1
|
Lindgren ES, Yan R, Kuo YM, Gao Q, de Souza Goncalves L, Chen FY, Chan MF, Verkman AS, Cil O, Pasricha ND. Lysophosphatidic acid receptor 3 (LPAR3) regulates ocular surface chloride transport via calcium signaling. Exp Eye Res 2025; 255:110346. [PMID: 40112945 DOI: 10.1016/j.exer.2025.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Dry eye is a multifactorial disease associated with impaired tear film homeostasis, damaging the ocular surface epithelium. Lysophosphatidic acid receptors (LPARs) are G-protein coupled receptors involved in Ca2+ and cAMP signaling via PLC and adenylyl cyclase activation. LPAR activation is involved in cell proliferation and wound healing in human corneal epithelial cells (HCECs) and in neuropathic pain. This study investigates the expression and functions of LPARs in ocular surface epithelial cells. Functional measurements of ocular surface potential difference (OSPD) were done in mice with topically applied, selective LPAR modulators. LPAR3 immunostaining was performed in mouse and human cornea and conjunctiva, and mouse lacrimal gland. LPAR-induced Ca2+ signaling was studied in primary and immortalized HCECs. The general LPAR agonist, linoleoyl LPA, and the LPAR3 selective agonist, 2S-OMPT, stimulated ocular surface Cl- secretion via Ca2+-activated Cl- channels (CaCCs). LPAR3 was expressed in the corneal and conjunctival epithelia of mice and humans, as well as in mouse lacrimal gland. Activation of LPAR and LPAR3 in HCECs transiently elevated intracellular Ca2+ through the Gq/PLC signaling pathway. LPAR3 agonists may potentially have therapeutic efficacy in ocular surface diseases, including dry eye disease.
Collapse
Affiliation(s)
- Ethan S Lindgren
- Department of Ophthalmology, University of California, San Francisco, USA
| | - Rongshan Yan
- Department of Ophthalmology, University of California, San Francisco, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, USA
| | - Qi Gao
- Department of Pediatrics, University of California, San Francisco, USA
| | | | - Feeling Y Chen
- Department of Cell & Tissue Biology, University of California, San Francisco, USA
| | - Matilda F Chan
- Department of Ophthalmology, University of California, San Francisco, USA; Francis I. Proctor Foundation, University of California, San Francisco, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, USA
| | - Onur Cil
- Department of Pediatrics, University of California, San Francisco, USA
| | - Neel D Pasricha
- Department of Ophthalmology, University of California, San Francisco, USA; Francis I. Proctor Foundation, University of California, San Francisco, USA.
| |
Collapse
|
2
|
Watanabe M, Tsugeno Y, Sato T, Higashide M, Nishikiori N, Umetsu A, Ogawa T, Furuhashi M, Ohguro H. Lysophosphatidic Acid Modulates TGF-β2-Induced Biological Phenotype in Human Conjunctival Fibroblasts. Life (Basel) 2024; 14:770. [PMID: 38929752 PMCID: PMC11204428 DOI: 10.3390/life14060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although lysophosphatidic acid (LPA) is known to have multiple pathophysiological roles, its contributions to ocular tissues, especially conjunctival fibrogenesis, remain to be elucidated. METHODS To study this issue, the effects of LPA on transforming growth factor-β2 (TGF-β2)-induced fibrogenesis of two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblasts (HconF) were examined by the following analyses: (1) planar proliferation determined by transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran permeability measurements, (2) real-time metabolic analyses, (3) measurements of the size and stiffness of 3D spheroids, and (4) mRNA expression of extracellular matrix (ECM) molecules and their modulators. RESULTS LPA had no effect on TGF-β2-induced increase in the planar proliferation of HconF cells. LPA induced a more quiescent metabolic state in 2D HconF cells, but this metabolic suppression by LPA was partially blunted in the presence of TGF-β2. In contrast, LPA caused a substantial decrease in the hardness of 3D HconF spheroids independently of TGF-β2. In agreement with these different LPA-induced effects between 2D and 3D cultured HconF cells, mRNA expressions of ECM and their modulators were differently modulated. CONCLUSION The findings that LPA induced the inhibition of both TGF-β2-related and -unrelated subepithelial proliferation of HconF cells may be clinically applicable.
Collapse
Affiliation(s)
- Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Yuri Tsugeno
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (Y.T.); (M.H.); (N.N.); (A.U.)
| |
Collapse
|
3
|
Dacheux MA, Norman DD, Tigyi GJ, Lee SC. Emerging roles of lysophosphatidic acid receptor subtype 5 (LPAR5) in inflammatory diseases and cancer. Pharmacol Ther 2023; 245:108414. [PMID: 37061203 DOI: 10.1016/j.pharmthera.2023.108414] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that regulates a variety of cellular functions such as cell proliferation, migration, survival, calcium mobilization, cytoskeletal rearrangements, and neurite retraction. The biological actions of LPA are mediated by at least six G protein-coupled receptors known as LPAR1-6. Given that LPAR1-3 were among the first LPARs identified, the majority of research efforts have focused on understanding their biology. This review provides an in-depth discussion of LPAR5, which has recently emerged as a key player in regulating normal intestinal homeostasis and modulating pathological conditions such as pain, itch, inflammatory diseases, and cancer. We also present a chronological overview of the efforts made to develop compounds that target LPAR5 for use as tool compounds to probe or validate LPAR5 biology and therapeutic agents for the treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Mélanie A Dacheux
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Derek D Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Gábor J Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America
| | - Sue Chin Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, United States of America.
| |
Collapse
|
4
|
Regulation of Tumor Immunity by Lysophosphatidic Acid. Cancers (Basel) 2020; 12:cancers12051202. [PMID: 32397679 PMCID: PMC7281403 DOI: 10.3390/cancers12051202] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research.
Collapse
|
5
|
Wang J, Sun Y, Teng S, Li K. Prediction of sepsis mortality using metabolite biomarkers in the blood: a meta-analysis of death-related pathways and prospective validation. BMC Med 2020; 18:83. [PMID: 32290837 PMCID: PMC7157979 DOI: 10.1186/s12916-020-01546-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sepsis is a leading cause of death in intensive care units (ICUs), but outcomes of individual patients are difficult to predict. The recently developed clinical metabolomics has been recognized as a promising tool in the clinical practice of critical illness. The objective of this study was to identify the unique metabolic biomarkers and their pathways in the blood of sepsis nonsurvivors and to assess the prognostic value of these pathways. METHODS We searched PubMed, EMBASE, Cochrane, Web of Science, CNKI, Wangfang Data, and CQVIP from inception until July 2019. Eligible studies included the metabolomic analysis of blood samples from sepsis patients with the outcome. The metabolic pathway was assigned to each metabolite biomarker. The meta-analysis was performed using the pooled fold changes, area under the receiver operating characteristic curve (AUROC), and vote-counting of metabolic pathways. We also conducted a prospective cohort metabolomic study to validate the findings of our meta-analysis. RESULTS The meta-analysis included 21 cohorts reported in 16 studies with 2509 metabolite comparisons in the blood of 1287 individuals. We found highly limited overlap of the reported metabolite biomarkers across studies. However, these metabolites were enriched in several death-related metabolic pathways (DRMPs) including amino acids, mitochondrial metabolism, eicosanoids, and lysophospholipids. Prediction of sepsis death using DRMPs yielded a pooled AUROC of 0.81 (95% CI 0.76-0.87), which was similar to the combined metabolite biomarkers with a merged AUROC of 0.82 (95% CI 0.78-0.86) (P > 0.05). A prospective metabolomic analysis of 188 sepsis patients (134 survivors and 54 nonsurvivors) using the metabolites from DRMPs produced an AUROC of 0.88 (95% CI 0.78-0.97). The sensitivity and specificity for the prediction of sepsis death were 80.4% (95% CI 66.9-89.4%) and 78.8% (95% CI 62.3-89.3%), respectively. CONCLUSIONS DRMP analysis minimizes the discrepancies of results obtained from different metabolomic methods and is more practical than blood metabolite biomarkers for sepsis mortality prediction. TRIAL REGISTRATION The meta-analysis was registered on OSF Registries, and the prospective cohort study was registered on the Chinese Clinical Trial Registry (ChiCTR1800015321).
Collapse
Affiliation(s)
- Jing Wang
- Department of Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China.,School of Medicine, University of California, San Diego, CA, 92103, USA
| | - Yizhu Sun
- Department of Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Shengnan Teng
- Department of Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Kefeng Li
- School of Medicine, University of California, San Diego, CA, 92103, USA.
| |
Collapse
|
6
|
Kim HJ, Kim JY, Lee BH, Choi SH, Rhim H, Kim HC, Ahn SY, Jeong SW, Jang M, Cho IH, Nah SY. Gintonin, an exogenous ginseng-derived LPA receptor ligand, promotes corneal wound healing. J Vet Sci 2018; 18:387-397. [PMID: 27586470 PMCID: PMC5639092 DOI: 10.4142/jvs.2017.18.3.387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/03/2016] [Accepted: 08/26/2016] [Indexed: 01/25/2023] Open
Abstract
Ginseng gintonin is an exogenous ligand of lysophosphatidic acid (LPA) receptors. Accumulating evidence shows LPA helps in rapid recovery of corneal damage. The aim of this study was to evaluate the therapeutic efficacy of gintonin in a rabbit model of corneal damage. We investigated the signal transduction pathway of gintonin in human corneal epithelium (HCE) cells to elucidate the underlying molecular mechanism. We next evaluated the therapeutic effects of gintonin, using a rabbit model of corneal damage, by undertaking histochemical analysis. Treatment of gintonin to HCE cells induced transient increases of [Ca2+]i in concentration-dependent and reversible manners. Gintonin-mediated mobilization of [Ca2+]i was attenuated by LPA1/3 receptor antagonist Ki16425, phospholipase C inhibitor U73122, inositol 1,4,5-triphosphate receptor antagonist 2-APB, and intracellular Ca2+ chelator BAPTA-AM. Gintonin facilitated in vitro wound healing in a concentration-dependent manner. When applied as an eye-drop to rabbits with corneal damage, gintonin rapidly promoted recovery. Histochemical analysis showed gintonin decreased corneal apoptosis and increased corneal cell proliferation. We demonstrated that LPA receptor activation by gintonin is linked to in vitro and in vivo therapeutic effects against corneal damage. Gintonin can be applied as a clinical agent for the rapid healing of corneal damage.
Collapse
Affiliation(s)
- Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Joon Young Kim
- Veterinary Medical Teaching Hospital, Konkuk University, Seoul 05029, Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hyewon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and toxicology program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Seoung-Yob Ahn
- Veterinary Medical Teaching Hospital, Konkuk University, Seoul 05029, Korea
| | - Soon-Wuk Jeong
- Veterinary Medical Teaching Hospital, Konkuk University, Seoul 05029, Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Oriental Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Oriental Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
7
|
Suarez MF, Piqueras MC, Correa L, Esposito E, Barros MF, Bhattacharya SK, Urrets-Zavalia JA, Serra HM. Phospholipidomic Studies in Human Cornea From Climatic Droplet Keratopathy. J Cell Biochem 2017; 118:3920-3931. [PMID: 28401586 DOI: 10.1002/jcb.26045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/10/2017] [Indexed: 11/06/2022]
Abstract
Climatic droplet keratopathy (CDK) is an acquired degenerative disease predominantly affecting males over 40 years old. It results in progressive corneal opacities usually affecting both eyes. CDK is multifactorial and its etiology remains unknown. Our recent findings are consistent with CDK pathology being driven by environmental factors with oxidative stress playing an important role (e.g.,, contributing to lipid peroxidation) rather than climate factors. The changes in corneal lipid composition affected by environmental factors remain understudied. The purpose of this study was to systematically investigate phospholipids profile (phosphatidylcholine [PC] and phosphatidylserine [PS]) in corneas from CDK patients using tandem mass spectrometry. Samples from CDK areas and from non-affected areas were obtained from patients diagnosed with CDK who underwent cataract surgery, were subjected to lipid extraction using a modified Bligh and Dyer method; protein concentrations were determined using the Bradford's method. Lipids were identified and subjected to ratiometric quantification using TSQ Quantum Access Max triple quadrupole mass spectrometer, using appropriate class specific lipid standards. All phospholipid classes showed lower total amounts in affected areas compared to control areas from CDK's corneas. Comparative profiles of two phospholipid classes (PC, PS) between CDK areas and control areas showed several common species between them. We also found a few unique lipids that were absent in CDK areas compared to controls and vice versa. Lower amount of phospholipids in CDK areas compared to control areas could be attributed to the lipid peroxidation in the affected corneal regions as a consequence of increased oxidative stress. J. Cell. Biochem. 118: 3920-3931, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Fernanda Suarez
- CIBICI-CONICET, Faculty of Chemical Sciences, Department of Clinical Biochemistry, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Maria Carmen Piqueras
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Leandro Correa
- Department of Ophthalmology, University Clinic Reina Fabiola, Universidad Catolica de Cordoba, Cordoba, Argentina
| | - Evangelina Esposito
- Department of Ophthalmology, University Clinic Reina Fabiola, Universidad Catolica de Cordoba, Cordoba, Argentina
| | - Maria Fernanda Barros
- Department of Ophthalmology, University Clinic Reina Fabiola, Universidad Catolica de Cordoba, Cordoba, Argentina
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Julio A Urrets-Zavalia
- Department of Ophthalmology, University Clinic Reina Fabiola, Universidad Catolica de Cordoba, Cordoba, Argentina
| | - Horacio M Serra
- CIBICI-CONICET, Faculty of Chemical Sciences, Department of Clinical Biochemistry, Universidad Nacional de Cordoba, Cordoba, Argentina
| |
Collapse
|
8
|
Sinderewicz E, Grycmacher K, Boruszewska D, Kowalczyk-Zięba I, Yamamoto Y, Yoshimoto Y, Woclawek-Potocka I. Lysophosphatidic Acid Synthesis and its Receptors' Expression in the Bovine Oviduct During the Oestrous Cycle. Reprod Domest Anim 2016; 51:541-9. [PMID: 27335048 DOI: 10.1111/rda.12717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022]
Abstract
Lysophosphatidic acid (LPA) is a naturally occurring simple phospholipid which in the bovine reproductive system can be produced in the endometrium, corpus luteum, ovarian follicle and embryo. In this study, we examined the possibility that LPA receptors are expressed, and LPA synthesized, in the bovine oviduct. We found that the concentration of LPA was highest in infundibulum in the follicular phase of the oestrous cycle and was relatively high during the early-luteal phase in all examined parts of the oviduct. We also documented that LPA synthesis engages both available pathways for LPA production. The autotaxin (ATX) protein expression was significantly higher in the infundibulum compared to the isthmus during the follicular phase of the oestrous cycle. During the early-luteal phase of the oestrous cycle, ATX and phospholipase A2 (PLA2) protein expression was highest in ampulla, although the expression of LPARs was not as dynamic as LPA concentration in the oviduct tissue, and we presume that in the bovine oviduct, the most abundantly expressed receptor is LPAR2. In conclusion, our results indicate that the bovine oviduct is a site of LPA synthesis and a target for LPA action in the bovine reproductive tract. We documented that LPAR2 is the most abundantly expressed in the bovine oviduct. We hypothesize that in the bovine oviduct, LPA may be involved in the transport of gametes, fertilization and cellular signalling between the oviduct and cumulus-oocyte complex.
Collapse
Affiliation(s)
- E Sinderewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - K Grycmacher
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - D Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - I Kowalczyk-Zięba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Y Yamamoto
- Department of Animal Science, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Y Yoshimoto
- Department of Animal Science, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - I Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
9
|
Boruszewska D, Sinderewicz E, Kowalczyk-Zieba I, Grycmacher K, Woclawek-Potocka I. Studies on lysophosphatidic acid action during in vitro preimplantation embryo development. Domest Anim Endocrinol 2016; 54:15-29. [PMID: 26379100 DOI: 10.1016/j.domaniend.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022]
Abstract
Assisted reproductive technologies, including in vitro embryo production (IVP), have been successfully used in animal reproduction to optimize breeding strategies for improved production and health in animal husbandry. Despite the progress in IVP techniques over the years, further improvements in in vitro embryo culture systems are required for the enhancement of oocyte and embryo developmental competence. One of the most important issues associated with IVP procedures is the optimization of the in vitro culture of oocytes and embryos. Studies in different species of animals and in humans have identified important roles for receptor-mediated lysophosphatidic acid (LPA) signaling in multiple aspects of human and animal reproductive tract function. The data on LPA signaling in the ovary and uterus suggest that LPA can directly contribute to embryo-maternal interactions via its influence on early embryo development beginning from the influence of the ovarian environment on the oocyte to the influence of the uterine environment on the preimplantation embryo. This review discusses the current status of LPA as a potential supplement in oocyte maturation, fertilization, and embryo culture media and current views on the potential involvement of the LPA signaling pathway in early embryo development.
Collapse
Affiliation(s)
- D Boruszewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - E Sinderewicz
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - I Kowalczyk-Zieba
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - K Grycmacher
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - I Woclawek-Potocka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-748, Poland.
| |
Collapse
|
10
|
Lu X, Elizondo RA, Nielsen R, Christensen EI, Yang J, Hammock BD, Watsky MA. Vitamin D in Tear Fluid. Invest Ophthalmol Vis Sci 2015; 56:5880-7. [PMID: 26348637 DOI: 10.1167/iovs.15-17177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine the source(s) of vitamin D in tear fluid and examine the expression of the endocytic proteins and putative vitamin D transporters megalin and cubilin in lacrimal and Harderian glands. METHODS Wild-type, heterozygous, and vitamin D receptor (VDR) knockout C57BL/6 mice were used, with a subset of knockout mice fed a replenishment diet for some studies. Mouse lacrimal and Harderian glands from each group were used to measure megalin and cubilin by RT-PCR, Western blot, and immunohistochemistry. New Zealand white rabbits were used to collect lacrimal and accessory gland fluid for vitamin D mass spectroscopy measurements. RESULTS Ten-week-old knockout mice were significantly (P < 0.05) smaller than wild-type mice. Real-time PCR and Western blot showed decreased expression of megalin and cubilin in select VDR knockout mouse groups. Immunohistochemistry showed apical duct cell megalin staining and weaker megalin staining in VDR knockout mice compared with controls. Vitamin D2 was more prevalent in rabbit lacrimal and accessory gland fluid than vitamin D3, and greater amounts of Vitamin D2 were found in in tear fluid obtained directly from lacrimal and accessory glands as compared with plasma concentrations. CONCLUSIONS This is the first study to demonstrate the presence of megalin and cubilin in lacrimal and accessory glands responsible for producing tear fluid. The results strengthen the hypothesis that megalin and cubilin are likely involved in the secretory pathway of vitamin D into tear fluid by the duct cells.
Collapse
Affiliation(s)
- Xiaowen Lu
- Department of Cell Biology and Anatomy Georgia Regents University, Augusta, Georgia, United States
| | - Rodolfo A Elizondo
- Department of Cell Biology and Anatomy Georgia Regents University, Augusta, Georgia, United States
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Jun Yang
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, California, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, California, United States
| | - Mitchell A Watsky
- Department of Cell Biology and Anatomy Georgia Regents University, Augusta, Georgia, United States
| |
Collapse
|
11
|
Choi SH, Jung SW, Lee BH, Kim HJ, Hwang SH, Kim HK, Nah SY. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions. Front Pharmacol 2015; 6:245. [PMID: 26578955 PMCID: PMC4621423 DOI: 10.3389/fphar.2015.00245] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/12/2015] [Indexed: 01/21/2023] Open
Abstract
Ginseng, the root of Panax ginseng, is used as a traditional medicine. Despite the long history of the use of ginseng, there is no specific scientific or clinical rationale for ginseng pharmacology besides its application as a general tonic. The ambiguous description of ginseng pharmacology might be due to the absence of a predominant active ingredient that represents ginseng pharmacology. Recent studies show that ginseng abundantly contains lysophosphatidic acids (LPAs), which are phospholipid-derived growth factor with diverse biological functions including those claimed to be exhibited by ginseng. LPAs in ginseng form a complex with ginseng proteins, which can bind and deliver LPA to its cognate receptors with a high affinity. As a first messenger, gintonin produces second messenger Ca2+ via G protein-coupled LPA receptors. Ca2+ is an intracellular mediator of gintonin and initiates a cascade of amplifications for further intercellular communications by activation of Ca2+-dependent kinases, receptors, gliotransmitter, and neurotransmitter release. Ginsenosides, which have been regarded as primary ingredients of ginseng, cannot elicit intracellular [Ca2+]i transients, since they lack specific cell surface receptor. However, ginsenosides exhibit non-specific ion channel and receptor regulations. This is the key characteristic that distinguishes gintonin from ginsenosides. Although the current discourse on ginseng pharmacology is focused on ginsenosides, gintonin can definitely provide a mode of action for ginseng pharmacology that ginsenosides cannot. This review article introduces a novel concept of ginseng ligand-LPA receptor interaction and proposes to establish a paradigm that shifts the focus from ginsenosides to gintonin as a major ingredient representing ginseng pharmacology.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Seok-Won Jung
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, Sangji University , Wonju, South Korea
| | - Ho-Kyoung Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine , Daejeon, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| |
Collapse
|
12
|
Edwards G, Aribindi K, Guerra Y, Lee RK, Bhattacharya SK. Phospholipid profiles of control and glaucomatous human aqueous humor. Biochimie 2014; 101:232-47. [PMID: 24561385 PMCID: PMC3995849 DOI: 10.1016/j.biochi.2014.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
To compare phospholipid (phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol) profiles of human control and glaucomatous aqueous humor (AQH). AQH samples were procured during surgery from human POAG and control subjects (n = 15 each). Samples were used following institutional review board approved protocols and adhering to the tenets of the Declaration of Helsinki. Lipid extraction was performed using a modification of the Bligh and Dyer method, protein concentrations were determined using the Bradford's method, and select samples were confirmed with Densitometry of PHAST gels. Lipids were identified and subjected to ratiometric quantification using a TSQ Quantum Access Max triple quadrupole mass spectrometer utilizing precursor ion scan (PIS) or neutral ion loss scan (NLS) using appropriate class specific lipid standards in a two step quantification process. The comparative profiles of phosphatidylcholines, phosphatidylserines, phosphatidylethanolamines and phosphatidylinositols between control and glaucomatous AQH showed several species common between them. A number of unique lipids in all four phospholipid classes were also identified in control eyes that were absent in glaucomatous eyes and vice versa. A number of phospholipids were found to be uniquely present in control, but absent in glaucomatous AQH and vice versa. Compared with a previous study of control and POAG red blood cells, a number of these phospholipids are absent locally (AQH).
Collapse
Affiliation(s)
- Genea Edwards
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Katyayini Aribindi
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Yenifer Guerra
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
13
|
Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55:1192-214. [PMID: 24643338 DOI: 10.1194/jlr.r046458] [Citation(s) in RCA: 553] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA's functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1-6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs LPA receptor-mediated effects have been described in numerous cell types and model systems, both in vitro and in vivo, through gain- and loss-of-function studies. These studies have revealed physiological and pathophysiological influences on virtually every organ system and developmental stage of an organism. These include the nervous, cardiovascular, reproductive, and pulmonary systems. Disturbances in normal LPA signaling may contribute to a range of diseases, including neurodevelopmental and neuropsychiatric disorders, pain, cardiovascular disease, bone disorders, fibrosis, cancer, infertility, and obesity. These studies underscore the potential of LPA receptor subtypes and related signaling mechanisms to provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yun C Yung
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicole C Stoddard
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037 Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
14
|
Lysophosphatidic acid (LPA) signaling in human and ruminant reproductive tract. Mediators Inflamm 2014; 2014:649702. [PMID: 24744506 PMCID: PMC3973013 DOI: 10.1155/2014/649702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/24/2014] [Indexed: 01/28/2023] Open
Abstract
Lysophosphatidic acid (LPA) through activating its G protein-coupled receptors (LPAR 1–6) exerts diverse cellular effects that in turn influence several physiological processes including reproductive function of the female. Studies in various species of animals and also in humans have identified important roles for the receptor-mediated LPA signaling in multiple aspects of human and animal reproductive tract function. These aspects range from ovarian and uterine function, estrous cycle regulation, early embryo development, embryo implantation, decidualization to pregnancy maintenance and parturition. LPA signaling can also have pathological consequences, influencing aspects of endometriosis and reproductive tissue associated tumors. The review describes recent progress in LPA signaling research relevant to human and ruminant reproduction, pointing at the cow as a relevant model to study LPA influence on the human reproductive performance.
Collapse
|
15
|
Rao PV. Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma. J Ocul Pharmacol Ther 2014; 30:181-90. [PMID: 24283588 PMCID: PMC3991961 DOI: 10.1089/jop.2013.0194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/23/2013] [Indexed: 01/21/2023] Open
Abstract
Homeostasis of aqueous humor (AH) outflow and intraocular pressure (IOP) is essential for normal vision. Impaired AH outflow through the trabecular meshwork (TM) and a resultant elevation in IOP are common changes in primary open-angle glaucoma (POAG), which is the most prevalent form of glaucoma. Although elevated IOP has been recognized as a definitive risk factor for POAG and lowering elevated IOP remains a mainstay for glaucoma treatment, little is known about the molecular mechanisms, especially external cues and intracellular pathways, involved in the regulation of AH outflow in both normal and glaucomatous eyes. In addition, despite the recognition that increased resistance to AH outflow via the conventional pathway consisting of TM and Schlemm's canal is the main cause for elevated IOP, there are no clinically approved drugs that target the conventional pathway to lower IOP in glaucoma patients. The aim of this article is to briefly review published work on the importance of bioactive lysophospholipids (eg, lysophosphatidic acid and sphingosine-1-phosphate), their receptors, metabolism, signaling, and role in the regulation of AH outflow via the TM and IOP, and to discuss pharmacological targeting of key proteins in the lysophospholipid signaling pathways to lower IOP in glaucoma patients.
Collapse
Affiliation(s)
- Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
16
|
Wan Z, Woodward DF, Stamer WD. Endogenous Bioactive Lipids and the Regulation of Conventional Outflow Facility. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 3:457-470. [PMID: 19381354 DOI: 10.1586/17469899.3.4.457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perturbation of paracrine signaling within the human conventional outflow pathway influences tissue homeostasis and outflow function. For example, exogenous introduction of the bioactive lipids, sphingosine-1-phosphate, anandamide or prostaglandin F(2α), to conventional outflow tissues alters the rate of drainage of aqueous humor through the trabecular meshwork, and into Schlemm's canal. This review summarizes recent data that characterizes endogenous bioactive lipids, their receptors and associated signaling partners in the conventional outflow tract. We also discuss the potential of targeting such signaling pathways as a strategy for the development of therapeutics to treat ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Zhou Wan
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| | | | | |
Collapse
|
17
|
Morgan JT, Murphy CJ, Russell P. What do mechanotransduction, Hippo, Wnt, and TGFβ have in common? YAP and TAZ as key orchestrating molecules in ocular health and disease. Exp Eye Res 2013; 115:1-12. [PMID: 23792172 DOI: 10.1016/j.exer.2013.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 01/09/2023]
Abstract
Cells in vivo are exposed to a complex signaling environment. Biochemical signaling modalities, such as secreted proteins, specific extracellular matrix domains and ion fluxes certainly compose an important set of regulatory signals to cells. However, these signals are not exerted in isolation, but rather in concert with biophysical cues of the surrounding tissue, such as stiffness and topography. In this review, we attempt to highlight the biophysical attributes of ocular tissues and their influence on cellular behavior. Additionally, we introduce the proteins YAP and TAZ as targets of biophysical and biochemical signaling and important agonists and antagonists of numerous signaling pathways, including TGFβ and Wnt. We frame the discussion around this extensive signaling crosstalk, which allows YAP and TAZ to act as orchestrating molecules, capable of integrating biophysical and biochemical cues into a broad cellular response. Finally, while we draw on research from various fields to provide a full picture of YAP and TAZ, we attempt to highlight the intersections with vision science and the exciting work that has already been performed.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
18
|
Sakai N, Tager AM. Lysophosphatidic acid (LPA) signaling through LPA1 in organ fibrosis: A pathway with pleiotropic pro-fibrotic effects. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
19
|
Luna C, Li G, Huang J, Qiu J, Wu J, Yuan F, Epstein DL, Gonzalez P. Regulation of trabecular meshwork cell contraction and intraocular pressure by miR-200c. PLoS One 2012; 7:e51688. [PMID: 23272142 PMCID: PMC3522713 DOI: 10.1371/journal.pone.0051688] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/05/2012] [Indexed: 01/20/2023] Open
Abstract
Lowering intraocular pressure (IOP) delays or prevents the loss of vision in primary open-angle glaucoma (POAG) patients with high IOP and in those with normal tension glaucoma showing progression. Abundant evidence demonstrates that inhibition of contractile machinery of the trabecular meshwork cells is an effective method to lower IOP. However, the mechanisms involved in the regulation of trabecular contraction are not well understood. Although microRNAs have been shown to play important roles in the regulation of multiple cellular functions, little is known about their potential involvement in the regulation of IOP. Here, we showed that miR-200c is a direct postranscriptional inhibitor of genes relevant to the physiologic regulation of TM cell contraction including the validated targets Zinc finger E-box binding homeobox 1 and 2 (ZEB1 and ZEB2), and formin homology 2 domain containing 1 (FHOD1), as well as three novel targets: lysophosphatidic acid receptor 1 (LPAR1/EDG2), endothelin A receptor (ETAR), and RhoA kinase (RHOA). Consistently, transfection of TM cells with miR-200c resulted in strong inhibition of contraction in collagen populated gels as well as decreased cell traction forces exerted by individual TM cells. Finally, delivery of miR-200c to the anterior chamber of living rat eyes resulted in a significant decrease in IOP, while inhibition of miR-200c using an adenoviral vector expressing a molecular sponge led to a significant increase in IOP. These results demonstrate for the first time the ability of a miRNA to regulate trabecular contraction and modulate IOP in vivo, making miR-200c a worthy candidate for exploring ways to alter trabecular contractility with therapeutic purposes in glaucoma.
Collapse
Affiliation(s)
- Coralia Luna
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Guorong Li
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Jianyong Huang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Jianming Qiu
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Jing Wu
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - David L. Epstein
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Pedro Gonzalez
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
20
|
Crane AM, Hua HU, Coggin AD, Gugiu BG, Lam BL, Bhattacharya SK. Mass spectrometric analyses of phosphatidylcholines in alkali-exposed corneal tissue. Invest Ophthalmol Vis Sci 2012; 53:7122-30. [PMID: 22956606 DOI: 10.1167/iovs.12-10448] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aims were to determine whether exposure to sodium hydroxide results in predictable changes in phosphatidylcholine (PC) in corneal tissue and if PC profile changes correlate to exposure duration. PCs are major components of the cell membrane lipid bilayer and are often involved in biological processes such as signaling. METHODS Enucleated porcine (n = 140) and cadaver human eyes (n = 20) were exposed to water (control) and 11 M NaOH. The corneas were excised and lipids were extracted using the Bligh and Dyer method with suitable modifications. Class-specific lipid identification was carried out using a ratiometric lipid standard on a TSQ Quantum Access Max mass spectrometer. Protein amounts were determined using Bradford assays. RESULTS Control and alkali-treated corneas showed reproducible PC spectra for both porcine and human corneas. Over 200 PCs were identified for human and porcine control and each experimental time point. Several PC species (m/z values) consequent upon alkali exposure could not be ascribed to a recorded PC species. Control and treated groups showed 41 and 29 common species among them for porcine and human corneas, respectively. The unique PC species peaked at 12 minutes and at 30 minutes for human and porcine corneas followed by a decline consistent with an interplay of alkali penetration and hydrolyses at various time points. CONCLUSIONS Alkali exposure dramatically changes the PC profile of cornea. Our data are consistent with penetration and hydrolysis as stochastic contributors to changes in PCs due to exposure to alkali for a finite duration and amount.
Collapse
Affiliation(s)
- Ashley M Crane
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
21
|
Grzelczyk A, Gendaszewska-Darmach E. Novel bioactive glycerol-based lysophospholipids: new data -- new insight into their function. Biochimie 2012; 95:667-79. [PMID: 23089136 DOI: 10.1016/j.biochi.2012.10.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 10/11/2012] [Indexed: 11/28/2022]
Abstract
Based on the results of research conducted over last two decades, lysophospholipids (LPLs) were observed to be not only structural components of cellular membranes but also biologically active molecules influencing a broad variety of processes such as carcinogenesis, neurogenesis, immunity, vascular development or regulation of metabolic diseases. With a growing interest in the involvement of extracellular lysophospholipids in both normal physiology and pathology, it has become evident that those small molecules may have therapeutic potential. While lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been studied in detail, other LPLs such as lysophosphatidylglycerol (LPG), lysophosphatidylserine (LPS), lysophosphatidylinositol (LPI), lysophosphatidylethanolamine (LPE) or even lysophosphatidylcholine (LPC) have not been elucidated to such a high degree. Although information concerning the latter LPLs is sparse as compared to LPA and S1P, within the last couple of years much progress has been made. Recently published data suggest that these compounds may regulate fundamental cellular activities by modulating multiple molecular targets, e.g. by binding to specific receptors and/or altering the structure and fluidity of lipid rafts. Therefore, the present review is devoted to novel bioactive glycerol-based lysophospholipids and recent findings concerning their functions and possible signaling pathways regulating physiological and pathological processes.
Collapse
Affiliation(s)
- Anna Grzelczyk
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | | |
Collapse
|
22
|
Boussommier-Calleja A, Bertrand J, Woodward DF, Ethier CR, Stamer WD, Overby DR. Pharmacologic manipulation of conventional outflow facility in ex vivo mouse eyes. Invest Ophthalmol Vis Sci 2012; 53:5838-45. [PMID: 22807298 DOI: 10.1167/iovs.12-9923] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Mouse models are useful for glaucoma research, but it is unclear whether intraocular pressure (IOP) regulation in mice operates through mechanisms similar to those in humans. Our goal was to determine whether pharmacologic compounds that affect conventional outflow facility in human eyes exert similar effects in C57BL/6 mice. METHODS A computerized perfusion system was used to measure conventional outflow facility in enucleated mouse eyes ex vivo. Paired eyes were perfused sequentially, either immediately after enucleation or after 3 hours storage at 4°C. Three groups of experiments examined sphingosine 1-phosphate (S1P), S1P with antagonists to S1P(1) and S1P(2) receptors, and the prostanoid EP(4) receptor agonist 3,7-dithia PGE(1). We also examined whether a 24-hour postmortem delay affected the response to 3,7-dithia prostaglandin E(1) (PGE(1)). RESULTS S1P decreased facility by 39%, and was blocked almost completely by an S1P(2), but not S1P(1), receptor antagonist. The S1P(2) receptor antagonist alone increased facility nearly 2-fold. 3,7-dithia PGE(1) increased facility by 106% within 3 hours postmortem. By 24 hours postmortem, the facility increase caused by 3,7-dithia PGE(1) was reduced 3-fold, yet remained statistically detectable. CONCLUSIONS C57BL/6 mice showed opposing effects of S1P(2) and EP(4) receptor activation on conventional outflow facility, as observed in human eyes. Pharmacologic effects on facility were detectable up to 24 hours postmortem in enucleated mouse eyes. Mice are suitable models to examine the pharmacology of S1P and EP(4) receptor stimulation on IOP regulation as occurs within the conventional outflow pathway of human eyes, and are promising for studying other aspects of aqueous outflow dynamics.
Collapse
|
23
|
Shea BS, Tager AM. Role of the lysophospholipid mediators lysophosphatidic acid and sphingosine 1-phosphate in lung fibrosis. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2012; 9:102-10. [PMID: 22802282 PMCID: PMC5455616 DOI: 10.1513/pats.201201-005aw] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/02/2012] [Indexed: 12/14/2022]
Abstract
Aberrant wound healing responses to lung injury are believed to contribute to fibrotic lung diseases, such as idiopathic pulmonary fibrosis (IPF). The lysophospholipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), by virtue of their ability to mediate many basic cellular functions, including survival, proliferation, migration, and contraction, can influence many of the biological processes involved in wound healing. Accordingly, recent investigations indicate that LPA and S1P may play critical roles in regulating the development of lung fibrosis. Here we review the evidence indicating that LPA and S1P regulate pulmonary fibrosis and the potential mechanisms through which these lysophospholipids may influence fibrogenesis induced by lung injury.
Collapse
Affiliation(s)
- Barry S Shea
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
24
|
Tokumura A, Taira S, Kikuchi M, Tsutsumi T, Shimizu Y, Watsky MA. Lysophospholipids and lysophospholipase D in rabbit aqueous humor following corneal injury. Prostaglandins Other Lipid Mediat 2012; 97:83-9. [PMID: 22281604 DOI: 10.1016/j.prostaglandins.2012.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 12/26/2011] [Accepted: 01/10/2012] [Indexed: 11/29/2022]
Abstract
We previously found that lysophosphatidic acid (LPA)-like activity eliciting Cl(-) currents in Xenopus oocytes is increased in rabbit aqueous humor (AH) following corneal freeze wounds. The purpose of this study was to examine whether actual levels of LPA in AH from wounded eyes are higher than those from control eyes, and to determine the sources and enzymatic pathways of AH LPA in control and wounded conditions. Lysophospholipase D (lysoPLD) activity was measured by the enzymatic determination of choline following incubation of AH samples with exogenous lysophosphatidylcholines (LPCs). The molecular species compositions of LPA and LPC in fresh and incubated AH were determined by liquid chromatography-tandem mass spectrometry. A high, but similar activity of lysoPLD in the samples from both control and freeze-wounded eyes was detected. Its enzymatic properties resemble those of plasma lysoPLD, identified as autotaxin. Levels of LPCs, predominant substrates of lysoPLD in AH, were several times higher in the AH samples from injured eyes than those from the control eyes. Our results suggest that lysoPLD is constitutively released from corneal tissues and/or ciliary body into the AH, with no injury-induced increase in release following freeze-wounding. They also suggest that wound-induced increases in LPA-like biological activity are due to linoleoyl species-rich molecular composition in AH from wounded eyes. A possible mechanism of the altered molecular composition is an increase in the AH concentrations of LPCs, linoleoyl species of which are preferentially converted to corresponding unsaturated LPA by the constitutively active lysoPLD.
Collapse
Affiliation(s)
- Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Frisca F, Sabbadini RA, Goldshmit Y, Pébay A. Biological Effects of Lysophosphatidic Acid in the Nervous System. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 296 2012; 296:273-322. [DOI: 10.1016/b978-0-12-394307-1.00005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Rancoule C, Pradère JP, Gonzalez J, Klein J, Valet P, Bascands JL, Schanstra JP, Saulnier-Blache JS. Lysophosphatidic acid-1-receptor targeting agents for fibrosis. Expert Opin Investig Drugs 2011; 20:657-67. [DOI: 10.1517/13543784.2011.566864] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Sumida GM, Stamer WD. Sphingosine-1-phosphate enhancement of cortical actomyosin organization in cultured human Schlemm's canal endothelial cell monolayers. Invest Ophthalmol Vis Sci 2010; 51:6633-8. [PMID: 20592229 DOI: 10.1167/iovs.10-5391] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Perfusion of sphingosine-1-phosphate (S1P) in whole eye organ culture models decreases outflow facility, whereas S1P promotes stress fiber formation and contractility in cultured trabecular meshwork (TM) cells. Because of S1P's known effect of increasing barrier function in endothelial cells, the authors hypothesized that Schlemm's canal (SC) cells in culture respond to S1P by increasing actomyosin organization at the cell cortex. METHODS Using primary cultures of human SC cells, the authors determined S1P activation of the GTP-binding proteins, RhoA and Rac (1,2,3). Time- and dose-dependent myosin light chain (MLC) phosphorylation in response to S1P and total expression of MLC were determined. Immunocytochemistry after S1P treatment was used to monitor filamentous actin (F-actin) and phospho-MLC organization and the localization of β-catenin, a component of adherens junctions. TM and human umbilical vein endothelial cell monolayers were used as controls. RESULTS S1P (1 μM) activated RhoA and Rac after 5- and 30-minute treatments. S1P increased MLC phosphorylation with a similar time- and dose-dependent response in SC (EC(50) = 0.83 μM) compared with TM (EC(50) = 1.33 μM), though MLC expression was significantly greater in TM. In response to 1 μM S1P treatment, phospho-MLC concentrated in the SC cell periphery, coincident with cortical actin assembly and recruitment of β-catenin to the cell periphery. CONCLUSIONS Results obtained in this study support the hypothesis that S1P increases actomyosin organization at the SC cell cortex and promotes intercellular junctions at the level of the inner wall of SC to increase transendothelial resistance and in part explains the S1P-induced decrease of outflow facility in organ culture.
Collapse
Affiliation(s)
- Grant M Sumida
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85711, USA
| | | |
Collapse
|
28
|
Ma L, Uchida H, Nagai J, Inoue M, Chun J, Aoki J, Ueda H. Lysophosphatidic acid-3 receptor-mediated feed-forward production of lysophosphatidic acid: an initiator of nerve injury-induced neuropathic pain. Mol Pain 2009; 5:64. [PMID: 19912636 PMCID: PMC2780384 DOI: 10.1186/1744-8069-5-64] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/13/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We previously reported that intrathecal injection of lysophosphatidylcholine (LPC) induced neuropathic pain through activation of the lysophosphatidic acid (LPA)-1 receptor, possibly via conversion to LPA by autotaxin (ATX). RESULTS We examined in vivo LPA-induced LPA production using a biological titration assay with B103 cells expressing LPA1 receptors. Intrathecal administration of LPC caused time-related production of LPA in the spinal dorsal horn and dorsal roots, but not in the dorsal root ganglion, spinal nerve or sciatic nerve. LPC-induced LPA production was markedly diminished in ATX heterozygotes, and was abolished in mice that were deficient in LPA3, but not LPA1 or LPA2 receptors. Similar time-related and LPA3 receptor-mediated production of LPA was observed following intrathecal administration of LPA. In an in vitro study using spinal cord slices, LPA-induced LPA production was also mediated by ATX and the LPA3 receptor. Intrathecal administration of LPA, in contrast, induced neuropathic pain, which was abolished in mice deficient in LPA1 or LPA3 receptors. CONCLUSION These findings suggest that feed-forward LPA production is involved in LPA-induced neuropathic pain.
Collapse
Affiliation(s)
- Lin Ma
- Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Yu FSX, Yin J, Xu K, Huang J. Growth factors and corneal epithelial wound healing. Brain Res Bull 2009; 81:229-35. [PMID: 19733636 DOI: 10.1016/j.brainresbull.2009.08.024] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
Abstract
In this article, we briefly review recent findings in the effects of growth factors including the EGF family, KGF, HGF, IGF, insulin, and TGF-beta on corneal epithelial wound healing. We discuss the essential role of EGFR in inter-receptor cross-talk in response to wounding in corneal epithelium and bring forward a concept of "alarmins" to the field of wound healing research.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Kresge Eye Institute, Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, 4717 St. Antoine Blvd., Detroit, MI, 48201, USA.
| | | | | | | |
Collapse
|
30
|
Stamer WD, Read AT, Sumida GM, Ethier CR. Sphingosine-1-phosphate effects on the inner wall of Schlemm's canal and outflow facility in perfused human eyes. Exp Eye Res 2009; 89:980-8. [PMID: 19715693 DOI: 10.1016/j.exer.2009.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 11/29/2022]
Abstract
Previous work has shown that sphingosine 1-phosphate (S1P) decreases outflow facility in perfused porcine eyes while dramatically increasing giant vacuole density in the inner wall of the aqueous plexus, with no obvious changes in the trabecular meshwork (TM). Due to known effects of S1P on cell-cell junction assembly in vascular endothelia, we hypothesized that S1P would decrease outflow facility in human eyes by increasing the complexity of cell-cell junctions in Schlemm's canal (SC) inner wall endothelia. Perfusion of enucleated post mortem human eyes at 8 mmHg constant pressure in the presence or absence of 5 microM S1P showed that S1P decreased outflow facility by 36 +/- 20% (n = 10 pairs; p = 0.0004); an effect likely mediated by activation of S1P(1) and/or S1P(3) receptor subtypes, which were found to be the principal S1P receptors expressed by both TM and SC cells by RT-PCR, confocal immunofluorescence microscopy and western blot analyses. Examination of SC's inner wall using confocal microscopy revealed no consistent differences in VE-cadherin, beta-catenin, phosphotyrosine or filamentous actin abundance/distribution between S1P-treated eyes and controls. Moreover, morphological inspection of conventional outflow tissues by light and scanning electron microscopy showed no significant differences between S1P-treated and control eyes, particularly in giant vacuole density. Thus, unlike the situation in porcine eyes, we did not observe changes in inner wall morphology in human eyes treated with S1P, despite a significant and immediate decrease in outflow facility in both species. Regardless, S1P receptor antagonists represent novel therapeutic prospects for ocular hypertension in humans.
Collapse
Affiliation(s)
- W Daniel Stamer
- Department of Ophthalmology and Vision Science, The University of Arizona, 655 North Alvernon Way, Suite 108, Tucson, AZ 85711, USA.
| | | | | | | |
Collapse
|
31
|
George J, Headen KV, Ogunleye AO, Perry GA, Wilwerding TM, Parrish LC, McVaney TP, Mattson JS, Cerutis DR. Lysophosphatidic Acid signals through specific lysophosphatidic Acid receptor subtypes to control key regenerative responses of human gingival and periodontal ligament fibroblasts. J Periodontol 2009; 80:1338-47. [PMID: 19656035 PMCID: PMC11037860 DOI: 10.1902/jop.2009.080624] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND We showed that the pluripotent platelet growth factor and mediator lysophosphatidic acid (LPA) controls key regenerative responses of human gingival fibroblasts (GFs) and periodontal ligament fibroblasts (PDLFs) and positively modulates their responses to platelet-derived growth factor (PDGF). This study determined which LPA receptor (LPAR) subtype(s) LPA signals through to stimulate mitogenic extracellular signal-regulated kinase (ERK) 1/2 signaling and chemotaxis and to elicit intracellular Ca(2+) increases in GFs and PDLFs because many healing responses are calcium-dependent. METHODS Activation of mitogen-activated protein kinase was determined using Western blotting with an antibody to phosphorylated ERK1/2. Migration responses were measured using a microchemotaxis chamber. GF and PDLF intracellular Ca(2+) mobilization responses to multiple LPA species and LPAR subtype-specific agonists were measured by using a cell-permeable fluorescent Ca(2+) indicator dye. RESULTS LPA stimulated ERK1/2 phosphorylation via LPA(1)(-3). For GFs, LPA(1) preferentially elicited chemotaxis, and LPA(1-3) for PDLFs, as confirmed using subtype-specific agonists. Elevation of intracellular calcium seems to be mediated through LPA(1) and LPA(3), with little, if any, contribution from LPA(2). CONCLUSIONS To the best of our knowledge, this study provides the first evidence that LPA signals through specific LPAR subtypes to stimulate human oral fibroblast regenerative responses. These data, in conjunction with our previous findings showing that LPA modulates GF and PDLF responses to PDGF, suggest that LPA is a factor of emerging importance to oral wound healing.
Collapse
Affiliation(s)
- JoJu George
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE
| | - Karmel V. Headen
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, NE
| | | | - Greg A. Perry
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine
| | | | | | | | - John S. Mattson
- Department of Periodontics, Creighton University School of Dentistry
| | - D. Roselyn Cerutis
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, NE
| |
Collapse
|
32
|
Yea K, Kim J, Lim S, Kwon T, Park HS, Park KS, Suh PG, Ryu SH. Lysophosphatidylserine regulates blood glucose by enhancing glucose transport in myotubes and adipocytes. Biochem Biophys Res Commun 2008; 378:783-8. [PMID: 19063864 DOI: 10.1016/j.bbrc.2008.11.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 11/23/2008] [Indexed: 12/27/2022]
Abstract
Lysophosphatidylserine (LPS) is known to have diverse cellular effects, but although LPS is present in many biological fluids, its in vivo effects have not been elucidated. In the present study, we investigated the effects of LPS on glucose metabolism in vivo, and how skeletal muscle cells respond to LPS stimulation. LPS enhanced glucose uptake in a dose- and time-dependent manner in L6 GLUT4myc myotubes, and this effect of LPS on glucose uptake was mediated by a Galpha(i) and PI 3-kinase dependent signal pathway. LPS increased the level of GLUT4 on the cell surface of L6 GLUT4myc myotubes, and enhanced glucose uptake in 3T3-L1 adipocytes. In line with its cellular functions, LPS lowered blood glucose levels in normal mice, while leaving insulin secretion unaffected. LPS also had a glucose-lowering effect in STZ-treated type 1 diabetic mice and in obese db/db type 2 diabetic mice. This study shows that LPS-stimulated glucose transport both in skeletal muscle cells and adipocytes, and significantly lowered blood glucose levels both in type 1 and 2 diabetic mice. Our results suggest that LPS is involved in the regulation of glucose homeostasis in skeletal muscle and adipose tissue.
Collapse
Affiliation(s)
- Kyungmoo Yea
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Inoue M, Ma L, Aoki J, Ueda H. Simultaneous stimulation of spinal NK1 and NMDA receptors produces LPC which undergoes ATX-mediated conversion to LPA, an initiator of neuropathic pain. J Neurochem 2008; 107:1556-65. [DOI: 10.1111/j.1471-4159.2008.05725.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Lysophosphatidylserine stimulates chemotactic migration in U87 human glioma cells. Biochem Biophys Res Commun 2008; 374:147-51. [DOI: 10.1016/j.bbrc.2008.06.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 06/28/2008] [Indexed: 11/19/2022]
|
35
|
Fujiwara Y. Cyclic phosphatidic acid - a unique bioactive phospholipid. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1781:519-24. [PMID: 18554524 PMCID: PMC2572151 DOI: 10.1016/j.bbalip.2008.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 05/06/2008] [Accepted: 05/12/2008] [Indexed: 02/05/2023]
Abstract
Cyclic phosphatidic acid (CPA) is a naturally occurring analog of the growth factor-like phospholipid mediator, lysophosphatidic acid (LPA). The sn-2 hydroxy group of CPA forms a 5-membered ring with the sn-3 phosphate. CPA affects numerous cellular functions, including anti-mitogenic regulation of the cell cycle, induction of stress fiber formation, inhibition of tumor cell invasion and metastasis, and regulation of differentiation and survival of neuronal cells. Interestingly, many of these cellular responses caused by CPA oppose those of LPA despite the activation of apparently overlapping receptor populations. Since the early 1990s, studies on CPA actions gradually developed, and we are now beginning to understand the importance of this lipid. In this review, we focus on the current knowledge about CPA, including enzymatic formation of CPA, unique biological activities and biological targets of CPA, and we also explore metabolically stabilized CPA analogs.
Collapse
Affiliation(s)
- Yuko Fujiwara
- Department of Physiology, The University of Tennessee Health Sciences Center, 894 Union Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
36
|
Kim K, Kim HL, Lee YK, Han M, Sacket SJ, Jo JY, Kim YL, Im DS. Lysophosphatidylserine induces calcium signaling through Ki16425/VPC32183-sensitive GPCR in bone marrow-derived mast cells and in C6 glioma and colon cancer cells. Arch Pharm Res 2008; 31:310-7. [PMID: 18409043 DOI: 10.1007/s12272-001-1157-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Indexed: 11/28/2022]
Abstract
Lysophosphatidylserine (LPS) can be generated following phosphatidylserine-specific phospholipase A2 activation. The effects of LPS on cellular activities and the identities of its target molecules, however, have not been fully elucidated. In this study, we observed that LPS stimulated intracellular calcium increased in mouse bone marrow-derived mast cells (BMMC), and rat C6 glioma and human HCT116 colon cancer cells and compared the LPS-induced Ca2+ increases with the response by lysophosphatidic acid (LPA), a structurally related bioactive lysolipid. In order to test involvement of signaling molecules in the LPS-induced Ca2+ signaling, we used pertussis toxin (PTX), U73122, and 2-APB, which are specific inhibitors for G proteins, phospholipase C (PLC), and IP3 receptors, respectively. The increases due to LPS and LPA were inhibited by PTX, U-73122 and 2-APB, suggesting that both lipids stimulate calcium signaling via G proteins (Gi/o types), PLC activation, and subsequent IP3 production, although the sensitivity to pharmacological inhibitors varied from complete inhibition to partial inhibition depending on cell type and lysolipid. Furthermore, we observed that Ki16425 completely inhibited an LPS-induced Ca2+ response in three cell types, but that the effect of VPC32183 varied from complete inhibition in BMMC and C6 glioma cells to partial inhibition in HCT116 cells. Therefore, we conclude that LPS increases [Ca2+]i through Ki16425/VPC32183-sensitive G protein-coupled receptors (GPCR), G protein, PLC, and IP3 in mouse BMMC, rat C6, and human HCT116 cells.
Collapse
Affiliation(s)
- Kyeok Kim
- Laboratory of Pharmacology, College of Pharmacy (BK21 Project), Pusan National University, San 30, Jang-Jun-dong, Geum-Jung-gu, Busan 609-735, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lysophosphatidylserine increases membrane potentials in rat C6 glioma cells. Arch Pharm Res 2007; 30:1096-101. [DOI: 10.1007/bf02980243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Cerutis DR, Dreyer AC, Vierra MJ, King JP, Wagner DJ, Fimple JL, Cordini F, McVaney TP, Parrish LC, Wilwerding TM, Mattson JS. Lysophosphatidic acid modulates the healing responses of human periodontal ligament fibroblasts and enhances the actions of platelet-derived growth factor. J Periodontol 2007; 78:1136-45. [PMID: 17539729 DOI: 10.1902/jop.2007.060442] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) has been used to promote healing in many in vitro and in vivo models of periodontal regeneration. PDGF interacts extensively with lysophosphatidic acid (LPA). We recently showed that LPA modulates the responses of human gingival fibroblasts to PDGF. The objectives of this study were as follows: 1) to evaluate the basic interactions of LPA with primary human periodontal ligament fibroblasts (PDLFs) alone and with PDGF-BB for promoting PDLF growth and migration; 2) to determine the effects in an in vitro oral wound-healing model; and 3) to identify the LPA receptors (LPARs) expressed by PDLF. METHODS PDLF regenerative responses were measured using 1 and 10 microM LPA in the absence or presence of 1 or 10 ng/ml PDGF. Cell proliferation was determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and by cell counting. Migration responses were measured using a microchemotaxis chamber. PDLFs were grown to confluence on glass slides, a 3-mm-wide wound was mechanically inflicted, and wound fill on days 4, 6, and 9 was reported. PDLF LPAR expression was determined using Western blotting. RESULTS PDLFs exhibited proliferative and chemotactic responses to LPA; these responses were enhanced when LPA and PDGF were present together. LPA plus PDGF elicited complete wound fill. PDLFs express the LPARs LPA(1), LPA(2), and LPA(3). CONCLUSIONS To our knowledge, this study provides the first evidence that LPA stimulates human PDLF wound healing responses and interacts positively with PDGF to regulate these actions. These results suggest that LPA and its receptors play important modulatory roles in PDLF regenerative biology.
Collapse
Affiliation(s)
- D Roselyn Cerutis
- Department of Oral Biology, School of Dentistry, Creighton University, Omaha, NE 68178, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu KP, Yin J, Yu FSX. Lysophosphatidic acid promoting corneal epithelial wound healing by transactivation of epidermal growth factor receptor. Invest Ophthalmol Vis Sci 2007; 48:636-43. [PMID: 17251460 PMCID: PMC2665794 DOI: 10.1167/iovs.06-0203] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To identify the underlying mechanisms by which lipid mediator lysophosphatidic acid (LPA) acts as a growth factor in stimulating extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3'-kinase (PI3K) during corneal epithelial wound healing. METHODS Epithelial debridement wounds in cultured porcine corneas and scratch wounds in an epithelial monolayer of SV40-immortalized human corneal epithelial (THCE) cells were allowed to heal in the presence or absence of an epidermal growth factor receptor (EGFR) inhibitor (tyrphostin AG1478), a matrix metalloproteinase inhibitor (GM6001), or a heparin-binding EGF-like growth factor (HB-EGF) antagonist (CRM197) with or without LPA. EGFR activation was analyzed by immunoprecipitation using EGFR antibodies and Western blotting with phosphotyrosine antibodies. Phosphorylation of ERK and AKT (a major substrate of PI3K) was analyzed by Western blotting with antibodies specific to the phosphorylated proteins. Wound- and LPA-induced shedding of HB-EGF was assessed by measuring the release of alkaline phosphatase (AP) in a stable THCE cell line that expressed HB-EGF with AP inserted in the heparin-binding site. RESULTS In organ and cell culture models, LPA enhanced corneal epithelial wound healing. LPA-stimulated and spontaneous wound closure was attenuated by AG1478, GM6001, or CRM197. Consistent with the effects on epithelial migration, these inhibitors, as well as the Src kinase inhibitor (PP2), retarded LPA-induced activation of EGFR and its downstream effectors ERK and AKT in THCE cells. Unlike exogenously added HB-EGF, LPA stimulated moderate EGFR phosphorylation; the level of phosphorylated EGFR was similar to that induced by wounding. However, LPA appeared to prolong wound-induced EGFR signaling. The release of HB-EGF assessed by AP activity increased significantly in response to wounding, LPA, or both, and the release of HB-EGF-AP induced by LPA was inhibited by PP2 and GM6001. CONCLUSIONS LPA accelerates corneal epithelial wound healing through its ability to induce autocrine HB-EGF signaling. Transactivation of EGFR by LPA represents a convergent signaling pathway accessible to stimuli such as growth factors and ligands of G-protein-coupled receptors in response to pathophysiological challenge in human corneal epithelial cells.
Collapse
Affiliation(s)
- Ke-Ping Xu
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
40
|
Zhang Z, Liu Z, Meier KE. Lysophosphatidic acid as a mediator for proinflammatory agonists in a human corneal epithelial cell line. Am J Physiol Cell Physiol 2006; 291:C1089-98. [PMID: 16760261 DOI: 10.1152/ajpcell.00523.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysophosphatidic acid (LPA) refers to a family of small phospholipid mediators that are generated in response to agonist stimulation in diverse cell types. LPA binds to G protein-coupled receptors to elicit numerous biological responses, including proliferation and inflammation. In this study, LPA production and response were characterized in a human corneal epithelial cell line, 2.040 pRSV-T. LPA levels in cells and medium are increased by exogenous 18:1 LPA (oleoyl-LPA), LPS, IL-1β, and TNF-α. LPS, IL-1β, and TNF-α, which mediate ocular inflammation, stimulate activation of p38, ERK, and Akt kinases in the corneal cell line. Similar responses are elicited by 18:1 LPA. Pertussis toxin (PTX) blocks LPA-induced activation of p38 and ERK but only slightly inhibits LPA-induced activation of Akt. All of the agonists tested, including LPA, stimulate proliferation of 2.040 pRSV-T cells. In these cells, both Akt and ERK pathways are important for LPA-induced proliferation. Thus PTX only partially suppresses the mitogenic response to LPA. Transcripts for the LPA receptors LPA1/EDG-2, LPA2/EDG-4, and LPA3/EDG-7 are expressed by the corneal cell line. Ki16425, an antagonist for LPA receptors, was used to explore the autocrine role of LPA. LPA-induced activations of p38, ERK, and Akt kinases, as well as proliferation, are inhibited by Ki16425. Ki16425 partially inhibits signal transduction and proliferation induced by the inflammatory agents tested. We conclude that LPA, produced in corneal epithelial cells in response to inflammatory agonists, contributes to mediating the mitogenic responses to these agonists in an autocrine fashion.
Collapse
Affiliation(s)
- Zhihong Zhang
- Dept. of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164-6534, USA
| | | | | |
Collapse
|
41
|
Park KS, Lee HY, Kim MK, Shin EH, Jo SH, Kim SD, Im DS, Bae YS. Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic migration via a process involving pertussis toxin-sensitive trimeric G-proteins. Mol Pharmacol 2006; 69:1066-73. [PMID: 16368894 DOI: 10.1124/mol.105.018960] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysophosphatidylserine (LPS) may be generated after phosphatidylserine-specific phospholipase A2 activation. However, the effects of LPS on cellular activities and the identities of its target molecules have not been fully elucidated. In this study, we observed that LPS stimulates an intracellular calcium increase in L2071 mouse fibroblast cells, and that this increase was inhibited by 1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione (U-73122) but not by pertussis toxin, suggesting that LPS stimulates calcium signaling via G-protein coupled receptor-mediated phospholipase C activation. Moreover, LPS-induced calcium mobilization was not inhibited by the lysophosphatidic acid receptor antagonist, (S)-phosphoric acid mono-{2-octadec-9-enoylamino-3-[4-(pyridine-2-ylmethoxy)-phenyl]-propyl} ester (VPC 32183), thus indicating that LPS binds to a receptor other than lysophosphatidic acid receptors. It was also found that LPS stimulates two types of mitogen-activated protein kinase [i.e., extracellular signal-regulated protein kinase (ERK) and p38 kinase] in L2071 cells. Furthermore, these LPS-induced ERK and p38 kinase activations were inhibited by pertussis toxin, which suggests the role of pertussis toxin-sensitive G-proteins in the process. In terms of functional issues, LPS stimulated L2071 cell chemotactic migration, which was completely inhibited by pertussis toxin, indicating the involvement of pertussis toxin-sensitive G(i) protein(s). This chemotaxis of L2071 cells induced by LPS was also dramatically inhibited by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) and by 2'-amino-3'-methoxyflavone (PD98059). This study demonstrates that LPS stimulates at least two different signaling cascades, one of which involves a pertussis toxin-insensitive but phospholipase C-dependent intracellular calcium increase, and the other involves a pertussis toxin-sensitive chemotactic migration mediated by phosphoinositide 3-kinase and ERK.
Collapse
Affiliation(s)
- Kyoung Sun Park
- Medical Research Center for Cancer Molecular Therapy and Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mazereeuw-Hautier J, Gres S, Fanguin M, Cariven C, Fauvel J, Perret B, Chap H, Salles JP, Saulnier-Blache JS. Production of lysophosphatidic acid in blister fluid: involvement of a lysophospholipase D activity. J Invest Dermatol 2005; 125:421-7. [PMID: 16117781 PMCID: PMC1885457 DOI: 10.1111/j.0022-202x.2005.23855.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lysophosphatidic acid (LPA) is present in abundance in serum resulting from platelet activation and is also found in other biological fluids. LPA controls numerous cellular responses and plays a role in specific functions such as wound healing, especially in the skin. Nevertheless, its presence in the skin has never been investigated. Since re-epithelialization occurs after blister rupture, we tested the presence of endogenous LPA in blister fluid and investigated a possible mechanism for its biosynthesis and biological functions. Using a radioenzymatic assay, LPA was detected in 33 blister fluids originating from 24 bullous dermatoses, and at higher concentrations than in plasma. In parallel, blister fluids contained a lysophospholipase D (LPLD) activity but no detectable phospholipase A2 activity. The expressions of the LPLD autotaxin (ATX) and of LPA1-receptor (LPA1-R) were greatly increased in blister skin when compared with normal skin. Finally, LPA was found to have a positive effect on the migration of cultured keratinocytes. These results show that LPA is present in blister fluid synthesized by the LPLD ATX. Due to its ability to enhance keratinocyte migration, LPA in blister fluid could, via the LPA1-R, play an important role in re-epithelialization occurring after blister rupture.
Collapse
|
43
|
Abstract
Lysophosphatidic acid (LPA) is a "bioactive" phospholipid able to generate growth factor-like activities in a wide variety of normal and malignant cell types. LPA is proposed to play an important role in normal physiological situations such as wound healing, vascular tone, vascular integrity, or reproduction. In parallel, LPA could also be involved in the etiology of some diseases such as atherosclerosis, cancer, or obesity. The bioactivity of LPA is mediated by the activation of specific G-protein coupled receptors (LPA1, LPA2, and LPA3) leading to the activation of a number of intracellular effectors. LPA is present in solution (bound to albumin) in various extracellular fluids (blood, ascites, aqueous humor), and is released in vitro by some cell types such as platelets, cancer cells, or adipocytes. LPA is a rather polar phospholipid, which cannot easily diffuse throughout plasma membrane, and its presence outside the cells requires soluble phospholipases (secreted phospholipase A2 and soluble lysophospholipase D/autotaxin), which synthesize LPA directly in the extracellular milieu, from precursors such as phosphatidic acid and lysophosphatidylcholine. In the future, LPA receptors, as well as the enzymes involved in LPA metabolism, will constitute promising pharmacological and transgenic targets to determine the physiopathological relevance of "bioactive" LPA in vivo.
Collapse
|
44
|
Umenishi F, Yoshihara S, Narikiyo T, Schrier RW. Modulation of Hypertonicity-Induced Aquaporin-1 by Sodium Chloride, Urea, Betaine, and Heat Shock in Murine Renal Medullary Cells. J Am Soc Nephrol 2005; 16:600-7. [PMID: 15647343 DOI: 10.1681/asn.2004030241] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Aquaporin-1 (AQP1) expression is induced by hypertonicity in renal medullary cells. The purpose of the present study was to elucidate the role of sodium chloride (NaCl), urea, betaine, and heat shock on hypertonicity-induced AQP1 expression in cultured murine renal medullary-K2 (mIMCD-K2) cells. AQP1 expression was maximally induced under mild hypertonic medium supplemented with 100 mM NaCl (N100), whereas severe hypertonic medium supplemented with 150 mM NaCl (N150) caused little AQP1 induction. The reduction of AQP1 expression in N150 was associated with reduced cell viability. When cells were exposed continuously to N100, hypertonicity-induced AQP1 expression was elevated, whereas the return to isotonic medium reduced AQP1 expression in a time-dependent manner. The half-life of AQP1 protein in isotonic conditions was approximately 4 h, whereas hypertonicity markedly increased its half-life. These results indicate that hypertonicity plays an important role in AQP1 induction, stability, and degradation. On the contrary, urea inhibited hypertonicity-induced AQP1 expression in a dose-dependent manner. The addition of organic osmolyte betaine in N150 enhanced hypertonicity-induced AQP1 expression, whereas it decreased AQP1 expression in N100. This suggests that the excessive accumulation of betaine may counteract hypertonic stress and thus attenuate hypertonicity-induced AQP1 expression. Heat shock treatment promoted hypertonicity-induced AQP1 and heat shock protein 70 (HSP70) expression in both N100 and N150, suggesting an effect on the stability of hypertonicity-induced AQP1 expression. Taken together, NaCl, urea, betaine, and heat shock that regulate hypertonicity-induced AQP1 expression are potentially important factors in urinary concentration and contribute to the steady-state level of AQP1 expression.
Collapse
Affiliation(s)
- Fuminori Umenishi
- Address correspondence to: Dr. Fuminori Umenishi, Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Box C281, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
45
|
Xu Y, Tanaka M, Arai H, Aoki J, Prestwich GD. Alkyl lysophosphatidic acid and fluoromethylene phosphonate analogs as metabolically-stabilized agonists for LPA receptors. Bioorg Med Chem Lett 2004; 14:5323-8. [PMID: 15454220 DOI: 10.1016/j.bmcl.2004.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/07/2004] [Accepted: 08/09/2004] [Indexed: 11/28/2022]
Abstract
We describe an efficient method for the synthesis of alkyl lysophosphatidic acid (LPA) analogs as well as alkyl LPA mono- and difluoromethylene phosphonate analogs. Each alkyl LPA analog was evaluated for subtype-specific LPA receptor agonist activity using a cell migration assay for LPA(1) activation in cancer cells and an intracellular calcium mobilization assay for LPA(2) and LPA(3) activation. Alkyl LPAs induced pronounced cell migration activity with equivalent or higher potency than sn-1-oleoyl LPA, while the alkyl LPA fluoromethylene phosphonates proved to be less potent agonists in this assay. However, each alkyl LPA analog activated Ca(2+) release by activation of LPA(2) and LPA(3) receptors. Interestingly, the absolute configuration of the sn-2 hydroxyl group of the alkyl LPA analogs was not recognized by any of the three LPA receptors. The use of alkyl LPA analogs further expands the scope of structure-activity studies, which will better define LPA-LPA receptor interactions.
Collapse
Affiliation(s)
- Yong Xu
- Department of Medicinal Chemistry, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108-1257, USA
| | | | | | | | | |
Collapse
|
46
|
Cerutis DR, Dreyer A, Cordini F, McVaney TP, Mattson JS, Parrish LC, Romito L, Huebner GR, Jabro M. Lysophosphatidic acid modulates the regenerative responses of human gingival fibroblasts and enhances the actions of platelet-derived growth factor. J Periodontol 2004; 75:297-305. [PMID: 15068119 DOI: 10.1902/jop.2004.75.2.297] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) has been used to promote healing in many in vitro and in vivo models of periodontal regeneration. PDGF is known to interact extensively with another platelet mediator, lysophosphatidic acid (LPA), to enhance regenerative responses in non-oral systems. PDGF and LPA are both liberated by platelets in the blood clot, which is known to be critical in stabilizing early periodontal wound healing. The purpose of this study was to evaluate the basic interactions of LPA with primary human gingival fibroblasts (GF) alone and with PDGF-BB for promoting GF growth and migration, as well as their effects in an in vitro oral wound-healing model. METHODS GF regenerative responses were measured using 1 and 10 microM LPA in the absence or presence of 1 or 10 ng/ml PDGF-BB. Cell growth was determined using [3H]thymidine incorporation and cell counting. Migration responses were measured using a microchemotaxis chamber. For the in vitro wound-healing experiments, GF were grown to confluence on glass slides, and a 3 mm wide wound was mechanically inflicted. Percent wound fill on days 4, 6, and 9 was analyzed using computer-assisted histomorphometry. RESULTS GF exhibited proliferative and chemotactic responses to LPA. These responses were synergistic when LPA and PDGF-BB were present together. LPA on its own did not stimulate statistically significant wound fill, but when combined with PDGF-BB, wound fill was equivalent to the 10% serum positive control group by day 6 (5.5-fold of negative control, [P<0.001]) and again on day 9 (6-fold of negative control, [P<0.001]). CONCLUSIONS These studies provide the first evidence that LPA stimulates human GF regenerative responses and that it interacts positively with PDGF-BB to regulate these actions. The results suggest that LPA needs to be further investigated in the oral system as a factor that should be considered for incorporation when designing new periodontal wound-healing therapies using PDGF.
Collapse
Affiliation(s)
- D Roselyn Cerutis
- Department of Oral Biology, Creighton University, School of Dentistry, Omaha, NE 68178, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jester JV, Ho-Chang J. Modulation of cultured corneal keratocyte phenotype by growth factors/cytokines control in vitro contractility and extracellular matrix contraction. Exp Eye Res 2003; 77:581-92. [PMID: 14550400 DOI: 10.1016/s0014-4835(03)00188-x] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to evaluate specific keratocyte phenotypes (keratocyte, fibroblast, myofibroblast) for cell contractility and ability to contract extracellular matrix. Rabbit keratocyte phenotype was modulated by exposure to optimal proliferative doses of IGF-I, IL-1alpha, FGF2, PDGF-AB, and TGFbeta(1). Cells were then evaluated by immunocytochemistry, western blot, collagen gel contraction and LPA stimulation to measure: (1) focal adhesion (FA), fibronectin (FN) and f-actin assembly; (2) expression of alpha-smooth muscle actin (alpha-SMA); (3) ability to contract extracellular matrix and (4) determine contractile ability, respectively. Untreated keratocytes showed no ability to contract collagen matrix. IGF-I and IL-1alpha increased cell proliferation (70.2 and 74.3%, respectively) but did not alter keratocyte phenotype or ability to contract matrix. FGF2 and PDGF induced fibroblast differentiation with FA and FN assembly and significant (p<0.05) extracellular matrix contraction. TGFbeta(1) induced myofibroblast differentiation with prominent FA and FN assembly, expression of alpha-SMA and significantly greater (p<0.05) matrix contraction. Addition of LPA induced actin filament assembly in growth factor starved fibroblasts and myofibroblasts but had no effect on the cultured keratocyte phenotype. We report for the first time that the keratocyte phenotype is non-contractile and that cell quiescence is not a defining characteristic. We further establish that changes in environmental conditions modulate the keratocyte phenotype resulting in physiologically functional differences regarding cell contractility and capacity to contract extracellular matrix.
Collapse
Affiliation(s)
- James V Jester
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9057, USA.
| | | |
Collapse
|
48
|
Noguchi K, Ishii S, Shimizu T. Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 2003; 278:25600-6. [PMID: 12724320 DOI: 10.1074/jbc.m302648200] [Citation(s) in RCA: 444] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator with diverse physiological and pathological actions on many types of cells. LPA has been widely considered to elicit its biological functions through three types of G protein-coupled receptors, Edg-2 (endothelial cell differentiation gene-2)/LPA1/vzg-1 (ventricular zone gene-1), Edg-4/LPA2, and Edg-7/LPA3. We identified an orphan G protein-coupled receptor, p2y9/GPR23, as the fourth LPA receptor (LPA4). Membrane fractions of RH7777 cells transiently expressing p2y9/GPR23 displayed a specific binding for 1-oleoyl-LPA with a Kd value of around 45 nm. Competition binding and reporter gene assays showed that p2y9/GPR23 preferred structural analogs of LPA with a rank order of 1-oleoyl- > 1-stearoyl- > 1-palmitoyl- > 1-myristoyl- > 1-alkyl- > 1-alkenyl-LPA. In Chinese hamster ovary cells expressing p2y9/GPR23, 1-oleoyl-LPA induced an increase in intracellular Ca2+ concentration and stimulated adenylyl cyclase activity. Quantitative real-time PCR demonstrated that mRNA of p2y9/GPR23 was significantly abundant in ovary compared with other tissues. Interestingly, p2y9/GPR23 shares only 20-24% amino acid identities with Edg-2/LPA1, Edg-4/LPA2, and Edg-7/LPA3, and phylogenetic analysis also shows that p2y9/GPR23 is far distant from the Edg family. These facts suggest that p2y9/GPR23 has evolved from different ancestor sequences from the Edg family.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Blotting, Northern
- CHO Cells
- Calcium/metabolism
- Cell Line
- Cell Membrane/metabolism
- Cloning, Molecular
- Cricetinae
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Genes, Reporter
- Genetic Vectors
- Humans
- Kinetics
- Ligands
- Lysophospholipids/metabolism
- PC12 Cells
- Phylogeny
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Rats
- Receptors, G-Protein-Coupled
- Receptors, Purinergic P2/chemistry
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Kyoko Noguchi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
49
|
Kishimoto T, Matsuoka T, Imamura S, Mizuno K. A novel colorimetric assay for the determination of lysophosphatidic acid in plasma using an enzymatic cycling method. Clin Chim Acta 2003; 333:59-67. [PMID: 12809736 DOI: 10.1016/s0009-8981(03)00165-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Several methods for measuring concentrations of lysophosphatidic acid (LPA), a lipid mediator, have been reported to date. However, these methods are not routinely used because most of them require specialized instrument and a complicated protocol. METHODS We developed a novel LPA assay using enzymatic cycling. LPA in a sample is hydrolyzed with lysophospholipase to glycerol-3-phosphate, followed by enzymatic cycling using glycerol-3-phosphate oxidase and glycerol-3-phosphate dehydrogenase. Amplified concentrations of hydrogen peroxides, a product of the enzymatic cycling, are then colorimetrically measured. RESULTS This method was specific for LPA, being insensitive to the presence of phosphatidic acid or lysophosphatidylcholine. The within-run and between-run CVs were 1.31-1.32% and 0.73-1.03%, respectively. The recoveries of exogenous LPA added to plasma were 100.3-101.6%. In males, LPA concentrations (mean+/-S.D.) of human serum and EDTA-plasma were 0.41+/-0.14 and 0.08+/-0.02 micromol/l, respectively. In females, they were 0.41+/-0.12 and 0.09+/-0.02 micromol/l, respectively. CONCLUSIONS This novel colorimetric assay for determination of LPA using enzymatic cycling is simple and highly sensitive. It can be used with an automatic analyzer. It may also be useful for further studies of the biological functions of LPA as well as clinical applications in various disorders.
Collapse
Affiliation(s)
- Tatsuya Kishimoto
- Diagnostic Research and Development Department, R&D Division, Nesco Company, Azwell Inc., 2-24-3 Sho, Osaka 567-0806, Ibaraki, Japan.
| | | | | | | |
Collapse
|
50
|
Ferry G, Tellier E, Try A, Grés S, Naime I, Simon MF, Rodriguez M, Boucher J, Tack I, Gesta S, Chomarat P, Dieu M, Raes M, Galizzi JP, Valet P, Boutin JA, Saulnier-Blache JS. Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity. J Biol Chem 2003; 278:18162-9. [PMID: 12642576 PMCID: PMC1885458 DOI: 10.1074/jbc.m301158200] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our group has recently demonstrated (Gesta, S., Simon, M., Rey, A., Sibrac, D., Girard, A., Lafontan, M., Valet, P., and Saulnier-Blache, J. S. (2002) J. Lipid Res. 43, 904-910) the presence, in adipocyte conditioned-medium, of a soluble lysophospholipase d-activity (LPLDact) involved in synthesis of the bioactive phospholipid lysophosphatidic acid (LPA). In the present report, LPLDact was purified from 3T3F442A adipocyte-conditioned medium and identified as the type II ecto-nucleotide pyrophosphatase phosphodiesterase, autotaxin (ATX). A unique ATX cDNA was cloned from 3T3F442A adipocytes, and its recombinant expression in COS-7 cells led to extracellular release of LPLDact. ATX mRNA expression was highly up-regulated during adipocyte differentiation of 3T3F442A-preadipocytes. This up-regulation was paralleled by the ability of newly differentiated adipocytes to release LPLDact and LPA. Differentiation-dependent up-regulation of ATX expression was also observed in a primary culture of mouse preadipocytes. Treatment of 3T3F442A-preadipocytes with concentrated conditioned medium from ATX-expressing COS-7 cells led to an increase in cell number as compared with concentrated conditioned medium from ATX non-expressing COS-7 cells. The specific effect of ATX on preadipocyte proliferation was completely suppressed by co-treatment with a LPA-hydrolyzing phospholipase, phospholipase B. Finally, ATX expression was found in mature adipocytes isolated from mouse adipose tissue and was substantially increased in genetically obese-diabetic db/db mice when compared with their lean siblings. In conclusion, the present work shows that ATX is responsible for the LPLDact released by adipocytes and exerts a paracrine control on preadipocyte growth via an LPA-dependent mechanism. Up-regulations of ATX expression with adipocyte differentiation and genetic obesity suggest a possible involvement of this released protein in the development of adipose tissue and obesity-associated pathologies.
Collapse
Affiliation(s)
- Gilles Ferry
- Centre de Recherche de Croissy
Institut de Recherche Servier78290 Croissy-sur-Seine,FR
| | - Edwige Tellier
- Unité de recherche sur les obésités
INSERM : U586 IFR31Université Paul Sabatier - Toulouse IIIInstitut Louis Bugnard
1, Avenue Jean Poulhes
31432 TOULOUSE CEDEX 4,FR
| | - Anne Try
- Centre de Recherche de Croissy
Institut de Recherche Servier78290 Croissy-sur-Seine,FR
| | - Sandra Grés
- Unité de recherche sur les obésités
INSERM : U586 IFR31Université Paul Sabatier - Toulouse IIIInstitut Louis Bugnard
1, Avenue Jean Poulhes
31432 TOULOUSE CEDEX 4,FR
| | - Isabelle Naime
- Centre de Recherche de Croissy
Institut de Recherche Servier78290 Croissy-sur-Seine,FR
| | - Marie Françoise Simon
- Unité de recherche sur les obésités
INSERM : U586 IFR31Université Paul Sabatier - Toulouse IIIInstitut Louis Bugnard
1, Avenue Jean Poulhes
31432 TOULOUSE CEDEX 4,FR
| | - Marianne Rodriguez
- Centre de Recherche de Croissy
Institut de Recherche Servier78290 Croissy-sur-Seine,FR
| | - Jérémie Boucher
- Unité de recherche sur les obésités
INSERM : U586 IFR31Université Paul Sabatier - Toulouse IIIInstitut Louis Bugnard
1, Avenue Jean Poulhes
31432 TOULOUSE CEDEX 4,FR
| | - Ivan Tack
- Pharmacologie Moleculaire et Physiopathologie Renale
INSERM : U388 IFR31Université Paul Sabatier - Toulouse IIIInstitut Louis Bugnard
31432 TOULOUSE CEDEX 4,FR
| | - Stéphane Gesta
- Unité de recherche sur les obésités
INSERM : U586 IFR31Université Paul Sabatier - Toulouse IIIInstitut Louis Bugnard
1, Avenue Jean Poulhes
31432 TOULOUSE CEDEX 4,FR
| | - Pascale Chomarat
- Centre de Recherche de Croissy
Institut de Recherche Servier78290 Croissy-sur-Seine,FR
| | | | | | - Jean Pierre Galizzi
- Centre de Recherche de Croissy
Institut de Recherche Servier78290 Croissy-sur-Seine,FR
| | - Philippe Valet
- Unité de recherche sur les obésités
INSERM : U586 IFR31Université Paul Sabatier - Toulouse IIIInstitut Louis Bugnard
1, Avenue Jean Poulhes
31432 TOULOUSE CEDEX 4,FR
| | - Jean A. Boutin
- Centre de Recherche de Croissy
Institut de Recherche Servier78290 Croissy-sur-Seine,FR
| | - Jean Sébastien Saulnier-Blache
- Unité de recherche sur les obésités
INSERM : U586 IFR31Université Paul Sabatier - Toulouse IIIInstitut Louis Bugnard
1, Avenue Jean Poulhes
31432 TOULOUSE CEDEX 4,FR
| |
Collapse
|