1
|
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17:338-351. [PMID: 32152479 PMCID: PMC7474470 DOI: 10.1038/s41575-020-0271-2] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut-brain axis.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
2
|
Bogeski I, Kappl R, Kummerow C, Gulaboski R, Hoth M, Niemeyer BA. Redox regulation of calcium ion channels: Chemical and physiological aspects. Cell Calcium 2011; 50:407-23. [DOI: 10.1016/j.ceca.2011.07.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/26/2011] [Indexed: 02/07/2023]
|
3
|
Yoshida H, Shimamoto C, Ito S, Daikoku E, Nakahari T. HCO(3) (-)-dependent transient acidification induced by ionomycin in rat submandibular acinar cells. J Physiol Sci 2010; 60:273-82. [PMID: 20495897 PMCID: PMC10717291 DOI: 10.1007/s12576-010-0095-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Ionomycin (IM, 5 microM), which exchanges 1 Ca2+ for 1 H+, changed intracellular pH (pHi) with Ca2+ entry into rat submandibular acinar cells. IM-induced changes in pHi consisted of two components: the first is an HCO3--dependent transient pHi decrease, and the second is an HCO3--independent gradual pHi increase. IM (1 microM), which activates store-operated Ca2+ channels, induced an HCO3--dependent and transient pHi decrease without any HCO3--independent pHi increase. Thus, a gradual pHi increase was induced by the Ca2+/H+ exchange. The HCO3--dependent and transient pHi decrease induced by IM was abolished by acetazolamide, but not by methyl isobutyl amiloride (MIA) or diisothiocyanatostilbene disulfonate (DIDS), suggesting that the Na+/H+ exchange, the Cl-/HCO3- exchange, or the Na+-HCO3- cotransport induces no transient pHi decrease. Thapsigargin induced no transient pHi decrease. Thus, IM, not Ca2+ entry, reduced pHi transiently. IM reacts with Ca2+ to produce H+ in the presence of CO2/HCO3-: [H-IM]-+Ca2++CO2<-->{H-Ca-IM]+.HCO3-+H+. In this reaction, a monoprotonated IM reacts with Ca2+ and CO2 to produce an electroneutral IM complex and H+, and then H+ is removed from the cells via CO2 production. Thus, IM transiently decreased pHi. In conclusion, in rat submandibular acinar cells IM (5 microM) transiently reduces pHi because of its chemical characteristics, with HCO3- dependence, and increases pHi by exchanging Ca2+ for H+, which is independent of HCO3-.
Collapse
Affiliation(s)
- Hideyo Yoshida
- Nakahari Project of Central Research Laboratory, Osaka Medical College, 2-7 Daigaku-Cho, Takatsuki, 569-8686 Japan
- Department of Physiology, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki, 569-8686 Japan
| | - Chikao Shimamoto
- Nakahari Project of Central Research Laboratory, Osaka Medical College, 2-7 Daigaku-Cho, Takatsuki, 569-8686 Japan
- Department of Medical Education, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki, 569-8686 Japan
| | - Shigenori Ito
- Nakahari Project of Central Research Laboratory, Osaka Medical College, 2-7 Daigaku-Cho, Takatsuki, 569-8686 Japan
- Department of Physiological Chemistry, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki, 569-8686 Japan
| | - Eriko Daikoku
- Nakahari Project of Central Research Laboratory, Osaka Medical College, 2-7 Daigaku-Cho, Takatsuki, 569-8686 Japan
- Department of Physiology, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki, 569-8686 Japan
| | - Takashi Nakahari
- Nakahari Project of Central Research Laboratory, Osaka Medical College, 2-7 Daigaku-Cho, Takatsuki, 569-8686 Japan
- Department of Physiology, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki, 569-8686 Japan
| |
Collapse
|
4
|
Effect of caffeine on the secretion of peroxidase in rat submandibular gland: a study of its mechanism of action. Arch Oral Biol 2008; 54:179-84. [PMID: 18976744 DOI: 10.1016/j.archoralbio.2008.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/25/2008] [Accepted: 09/19/2008] [Indexed: 01/11/2023]
Abstract
OBJECTIVE In this work, we analysed the mechanism of action of caffeine on peroxidase secretion in the female rat submandibular gland. The signaling molecules cAMP and nitric oxide were monitored as potential mediators. DESIGN The salivary gland peroxidase secretion of female albino Wistar rats was assessed by a spectroscopic method. RESULTS Caffeine was found to exert an increase on peroxidase secretion in a concentration-response manner: the peroxidase secretion stimulation index (SI) (secreted peroxidase from treated/secreted peroxidase from basal) for caffeine 10 microg/ml: 2.2+/-0.18 (P<0.05); caffeine 100 microg/ml alone: 3+/-0.18 (P<0.01); +LNMMA (LN monomethyl arginine): 1+/-0.1 (P<0.05); caffeine 1000 microg/ml alone: 5+/-0.35 (P<0.01); +LNMMA: 2+/-0.2 (P<0.05). These results were associated with an increase in cAMP and total nitrites production. Total nitrites, SI caffeine 100 microg/ml alone: 2.8+/-0.2 (P<0.01); +LNMMA: 1+/-0.08 (P<0.05); caffeine 1000 microg/ml alone: 4.8+/-0.3 (P<0.01); +LNMMA: 2.3+/-0.18 (P<0.05). CONCLUSION It could thus be concluded that cAMP and NO are involved in the mechanism of action displayed by caffeine. This is the first report on the mechanism of action of caffeine on peroxidase secretion.
Collapse
|
5
|
Abstract
The avian embryo has been an important model system for studying enteric nervous system (ENS) development for over 50 y. Since the initial demonstration in chick embryos that the ENS is derived from the neural crest, investigators have used the avian model to reveal the cellular origins and migratory pathways of enteric neural crest-derived cells, with more recent work focusing on the molecular mechanisms regulating ENS development. Seminal contributions have been made in this field by researchers who have taken advantage of the strengths of the avian model system. These strengths include in vivo accessibility throughout development, ability to generate quail-chick chimeras, and the capacity to modulate gene expression in vivo in a spatially and temporally targeted manner. The recent availability of the chicken genome further enhances this model system, allowing investigators to combine classic embryologic methods with current genetic techniques. The strengths and versatility of the avian embryo continue to make it a valuable experimental system for studying the development of the ENS.
Collapse
Affiliation(s)
- Allan M Goldstein
- Department of Pediatric Surgery and the Pediatric Intestinal Rehabilitation Program, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
6
|
Busch L, Borda E. Signaling pathways involved in pilocarpine-induced mucin secretion in rat submandibular glands. Life Sci 2006; 80:842-51. [PMID: 17137604 DOI: 10.1016/j.lfs.2006.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/30/2006] [Accepted: 11/03/2006] [Indexed: 11/16/2022]
Abstract
We have studied the signaling pathways involved in pilocarpine-induced mucin release in rat submandibular slices. Pilocarpine produced a significant increment of PGE2 levels and a positive (r=0.8870) and significant (p=0.0077) correlation between PGE2 production and mucin released was determined. The participation of PGE2 was confirmed by the use of indomethacin (indo) and of acetyl salicylic acid (ASA), cyclooxygenase inhibitors, which inhibited pilocarpine-induced mucin release. The muscarinic receptors involved in the regulation of mucin release were identified as M1 and M4 by the use of the selective acetylcholine receptors (mAChR) antagonists, pirenzepine, AF-DX 116, 4-DAMP and tropicamide. The secretory process was dependent on both, intracellular and extracellular calcium pools since it was inhibited by thapsigargin and verapamil. Cyclic AMP, nitric oxide synthase and PKC also participated in pilocarpine-induced mucin release. It is concluded that pilocarpine, by activation the M1 and M4 mAChR subtypes induces an increase of intracellular Ca2+ concentration ([Ca2+]I) and elevates cAMP levels, which in turn stimulates COX, PKC and NOS and promotes mucin exocytosis. PGE2 released induces cAMP accumulation which, together with PKC are involved in the PGE2 increased Ca2+/cAMP-regulated exocytosis. Thus, cAMP accumulation induced by cholinergic stimulation is, in part, the result of PGE2 production.
Collapse
Affiliation(s)
- Lucila Busch
- Pharmacology Unit, School of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142 (C1122AAH), Buenos Aires, Argentina.
| | | |
Collapse
|
7
|
Chvanov M, Petersen OH, Tepikin A. Free radicals and the pancreatic acinar cells: role in physiology and pathology. Philos Trans R Soc Lond B Biol Sci 2006; 360:2273-84. [PMID: 16321797 PMCID: PMC1569596 DOI: 10.1098/rstb.2005.1757] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS) play an important role in signal transduction and cell injury processes. Nitric oxide synthase (NOS)-the key enzyme producing nitric oxide (NO)-is found in neuronal structures, vascular endothelium and, possibly, in acinar and ductal epithelial cells in the pancreas. NO is known to regulate cell homeostasis, and its effects on the acinar cells are reviewed here. ROS are implicated in the early events within the acinar cells, leading to the development of acute pancreatitis. The available data on ROS/RNS involvement in the apoptotic and necrotic death of pancreatic acinar cells will be discussed.
Collapse
Affiliation(s)
- M Chvanov
- The University of Liverpool The Physiological Laboratory Crown Street, Liverpool L69 3BX, UK.
| | | | | |
Collapse
|
8
|
Nagy N, Goldstein AM. Intestinal coelomic transplants: a novel method for studying enteric nervous system development. Cell Tissue Res 2006; 326:43-55. [PMID: 16736197 DOI: 10.1007/s00441-006-0207-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 03/23/2006] [Indexed: 11/30/2022]
Abstract
Normal development of the enteric nervous system (ENS) requires the coordinated activity of multiple proteins to regulate the migration, proliferation, and differentiation of enteric neural crest cells. Much of our current knowledge of the molecular regulation of ENS development has been gained from transgenic mouse models and cultured neural crest cells. We have developed a method for studying the molecular basis of ENS formation complementing these techniques. Aneural quail or mouse hindgut, isolated prior to the arrival of neural crest cells, was transplanted into the coelomic cavity of a host chick embryo. Neural crest cells from the chick host migrated to and colonized the grafted hindgut. Thorough characterization of the resulting intestinal chimeras was performed by using immunohistochemistry and vital dye labeling to determine the origin of the host-derived cells, their pattern of migration, and their capacity to differentiate. The formation of the ENS in the intestinal chimeras was found to recapitulate many aspects of normal ENS development. The host-derived cells arose from the vagal neural crest and populated the graft in a rostral-to-caudal wave of migration, with the submucosal plexus being colonized first. These crest-derived cells differentiated into neurons and glial cells, forming ganglionated plexuses grossly indistinguishable from normal ENS. The resulting plexuses were specific to the grafted hindgut, with quail grafts developing two ganglionated plexuses, but mouse grafts developing only a single myenteric plexus. We discuss the advantages of intestinal coelomic transplants for studying ENS development.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
9
|
|
10
|
Hsu MF, Chen YS, Huang LJ, Tsao LT, Kuo SC, Wang JP. GEA3162, a nitric oxide-releasing agent, activates non-store-operated Ca2+ entry and inhibits store-operated Ca2+ entry pathways in neutrophils through thiol oxidation. Eur J Pharmacol 2006; 535:43-52. [PMID: 16540105 DOI: 10.1016/j.ejphar.2006.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 02/03/2006] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
We demonstrated that 5-amino-3-(3,4-dichlorophenyl)1,2,3,4-oxatriazolium (GEA3162), a nitric oxide (NO)-releasing agent, stimulated [Ca2+]i rise in rat neutrophils. This Ca2+ response was prevented by the thiol reducing agents, 2-mercaptoethanol, N-acetyl-L-cysteine, dithiothreitol, 2,3-dimercaptopropane-1-sulfonic acid (DMPS) and tris-(2-carboxyethyl)phosphine (TCEP), but slightly reduced by the antioxidant, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). GEA3162 also increased the formation of cellular reactive oxygen intermediates and decreased the cellular content of low molecular thiols. These responses were greatly reduced by Trolox, dithiothreitol and N-acetyl-L-cysteine. GEA3162 stimulated the protein tyrosine phosphorylation in neutrophils. The [Ca2+]i rise caused by formyl-Met-Leu-Phe (fMLP) and cyclopiazonic acid (CPA) was suppressed by GEA3162. TCEP prevented the inhibition of fMLP-induced [Ca2+]i rise by GEA3162. In the absence of external Ca2+, GEA3162 inhibited the CPA-induced [Ca2+]i rise, whereas it only slightly affected the fMLP-induced mobilization of the Ca2+ store. Application of GEA3162 after the stimulation with fMLP or CPA suppressed the robust Ca2+ entry followed by the readdition of Ca2+ into medium. Moreover, the Ca2+ entry was more susceptible to inhibition by treatment with GEA3162 prior to than after the fMLP stimulation. GEA3162 had no effect on the mitochondrial membrane potential. GEA3162 induced actin reorganization and condensed filament network at the cell periphery. These results indicate that GEA3162 exerted both the stimulation of Ca2+ entry and the inhibition of the store-operated Ca2+ entry in rat neutrophils. The dual effects of GEA3162 on the regulation of the external Ca2+ entry are mainly through the thiol modification of target protein(s) residing on the outside of the plasma membrane.
Collapse
Affiliation(s)
- Mei-Feng Hsu
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Wang JP, Tseng CS, Sun SP, Chen YS, Tsai CR, Hsu MF. Capsaicin stimulates the non-store-operated Ca2+ entry but inhibits the store-operated Ca2+ entry in neutrophils. Toxicol Appl Pharmacol 2006; 209:134-44. [PMID: 15882882 DOI: 10.1016/j.taap.2005.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/30/2005] [Accepted: 04/05/2005] [Indexed: 01/27/2023]
Abstract
Rat neutrophils express the mRNA encoding for transient receptor potential (TRP) V1. However, capsaicin-stimulated [Ca2+]i elevation occurred only at high concentrations (> or = 100 microM). This response was substantially decreased in a Ca2+-free medium. Vanilloids displayed similar patterns of Ca2+ response with the rank order of potency as follows: scutigeral>resiniferatoxin>capsazepine>capsaicin=olvanil>isovelleral. Arachidonyl dopamine (AAD), an endogenous ligand for TRPV1, failed to desensitize the subsequent capsaicin challenge. Capsaicin-induced Ca2+ response was not affected by 8-bromo-cyclic ADP-ribose (8-Br-cADPR), the ryanodine receptor blocker, but was slightly attenuated by 1-[6-[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122), the inhibitor of phospholipase C-coupled processes, 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365), the blocker of receptor-gated and store-operated Ca2+ (SOC) channels, 2-aminoethyldiphenyl borate (2-APB), the blocker of D-myo-inositol 1,4,5-trisphospahte (IP3) receptor and Ca2+ influx, and by ruthenium red, a blocker of TRPV channels, and enhanced by the Ca2+ channels blocker, cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12330A) and Na+-deprivation. In addition, capsaicin had no effect on the plasma membrane Ca2+-ATPase activity or the production of nitric oxide (NO) and reactive oxygen intermediates (ROI) or on the total thiols content. Capsaicin (> or = 100 microM) inhibited the cyclopiazonic acid (CPA)-induced store-operated Ca2+ entry (SOCE). In the absence of external Ca2+, the robust Ca2+ entry after subsequent addition of Ca2+ was decreased by capsaicin in CPA-activated cells. Capsaicin alone increased the actin cytoskeleton, and also increased the actin filament content in cell activation with CPA. These results indicate that capsaicin activates a TRPV1-independent non-SOCE pathway in neutrophils. The reorganization of the actin cytoskeleton is probably involved in the capsaicin inhibition of SOCE.
Collapse
Affiliation(s)
- Jih-Pyang Wang
- Department of Education and Research, Taichung Veterans General Hospital, 160, Sec. 3, Chung Kang Road, Taichung 407, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
12
|
Hu DL, Suga S, Omoe K, Abe Y, Shinagawa K, Wakui M, Nakane A. Staphylococcal enterotoxin A modulates intracellular Ca2+ signal pathway in human intestinal epithelial cells. FEBS Lett 2005; 579:4407-12. [PMID: 16051231 DOI: 10.1016/j.febslet.2005.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/23/2005] [Accepted: 07/07/2005] [Indexed: 11/21/2022]
Abstract
We demonstrate here that staphylococcal enterotoxin A (SEA) induces an increase in intracellular calcium ([Ca2+]i) in human intestinal epithelial cells and the [Ca2+]i is released from intracellular stores. SEA-induced increase of [Ca2+]i was clearly inhibited by treatment with a nitric oxide synthase (NOS) inhibitors, N(G)-monomethyl-L-arginine and guanidine. Intestinal epithelial cells express endothelial NOS in resting cell condition, and express inducible NOS after stimulating with tumor necrosis factor (TNF)-alpha. TNF-alpha-pretreated cells showed a significant increase in [Ca2+]i that was also inhibited by the NOS inhibitor. These results suggest that SEA modulated [Ca2+]i signal is dependent on NOS expression in human intestinal epithelial cells.
Collapse
Affiliation(s)
- Dong-Liang Hu
- Department of Bacteriology, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Melvin JE, Yule D, Shuttleworth T, Begenisich T. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 2005; 67:445-69. [PMID: 15709965 DOI: 10.1146/annurev.physiol.67.041703.084745] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The secretion of fluid and electrolytes by salivary gland acinar cells requires the coordinated regulation of multiple water and ion transporter and channel proteins. Notably, all the key transporter and channel proteins in this process appear to be activated, or are up-regulated, by an increase in the intracellular Ca2+ concentration ([Ca2+]i). Consequently, salivation occurs in response to agonists that generate an increase in [Ca2+]i. The mechanisms that act to modulate these increases in [Ca2+]i obviously influence the secretion of salivary fluid. Such modulation may involve effects on mechanisms of both Ca2+ release and Ca2+ entry and the resulting spatial and temporal aspects of the [Ca2+]i signal, as well as interactions with other signaling pathways in the cells. The molecular cloning of many of the transporter and regulatory molecules involved in fluid and electrolyte secretion has yielded a better understanding of this process at the cellular level. The subsequent characterization of mice with null mutations in many of these genes has demonstrated the physiological roles of individual proteins. This review focuses on recent developments in determining the molecular identification of the proteins that regulate the fluid secretion process.
Collapse
Affiliation(s)
- James E Melvin
- The Center for Oral Biology in the Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA.
| | | | | | | |
Collapse
|
14
|
Wallace AS, Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res 2005; 319:367-82. [PMID: 15672264 DOI: 10.1007/s00441-004-1023-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 10/19/2004] [Indexed: 12/16/2022]
Abstract
The generation of functional neuromuscular activity within the pre-natal gastrointestinal tract requires the coordinated development of enteric neurons and glial cells, concentric layers of smooth muscle and interstitial cells of Cajal (ICC). We investigated the genesis of these different cell types in human embryonic and fetal gut material ranging from weeks 4-14. Neural crest cells (NCC), labelled with antibodies against the neurotrophin receptor p75NTR, entered the foregut at week 4, and migrated rostrocaudally to reach the terminal hindgut by week 7. Initially, these cells were loosely distributed throughout the gut mesenchyme but later coalesced to form ganglia along a rostrocaudal gradient of maturation; the myenteric plexus developed primarily in the foregut, then in the midgut, and finally in the hindgut. The submucosal plexus formed approximately 2-3 weeks after the myenteric plexus, arising from cells that migrated centripetally through the circular muscle layer from the myenteric region. Smooth muscle differentiation, as evidenced by the expression of alpha-smooth muscle actin, followed NCC colonization of the gut within a few weeks. Gut smooth muscle also matured in a rostrocaudal direction, with a large band of alpha-smooth muscle actin being present in the oesophagus at week 8 and in the hindgut by week 11. Circular muscle developed prior to longitudinal muscle in the intestine and colon. ICC emerged from the developing gut mesenchyme at week 9 to surround and closely appose the myenteric ganglia by week 11. By week 14, the intestine was invested with neural cells, longitudinal, circular and muscularis mucosae muscle layers, and an ICC network, giving the fetal gut a mature appearance.
Collapse
Affiliation(s)
- Adam S Wallace
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | | |
Collapse
|
15
|
|
16
|
Hoque KM, Saha S, Gupta DD, Chakrabarti MK. Role of nitric oxide in NAG-ST induced store-operated calcium entry in rat intestinal epithelial cells. Toxicology 2004; 201:95-103. [PMID: 15297024 DOI: 10.1016/j.tox.2004.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 04/15/2004] [Accepted: 04/15/2004] [Indexed: 11/24/2022]
Abstract
This study was undertaken to find out the mechanism of non-agglutinable Vibrio cholerae heat-stable enterotoxin (NAG-ST)-induced calcium influx across the plasma membrane. Adriamycin, an inhibitor of IP3-specific 3-kinase, could not inhibit NAG-ST-induced calcium influx in rat intestinal epithelial cells, which suggested that inositol 1,3,4,5-tetrakisphosphate (IP4) had no role in NAG-ST-induced calcium influx. NAG-ST increased intracellular nitric oxide level of rat enterocytes as measured by a fluorimetric method using a fluoroprobe 4,5-diaminofluorescein-2-diacetate (DAF-2DA). N-Nitro-L-arginine, an inhibitor of nitric oxide synthase, inhibited NAG-ST-induced rise in nitric oxide level and also calcium influx. Inhibition of inositol trisphosphate (IP3)-mediated intracellular calcium mobilization by Dantrolene could also inhibit NAG-ST-induced rise in intracellular nitric oxide level. Moreover, inhibition of soluble guanylate cyclase by inhibitors (ODQ, LY83583) could inhibit the NAG-ST-induced rise in cyclic guanosine-3',5'-monophosphate (cGMP) level and calcium influx. From this study, it is evident that NAG-ST causes IP3-mediated calcium release from intracellular calcium store, which then stimulates nitric oxide production by activating nitric oxide synthase and the nitric oxide through cGMP activates calcium influx.
Collapse
Affiliation(s)
- Kazi Mirazul Hoque
- Pathophysiology Division, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Calcutta 700010, India
| | | | | | | |
Collapse
|
17
|
Watson EL, Jacobson KL, Singh JC, DiJulio DH. Arachidonic acid regulates two Ca2+ entry pathways via nitric oxide. Cell Signal 2004; 16:157-65. [PMID: 14636886 DOI: 10.1016/s0898-6568(03)00102-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several regulated Ca2+ entry pathways have been identified, with capacitative Ca2+ entry (CCE) being the most characterized. In the present study, we examined Ca2+ entry pathways regulated by arachidonic acid (AA) in mouse parotid acini. AA induced Ca2+ release from intracellular stores, and increased Ca2+ entry. AA inhibited thapsigargin (Tg)-induced CCE, whereas AA activated Ca2+ entry when CCE was blocked by gadolinium (Gd3+). AA-induced Ca2+ entry was associated with depletion of calcium from ryanodine-sensitive stores; both AA-induced Ca2+ release and Ca2+ entry were inhibited by tetracaine and the nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI). The nitric oxide (NO) donor, 1,2,3,4-ox-triazolium,5-amino-3-(3,4-dichlorophenyl)-chloride (GEA 3162), but not 8-bromo-cGMP, mimicked the effects of AA in inhibiting CCE. Results suggest that AA acts via nitric acid to inhibit the CCE pathway that is selective for Ca2+, and to activate a second Ca2+ entry pathway that is dependent on depletion of Ca2+ from ryanodine-sensitive stores.
Collapse
Affiliation(s)
- Eileen L Watson
- Department of Oral Biology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
18
|
Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K. M(3) muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol 2004; 558:561-75. [PMID: 15146045 PMCID: PMC1664962 DOI: 10.1113/jphysiol.2004.064626] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The M(1) and M(3) subtypes are the major muscarinic acetylcholine receptors in the salivary gland and M(3) is reported to be more abundant. However, despite initial reports of salivation abnormalities in M(3)-knockout (M(3)KO) mice, it is still unclear which subtype is functionally relevant in physiological salivation. In the present study, salivary secretory function was examined using mice lacking specific subtype(s) of muscarinic receptor. The carbachol-induced [Ca(2+)](i) increase was markedly impaired in submandibular gland cells from M(3)KO mice and completely absent in those from M(1)/M(3)KO mice. This demonstrates that M(3) and M(1) play major and minor roles, respectively, in the cholinergically induced [Ca(2+)](i) increase. Two-dimensional Ca(2+)-imaging analysis revealed the patchy distribution of M(1) in submandibular gland acini, in contrast to the ubiquitous distribution of M(3). In vivo administration of a high dose of pilocarpine (10 mg kg(-1), s.c.) to M(3)KO mice caused salivation comparable to that in wild-type mice, while no salivation was induced in M(1)/M(3)KO mice, indicating that salivation in M(3)KO mice is caused by an M(1)-mediated [Ca(2+)](i) increase. In contrast, a lower dose of pilocarpine (1 mg kg(-1), s.c.) failed to induce salivation in M(3)KO mice, but induced abundant salivation in wild-type mice, indicating that M(3)-mediated salivation has a lower threshold than M(1)-mediated salivation. In addition, M(3)KO mice, but not M(1)KO mice, had difficulty in eating dry food, as shown by frequent drinking during feeding, suggesting that salivation during eating is mediated by M(3) and that M(1) plays no practical role in it. These results show that the M(3) subtype is essential for parasympathetic control of salivation and a reasonable target for the drug treatment and gene therapy of xerostomia, including Sjögren's syndrome.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Calcium Oscillation Project, Japan Science and Technology Agency, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Farlie PG, McKeown SJ, Newgreen DF. The neural crest: Basic biology and clinical relationships in the craniofacial and enteric nervous systems. ACTA ACUST UNITED AC 2004; 72:173-89. [PMID: 15269891 DOI: 10.1002/bdrc.20013] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The highly migratory, mesenchymal neural crest cell population was discovered over 100 years ago. Proposals of these cells' origin within the neuroepithelium, and of the tissues they gave rise to, initiated decades-long heated debates, since these proposals challenged the powerful germ-layer theory. Having survived this storm, the neural crest is now regarded as a pluripotent stem cell population that makes vital contributions to an astounding array of both neural and non-neural organ systems. The earliest model systems for studying the neural crest were amphibian, and these pioneering contributions have been ably refined and extended by studies in the chick, mouse, and more recently the fish to provide detailed understanding of the cellular and molecular mechanisms regulating and regulated by the neural crest. The key questions regarding control of craniofacial morphogenesis and innervation of the gut illustrate the wide range of developmental contexts in which the neural crest plays an important role. These questions also focus attention on common issues such as the role of growth factor signaling in neural crest cell development and highlight the central role of the neural crest in human congenital disease.
Collapse
Affiliation(s)
- Peter G Farlie
- Embryology Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
| | | | | |
Collapse
|
20
|
Abstract
Enteric glial cells (EGCs) represent an extensive but relatively poorly described cell population within the gastrointestinal tract. Accumulating data suggest that EGCs represent the morphological and functional equivalent of CNS astrocytes within the enteric nervous system (ENS). The EGC network has trophic and protective functions toward enteric neurons and is fully implicated in the integration and the modulation of neuronal activities. Moreover, EGCs seem to be active elements of the ENS during intestinal inflammatory and immune responses, sharing with astrocytes the ability to act as antigen-presenting cells and interacting with the mucosal immune system via the expression of cytokines and cytokine receptors. Transgenic mouse systems have demonstrated that specific ablation of EGC by chemical ablation or autoimmune T-cell targeting induces an intestinal pathology that shows similarities to the early intestinal immunopathology of Crohn's disease. EGCs may also share with astrocytes the ability to regulate tissue integrity, thereby postulating that similar interactions to those observed for the blood-brain barrier may also be partly responsible for regulating mucosal and vascular permeability in the gastrointestinal tract. Disruption of the EGC network in Crohn's disease patients may represent one possible cause for the enhanced mucosal permeability state and vascular dysfunction that are thought to favor mucosal inflammation.
Collapse
Affiliation(s)
- Julie Cabarrocas
- Institut National de la Santé et de la Recherche Médicale U546, Pitié-Salpêtrière Hospital, Paris, France
| | | | | |
Collapse
|
21
|
Nurgali K, Stebbing MJ, Furness JB. Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. J Comp Neurol 2003; 468:112-24. [PMID: 14648694 DOI: 10.1002/cne.10948] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report on the first correlative study of the electrophysiological properties, shapes, and projections of enteric neurons in the mouse. Neurons in the myenteric plexus of the mouse colon were impaled with microelectrodes containing biocytin, their passive and active electrophysiological properties determined, and their responses to activation of synaptic inputs investigated. Biocytin, injected into the neurons from which recordings were made, was converted to an optically dense product and used to determine the shapes of neurons. By electrophysiological properties, almost all neurons belonged to one of two classes, AH neurons or S neurons. AH neurons had a biphasic repolarization of the action potential, and slow afterhyperpolarizing potentials usually followed the action potentials. S neurons had monophasic repolarizations, no slow afterhyperpolarization, and fast excitatory postsynaptic potentials in response to fibre tract stimulation. By shape, neurons were divided into Dogiel type II (28/136 neurons) and uniaxonal neurons. Dogiel type II neurons had large, smooth-surfaced cell bodies and several long processes that supplied branches within myenteric ganglia. All Dogiel type II neurons had AH electrophysiology; conversely, most AH neurons had Dogiel type II morphology. The majority of uniaxonal neurons had lamellar dendrites, i.e., Dogiel type I morphology. They projected to the circular muscle (circular muscle motor neurons), to the longitudinal muscle (longitudinal muscle motor neurons), and to other myenteric ganglia (interneurons) and in some cases could not be traced to target cells. All S neurons were uniaxonal. A small proportion of uniaxonal neurons (3/70) had AH electrophysiology. Fast excitatory synaptic potentials were only recorded from uniaxonal neurons and were in most cases blocked by nicotinic receptor antagonists. A small component of fast excitatory transmission in some neurons was antagonized by the purine receptor antagonist PPADS. Slow excitatory postsynaptic potentials were observed in both AH and S neurons. Slow inhibitory postsynaptic potentials were recorded from S neurons. We conclude that the major classes of neurons are Dogiel type II neurons with AH electrophysiological properties and Dogiel type I neurons with S electrophysiological properties. The S/Dogiel type I neurons include circular muscle motor neurons, longitudinal muscle motor neurons, and interneurons.
Collapse
Affiliation(s)
- Kulmira Nurgali
- Department of Anatomy and Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
22
|
Thyagarajan B, Malli R, Schmidt K, Graier WF, Groschner K. Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling. Br J Pharmacol 2002; 137:821-30. [PMID: 12411413 PMCID: PMC1573569 DOI: 10.1038/sj.bjp.0704949] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Nitric oxide (NO) is a key modulator of cellular Ca(2+) signalling and a determinant of mitochondrial function. Here, we demonstrate that NO governs capacitative Ca(2+) entry (CCE) into HEK293 cells by impairment of mitochondrial Ca(2+) handling. 2. Authentic NO as well as the NO donors 1-[2-(carboxylato)pyrrolidin-1-yl]diazem-1-ium-1,2-diolate (ProliNO) and 2-(N,N-diethylamino)-diazenolate-2-oxide (DEANO) suppressed CCE activated by thapsigargin (TG)-induced store depletion. Threshold concentrations for inhibition of CCE by ProliNO and DEANO were 0.3 and 1 micro M, respectively. 3. NO-induced inhibition of CCE was not mimicked by peroxynitrite (100 micro M), the peroxynitrite donor 3-morpholino-sydnonimine (SIN-1, 100 micro M) or 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 1 mM). In addition, the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazole[4,3-a] quinoxalin-1-one (ODQ, 30 micro M) failed to antagonize the inhibitory action of NO on CCE. 4. DEANO (1-10 micro M) suppressed mitochondrial respiration as evident from inhibition of cellular oxygen consumption. Experiments using fluorescent dyes to monitor mitochondrial membrane potential and mitochondrial Ca(2+) levels, respectively, indicated that DEANO (10 micro M) depolarized mitochondria and suppressed mitochondrial Ca(2+) sequestration. The inhibitory effect of DEANO on Ca(2+) uptake into mitochondria was confirmed by recording mitochondrial Ca(2+) during agonist stimulation in HEK293 cells expressing ratiometric-pericam in mitochondria. 5. DEANO (10 micro M) failed to inhibit Ba(2+) entry into TG-stimulated cells when extracellular Ca(2+) was buffered below 1 micro M, while clear inhibition of Ba(2+) entry into store depleted cells was observed when extracellular Ca(2+) levels were above 10 micro M. Moreover, buffering of intracellular Ca(2+) by use of N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)] bis [N-[25-[(acetyloxy) methoxy]-2-oxoethyl]]-, bis[(acetyloxy)methyl] ester (BAPTA/AM) eliminated inhibition of CCE by NO, indicating that the observed inhibitory effects are based on an intracellular, Ca(2+) dependent-regulatory process. 6. Our data demonstrate that NO effectively inhibits CCE cells by cGMP-independent suppression of mitochondrial function. We suggest disruption of local Ca(2+) handling by mitochondria as a key mechanism of NO induced suppression of CCE.
Collapse
Affiliation(s)
- Baskaran Thyagarajan
- Department of Pharmacology and Toxicology, Karl-Franzens-University Graz, A-8010 Graz, Austria
| | - Roland Malli
- Department of Medical Biochemistry and Medical Molecular Biology, Karl-Franzens-University Graz, A-8010 Graz, Austria
| | - Kurt Schmidt
- Department of Pharmacology and Toxicology, Karl-Franzens-University Graz, A-8010 Graz, Austria
| | - Wolfgang F Graier
- Department of Medical Biochemistry and Medical Molecular Biology, Karl-Franzens-University Graz, A-8010 Graz, Austria
| | - Klaus Groschner
- Department of Pharmacology and Toxicology, Karl-Franzens-University Graz, A-8010 Graz, Austria
- Author for correspondence:
| |
Collapse
|
23
|
Ishikawa Y, Iida H, Ishida H. The muscarinic acetylcholine receptor-stimulated increase in aquaporin-5 levels in the apical plasma membrane in rat parotid acinar cells is coupled with activation of nitric oxide/cGMP signal transduction. Mol Pharmacol 2002; 61:1423-34. [PMID: 12021404 DOI: 10.1124/mol.61.6.1423] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the role of nitric oxide (NO)/cGMP signal transduction in the M(3) muscarinic acetylcholine receptor (mAChR)-stimulated increase in aquaporin-5 (AQP5) levels in the apical plasma membrane (APM) of rat parotid glands. Pretreatment of rat parotid tissue with the NO scavenger 2-(4carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide potassium inhibited both acetylcholine (ACh)- and pilocarpine-induced increases in AQP5 in the APM. NO donors [3-morpholinosydnonimine (SIN-1) and (S)-nitroso-N-acetylpenicillamine (SNAP)] mimicked the effects of mAChR agonists. A selective protein kinase G inhibitor [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo-[1,2,3-fg-3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester (KT5823)] and an NO synthase inhibitor (N(6)-imminoethyl-L-lysine) blocked SIN-1- and SNAP-induced increases in AQP5 in the APM. A calmodulin kinase II inhibitor [(8)-5-isoquinolinesulfonic acid, 4-[2-(5-isoquinolinyl-sulfonyl)methylamino]-3-oxo-(4-phenyl-1-piperazinyl)-propyl]phenyl ester (KN-62)] decreased the pilocarpine-induced increase of AQP5 in the APM. Using diaminofluorescinein-2 diacetate, enhanced NO synthase activity was detected in isolated parotid acinar cells after ACh-treatment. Treatment with dibutyryl cGMP, but not dibutyryl cAMP, induced an increase in AQP5 levels in the APM. BAPTA-AM inhibited the cGMP-induced increase in AQP5 in the APM. Pretreatment of the tissues with a myosin light chain kinase inhibitor [(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-9)] inhibited a mAChR-stimulated increase in AQP5 levels in the APM. Although there was a significant ACh-induced increase in AQP5 in the APM in the absence of extracellular Ca(2+), the maximal effect of ACh on the AQP5 levels in the APM occurred in the presence of extracellular Ca(2+). These results suggest that NO/cGMP signal transduction has a crucial role in Ca(2+) homeostasis in the mAChR-stimulated increase in AQP5 levels in the APM of rat parotid glands.
Collapse
Affiliation(s)
- Yasuko Ishikawa
- Department of Pharmacology, Tokushima University School of Dentistry, Tokushima, Japan.
| | | | | |
Collapse
|
24
|
Schultheiss G, Seip G, Kocks SL, Diener M. Ca(2+)-dependent and -independent Cl(-) secretion stimulated by the nitric oxide donor, GEA 3162, in rat colonic epithelium. Eur J Pharmacol 2002; 444:21-30. [PMID: 12191578 DOI: 10.1016/s0014-2999(02)01600-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lipophilic nitric oxide-liberating drug, 1,2,3,4-oxatriazolium,5-amino-3-(3,4-dichlorophenyl)-chloride (GEA 3162), concentration-dependently induced a Cl(-) secretion in rat colon. At a low concentration (5 x 10(-5) M), the action was Ca(2+)-dependent, whereas at a high concentration (5 x 10(-4) M), the response was independent from extracellular Ca(2+). Fura-2 experiments at isolated colonic crypts revealed that GEA 3162 induced an increase of the cytoplasmic Ca(2+) concentration due to an influx of extracellular Ca(2+), probably mediated by an activation of a nonselective cation conductance as demonstrated by whole-cell patch-clamp studies. After depolarization of the basolateral membrane, GEA 3162 (5 x 10(-4) M) stimulated a current, which was suppressed by glibenclamide but was resistant against blockade of protein kinases by staurosporine, suggesting an activation of apical Cl(-) channels directly by the nitric oxide (NO) donor. After permeabilizing the apical membrane with the ionophore, nystatin, GEA 3162 (5 x 10(-4) M) activated basolateral K(+) conductances and the Na(+)-K(+)-ATPase. Thus, the lipophilic NO donor GEA 3162 stimulates a Cl(-) secretion in a Ca(2+)-dependent and -independent manner.
Collapse
Affiliation(s)
- Gerhard Schultheiss
- Institut für Veterinär-Physiologie, Justus-Liebig-Universität Giessen, Frankfurter Str. 100, D-35392, Giessen, Germany.
| | | | | | | |
Collapse
|
25
|
Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002; 3:383-94. [PMID: 11988777 DOI: 10.1038/nrn812] [Citation(s) in RCA: 1339] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Members of the nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) families comprising neurotrophins and GDNF-family ligands (GFLs), respectively are crucial for the development and maintenance of distinct sets of central and peripheral neurons. Knockout studies in the mouse have revealed that members of these two families might collaborate or act sequentially in a given neuron. Although neurotrophins and GFLs activate common intracellular signalling pathways through their receptor tyrosine kinases, several clear differences exist between these families of trophic factors.
Collapse
Affiliation(s)
- Matti S Airaksinen
- Programme of Molecular Neurobiology, Institute of Biotechnology, P.O. Box 56, Viikki Biocenter, FIN-00014, University of Helsinki, Finland.
| | | |
Collapse
|
26
|
Ishikawa Y, Iida H, Skowronski MT, Ishida H. Activation of endogenous nitric oxide synthase coupled with methacholine-induced exocytosis in rat parotid acinar cells. J Pharmacol Exp Ther 2002; 301:355-63. [PMID: 11907193 DOI: 10.1124/jpet.301.1.355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methacholine (MCh) interacted with M(3) muscarinic receptors in rat parotid tissue slices and induced amylase secretion. MCh- and calcimycin-induced exocytosis was completely inhibited by N-[2-(N-(4-chlorocinnamyl)-N-methylaminomethyl)phenyl]-N-[2-hydroxyethyl]-4-methoxybenzenesulfonamide, N(G)-nitro-L-arginine methylester (L-NAME), 1H-(1,2,4)-oxadiazolo[4,3-a]quinoxaline-1-one, and 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, suggesting that activations of calmodulin (CaM) kinase II, nitric oxide synthase (NOS), and cGMP-dependent protein kinase (PKG) were coupled with the exocytosis. These suggestions were supported by the results that exposure of the slices to MCh induced a rapid increase in these enzyme activities. Western blot analysis showed that neuronal NOS (nNOS) was expressed in isolated parotid acinar cells of rats. To measure nitric oxide (NO) production in response to the stimulation with MCh in real time, the isolated parotid acinar cells had been preloaded with 4,5-diaminofluorescein diacetate and incubated with the agonist. MCh (1 microM) induced a fast increase in 4,5-diaminofluorescein fluorescence, corresponding to an increase in the NO synthesis in the presence of extracellular Ca(2+) but not in the absence of it. When the isolated parotid acinar cells preloaded with L-NAME or 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethylester) were treated simultaneously with MCh, the increase in the fluorescence also was not observed. The MCh-induced increase in the fluorescence was not observed in the cells incubated in the absence of extracellular calcium, showing the importance of Ca(2+) entry from extracellular sites for MCh-induced NOS activation. These results indicate that nNOS is endogenously present in rat parotid acinar cells and that the rapid activation of this enzyme together with those of CaM kinase II and PKG contributes to MCh-induced amylase secretion.
Collapse
Affiliation(s)
- Yasuko Ishikawa
- Department of Pharmacology, Tokushima University School of Dentistry, Tokushima, Japan.
| | | | | | | |
Collapse
|
27
|
Rosignoli F, Pérez Leirós C. Activation of nitric oxide synthase through muscarinic receptors in rat parotid gland. Eur J Pharmacol 2002; 439:27-33. [PMID: 11937089 DOI: 10.1016/s0014-2999(02)01375-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Muscarinic receptors play an important role in secretory and vasodilator responses in rat salivary glands. Nitric oxide synthase (NOS) activity was found coupled to muscarinic receptor activation as well as to nitric oxide-mediated amylase secretion elicited by carbachol. Parotid glands presented a predominant M(3) and a minor muscarinic M(1) acetylcholine receptor population, though carbachol stimulated NOS activity only through muscarinic M(3) receptors as revealed in the presence of 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and pirenzepine. Amylase secretion induced by carbachol appeared to be partly mediated by nitric oxide and nitric oxide-induced signaling since N-nitro-L-arginine methyl ester (L-NAME) inhibited the effect as well as did methylene blue. A negative regulation of NOS by protein kinase C activation in the presence of a high concentration of carbachol was seen in parotid glands and this inhibition was paralleled by amylase secretion.
Collapse
Affiliation(s)
- Florencia Rosignoli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Pabellón II, 4 degrees piso, (1428), Buenos Aires, Argentina
| | | |
Collapse
|
28
|
Abstract
Hirschsprung disease is the most common congenital malformation of the enteric nervous system. Phenotypic expression is variable because of incomplete penetrance, and the pathogenesis is multifactorial. Although mutations of the RET tyrosine kinase gene remain the most commonly identified cause, there are now eight separate human gene loci identified whose mutations result in this disease. Analysis of these gene products in experimental animal models and cell systems has led to an increasing elucidation of the signaling pathways that are in operation during specific embryonic time stages and that direct the spatial arrangements and differentiation of enteric neuroblasts. Mutation analysis through in vitro cell expression studies has led to detailed descriptions of the affected microdomains of signal pathway receptors and the cellular pathogenesis of abnormal signaling that leads to apoptosis of developing neurons before the completion of enteric nervous system development. The full description of the pathogenesis of this disorder awaits the definition of new genetic loci, multiple gene interactions, and the acknowledgment of random events that may lead to aganglionosis of the distal bowel.
Collapse
Affiliation(s)
- William M Belknap
- Section of Pediatric Gastroenterology, Department of Pediatrics, Henry Ford Health System, Detroit, Michigan 48202, USA.
| |
Collapse
|
29
|
Thyagarajan B, Poteser M, Romanin C, Kahr H, Zhu MX, Groschner K. Expression of Trp3 determines sensitivity of capacitative Ca2+ entry to nitric oxide and mitochondrial Ca2+ handling: evidence for a role of Trp3 as a subunit of capacitative Ca2+ entry channels. J Biol Chem 2001; 276:48149-58. [PMID: 11600493 DOI: 10.1074/jbc.m103977200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of Trp3 in cellular regulation of Ca(2+) entry by NO was studied in human embryonic kidney (HEK) 293 cells. In vector-transfected HEK293 cells (controls), thapsigargin (TG)-induced (capacitative Ca(2+) entry (CCE)-mediated) intracellular Ca(2+) signals and Mn(2+) entry were markedly suppressed by the NO donor 2-(N,N-diethylamino)diazenolate-2-oxide sodium salt (3 microm) or by authentic NO (100 microm). In cells overexpressing Trp3 (T3-9), TG-induced intracellular Ca(2+) signals exhibited an amplitude similar to that of controls but lacked sensitivity to inhibition by NO. Consistently, NO inhibited TG-induced Mn(2+) entry in controls but not in T3-9 cells. Moreover, CCE-mediated Mn(2+) entry into T3-9 cells exhibited a striking sensitivity to inhibition by extracellular Ca(2+), which was not detectable in controls. Suppression of mitochondrial Ca(2+) handling with the uncouplers carbonyl cyanide m-chlorophenyl hydrazone (300 nm) or antimycin A(1) (-AA(1)) mimicked the inhibitory effect of NO on CCE in controls but barely affected CCE in T3-9 cells. T3-9 cells exhibited enhanced carbachol-stimulated Ca(2+) entry and clearly detectable cation currents through Trp3 cation channels. NO as well as carbonyl cyanide m-chlorophenyl hydrazone slightly promoted carbachol-induced Ca(2+) entry into T3-9 cells. Simultaneous measurement of cytoplasmic Ca(2+) and membrane currents revealed that Trp3 cation currents are inhibited during Ca(2+) entry-induced elevation of cytoplasmic Ca(2+), and that this negative feedback regulation is blunted by NO. Our results demonstrate that overexpression of Trp3 generates phospholipase C-regulated cation channels, which exhibit regulatory properties different from those of endogenous CCE channels. Moreover, we show for the first time that Trp3 expression determines biophysical properties as well as regulation of CCE channels by NO and mitochondrial Ca(2+) handling. Thus, we propose Trp3 as a subunit of CCE channels.
Collapse
Affiliation(s)
- B Thyagarajan
- Department of Pharmacology and Toxicology, Karl Franzens University, Graz A-8010, Austria
| | | | | | | | | | | |
Collapse
|
30
|
Watson EL, Singh JC, Jacobson KL, Ott SM. Nitric oxide inhibition of cAMP synthesis in parotid acini: regulation of type 5/6 adenylyl cyclase. Cell Signal 2001; 13:755-63. [PMID: 11602186 DOI: 10.1016/s0898-6568(01)00204-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nitric oxide (NO) donor, GEA 3162, inhibited isoproterenol-induced cyclic AMP (cAMP) accumulation in a concentration- and time-dependent manner in mouse parotid acini; SIN-1 mimicked these effects. Inhibition of stimulated cAMP accumulation was independent of phosphodiesterase activity. GEA 3162 also inhibited forskolin-induced cAMP accumulation. Removal of extracellular Ca(2+), addition of La(3+), or the calmodulin (CaM) inhibitor, calmidazolium, did not prevent the NO-mediated response, and addition of the soluble guanylyl inhibitor, ODQ, did not reverse GEA 3162-induced inhibition of cAMP accumulation. GEA 3162 also inhibited adenylyl cyclase in vitro independently of Ca(2+)/CaM. Further studies revealed that the NO synthase (NOS) inhibitor, 7-nitroindazole (7-NI), reduced significantly thapsigargin-induced Ca(2+) release and capacitative Ca(2+) entry and reversed thapsigargin inhibition of the AC Type 5/6 isoform (AC5/6). Data suggest that NO produced endogenously has dual effects on cAMP accumulation in mouse parotid acini, an inhibitory effect on AC activity and a modulatory effect on capacitative Ca(2+) entry resulting in AC5/6 inhibition.
Collapse
Affiliation(s)
- E L Watson
- Department of Oral Biology, University of Washington, Seattle, 98195, USA.
| | | | | | | |
Collapse
|
31
|
Sugiya H, Mitsui Y, Michikawa H, Fujita-Yoshigaki J, Hara-Yokoyama M, Hashimoto S, Furuyama S. Ca(2+)-regulated nitric oxide generation in rabbit parotid acinar cells. Cell Calcium 2001; 30:107-16. [PMID: 11440468 DOI: 10.1054/ceca.2001.0218] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In rabbit parotid acinar cells, the muscarinic cholinergic agonist methacholine induced an increase in the intracellular Ca(2+) concentration and provoked nitric oxide (NO) generation. Ca(2+)-mobilizing reagents such as thapsigargin and the Ca(2+) ionophore A23187 mimicked the effect of methacholine on NO generation. Methacholine-induced NO generation was inhibited by the removal of extracellular Ca(2+). Immunoblot analysis indicated that the antibody against the neuronal type of nitric oxide synthase (NOS) cross-reacted with NOS in the cytosol of rabbit parotid gland cells. Immunofluorescence testing showed that neuronal NOS is present in the cytosol of acinar cells but less in the ductal cells. NOS was purified approximately 8100-fold from the cytosolic fraction of rabbit parotid glands by chromatography on Sephacryl S-200, DEAE-Sephacel, and 29,59-ADP-Sepharose. The purified NOS was a NADPH- and tetrahydroxybiopterin-dependent enzyme and was activated by Ca(2+) within the physiological range in the presence of calmodulin. These results suggest that NO is generated by the activation of the neuronal type of NOS, which is regulated in rabbit parotid acinar cells by the increase in intracellular Ca(2+) levels induced by the activation of muscarinic receptors.
Collapse
Affiliation(s)
- H Sugiya
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- C E Gariepy
- Department of Pediatrics, Pediatric Gastroenterology and Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9063, USA.
| |
Collapse
|
33
|
Heck DE. *NO, RSNO, ONOO-, NO+, *NOO, NOx--dynamic regulation of oxidant scavenging, nitric oxide stores, and cyclic GMP-independent cell signaling. Antioxid Redox Signal 2001; 3:249-60. [PMID: 11396479 DOI: 10.1089/152308601300185205] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Following its release from nitric oxide synthase, nitric oxide seldom perfuses the cytosol; rather this reactive mediator quickly interacts with available target molecules proximate to its site of release. Within the cell, virtually every component, low-molecular-weight oxidants and reductants, proteins, lipids, sugars, and nucleic acids can be modified by nitrogen oxides thus acting as potential targets for reactive nitrogen oxides. Adducts formed by nitrogen oxides often modulate the cellular activities of the target molecules, and these modified molecules may be differentially metabolized or localized. The formation of nitrogen oxide adducts can be a reversible process, and the reactive nitrogen species released may be specifically oxidized or reduced during the process. Recently, numerous studies have demonstrated that reversible nitration of cellular proteins acts to transduce molecular signals regulating such diverse processes as muscle contraction, neurotransmission, protein metabolism, and apoptosis. The vast numbers of molecules that undergo biologically relevant interactions with nitrogen oxides imply that the cellular concentration of nitrosated and nitrated species may effectively comprise a reserve or cellular store. Potentially, these nitroso reserves function as critical components of the overall redox status of the intracellular environs. Understanding the dynamic regulation of nitric oxide/nitrogen oxides release from these stores is likely to provide clues important in resolving the complex pathophysiology of poorly understood multifactorial disorders, including neurodegeneration, multiorgan failure, cardiomyopathy, and septic shock.
Collapse
Affiliation(s)
- D E Heck
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
34
|
Young HM, Newgreen D. Enteric neural crest-derived cells: origin, identification, migration, and differentiation. THE ANATOMICAL RECORD 2001; 262:1-15. [PMID: 11146424 DOI: 10.1002/1097-0185(20010101)262:1<1::aid-ar1006>3.0.co;2-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, VIC, Australia.
| | | |
Collapse
|
35
|
Burns AJ, Le Douarin NM. Enteric nervous system development: analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras. THE ANATOMICAL RECORD 2001; 262:16-28. [PMID: 11146425 DOI: 10.1002/1097-0185(20010101)262:1<16::aid-ar1007>3.0.co;2-o] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The majority of the enteric nervous system (ENS) is derived from vagal neural crest cells (NCC). For many years, the contribution from a second region of the neuraxis (the sacral neural crest) to the ENS has been less clear, with conflicting reports appearing in the literature. To resolve this longstanding issue, we documented the spatiotemporal migration and differentiation of vagal and sacral-derived NCC within the developing chick embryo using quail-chick grafting and antibody labelling. Results showed that vagal NCC colonised the entire length of the gut in a rostrocaudal direction. The hindgut, the region of the gastrointestinal tract most frequently affected in developmental disorders, was found to be colonised in a complex manner. Vagal NCC initially migrated within the submucosa, internal to the circular muscle layer, before colonising the myenteric plexus region. In contrast, sacral NCC, which colonised the hindgut in a caudorostral direction, were primarily located in the myenteric plexus region from where they subsequently migrated to the submucosa. We also observed that sacral NCC migrated into the hindgut in significant numbers only after vagal-derived cells had colonised the entire length of the gut. This suggested that to participate in ENS formation, sacral cells may require an interaction with vagal-derived cells, or with factors or signalling molecules released by them or their progeny. To investigate this possible inter-relationship, we ablated sections of vagal neural crest (NC) to prevent the rostrocaudal migration of ENS precursors and, thus, create an aganglionic hindgut model. In the same NC ablated animals, quail-chick sacral NC grafts were performed. In the absence of vagal-derived ganglia, sacral NCC migrated and differentiated in an apparently normal manner. Although the numbers of sacral cells within the hindgut was slightly higher in the absence of vagal-derived cells, the increase was not sufficient to compensate for the lack of enteric ganglia. As vagal NCC appear to be more invasive than sacral NCC, since they colonise the entire length of the gut, we investigated the ability of transplanted vagal cells to colonise the hindgut by grafting the vagal NC into the sacral region. We found that when transplanted, vagal cells retained their invasive capacity and migrated into the hindgut in large numbers. Although sacral-derived cells normally contribute a relatively small number of precursors to the post-umbilical gut, many heterotopic vagal cells were found within the hindgut enteric plexuses at much earlier stages of development than normal. Heterotopic grafting of invasive vagal NCC into the sacral neuraxis may, therefore, be a means of rescuing an aganglionic hindgut phenotype.
Collapse
Affiliation(s)
- A J Burns
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France, 94736 Nogent-sur-Marne, France.
| | | |
Collapse
|
36
|
Abstract
Hirschsprung disease (HSCR), or congenital intestinal aganglionosis, is a relatively common disorder of neural crest migration. It has a strong genetic basis, although simple Mendelian inheritance is rarely observed. Hirschsprung disease is associated with several other anomalies and syndromes, and animal models for these conditions exist. Mutations in the RET gene are responsible for approximately half of familial cases and a smaller fraction of sporadic cases. Mutations in genes that encode RET ligands (GDNF and NTN); components of another signaling pathway (EDNRB, EDN3, ECE-1); and the transcription factor, SOX10, have been identified in HSCR patients. A subset of these mutations is associated with anomalies of pigmentation and/or hearing loss. For almost every HSCR gene, incomplete penetrance of the HSCR phenotype has been observed, probably due to genetic modifier loci. Thus, HSCR has become a model of a complex polygenic disorder in which the interplay of different genes is currently being elucidated.
Collapse
Affiliation(s)
- M A Parisi
- Department of Pediatrics, Children's Hospital and Regional Medical Center, Seattle, Washington, USA
| | | |
Collapse
|
37
|
Lang D, Chen F, Milewski R, Li J, Lu MM, Epstein JA. Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest 2000; 106:963-71. [PMID: 11032856 PMCID: PMC314346 DOI: 10.1172/jci10828] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hirschsprung disease and Waardenburg syndrome are human genetic diseases characterized by distinct neural crest defects. Patients with Hirschsprung disease suffer from gastrointestinal motility disorders, whereas Waardenburg syndrome consists of defective melanocyte function, deafness, and craniofacial abnormalities. Mutations responsible for Hirschsprung disease and Waardenburg syndrome have been identified, and some patients have been described with characteristics of both disorders. Here, we demonstrate that PAX3, which is often mutated in Waardenburg syndrome, is required for normal enteric ganglia formation. Pax3 can bind to and activate expression of the c-RET gene, which is often mutated in Hirschsprung disease. Pax3 functions with Sox10 to activate transcription of c-RET, and SOX10 mutations result in Waardenburg-Hirschsprung syndrome. Thus, Pax3, Sox10, and c-Ret are components of a neural crest development pathway, and interruption of this pathway at various stages results in neural crest-related human genetic syndromes.
Collapse
Affiliation(s)
- D Lang
- Cardiovascular Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
38
|
Li N, Zou AP, Ge ZD, Campbell WB, Li PL. Effect of nitric oxide on calcium-induced calcium release in coronary arterial smooth muscle. GENERAL PHARMACOLOGY 2000; 35:37-45. [PMID: 11679204 DOI: 10.1016/s0306-3623(01)00089-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study was designed to determine whether nitric oxide (NO)-induced reduction of [Ca(2+)](i) is associated with Ca(2+)-induced Ca(2+) release (CICR) in coronary arterial smooth muscle cells (CASMCs). Caffeine was used as a CICR activator to induce Ca(2+) release in these cells. The effects of NO donor, sodium nitroprusside (SNP), on caffeine-induced Ca(2+) release were examined in freshly dissociated bovine CASMCs using single cell fluorescence microscopic spectrometry. The effects of NO donor on caffeine-induced coronary vasoconstriction were examined by isometric tension recordings. Caffeine, a CICR or ryanodine receptor (RYR) activator, produced a rapid Ca(2+) release with a 330 nM increase in [Ca(2+)](i). Pretreatment of the CASMCs with SNP, CICR inhibitor tetracaine or RYR blocker ryanodine markedly decreased caffeine-induced Ca(2+) release. Addition of caffeine to the Ca(2+)-free bath solution produced a transient coronary vasoconstriction. SNP, tetracaine and ryanodine, but not guanylyl cyclase inhibitor, ODQ, significantly attenuated caffeine-induced vasoconstriction. These results suggest that CICR is functioning in CASMCs and participates in the vasoconstriction in response to caffeine-induced Ca(2+) release and that inhibition of CICR is of importance in mediating the vasodilator response of coronary arteries to NO.
Collapse
Affiliation(s)
- N Li
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 53226, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|