actbio.2019.10.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/15/2022]
Abstract
Biodegradability and mechanical properties of magnesium alloys are attractive for orthopaedic and cardiovascular applications. In order to study their cytotoxicity usually bone cells are used. However, after implantation, diverse and versatile cells are recruited and interact. Among the first ones coming into play are cells of the immune system, which are responsible for the inflammatory reaction. Macrophages play a central role in the inflammatory process due to the production of cytokines involved in the tissue healing but also in the possible failure of the implants. In order to evaluate the in vitro influence of the degradation products of magnesium-based alloys on cytokine release, the extracts of pure magnesium and two magnesium alloys (with gadolinium and silver as alloying elements) were examined in an inflammatory in vitro model. Human promonocytic cells (U937 cells) were differentiated into macrophages and further cultured with magnesium-based extracts for 1 and 3 days (simulating early and late inflammatory reaction phases), either at 37 °C or at 39 °C (mimicking normal and inflammatory conditions, respectively). All extracts exhibit very good cytocompatibility on differentiated macrophages. Results suggest that M1 and even more M2 profiles of macrophage were stimulated by the extracts of Mg. Furthermore, Mg-10Gd and Mg-2Ag extracts introduced a nuancing effect by rather inhibiting macrophage M1 profile. Magnesium-based biomaterials could thus induce a faster inflammation resolution while improving tissue repair. STATEMENT OF SIGNIFICANCE: Macrophage are the key-cells during inflammation and can influence the fate of tissue healing and implant performance. Magnesium-based implants are biodegradable and bioactive. Here we selected an in vitro system to model early and late inflammation and effect of pyrexia (37 °C versus 39 °C). We showed the beneficial and nuancing effects of magnesium (Mg) and the selected alloying elements (silver (Ag) and gadolinium (Gd)) on the macrophage polarisation. Mg extracts exacerbated simultaneously the macrophage M1 and M2 profiles while Mg-2Ag and Mg-10Gd rather inhibited the M1 differentiation. Furthermore, 39 °C exhibited protective effect by either decreasing cytokine production or promoting anti-inflammatory ones, with or without extracts. Mg-based biomaterials could thus induce a faster inflammation resolution while improving tissue repair.
Collapse
Affiliation(s)
- M D Costantino
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - A Schuster
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - H Helmholz
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - A Meyer-Rachner
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - R Willumeit-Römer
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - B J C Luthringer-Feyerabend
- Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany.
| |
Collapse
|
11
|
Ma L, Yang Y, Zhao X, Wang F, Gao S, Bu D. Heat stress induces proteomic changes in the liver and mammary tissue of dairy cows independent of feed intake: An iTRAQ study. PLoS One 2019; 14:e0209182. [PMID: 30625175 PMCID: PMC6326702 DOI: 10.1371/journal.pone.0209182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 11/30/2018] [Indexed: 01/17/2023] Open
Abstract
Heat stress decreases milk yield and deleteriously alters milk composition. Reduced feed intake partially explains some of the consequences of heat stress, but metabolic changes in the mammary tissue and liver associated with milk synthesis have not been thoroughly evaluated. In the current study, changes of protein abundance in the mammary tissue and liver between heat-stressed cows with ad libitum intake and pair-fed thermal neutral cows were investigated using the iTRAQ proteomic approach. Most of the differentially expressed proteins from mammary tissue and liver between heat-stressed and pair-fed cows were involved in Gene Ontology category of protein metabolic process. Pathway analysis indicated that differentially expressed proteins in the mammary tissue were related to pyruvate, glyoxylate and dicarboxylate metabolism pathways, while those in the liver participated in oxidative phosphorylation and antigen processing and presentation pathways. Several heat shock proteins directly interact with each other and were considered as central “hubs” in the protein interaction network. These findings provide new insights to understand the turnover of protein biosynthesis pathways within hepatic and mammary tissue that likely contribute to changes in milk composition from heat-stressed cows.
Collapse
Affiliation(s)
- Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongxin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaowei Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
12
|
Brunt VE, Wiedenfeld-Needham K, Comrada LN, Minson CT. Passive heat therapy protects against endothelial cell hypoxia-reoxygenation via effects of elevations in temperature and circulating factors. J Physiol 2018; 596:4831-4845. [PMID: 30118148 DOI: 10.1113/jp276559] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS Accumulating evidence indicates that passive heat therapy (chronic use of hot tubs or saunas) has widespread physiological benefits, including enhanced resistance against novel stressors ('stress resistance'). Using a cell culture model to isolate the key stimuli that are likely to underlie physiological adaptation with heat therapy, we showed that both mild elevations in temperature (to 39°C) and exposure to serum from human subjects who have undergone 8 weeks of heat therapy (i.e. altered circulating factors) independently prevented oxidative and inflammatory stress associated with hypoxia-reoxygenation in cultured endothelial cells. Our results elucidate some of the mechanisms (i.e. direct effects of temperature vs. circulating factors) by which heat therapy seems to improve resistance against oxidative and inflammatory stress. Heat therapy may be a promising intervention for reducing cellular damage following ischaemic events, which has broad implications for patients with cardiovascular diseases and conditions characterized by 'chronic' ischaemia (e.g. peripheral artery disease, metabolic diseases, obesity). ABSTRACT Repeated exposure to passive heat stress ('heat therapy') has widespread physiological benefits, including cellular protection against novel stressors. Increased heat shock protein (HSP) expression and upregulation of circulating factors may impart this protection. We tested the isolated abilities of mild heat pretreatment and serum from human subjects (n = 10) who had undergone 8 weeks of heat therapy to protect against cellular stress following hypoxia-reoxygenation (H/R), a model of ischaemic cardiovascular events. Cultured human umbilical vein endothelial cells were incubated for 24 h at 37°C (control), 39°C (heat pretreatment) or 37°C with 10% serum collected before and after 8 weeks of passive heat therapy (four to five times per week to increase rectal temperature to ≥ 38.5°C for 60 min). Cells were then collected before and after incubation at 1% O2 for 16 h (hypoxia; 37°C), followed by 20% O2 for 4 h (reoxygenation; 37°C) and assessed for markers of cell stress. In control cells, H/R increased nuclear NF-κB p65 protein (i.e. activation) by 106 ± 38%, increased IL-6 release by 37 ± 8% and increased superoxide production by 272 ± 45%. Both heat pretreatment and exposure to heat therapy serum prevented H/R-induced NF-κB activation and attenuated superoxide production; by contrast, only exposure to serum attenuated IL-6 release. H/R also decreased cytoplasmic haemeoxygenase-1 (HO-1) protein (known to suppress NF-κB), in control cells (-25 ± 8%), whereas HO-1 protein increased following H/R in cells pretreated with heat or serum-exposed, providing a possible mechanism of protection against H/R. These data indicate heat therapy is capable of imparting resistance against inflammatory and oxidative stress via direct heat and humoral factors.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | | | - Lindan N Comrada
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
13
|
Li C, Sunderic K, Nicoll SB, Wang S. Downregulation of Heat Shock Protein 70 Impairs Osteogenic and Chondrogenic Differentiation in Human Mesenchymal Stem Cells. Sci Rep 2018; 8:553. [PMID: 29323151 PMCID: PMC5765044 DOI: 10.1038/s41598-017-18541-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) show promise for bone and cartilage regeneration. Our previous studies demonstrated that hMSCs with periodic mild heating had enhanced osteogenic and chondrogenic differentiation with significantly upregulated heat shock protein 70 (HSP70). However, the role of HSP70 in adult tissue regeneration is not well studied. Here, we revealed an essential regulatory mechanism of HSP70 in osteogenesis and chondrogenesis using adult hMSCs stably transfected with specific shRNAs to knockdown HSP70. Periodic heating at 39 °C was applied to hMSCs for up to 26 days. HSP70 knockdown resulted in significant reductions of alkaline phosphatase activity, calcium deposition, and gene expression of Runx2 and Osterix during osteogenesis. In addition, knockdown of HSP70 led to significant decreases of collagens II and X during chondrogenesis. Thus, downregulation of HSP70 impaired hMSC osteogenic and chondrogenic differentiation as well as the enhancement of these processes by thermal treatment. Taken together, these findings suggest a putative mechanism of thermal-enhanced bone and cartilage formation and underscore the importance of HSP70 in adult bone and cartilage differentiation.
Collapse
Affiliation(s)
- Chenghai Li
- Department of Biomedical Engineering, City University of New York-City College, 160 Convent Avenue, New York, NY, 10031, USA
| | - Kristifor Sunderic
- Department of Biomedical Engineering, City University of New York-City College, 160 Convent Avenue, New York, NY, 10031, USA
| | - Steven B Nicoll
- Department of Biomedical Engineering, City University of New York-City College, 160 Convent Avenue, New York, NY, 10031, USA
| | - Sihong Wang
- Department of Biomedical Engineering, City University of New York-City College, 160 Convent Avenue, New York, NY, 10031, USA.
| |
Collapse
|
14
|
Asami K, Kondo A, Suda Y, Shimoyamada M, Kanauchi M. Neutralization of Lipopolysaccharide by Heat Shock Protein in Pediococcus pentosaceus AK-23. J Food Sci 2017; 82:1657-1663. [PMID: 28585686 DOI: 10.1111/1750-3841.13679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 12/11/2022]
Abstract
About 1000 species of bacteria are present in the human intestine. Some Gram-negative bacteria such as Escherichia coli or Salmonella spp. among intestinal bacteria have lipopolysaccharide (LPS), which might induce inflammation of human intestines. Actually, LPS, especially its lipid A constituent, is toxic. Small amounts of LPS in bacteria cause inflammation of mucosa and other tissues in humans. Such bacteria may be regulated by beneficial lactic acid bacteria to maintain human health. Many lactic acid bacteria show cancer prevention activity and anti-inflammatory activity in intestines. Recently, Pediococcus pentosaceus AK-23 was isolated from fermentative vegetable pickles for neutralization of LPS. For this study, a protein for LPS neutralization was purified partly from P. pentosaceus AK-23. For this study, a protein for LPS neutralization was purified partly from P. pentosaceus AK-23, by ultrafiltration using a 300 kDa membrane and a 100 kDa membrane after cell wall digestion by lysozyme. Gel running blue native electrophoresis revealed the existence of a 217 kDa protein. The band of the protein having the ability to bind LPS on the gel was analyzed for amino acid homology. As the result, it is revealed as part of a subunit of heat shock protein (HSP). Furthermore, it displayed LPS binding or hydrophobic motifs. The protein neutralized LPS to release fatty acid as myristic acid and glucose from polysaccharide. These findings suggest that HSP in P. pentosaceus AK-23 neutralizes LPS to decompose it compising fatty acid and polysaccharide.
Collapse
Affiliation(s)
- Kyoko Asami
- Miyagi Univ., Dept. of Food Management, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi
| | - Ayaka Kondo
- Miyagi Univ., Dept. of Food Management, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi
| | - Yoshihito Suda
- Miyagi Univ., Dept. of Food Management, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi
| | - Makoto Shimoyamada
- Univ. of Shizuoka, School of Food and Nutritional Sciences, 52-1 Yada, Sugaru-ku, Shizuoka, Shizuoka
| | - Makoto Kanauchi
- Miyagi Univ., Dept. of Food Management, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi
| |
Collapse
|
15
|
Bacterial endotoxin modifies heat shock factor-1 activity in RAW 264.7 cells: implications for TNF-α regulation during exposure to febrile range temperatures. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100030401] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent studies have identified heat shock factor (HSF)-1, the predominant heat/stress-stimulated transcriptional activator of heat shock protein genes as a repressor of certain cytokine genes, including TNF-α and IL-1β. We previously showed that exposing macrophages to febrile-range temperature (FRT; 39.5°C) activates HSF-1 to a DNA binding form that does not activate heat shock protein gene transcription, but apparently represses TNF-α and IL-1β transcription. Prewarming macrophages to 39.5°C for 30 min prior to stimulation with bacterial lipopolysaccharide (LPS) does not change the induction of TNF-α transcription, but markedly reduces its duration. This raised the question of how TNF-α transcription could occur at all in the presence of activated HSF-1. We used RAW 264.7 cells to test the hypothesis that macrophage activation triggers a transient reversal of HSF-1-mediated repression, thereby allowing induction of TNF-α transcription. Electrophoretic mobility shift assays revealed that LPS triggers a transient inactivation of HSF-1 that temporally correlates with TNF-α transcription and was associated with a transient increase in HSF-1 molecular weight, a decrease in its pI, and appearance of HSF-1 phosphorylating activity. The serine/threonine phosphatase inhibitor, calyculin A, blocked the inhibitory affect of FRT on LPS-induced TNF-α generation and prevented the re-activation of HSF-1. We propose that LPS stimulation of FRT-exposed macrophages stimulates a sequential phosphorylation and dephosphorylation of HSF-1, causing a cycle of inactivation and re-activation of HSF-1 repressor activity that allows a temporally-limited period of gene transcription.
Collapse
|
16
|
Nair S, Arora S, Lim JY, Lee LH, Lim LH. The regulation of TNFα production after heat and endotoxin stimulation is dependent on Annexin-A1 and HSP70. Cell Stress Chaperones 2015; 20:583-93. [PMID: 25753354 PMCID: PMC4463914 DOI: 10.1007/s12192-015-0580-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022] Open
Abstract
Febrile temperatures can induce stress responses which protect cells from damage and can reduce inflammation during infections and sepsis. However, the mechanisms behind the protective functions of heat in response to the bacterial endotoxin LPS are unclear. We have recently shown that Annexin-1 (ANXA1)-deficient macrophages exhibited higher TNFα levels after LPS stimulation. Moreover, we have previously reported that ANXA1 can function as a stress protein. Therefore in this study, we determined if ANXA1 is involved in the protective effects of heat on cytokine levels in macrophages after heat and LPS. Exposure of macrophages to 42 °C for 1 h prior to LPS results in an inhibition of TNFα production, which was not evident in ANXA1(-/-) macrophages. We show that this regulation involves primarily MYD88-independent pathways. ANXA1 regulates TNFα mRNA stability after heat and LPS, and this is dependent on endogenous ANXA1 expression and not exogenously secreted factors. Further mechanistic studies revealed the possible involvement of the heat shock protein HSP70 and JNK in the heat and inflammatory stress response regulated by ANXA1. This study shows that ANXA1, an immunomodulatory protein, is critical in the heat stress response induced after heat and endotoxin stimulation.
Collapse
Affiliation(s)
- Sunitha Nair
- />Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
- />NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Suruchi Arora
- />Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
- />NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Jyue Yuan Lim
- />Singapore Immunology Network (SigN), 8A Biomedical Grove, Immunos, Singapore, 138648 Singapore
| | - Lay Hoon Lee
- />Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
- />NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| | - Lina H.K. Lim
- />Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 28 Medical Drive, Singapore, 117456 Singapore
- />NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456 Singapore
| |
Collapse
|
17
|
Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 2015; 15:335-49. [PMID: 25976513 PMCID: PMC4786079 DOI: 10.1038/nri3843] [Citation(s) in RCA: 654] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fever is a cardinal response to infection that has been conserved in warm-blooded and cold-blooded vertebrates for more than 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. In this Review, we discuss our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction and during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. We also discuss the emerging evidence suggesting that the adrenergic signalling pathways associated with thermogenesis shape immune cell function.
Collapse
Affiliation(s)
- Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| | - Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| |
Collapse
|
18
|
Lee CT, Kokolus KM, Leigh ND, Capitano M, Hylander BL, Repasky EA. Defining immunological impact and therapeutic benefit of mild heating in a murine model of arthritis. PLoS One 2015; 10:e0120327. [PMID: 25793532 PMCID: PMC4368208 DOI: 10.1371/journal.pone.0120327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/20/2015] [Indexed: 12/29/2022] Open
Abstract
Traditional treatments, including a variety of thermal therapies have been known since ancient times to provide relief from rheumatoid arthritis (RA) symptoms. However, a general absence of information on how heating affects molecular or immunological targets relevant to RA has limited heat treatment (HT) to the category of treatments known as “alternative therapies”. In this study, we evaluated the effectiveness of mild HT in a collagen-induced arthritis (CIA) model which has been used in many previous studies to evaluate newer pharmacological approaches for the treatment of RA, and tested whether inflammatory immune activity was altered. We also compared the effect of HT to methotrexate, a well characterized pharmacological treatment for RA. CIA mice were treated with either a single HT for several hours or daily 30 minute HT. Disease progression and macrophage infiltration were evaluated. We found that both HT regimens significantly reduced arthritis disease severity and macrophage infiltration into inflamed joints. Surprisingly, HT was as efficient as methotrexate in controlling disease progression. At the molecular level, HT suppressed TNF-α while increasing production of IL-10. We also observed an induction of HSP70 and a reduction in both NF-κB and HIF-1α in inflamed tissues. Additionally, using activated macrophages in vitro, we found that HT reduced production of pro-inflammatory cytokines, an effect which is correlated to induction of HSF-1 and HSP70 and inhibition of NF-κB and STAT activation. Our findings demonstrate a significant therapeutic benefit of HT in controlling arthritis progression in a clinically relevant mouse model, with an efficacy similar to methotrexate. Mechanistically, HT targets highly relevant anti-inflammatory pathways which strongly support its increased study for use in clinical trials for RA.
Collapse
Affiliation(s)
- Chen-Ting Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Kathleen M. Kokolus
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Nicholas D. Leigh
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Maegan Capitano
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Bonnie L. Hylander
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Morris G, Berk M, Galecki P, Walder K, Maes M. The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases. Mol Neurobiol 2015; 53:1195-1219. [PMID: 25598355 DOI: 10.1007/s12035-015-9090-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/05/2015] [Indexed: 01/18/2023]
Abstract
Many patients with systemic immune-inflammatory and neuro-inflammatory disorders, including depression, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, cancer, cardiovascular disorder, Parkinson's disease, multiple sclerosis, stroke, and chronic fatigue syndrome/myalgic encephalomyelitis, endure pathological levels of fatigue. The aim of this narrative review is to delineate the wide array of pathways that may underpin the incapacitating fatigue occurring in systemic and neuro-inflammatory disorders. A wide array of immune, inflammatory, oxidative and nitrosative stress (O&NS), bioenergetic, and neurophysiological abnormalities are involved in the etiopathology of these disease states and may underpin the incapacitating fatigue that accompanies these disorders. This range of abnormalities comprises: increased levels of pro-inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, tumor necrosis factor (TNF) α and interferon (IFN) α; O&NS-induced muscle fatigue; activation of the Toll-Like Receptor Cycle through pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns, including heat shock proteins; altered glutaminergic and dopaminergic neurotransmission; mitochondrial dysfunctions; and O&NS-induced defects in the sodium-potassium pump. Fatigue is also associated with altered activities in specific brain regions and muscle pathology, such as reductions in maximum voluntary muscle force, downregulation of the mitochondrial biogenesis master gene peroxisome proliferator-activated receptor gamma coactivator 1-alpha, a shift to glycolysis and buildup of toxic metabolites within myocytes. As such, both mental and physical fatigue, which frequently accompany immune-inflammatory and neuro-inflammatory disorders, are the consequence of interactions between multiple systemic and central pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia.,Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Poplar Road 35, Parkville, 3052, Australia.,The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Royal Parade 30, Parkville, 3052, Australia.,Department of Psychiatry, University of Melbourne, Level 1 North, Main Block, Royal Melbourne Hospital, Parkville, 3052, Australia
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Ken Walder
- Metabolic Research Unit, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia. .,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil. .,Impact Strategic Research Center, Deakin University, Geelong, Australia.
| |
Collapse
|
20
|
Kinoshita K, Sakurai A, Yamaguchi J, Furukawa M, Tanjoh K. Delayed augmentation effect of cytokine production after hyperthermia stimuli. Mol Biol 2014. [DOI: 10.1134/s0026893314030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Prakasam R, Fujimoto M, Takii R, Hayashida N, Takaki E, Tan K, Wu F, Inouye S, Nakai A. Chicken IL-6 is a heat-shock gene. FEBS Lett 2013; 587:3541-7. [PMID: 24055475 DOI: 10.1016/j.febslet.2013.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/02/2013] [Accepted: 09/08/2013] [Indexed: 11/17/2022]
Abstract
The febrile response is elicited by pyrogenic cytokines including IL-6 in response to microorganism infections and diseases in vertebrates. Mammalian HSF1, which senses elevations in temperature, negatively regulates the response by suppressing pyrogenic cytokine expression. We here showed that HSF3, an avian ortholog of mammalian HSF1, directly binds to and activates IL-6 during heat shock in chicken cells. Other components of the febrile response mechanism, such as IL-1β and ATF3, were also differently regulated in mammalian and chicken cells. These results suggest that the febrile response is exacerbated by a feed-forward circuit composed of the HSF3-IL-6 pathway in birds.
Collapse
Affiliation(s)
- Ramachandran Prakasam
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Attenuating heatstroke-induced acute lung inflammation, edema, and injury in rats by exercise preconditioning. J Trauma Acute Care Surg 2013; 74:1052-9. [PMID: 23511144 DOI: 10.1097/ta.0b013e31827a3618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND This study aimed to ascertain whether heat-induced acute lung edema, inflammation, and ischemic damage can be affected by heat shock protein 70 (HSP-70)-mediated exercise preconditioning (EP) in rats. METHODS Wistar rats were assigned to one of the following four groups: the non-EP + nonheated group, the non-EP + heated group, the EP + heated group, and the EP + HSP-70 antibodies + heated group. EP groups of animals were subjected to a protocol of running on a treadmill for 30 minutes at 20 m/min, 30 minutes at 30 m/min, and 60 minutes at 30 m/min after 1, 2, and 3 weeks of training, respectively. Heated group of animals, under general anesthesia, were put in a folded heating pad of 43°C for 68 minutes. Then, the heated animals were allowed to recover at room temperature. HSP-70 antibodies were injected intravenously 24 hours before heat exposure. RESULTS As compared with the non heated + non-EP rats, the heated + non-EP rats had significantly higher scores of alveolar edema, neutrophil infiltration, and hemorrhage, acute pleurisy, and increased bronchoalveolar fluid levels of proinflammatory cytokines and ischemic and oxidative damage markers. EP, in addition to inducing overexpression of HSP-70 in lung tissues, significantly attenuated heat-induced acute pulmonary edema, inflammation, and ischemic and oxidative damage in the lungs. HSP-70 antibodies, in addition to reducing HSP-70 expression in the lungs, significantly attenuated the beneficial effects of EP in reducing acute lung inflammation and injury. CONCLUSION EP may attenuate the occurrence of pulmonary edema, inflammation, as well as ischemic and oxidative damage caused by heatstroke by up-regulating HSP-70 in the lungs.
Collapse
|
23
|
Temperature-related effects of adenosine triphosphate-activated microglia on pro-inflammatory factors. Neurocrit Care 2013; 17:293-300. [PMID: 21979577 DOI: 10.1007/s12028-011-9639-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Therapeutic hypothermia protects neurons after severe brain injury. Activated microglia produce several neurotoxic factors, such as pro-inflammatory cytokines and nitric oxide (NO), during neuron destruction. Hence, suppression of microglial release of these factors is thought to contribute partly to the neuroprotective effects of hypothermia. After brain insults, adenosine triphosphate (ATP) is released from injured cells and activates microglia. Here, we examined the acute effects of temperature on ATP-activated microglial production of inflammatory factors, and the possible involvement of p38 mitogen-activated protein kinase (p38) underlying such effects. METHODS Microglia were cultured with ATP at 33, 37, and 39°C, or with ATP in the presence of a p38 inhibitor, SB203580, at 37°C. Cytokine and NO levels, and p38 activation were measured. RESULTS Compared to 37°C, TNF-α was reduced at 33°C and augmented at 39°C for 1.5 h. IL-6 was reduced at 33°C for 6 h. NO was reduced at 33°C, but augmented at 39°C for 6 h. p38 was reduced at 33°C for 1 min. SB203580 inhibited ATP-induced TNF-α, IL-6, and NO production. CONCLUSION Lowering temperature rapidly reduced p38 activation and the subsequent p38-regulated production of pro-inflammatory cytokines and NO in ATP-activated microglia, suggesting that attenuation of early phase inflammatory responses via suppression of p38 in microglia is one possible neuroprotective mechanism of therapeutic hypothermia. Temperature elevation increased TNF-α and NO production in these cells. These temperature-dependent changes imply that monitoring of TNF-α and NO in the cerebrospinal fluid during the early phase might be useful as biomarkers for responses to therapeutic hypothermia and hyperthermia.
Collapse
|
24
|
Romanucci M, Salda LD. Pathophysiology and pathological findings of heatstroke in dogs. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2013; 4:1-9. [PMID: 32670838 PMCID: PMC7337213 DOI: 10.2147/vmrr.s29978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/23/2013] [Indexed: 11/29/2022]
Abstract
Canine heatstroke is a life-threatening condition resulting from an imbalance between heat dissipation and production, and characterized by a nonpyrogenic elevation in core body temperature above 41°C (105.8°F). Several exogenous and endogenous factors may predispose dogs to the development of heatstroke; on the other hand, adaptive mechanisms also exists which allow organisms to combat the deleterious effects of heat stress, which are represented by the cellular heat-shock response and heat acclimatization. The pathophysiology and consequences of heatstroke share many similarities to those observable in sepsis and are related to the interaction between the direct cytotoxicity of heat, the acute physiological alterations associated with hyperthermia, such as increased metabolic demand, hypoxia, and circulatory failure, and the inflammatory and coagulation responses of the host to the widespread endothelial and tissue injuries, which may culminate in disseminated intravascular coagulation, systemic inflammatory response syndrome, and multiple organ dysfunction.
Collapse
Affiliation(s)
- Mariarita Romanucci
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Leonardo Della Salda
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
25
|
Hung CH, Tzeng JI, Chang CN, Chen YW, Cho CY, Wang JJ. Treadmill exercise preconditioning attenuates lung damage caused by systemic endotoxemia in type 1 diabetic rats. J Diabetes Res 2013; 2013:527090. [PMID: 24392457 PMCID: PMC3872431 DOI: 10.1155/2013/527090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 11/17/2022] Open
Abstract
Endotoxemia induces a series of inflammatory responses that may result in lung injury. However, heat shock protein72 (HSP72) has the potential to protect the lungs from damage. The objective of this study was to determine whether prior exercise conditioning could increase the expression of HSP72 in the lungs and attenuate lung damage in diabetic rats receiving lipopolysaccharide (LPS). Streptozotocin was used to induce diabetes in adult male Wistar rats. Rats were randomly assigned to sedentary or exercise groups. Rats in the exercise condition ran on a treadmill 5 days/week, 30-60 min/day, with an intensity of 1.0 mile/hour over a 3-week period. Rats received an intravenous infusion of LPS after 24 hrs from the last training session. Elevated lavage tumor necrosis factor-alpha (TNF- α ) level in response to LPS was more marked in diabetic rats. HSP72 expression in lungs was significantly increased after exercise conditioning, but less pronounced in diabetic rats. After administration of LPS, exercised rats displayed higher survival rate as well as decreased lavage TNF- α level and lung edema in comparison to sedentary rats. Our findings suggest that exercise conditioning could attenuate the occurrence of inflammatory responses and lung damage, thereby reducing mortality rate in diabetic rats during endotoxemia.
Collapse
Affiliation(s)
- Ching-Hsia Hung
- Department of Physical Therapy, National Cheng Kung University, Tainan 701, Taiwan
| | - Jann-Inn Tzeng
- Department of Food Sciences and Technology, Chia Nan University of Pharmacy and Sciences, Jen-Te, Tainan 717, Taiwan
- Department of Anesthesiology, Chi-Mei Medical Center, Yong Kang, Tainan 710, Taiwan
| | - Che-Ning Chang
- Department of Physical Therapy, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Wen Chen
- Department of Physical Therapy, China Medical University, Taichung 404, Taiwan
- *Yu-Wen Chen:
| | - Chia-Ying Cho
- Department of Physical Therapy, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhi-Joung Wang
- Department of Medical Research, Chi-Mei Medical Centre, Tainan 710, Taiwan
| |
Collapse
|
26
|
Wang LC, Chang CP, Chio CC, Wu MH, Lee YS, Huang CY, Tsai KJ. Hypobaric hypoxia preconditioning attenuates experimental heatstroke syndromes via preinduction of heat shock protein 70. Am J Med Sci 2012; 344:383-90. [PMID: 22245947 DOI: 10.1097/maj.0b013e31824314fe] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Heatstroke has been defined as a form of hyperthermia associated with a systemic inflammatory response that leads to multiple organ dysfunction syndrome (MODS). It has also been documented that heat shock protein 70 (HSP70) preconditioning is able to induce thermotolerance. Here, the authors further investigated whether hypobaric hypoxia preconditioning (HHP) improved the MODS in heatstroke by up-regulation of HSP70. METHODS Anesthetized rats were randomly assigned to (a) non-HHP + nonheated group, (b) non-HHP + heated group, (c) HHP + heated group and (d) HHP + HSP70 antibodies (Abs) + heated groups. All heated groups were exposed to heat stress (43°C, 70 minutes) to induce heatstroke. For HHP, animals were exposed to 0.66 atmosphere absolute (18.3% O2) for 5 hours daily for consecutive 5 days per week for 2 weeks before the start of heat exposure. RESULTS HHP significantly (i) attenuated hypotension, (ii) reduced plasma index of the toxic oxidizing radicals and the organ injury indicator, (iii) attenuated plasma systemic inflammatory response molecules, (iv) reduced an index of infiltration of polymorphonuclear neutrophils in the lung like myeloper-oxidase activity, (v) promoted plasma levels of an anti-inflammatory cytokine, interleukin-10, (vi) promoted the survival time to fourfold compared with non-HHP group and (vii) promoted the overexpression of HSP70 in different organs (eg, the lung) during heatstroke. The beneficial effects of HHP could be significantly attenuated by HSP70 Ab preconditioning. CONCLUSION Our results show that HHP protects rats from heat-induced MODS via up-regulating HSP70. Thus, HHP could be a novel strategy for the prevention of heatstroke animals or patients before heat exposure.
Collapse
Affiliation(s)
- Liang-Chao Wang
- Institute of Clinical Medicine, Department of Surgery, National Cheng-Kung University Hospital, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Lee CT, Repasky EA. Opposing roles for heat and heat shock proteins in macrophage functions during inflammation: a function of cell activation state? Front Immunol 2012; 3:140. [PMID: 22675327 PMCID: PMC3365480 DOI: 10.3389/fimmu.2012.00140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 05/14/2012] [Indexed: 11/21/2022] Open
Abstract
Macrophages function both under normothermia and during periods of body temperature elevation (fever). Whether macrophages sense and respond to thermal signals in a manner which regulates their function in a specific manner is still not clear. In this brief review, we highlight recent studies which have analyzed the effects of mild heating on macrophage cytokine production, and summarize thermally sensitive molecular mechanisms, such as heat shock protein (HSP) expression, which have been identified. Mild, physiologically achievable, hyperthermia has been shown to have both pro- and anti-inflammatory effects on macrophage inflammatory cytokine production and overall it is not clear how hyperthermia or HSPs can exert opposing roles on macrophage function. We propose here that the stage of activation of macrophages predicts how they respond to mild heating and the specific manner in which HSPs function. Continuing research in this area is needed which will help us to better understand the immunological role of body temperature shifts. Such studies could provide a scientific basis for the use of heat in treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Chen-Ting Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
28
|
Lee CT, Zhong L, Mace TA, Repasky EA. Elevation in body temperature to fever range enhances and prolongs subsequent responsiveness of macrophages to endotoxin challenge. PLoS One 2012; 7:e30077. [PMID: 22253887 PMCID: PMC3254634 DOI: 10.1371/journal.pone.0030077] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/13/2011] [Indexed: 12/31/2022] Open
Abstract
Macrophages are often considered the sentries in innate immunity, sounding early immunological alarms, a function which speeds the response to infection. Compared to the large volume of studies on regulation of macrophage function by pathogens or cytokines, relatively little attention has been devoted to the role of physical parameters such as temperature. Given that temperature is elevated during fever, a long-recognized cardinal feature of inflammation, it is possible that macrophage function is responsive to thermal signals. To explore this idea, we used LPS to model an aseptic endotoxin-induced inflammatory response in BALB/c mice and found that raising mouse body temperature by mild external heat treatment significantly enhances subsequent LPS-induced release of TNF-α into the peritoneal fluid. It also reprograms macrophages, resulting in sustained subsequent responsiveness to LPS, i.e., this treatment reduces “endotoxin tolerance” in vitro and in vivo. At the molecular level, elevating body temperature of mice results in a increase in LPS-induced downstream signaling including enhanced phosphorylation of IKK and IκB, NF-κB nuclear translocation and binding to the TNF-α promoter in macrophages upon secondary stimulation. Mild heat treatment also induces expression of HSP70 and use of HSP70 inhibitors (KNK437 or Pifithrin-µ) largely abrogates the ability of the thermal treatment to enhance TNF-α, suggesting that the induction of HSP70 is important for mediation of thermal effects on macrophage function. Collectively, these results support the idea that there has been integration between the evolution of body temperature regulation and macrophage function that could help to explain the known survival benefits of fever in organisms following infection.
Collapse
Affiliation(s)
- Chen-Ting Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Lingwen Zhong
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Thomas A. Mace
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Beachy SH, Repasky EA. Toward establishment of temperature thresholds for immunological impact of heat exposure in humans. Int J Hyperthermia 2011; 27:344-52. [PMID: 21591898 DOI: 10.3109/02656736.2011.562873] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is interest in understanding the health impact of thermal effects as a result of exposure of humans to radiofrequency/microwave (RF/MW) fields. Immune cells and responses are affected by modest changes in temperature and it is important to quantify these effects and establish safety thresholds similar to what has been done with other tissue targets. Since previous summaries of thresholds for thermal damage to normal tissues have not focused much attention to cells of the immune system, this summary highlights recent studies which demonstrate positive and some negative effects of temperature shifts on human immune cells. We emphasise literature reporting adverse immunological endpoints (such as cell damage, death and altered function) and provide the temperature at which these effects were noted. Whereas there have been many in vitro studies of adverse temperature effects on immune cells, there has been limited validation of these temperature effects in vivo. However, data from heat stress/stroke patients do provide some information regarding core temperatures (40°C) at which thermal damage to immunological processes can begin to occur. We conclude that there is considerable need for more quantitative time temperature assessments using relevant animal models, more complete kinetic analyses to determine how long immunological effects persist, and for analysis of whether frequency of exposure has impact on immune function. To date, no attempt to categorise effects by using cumulative thermal dose measurements (e.g. cumulative equivalent minutes at a given temperature) has been conducted for cells or tissues of the immune system, representing a major gap in this field.
Collapse
Affiliation(s)
- Sarah H Beachy
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
30
|
|
31
|
Cooper ZA, Singh IS, Hasday JD. Febrile range temperature represses TNF-alpha gene expression in LPS-stimulated macrophages by selectively blocking recruitment of Sp1 to the TNF-alpha promoter. Cell Stress Chaperones 2010; 15:665-73. [PMID: 20221720 PMCID: PMC3006616 DOI: 10.1007/s12192-010-0179-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/09/2010] [Accepted: 02/14/2010] [Indexed: 01/07/2023] Open
Abstract
We have previously shown that exposure to febrile-range temperature (FRT, 39.5 degrees C) reduces LPS-induced TNF-alpha transcription in mouse macrophages through at least two mechanisms: (1) by directly recruiting heat shock factor-1 (HSF-1) to a heat shock response element present in the TNF-alpha 5'-UTR and (2) by markedly reducing LPS-induced recruitment of NFkappaB-p65 to the kappaB enhancer (at -510) in the TNF-alpha gene. In the present study, we used EMSA and chromatin immunoprecipitation assays to further analyze the complex effects of FRT on the recruitment of transcription factors and co-activators on the TNF-alpha gene in LPS-stimulated RAW 264.7 mouse macrophages. Our results showed that in FRT-exposed RAW cells, HSF-1 was recruited only to the 5'-UTR site, and no additional interaction was evident in the TNF-alpha gene up to 1,300 nt upstream of the transcription start site. Similarly, FRT exposure selectively reduced LPS-induced NFkappaB-p65 recruitment to the kappaB enhancer site at -510 without affecting the other three kappaB enhancer sites present in the TNF-alpha 5'-flanking sequence. Finally, we found that FRT exposure abrogated LPS-stimulated recruitment of Sp1 to the proximal TNF-alpha promoter without any change in associated histone H3 acetylation around the TNF-alpha promoter and despite a marked increase in the total intra-nuclear Sp1 DNA binding activity. In conclusion, our studies further emphasize the complex and redundant control of TNF-alpha transcription and identify additional potential mechanisms through which FRT exposure may reduce TNF-alpha expression by selectively modifying gene-specific recruitment of transcription factors to the proximal TNF-alpha promoter.
Collapse
Affiliation(s)
- Zachary A. Cooper
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Ishwar S. Singh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD USA
- Research Services of the Baltimore VA Medical Center, Baltimore, MD USA
| | - Jeffrey D. Hasday
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD USA
- Cytokine Core Laboratory, University of Maryland School of Medicine, Baltimore, MD USA
- Research Services of the Baltimore VA Medical Center, Baltimore, MD USA
- University of Maryland School of Medicine, Health Science Facility-II, Rm. S347, 20 Penn St, Baltimore, MD 21201 USA
| |
Collapse
|
32
|
Akan Z, Aksu B, Tulunay A, Bilsel S, Inhan-Garip A. Extremely low-frequency electromagnetic fields affect the immune response of monocyte-derived macrophages to pathogens. Bioelectromagnetics 2010; 31:603-12. [PMID: 20809504 DOI: 10.1002/bem.20607] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 07/14/2010] [Indexed: 11/12/2022]
Abstract
This study aimed to determine the effect of extremely low-frequency electromagnetic fields (ELF-EMF) on the physiological response of phagocytes to an infectious agent. THP-1 cells (human monocytic leukemia cell line) were cultured and 50 Hz, 1 mT EMF was applied for 4-6 h to cells induced with Staphylococcus aureus or interferon gamma/lipopolysaccharide (IFγ/LPS). Alterations in nitric oxide (NO), inducible nitric oxide synthase (iNOS) levels, heat shock protein 70 levels (hsp70), cGMP levels, caspase-9 activation, and the growth rate of S. aureus were determined. The growth curve of exposed bacteria was lower than the control. Field application increased NO levels. The increase was more prominent for S. aureus-induced cells and appeared earlier than the increase in cells without field application. However, a slight decrease was observed in iNOS levels. Increased cGMP levels in response to field application were closely correlated with increased NO levels. ELF-EMF alone caused increased hsp70 levels in a time-dependent manner. When cells were induced with S. aureus or IFγ/LPS, field application produced higher levels of hsp70. ELF-EMF suppressed caspase-9 activation by a small extent. These data confirm that ELF-EMF affects bacterial growth and the response of the immune system to bacterial challenges, suggesting that ELF-EMF could be exploited for beneficial uses.
Collapse
Affiliation(s)
- Zafer Akan
- Department of Biophysics, School of Medicine, Marmara University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
33
|
Peer AJ, Grimm MJ, Zynda ER, Repasky EA. Diverse immune mechanisms may contribute to the survival benefit seen in cancer patients receiving hyperthermia. Immunol Res 2010; 46:137-54. [PMID: 19756410 DOI: 10.1007/s12026-009-8115-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is increasing documentation of significant survival benefits achieved in cancer patients treated with hyperthermia in combination with radiation and/or chemotherapy. Most evidence collected regarding the mechanisms by which hyperthermia positively influences tumor control has centered on in vitro data showing the ability of heat shock temperatures (usually above 42 degrees C) to result in radio- or chemosensitization. However, these high temperatures are difficult to achieve in vivo, and new thermometry data in patients reveal that much of the tumor and surrounding region is only heated to 40-41 degrees C or less as a result of vascular drainage from the target zone of the heated tumor. Thus, there is now a growing appreciation of a role for mild hyperthermia in the stimulation of various arms of the immune system in contributing to long term protection from tumor growth. Indeed, a review of recent literature suggests the existence of an array of thermally sensitive functions which may exist naturally to help the organism to establish a new "set point" of immune responsiveness during fever. This review summarizes recent literature identifying complex effects of temperature on immune cells and potential cellular mechanisms by which increased temperature may enhance immune surveillance.
Collapse
Affiliation(s)
- Adrienne J Peer
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
34
|
Dickinson A, Qadan M, Polk HC. Article Commentary: Optimizing Surgical Care: A Contemporary Assessment of Temperature, Oxygen, and Glucose. Am Surg 2010. [DOI: 10.1177/000313481007600618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Factors such as temperature, oxygen, and glucose have recently been implicated in the development of surgical sepsis by either promoting or attenuating protective components of the innate immune response. Reducing infective sequelae and the improvement of the quality of care of surgical patients is a top practice priority today. These factors and their associated effects are discussed through the examination of recent clinical and scientific studies to provide an up-to-date evidence-based review.
Collapse
Affiliation(s)
- Ashley Dickinson
- Price Institute of Surgical Research and the University of Louisville School of Medicine, Louisville, Kentucky
| | - Motaz Qadan
- Price Institute of Surgical Research and the University of Louisville School of Medicine, Louisville, Kentucky
| | - Hiram C. Polk
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
35
|
Takii R, Inouye S, Fujimoto M, Nakamura T, Shinkawa T, Prakasam R, Tan K, Hayashida N, Ichikawa H, Hai T, Nakai A. Heat Shock Transcription Factor 1 Inhibits Expression of IL-6 through Activating Transcription Factor 3. THE JOURNAL OF IMMUNOLOGY 2009; 184:1041-8. [DOI: 10.4049/jimmunol.0902579] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Cooper ZA, Ghosh A, Gupta A, Maity T, Benjamin IJ, Vogel SN, Hasday JD, Singh IS. Febrile-range temperature modifies cytokine gene expression in LPS-stimulated macrophages by differentially modifying NF-{kappa}B recruitment to cytokine gene promoters. Am J Physiol Cell Physiol 2009; 298:C171-81. [PMID: 19846753 DOI: 10.1152/ajpcell.00346.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that exposure to febrile-range temperatures (FRT, 39.5-40 degrees C) reduces LPS-induced TNF-alpha expression, in part through the direct interaction of heat shock factor-1 (HSF1) with the TNF-alpha gene promoter. However, it is not known whether exposure to FRT also modifies more proximal LPS-induced signaling events. Using HSF1-null mice, we confirmed that HSF1 is required for FRT-induced repression of TNF-alpha in vitro by LPS-stimulated bone marrow-derived macrophages and in vivo in mice challenged intratracheally with LPS. Exposing LPS-stimulated RAW 264.7 mouse macrophages to FRT reduced TNF-alpha expression while increasing IL-1beta expression despite the two genes sharing a common myeloid differentiation protein-88 (MyD88)-dependent pathway. Global activation of the three LPS-induced signaling intermediates that lead to cytokine gene expression, ERK and p38 MAPKs and NF-kappaB, was not affected by exposing RAW 264.7 cells to FRT as assessed by ERK and p38 phosphorylation and NF-kappaB in vitro DNA-binding activity and activation of a NF-kappaB-dependent synthetic promoter. However, chromatin immunoprecipitation (ChIP) analysis demonstrated that exposure to FRT reduced LPS-induced recruitment of NF-kappaB p65 to the TNF-alpha promoter while simultaneously increasing its recruitment to the IL-1beta promoter. These data suggest that FRT exerts its effects on cytokine gene expression in a gene-specific manner through distal effects on promoter activation rather than proximal receptor activation and signal transduction.
Collapse
Affiliation(s)
- Zachary A Cooper
- Univ. of Maryland School of Medicine, Health Science Facility-II, Rm. S311, 20 Penn St., Baltimore, MD 21201,USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kokura S, Yoshida N, Okuda T, Nakabe N, Sakamoto N, Isozaki Y, Hattori T, Handa O, Takagi T, Naito Y, Yoshikawa T. Hyperthermia ameliorates 2,4,6-trinitrobenzene sulphonic acid-induced colitis in rats: The role of heat shock proteins. Int J Hyperthermia 2009; 23:17-28. [PMID: 17575720 DOI: 10.1080/02656730601090223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Hyperthermia is known to protect against cellular injury through the expression of heat shock proteins. In this study, the therapeutic effects of hyperthermia on experimental colitis in the rat were evaluated. MATERIALS AND METHODS Male Wistar rats were given a single intracolonic injection of 2,4,6-trinitrobenzene sulphonic acid (TNBS). Hyperthermia was induced in anesthetized rats by placing them in a temperature-controlled water bath. We started the hyperthermic treatment on the day after the enema. The severity of colitis was evaluated pathologically, and the activities of tissue myeloperoxidase were measured 6 days after the induction of colitis. Furthermore, cytokines, and hyperthermia-induced heat shock proteins in colonic mucosa were detected by enzyme-linked immunosorbent assay and Western blotting. We also investigated the effects of geranylgeranylacetone and zinc protoporphyrin IX on the therapeutic effect of hyperthermia. RESULTS Hyperthermia significantly improved the macroscopic scores of colitis. The TNBS-induced increases in the activities of myeloperoxidase in the colonic tissue were blunted significantly in hyperthermia-treated animals. Furthermore, hyperthermia attenuated increases in cytokine-induced neutrophil chemoattractants-1 and tumor necrosis factor-alpha in the colon. Furthermore, hyperthermia induced the production of heat shock proteins in rat colonic mucosa, and the combination of geranylgeranylacetone with hyperthermia further induced the heat shock protein HSP70, which resulted in further improvement of TNBS-induced colitis. On the other hand, the combination of zinc protoporphyrin IX with hyperthermia attenuated the therapeutic effect of hyperthermia. CONCLUSIONS Hyperthermia ameliorates TNBS-induced colitis in rats through the expression of HSP70 and HO-1. It is postulated that hyperthermia may be useful for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- S Kokura
- Department of Biomedical Safety Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Grimm MJ, Zynda ER, Repasky EA. Temperature Matters: Cellular Targets of Hyperthermia in Cancer Biology and Immunology. HEAT SHOCK PROTEINS 2009. [DOI: 10.1007/978-90-481-2976-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Hung CH, Chen YW, Shao DZ, Chang CN, Tsai YY, Cheng JT. Exercise pretraining attenuates endotoxin-induced hemodynamic alteration in type I diabetic rats. Appl Physiol Nutr Metab 2008; 33:976-83. [PMID: 18923573 DOI: 10.1139/h08-081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Higher expression of heat shock protein 72 (HSP72) reduces the mortality rate and organ damage in septic shock and prevents cardiac mitochondrial dysfunction due to lipopolysaccharide (LPS). Our hypothesis is that exercise preconditioning may increase the expression of HSP72 in heart and the nucleus tractus solitarii (NTS) of the brain to alleviate the cardiovascular dysfunction in type I diabetic rats receiving endotoxin. Wistar rats were randomly assigned to the following groups: sedentary normal, sedentary type I diabetic rats, and type I diabetic rats with exercise training. The trained rats ran on a treadmill 5 d.week-1, 30-60 min.d-1, at an intensity of 1.0 mile.h-1 (1 mile = 1.6 km) over a 3 week period. Twenty-four hours after the last training session, we compared the temporal profiles of mean arterial pressure, heart rate, cardiac output, stroke volume, and serum tumor necrosis factor alpha level in rats receiving an injection of LPS. In addition, HSP72 expression in heart and NTS from each group was determined. We found that HSP72 expression in the heart and NTS was significantly increased in diabetic rats with exercise training. After administration of LPS, the survival time was significantly longer in diabetic rats with exercise training. Additionaly, serum tumor necrosis factor alpha levels decreased as compared with those rats not receiving exercise training. Exercise training also diminished cardiovascular dysfunction in diabetic rats during endotoxemia. These data suggest that exercise may increase the expression of HSP72 in the heart and NTS to protect against the high mortality rate and attenuate cardiovascular dysfunction in diabetic rats during endotoxemia.
Collapse
Affiliation(s)
- Ching-Hsia Hung
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Prestes-Carneiro LE, Shio MT, Fernandes PD, Jancar S. Cross-Regulation of iNOS and COX-2 by its Products in Murine Macrophages Under Stress Conditions. Cell Physiol Biochem 2008; 20:283-92. [PMID: 17762157 DOI: 10.1159/000107514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2007] [Indexed: 01/12/2023] Open
Abstract
Exposure of macrophages to heat shock induces rapid synthesis of heat shock proteins (HSPs) which are important for cell homeostasis. Prostaglandins (PGs) and nitric oxide (NO) are important cell regulatory molecules. We have therefore investigated the interactions between these molecules in the LPS-induced expression of iNOS and COX-2 and in the mitochondrial activity of macrophages. Cultures of the murine macrophage cell line, J774, were exposed to heat shock (43 degrees C, 30 min) and stimulated with LPS (1 microg/ml), concomitantly or after 8h of cell recovery. NO production was measured by Griess reaction; PGE(2) by ELISA; HSP70, iNOS and COX-2 by immunobloting; mitochondrial activity by MTT assay. Heat shock induced HSP70, but not iNOS or COX-2 whereas LPS induced iNOS and COX-2 but not HSP70. When heat shock and LPS were given concomitantly, iNOS but not COX-2 expression was reduced. When a period of 8h was given between heat shock and LPS stimulation, iNOS, COX-2, PGE(2) and NO levels were significantly increased. Under these conditions, the expression of COX-2 was reduced by L-NAME (NO-synthesis inhibitor) and of iNOS by nimesulide (PGs-synthesis inhibitor). Such cross-regulation was not observed in cells at 37 degrees C. These treatments significantly reduced MTT levels in cells at 37 degrees C but not in cells submitted to heat shock. These results suggest that HSPs and cross-regulation of iNOS and COX-2 by their products might be of relevance in the control of cell homeostasis during stress conditions.
Collapse
|
41
|
Abstract
Heat stroke is a life-threatening illness that affects all segments of society, including the young, aged, sick, and healthy. The recent high death toll in France (Dorozynski, 2003) and the death of high-profile athletes has increased public awareness of the adverse effects of heat injury. However, the etiology of the long-term consequences of this syndrome remains poorly understood such that preventive/treatment strategies are needed to mitigate its debilitating effects. Cytokines are important modulators of the acute phase response (APR) to stress, infection, and inflammation. Current data implicating cytokines in heat stroke responses are mainly from correlation studies showing elevated plasma levels in heat stroke patients and experimental animal models. Correlation data fall far short of revealing the mechanisms of cytokine actions such that additional research to determine the role of these endogenous substances in the heat stroke syndrome is required. Furthermore, cytokine determinations have occurred mainly at end-stage heat stroke, such that the role of these substances in progression and long-term recovery is poorly understood. Despite several studies implicating cytokines in heat stroke pathophysiology, few studies have examined the protective effect(s) of cytokine antagonism on the morbidity and mortality of heat stroke. This is particularly surprising since heat stroke responses resemble those observed in the endotoxemic syndrome, for which a role for endogenous cytokines has been strongly implicated. The implication of cytokines as mediators of endotoxemia and the presence of circulating endotoxin in heat stroke patients suggests that much knowledge can be gained from applying our current understanding of endotoxemic pathophysiology to the study of heat stroke. Heat shock proteins (HSPs) are highly conserved proteins that function as molecular chaperones for denatured proteins and reciprocally modulate cytokine production in response to stressful stimuli. HSPs have been shown repeatedly to confer protection in heat stroke and injury models. Interactions between HSPs and cytokines have received considerable attention in the literature within the last decade such that a complex pathway of interactions between cytokines, HSPs, and endotoxin is thought to be occurring in vivo in the orchestration of the APR to heat injury. These data suggest that much of the pathophysiologic changes observed with heat stroke are not a consequence of heat exposure, per se, but are representative of interactions among these three (and presumably additional) components of the innate immune response. This chapter will provide an overview of current knowledge regarding cytokine, HSP, and endotoxin interactions in heat stroke pathophysiology. Insight is provided into the potential therapeutic benefit of cytokine neutralization for mitigation of heat stroke morbidity and mortality based on our current understanding of their role in this syndrome.
Collapse
Affiliation(s)
- Lisa R Leon
- US Army Research Institute of Environmental Medicine, Thermal and Mountain Medicine Division, Natick, MA 01760-5007, USA.
| |
Collapse
|
42
|
Vardam TD, Zhou L, Appenheimer MM, Chen Q, Wang WC, Baumann H, Evans SS. Regulation of a lymphocyte-endothelial-IL-6 trans-signaling axis by fever-range thermal stress: hot spot of immune surveillance. Cytokine 2007; 39:84-96. [PMID: 17903700 PMCID: PMC2756671 DOI: 10.1016/j.cyto.2007.07.184] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 07/13/2007] [Accepted: 07/17/2007] [Indexed: 12/25/2022]
Abstract
The pleiotropic cytokine, interleukin-6 (IL-6), has emerged in recent years as a key regulator of the transition from innate to adaptive immunity through its ability to modulate leukocyte recruitment at inflammatory sites. This review highlights a newly identified role for IL-6 trans-signaling, initiated by an agonistic complex of IL-6 and a soluble form of IL-6 receptor alpha, in heightening immune surveillance of peripheral lymphoid organs during febrile inflammatory responses. Inflammatory cues provided by the thermal component of fever trigger IL-6 trans-signaling to act at discrete levels in the multistep adhesion cascade that governs the entry of blood-borne lymphocytes across 'gatekeeper' high endothelial venules (HEVs) in lymph nodes and Peyer patches. IL-6 trans-signaling-dependent mechanisms have been elucidated during thermal stimulation of primary tethering and rolling of lymphocytes along the lumenal surface of HEVs as well as during secondary firm arrest of lymphocytes in HEVs prior to their migration into the underlying parenchyma. These mechanisms profoundly increase the probability that lymphocytes that continuously patrol the body will engage in productive encounters with target antigens sequestered within lymphoid organs. Findings that the lymphocyte-HEV-IL-6 trans-signaling biological axis functions as a thermally-sensitive alert system that promotes immune surveillance provide insight into one of the unresolved mysteries in immunology regarding the benefits of mounting a febrile reaction during inflammation.
Collapse
Affiliation(s)
- Trupti D. Vardam
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Lei Zhou
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Michelle M. Appenheimer
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Qing Chen
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Wang-Chao Wang
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Heinz Baumann
- Department of Molecular and Cellular Biology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
| | - Sharon S. Evans
- Department of Immunology, Elm & Carlton Street, Roswell Park Cancer Institute, Buffalo, New York 14263 USA
- Corresponding author. Tel.: 716-845-3421; Fax: 716-845-8906
| |
Collapse
|
43
|
Abstract
The heat shock (HS) response is a generalized stress response that is characterized by the induced synthesis of a family of proteins referred to as heat shock proteins (HSPs). These proteins protect cells from a myriad of stressful insults in part by functioning as chaperones for denatured proteins. Increasing evidence suggests that the stress response is not limited to the HSP family of genes, but includes numerous other genes that are regulated by HS through the activation of the stress-activated transcription factor, heat shock factor-1 (HSF-1). Based on observations from our own in vivo hyperthermia models, we hypothesized that the CXC chemokine family of neutrophil activators and chemoattractants might be a previously unrecognized class of HS-responsive genes. Analysis of the promoters of the CXC family of chemokines in both human and mouse showed that they share a common promoter organization in which multiple copies of the HSF-1 binding sequence (heat shock response element, HRE) are present in the 5'-upstream flanking region of each of these genes. We have reviewed previous work from our own laboratory and others demonstrating a strong correlation between activation of HSPs and generation of CXC chemokines. Although rigorous experimental evidence is still required to support this hypothesis, this strong and consistent correlation between expression of HSPs and CXC chemokines in vivo and in vitro model systems suggests that the putative HREs present in the CXC chemokine genes are functionally active. We speculate that the activation of the HS response during febrile range hyperthermia, inflammation, infection and injury directly enhances expression of the CXC chemokines, thereby augmenting neutrophil delivery to sites of infection and injury during febrile illnesses.
Collapse
Affiliation(s)
- Ashish Nagarsekar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
44
|
Ostberg JR, Ertel BR, Lanphere JA. An important role for granulocytes in the thermal regulation of colon tumor growth. Immunol Invest 2007; 34:259-72. [PMID: 16136781 PMCID: PMC1343464 DOI: 10.1081/imm-200064477] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Several lines of research show that cells of the immune response are sensitive to thermal variations in their microenvironment, such as that which occurs during inflammation and fever; these data have led to the hypothesis that strategic applications of heat could assist in controlling tumor growth in animal models. The innate immune response is known to play a critical role in the development of effective anti-tumor immunity and granulocytes such as polymorphonuclear neutrophils (PMNs), as key mediators of inflammation, have been suggested to have the potential to initiate immune response cascades against tumors. Thus, we hypothesized that PMNs may play a crucial role in mediating the anti-tumor effects of a mild, fever-range whole-body hyperthermia (FR-WBH) protocol, where core body temperatures are raised to 39.5-40 degrees C for 8 hrs. Indeed, in BALB/c mice bearing the colon tumor CT26, the anti-tumor effect of WBH correlates with increased granulocytic infiltrate at the tumor site as determined using immunohistochemical analysis for Gr-1+ cells. In both BALB/c mice bearing CT26 and SCID mice bearing human colon tumors, PMN depletion in vivo using anti-Gr-1 ascites ablated the anti-tumor effect of mild WBH. Because mild thermal stress is also found to enhance the respiratory burst of granulocytes, these data collectively suggest that the thermal stimulation of granulocytes may help to prevent tumor establishment. Overall, these results may have implications for the design of thermal therapy protocols in cancer immunotherapy.
Collapse
Affiliation(s)
- Julie R Ostberg
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | | | | |
Collapse
|
45
|
Njemini R, Lambert M, Demanet C, Kooijman R, Mets T. Basal and infection-induced levels of heat shock proteins in human aging. Biogerontology 2007; 8:353-64. [PMID: 17211576 DOI: 10.1007/s10522-006-9078-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/13/2006] [Indexed: 01/11/2023]
Abstract
Heat shock proteins (Hsp) are ubiquitously expressed proteins, which are highly inducible by a variety of stressful stimuli. As organisms age, various denatured proteins such as proteins modified by oxidation have been detected. Such abnormal proteins might serve as stress signals for the induction of Hsp, which plays indispensable roles in protecting proteins from denaturation. Although it is well known that the heat shock induced expression of Hsp decreases with age, little attention has been given to the unstimulated, basal levels of Hsp. Therefore, a study was performed to examine the expression pattern of various Hsp with aging, under normal physiological conditions in human peripheral blood cells. The basal levels of Hsp32, Hsp70 and Hsp90 increased significantly with age in controls but not patients. Moreover, the levels of Hsp32, Hsp70, Hsp90, but not Hsp27 correlated positively among each other, indicating both common and different regulatory mechanisms. Higher levels of Hsp32, Hsp70 and Hsp90 were noticed in patients with inflammation, a commonly occurring natural stimulant of Hsp production, compared to control subjects. The production of Hsp appeared to be related to the circulating levels of C-reactive protein and cytokines.
Collapse
Affiliation(s)
- Rose Njemini
- Gerontology and Geriatrics, Academic Hospital, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | | | | | | | | |
Collapse
|
46
|
Heidemann SM, Glibetic M. Heat stress protects against lung injury in the neutropenic, endotoxemic rat. Inflammation 2006; 29:47-53. [PMID: 16502346 DOI: 10.1007/s10753-006-8969-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objective of this study is to determine if heat stress prior to endotoxemia diminishes cardiopulmonary dysfunction by attenuating the cytokine inflammatory response. Rats were assigned to either: 1) neutropenia; 2) heat; 3) neutropenia, LPS; or 4) heat, neutropenia, LPS. Heart rate, blood gases, and blood, lung lavage, and lung mRNA for tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and macrophage inflammatory protein (MIP)-2 were measured. Heat given before LPS resulted in a similar A-a O(2) gradient as the heat-alone and neutropenic groups (8 +/- 8 versus 8 +/- 7 versus 4 +/- 3 mm Hg) and a lower A-a O(2) gradient when compared to the neutropenic, LPS rats (8 +/- 8 versus 22 +/- 8 mm Hg, p < 0.003). Blood, lung lavage, and lung mRNA for TNF-alpha, IL-1beta, and MIP-2 were similar in the LPS rats regardless of heat. Heart rate was similar in both LPS groups but higher than non-LPS groups. Heat pretreatment attenuates lung injury in the neutropenic, endotoxemic rat but not by decreasing TNF-alpha, IL-1beta, or MIP-2 in the lung. Heat prior to LPS did not prevent cardiac dysfunction in neutropenic rats.
Collapse
Affiliation(s)
- Sabrina M Heidemann
- Departments of Pediatric Critical Care Medicine and Clinical Pharmacology, Children's Hospital of Michigan, Wayne State University, 3901 Beaubien Blvd., Detroit, Michigan, 48201-2196, USA.
| | | |
Collapse
|
47
|
Starkie RL, Hargreaves M, Rolland J, Febbraio MA. Heat stress, cytokines, and the immune response to exercise. Brain Behav Immun 2005; 19:404-12. [PMID: 16061150 DOI: 10.1016/j.bbi.2005.03.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 02/28/2005] [Accepted: 03/08/2005] [Indexed: 02/06/2023] Open
Abstract
To examine the effect of exercise and heat stress on cytokine production, seven males (77 +/- 2 kg; VO(2peak) = 4.7 +/- 0.4 L min(-1)) completed two (15 degrees C; CON or 35 degrees C; HEAT) 90 min cycling trials at 70% VO(2peak). Blood samples were collected throughout and analysed for spontaneous, and LPS-stimulated intracellular monocyte cytokine production, plasma cytokine levels, and circulating stress hormone concentration. Plasma epinephrine, norepinephrine, and cortisol concentration were elevated (P < .05) as a result of exercise in CON. HEAT increased (P < .05) epinephrine and norepinephrine levels, however, cortisol concentration was not different between the two trials. Exercise had no effect on the concentration of circulating monocytes spontaneously producing IL-6, TNF-alpha or IL-1alpha, however, there was a decrease in the amount of TNF-alpha per cell post-compared with pre-exercise. HEAT had no effect on spontaneous intracellular cytokine production. Circulating levels of both IL-6 and TNF-alpha were elevated in HEAT, but not in CON. Upon stimulation with LPS, the concentration of monocytes positive for IL-6, TNF-alpha, and IL-1alpha production was elevated (P < .01) post- and 2 h post-compared with pre-exercise. Stimulated cells, however, produced less (P < .05) TNF-alpha post-exercise and less (P < .05) TNF-alpha and IL-6 2 h post-exercise. HEAT resulted in an increase (P < .05) in the concentration of stimulated cells positive for TNF-alpha and IL-1alpha, however, did not affect the amount of cytokine produced by stimulated monocytes. These results demonstrate that exercise decreases the amount of cytokine produced by LPS-stimulated monocytes, possibly due to elevated levels of circulating stress hormones. Heat stress did not, however, augment the suppression in the amount of cytokine produced by circulating monocytes upon stimulation, despite elevated catecholamines.
Collapse
Affiliation(s)
- R L Starkie
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | | | | | | |
Collapse
|
48
|
Pollheimer J, Zellner M, Eliasen MM, Roth E, Oehler R. Increased susceptibility of glutamine-depleted monocytes to fever-range hyperthermia: the role of 70-kDa heat shock protein. Ann Surg 2005; 241:349-55. [PMID: 15650647 PMCID: PMC1356922 DOI: 10.1097/01.sla.0000152028.19115.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study investigates the effect of fever-range hyperthermia on Gln-starving monocytes and the role of the 70-kDa heat shock protein Hsp70. SUMMARY BACKGROUND DATA Fever is a protective acute-phase response to infection. However, in critically ill patients, the harmful effects of fever seem to be predominant. Critical illness is frequently associated with reduced plasma glutamine (Gln) levels, which contribute to the immune suppression in these patients due to impaired monocyte function. METHODS Isolated monocytes were suspended in Gln-depleted medium and exposed to 41 degrees C. Cell survival was determined by an MTT-based assay, and phagocytosis of Escherichia coli was measured by flow cytometry. Expression of Hsp70 was determined by Western blot. RESULTS Hyperthermia for 300 minutes strongly decreased the viability of Gln-depleted monocytes (85%), whereas it had only a moderate effect on Gln-supplied cells (45%, P < 0.05). Shorter treatments (45 minutes) of Gln-starving monocytes had almost no effects on viability but decreased the phagocytosis activity by 30.8%. In addition, the expression of Hsp70 was inhibited almost completely. CONCLUSION These data show that Gln-starving monocytes have a reduced thermoresistance. This suggests that elevated body temperature damages monocytes in critically ill patients with reduced plasma Gln-levels possibly via an inhibition of the cytoprotective protein Hsp70.
Collapse
Affiliation(s)
- Jürgen Pollheimer
- Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
49
|
Sanlorenzo L, Zhao B, Spight D, Denenberg AG, Page K, Wong HR, Shanley TP. Heat shock inhibition of lipopolysaccharide-mediated tumor necrosis factor expression is associated with nuclear induction of MKP-1 and inhibition of mitogen-activated protein kinase activation. Crit Care Med 2004; 32:2284-92. [PMID: 15640643 DOI: 10.1097/01.ccm.0000145580.96994.c9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Application of heat shock before an inflammatory stimulus often results in an attenuated response to that stimulus. As a result, it has become increasingly appreciated that heat shock may induce cross-tolerance to a variety of stimuli based on in vitro and in vivo models. Circulating peripheral blood monocytes are key mediators of cytokine release following endotoxin challenge. The mitogen-activated protein kinases play a key role in the transcriptional regulation of this response including expression of tumor necrosis factor. As such, counterregulatory phosphatases that target mitogen-activated protein kinase may play a role in this heat shock-mediated effect. We hypothesized that prior heat shock to monocytes would induce a phosphatase, MKP-1, that regulated mitogen-activated protein kinase activity and subsequently conferred cross-tolerance to lipopolysaccharide stimulation. DESIGN Experimental. SETTING University research foundation laboratory. SUBJECTS THP-1 human monocyte cell line. INTERVENTIONS THP-1 cells were exposed to either heat shock (43 degrees C, 1 hr) or normothermia (37 degrees C, 1 hr) and allowed to recover before stimulation with endotoxin (lipopolysaccharide). MEASUREMENTS AND MAIN RESULTS Induction of a heat shock response was determined by heat shock protein-70 expression. Tumor necrosis factor and interleukin-10 were measured by enzyme-linked immunosorbent assay to assess heat shock inhibition of lipopolysaccharide-induced gene expression. The effect of heat shock on lipopolysaccharide-mediated activation of the p38 and ERK kinases was examined by measuring phospho-specific isoforms of p38 and ERK1/2 and correlated to in vitro kinase activity. Confirmatory data were generated from experiments employing either pharmacologic inhibition or genetic deletion of MKP-1. Heat shock induced the nuclear localized phosphatase, MKP-1, that attenuated p38 and ERK kinase activity resulting in significantly diminished tumor necrosis factor expression in response to lipopolysaccharide. CONCLUSIONS The effect of heat shock on decreasing the tumor necrosis factor response to lipopolysaccharide is conferred by induction of MKP-1, which negatively regulates p38 and ERK kinases. Modulation of phosphatase activity may be a potential strategy for attenuating acute inflammatory responses.
Collapse
Affiliation(s)
- Lauren Sanlorenzo
- Division of Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Mikami KI, Otaka M, Goto T, Miura K, Ohshima S, Yoneyama K, Lin JG, Watanabe D, Segawa D, Kataoka E, Odashima M, Watanabe S. Induction of a 72-kDa heat shock protein and protection against lipopolysaccharide-induced liver injury in cirrhotic rats. J Gastroenterol Hepatol 2004; 19:884-90. [PMID: 15242491 DOI: 10.1111/j.1440-1746.2004.03401.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM A 70-kDa heat shock protein (stress-inducible HSP70, HSP72) has been reported to be a cytoprotectant in a variety of organs. It has been reported that HSP72 protected non-cirrhotic rats against endotoxemia. However, its cytoprotective effect against endotoxemia in cirrhotic rats has not yet been studied. In this study, we investigated the cytoprotective effect of HSP72 on lipopolysaccharide (LPS)-induced liver injury in carbon tetrachloride (CCl(4))-induced cirrhotic rats. METHODS Liver cirrhosis was produced by an 8-week intraperitoneal injection of CCl(4) in male Sprague-Dawley rats. Expression of HSP72 was investigated using western blot analysis. Cirrhotic rats were given an intraperitoneal injection of LPS (10 mg/kg) with or without hyperthermia (42.5 degrees C, 15 min) preconditioning. Liver injury was assessed biochemically (aspartate transaminase, alanine transaminase, bilirubin, lactate dehydrogenase, creatinine) and histologically. The plasma tumor necrosis factor (TNF)-alpha level was determined. RESULTS Hyperthermia preconditioning induced a 4-fold increase in HSP72 in the cirrhotic rat liver. Pre-induction of HSP72 prevented LPS-induced liver injury, as evaluated using serum biochemical parameters and histology with reduced TNF-alpha response. CONCLUSION These findings suggest that pre-induction of HSP72 may provide therapeutic strategies for Gram-negative sepsis-induced liver injury in liver cirrhosis.
Collapse
Affiliation(s)
- Ken-Ichiro Mikami
- First Department of Internal Medicine, Akita University School of Medicine, 1-1-1 Hondo, Akita City, Akita 910-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|