1
|
A review of mixing and propulsion of chyme in the small intestine: fresh insights from new methods. J Comp Physiol B 2015; 185:369-87. [PMID: 25648621 DOI: 10.1007/s00360-015-0889-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/05/2015] [Accepted: 01/17/2015] [Indexed: 01/18/2023]
Abstract
The small intestine is a convoluted flexible tube of inconstant form and capacity through which chyme is propelled and mixed by varying patterns of contraction. These inconstancies have prevented quantitative comparisons of the manner in which contractile activity engenders mixing of contained chyme. Recent quantitative work based on spatiotemporal mapping of intestinal contractions, macro- and micro-rheology, particle image velocimetry and real-time modelling has provided new insights into this process. Evidence indicates that the speeds and patterns of the various types of small intestinal contraction are insufficient to secure optimal mixing and enzymatic digestion over a minimal length of intestine. Hence particulate substrates and soluble nutrients become dispersed along the length of the lumen. Mixing within the lumen is not turbulent but results from localised folding and kneading of the contents by contractions but is augmented by the inconstant spatial disposition of the contractions and their component contractile processes. The latter include inconstancies in the sites of commencement and the directions of propagation of contraction in component groups of smooth muscle cells and in the coordination of the radial and circular components of smooth muscle contraction. Evidence suggests there is ongoing augmentation of mixing at the periphery of the lumen, during both the post-prandial and inter-meal periods, to promote flow around and between adjacent villi. This results largely from folding of the relatively inelastic mucosa during repeated radial and longitudinal muscular contraction, causing chyme to be displaced by periodic crowding and separation of the tips of the relatively rigid villi. Further, micro-rheological studies indicate that such peripheral mixing may extend to the apices of enterocytes owing to discontinuities in the mobile mucus layer that covers the ileal mucosa.
Collapse
|
2
|
Vardi T, Fina M, Zhang L, Dhingra A, Vardi N. mGluR6 transcripts in non-neuronal tissues. J Histochem Cytochem 2011; 59:1076-86. [PMID: 22034516 DOI: 10.1369/0022155411425386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study mGluR6 expression, the authors investigated two transgenic mouse lines that express enhanced green fluorescent protein (GFP) under control of mGluR6 promoter. In retina, GFP was expressed exclusively in all ON bipolar cell types, either uniformly across all cells of this class (line 5) or in a mosaic (patchy) fashion (line 1). In brain, GFP was found in certain cortical areas, superior colliculus, axons of the corpus callosum, accessory olfactory bulb, and cells of the subcommissural organ. Outside the nervous system, GFP was seen in the corneal endothelium, testis, the kidney's medulla, collecting ducts and parietal layer that surround the glomeruli, and B lymphocytes. Furthermore, RT-PCR showed that most tissues that expressed GFP in the transgenic mouse also transcribed two splice variants of mGluR6 in the wild-type mouse. The alternate variant was lacking exon 8, predicting a protein product of 545 amino acids that lacks the 7-transmembrane domains of the receptor. In cornea, immunostaining for mGluR6 gave strong staining in the endothelium, and this was stronger in wild-type than in mGluR6-null mice. Furthermore, calcium imaging with Fura-2 showed that application of L-AP4, an agonist for group III metabotropic glutamate receptors including mGluR6, elevated calcium in endothelial cells.
Collapse
Affiliation(s)
- Tamar Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
3
|
siRNA-Mediated Inhibition of Na+ –K+–2Cl− Cotransporter (NKCC1) and Regulatory Volume Increase in the Chondrocyte Cell Line C-20/A4. J Membr Biol 2011; 243:25-34. [DOI: 10.1007/s00232-011-9389-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/17/2011] [Indexed: 10/17/2022]
|
4
|
Diecke FP, Ma L, Iserovich P, Fischbarg J. Corneal endothelium transports fluid in the absence of net solute transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2043-8. [PMID: 17597578 PMCID: PMC2701996 DOI: 10.1016/j.bbamem.2007.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 04/13/2007] [Accepted: 05/08/2007] [Indexed: 11/25/2022]
Abstract
The corneal endothelium transports fluid from the corneal stroma to the aqueous humor, thus maintaining stromal transparency by keeping it relatively dehydrated. This fluid transport mechanism is thought to be driven by the transcellular transports of HCO(3)(-) and Cl(-) in the same direction, from stroma to aqueous. In parallel to these anion movements, for electroneutrality, there are paracellular Na(+) and transcellular K(+) transports in the same direction. The resulting net flow of solute might generate local osmotic gradients that drive fluid transport. However, there are reports that some 50% residual fluid transport remains in nominally HCO(3)(-) free solutions. We have examined the driving force for this residual fluid transport. We confirm that in nominally HCO(3)(-) free solutions, 48% of control fluid transport remains. When in addition Cl(-) channels are inhibited, 30% of control fluid movement still remains. Addition of a carbonic anhydrase inhibitor has no further effect. These manipulations combined inhibit the transcellular transport of all anions, without which there cannot be any net transport of solute and consequently no local osmotic gradients, yet there is residual fluid movement. Only the further addition of benzamil, an inhibitor of epithelial Na(+) channels, abolishes fluid transport completely. Our data are inconsistent with transcellular local osmosis and instead support the paradigm of paracellular fluid transport driven by electro-osmotic coupling.
Collapse
Affiliation(s)
- Friedrich P.J. Diecke
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | - Li Ma
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Pavel Iserovich
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jorge Fischbarg
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Ma L, Kuang K, Smith RW, Rittenband D, Iserovich P, Diecke F, Fischbarg J. Modulation of tight junction properties relevant to fluid transport across rabbit corneal endothelium. Exp Eye Res 2007; 84:790-8. [PMID: 17320078 PMCID: PMC1993899 DOI: 10.1016/j.exer.2006.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 11/30/2006] [Accepted: 12/15/2006] [Indexed: 11/20/2022]
Abstract
Paracellular junctions could play an important role in corneal endothelial fluid transport. In this study we explored the effects of different reagents on the tight junctional barrier by assessing the translayer specific electrical resistance (TER) across rabbit corneal endothelial preparations and cultured rabbit corneal endothelial cells' (CRCEC) monolayers, the paracellular permeability (Papp) for fluorescein isothiocyanate (FITC) dextrans across CRCEC, and fluid transport across de-epithelialized rabbit corneal endothelial preparations. Palmitoyl carnitine (PC), poly-L-lysine (PLL), adenosine triphosphate (ATP), and dibutyryl adenosine 3',5'-cyclic monophosphate (dB-cAMP) were used to modulate corneal endothelial fluid transport and tight junctions (TJs). After seeding, the TER across CRCEC reached maximal values (29.2+/-1.0 Omega cm2) only after the 10th day. PC (0.1 mM) caused decreases both in TER (by 40%) and fluid transport (swelling rate: 18.5+/-0.3 microm/h), and an increase in Papp. PLL resulted in increased TER rose and Papp but decreased fluid transport (swelling rate: 10+/-0.3 microm/h). dB-cAMP (0.1 mM) and ATP (0.1 mM) decreased TER by 16% and 6%, increased Papp slightly, and stimulated fluid transport; the rates of de-swelling (in microm/h) were -5.4+/-0.3 and -12.1+/-0.4, respectively. PC might cause the junctions to open up unspecifically and thus increase passive leak. PLL is a known junctional charge modifier that may be adding steric hindrance to the tight junctions. The results with dB-cAMP and ATP are consistent with fluid transport via the paracellular route.
Collapse
Affiliation(s)
- Li Ma
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University
| | - Kunyan Kuang
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University
| | | | | | - Pavel Iserovich
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University
| | - F.P.J. Diecke
- Dept. of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, NJ
| | - Jorge Fischbarg
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University
| |
Collapse
|
6
|
Lentle RG, Janssen PWM, Asvarujanon P, Chambers P, Stafford KJ, Hemar Y. High definition mapping of circular and longitudinal motility in the terminal ileum of the brushtail possum Trichosurus vulpecula with watery and viscous perfusates. J Comp Physiol B 2007; 177:543-56. [PMID: 17342493 DOI: 10.1007/s00360-007-0153-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 02/08/2007] [Accepted: 02/12/2007] [Indexed: 12/15/2022]
Abstract
Longitudinal and radial movements during spontaneous contractions of isolated segments of terminal ileum of the brushtail possum, a species of arboreal folivore, were studied using high definition spatiotemporal maps. Segments obtained from specimens were continuously perfused with solutions of various apparent viscosities at 3 cm and 5 cm hydrostatic pressure. A series of sustained tetrodotoxin-sensitive peristaltic events occurred during perfusion. The leading edge of each peristaltic event progressed by a succession of rhythmic surges of circular contraction with concerted concurrent phasic longitudinal contractions. Three types of peristaltic event were observed, with differing durations of occlusion and patterns of cyclic, in phase, circular and longitudinal contractions. Each peristaltic event was preceded by a change of shade on the D map that indicated circumferential dilatation. Differences in the slopes of these phasic shade changes from those occurring during peristalsis indicate that this distension is passive and likely results from aboral displacement of fluid. Tetradotoxin insensitive longitudinal contraction waves of frequency 9.2 min(-1) occurred during and in the absence of peristalsis, originating at a variety of sites, and propagating either in an orad or aborad direction but predominantly in the latter. Perfusion with 1% guar gum, at 5 cm hydrostatic pressure caused the lumen to become distended and the generation of peristaltic events to cease pending reduction of the hydrostatic head to 3 cm but longitudinal contractile activity was preserved. Neither the frequencies nor the rates of progression of circular and longitudinal contractile events, nor the temporal coordination between these events, varied with the apparent viscosity of the perfusate or altered in a manner that could facilitate mixing.
Collapse
Affiliation(s)
- Roger G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | | | | | | | | |
Collapse
|
7
|
Nieuwmeyer F, Ye J, Huizinga JD. Ava[L-Pro9,N-MeLeu10] substance P(7-11) (GR 73632) and Sar9, Met(O2)11 increase distention-induced peristalsis through activation of neurokinin-1 receptors on smooth muscle and interstitial cells of cajal. J Pharmacol Exp Ther 2005; 317:439-45. [PMID: 16330493 DOI: 10.1124/jpet.105.094920] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Substance P is generally considered an excitatory neurotransmitter related to gut motor activity, although an inhibitory influence of neurokinin-1 (NK1) receptor activation on peristalsis has also been reported. With an optimized in vitro method to assess distention-induced peristalsis, our aim was to clarify the effect of NK1 receptor activation on peristaltic activity and to reveal the mechanisms by which NK1 activation alters peristalsis. Distention of the small intestine of the mouse and guinea pig induced periodic occurrence of rhythmic waves of propagating rings of circular muscle contraction, associated with slow waves and superimposed action potentials, that propelled intestinal contents aborally. Activation of NK1 receptors by Ava[l-Pro(9),N-MeLeu10] substance P(7-11) (GR 73632) and Sar(9), Met(O(2))(11) on smooth muscle cells resulted in prolongation of the activity periods and increased action potential generation occurring superimposed on the intestinal slow wave activity. Activation of NK1 receptors on interstitial cells of Cajal resulted in an increase in slow wave frequency. Slow wave amplitude increased, likely by increased cell-to-cell coupling. The NK1 antagonist (S)-1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)piperidin-3-yl]ethyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane chloride (SR 140333) induced a decrease in the slow wave frequency and duration of the activity periods evoked by distention, which makes it likely that NK1 receptor activation plays a role in the normal physiological distention-induced generation of peristaltic motor patterns. In summary, NK1 receptors play a role in normal development of peristalsis and NK1 receptor activation markedly increases propulsive peristaltic contractile activity.
Collapse
Affiliation(s)
- Florentine Nieuwmeyer
- Intestinal Disease Research Program, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
8
|
Diecke FP, Wen Q, Iserovich P, Li J, Kuang K, Fischbarg J. Regulation of Na-K-2Cl cotransport in cultured bovine corneal endothelial cells. Exp Eye Res 2005; 80:777-85. [PMID: 15939033 DOI: 10.1016/j.exer.2004.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 11/23/2004] [Accepted: 12/08/2004] [Indexed: 11/16/2022]
Abstract
We have previously demonstrated the presence of a Na(+)-K(+)-2Cl cotransporter in cultured bovine corneal endothelial cells (CBCEC) and determined that this cotransporter is located in the basolateral membrane. This transporter may contribute to volume regulation and transendothelial fluid transport. We have now investigated factors regulating the activity of the cotransporter. This activity was assessed by measuring the bumetanide-sensitive (86)Rubidium ((86)Rb) uptake in (86)Rb-containing solutions. Data were normalized to protein content determined with a Lowry protein assay. We investigated the regulation by extracellular and intracellular ion concentrations, by osmotic gradients, and by second messengers. Our results indicate that extracellular Na+ and K+ each are required for activation of the cotransporter and activate with first-order kinetics at half-maximally effective concentrations (k(1/2)) of 21.1 and 1.33 mM, respectively. Extracellular Cl- is also required for cotransport activation, but shows higher order kinetics; the k(1/2) for Cl- is 28.1 mM and the Hill coefficient 2.1. HCO(3)(-) exerts a modulating effect on cotransporter activity; at 0 HCO(3)(-) the bumetanide-sensitive K(+) uptake is reduced by 30% compared to that at 26 mm HCO(3)(-). Manipulations of the intracellular [Cl-] by preincubation in Cl- -free solution or inhibition of Cl- efflux resulted in increased uptake at low [Cl-](i) and decreased uptake at high [Cl-](i). To assess the role of protein kinases in the regulation of cotransport, we have determined the effect of protein kinase inhibitors. H-89 and KT5270, inhibitors of PKA, inhibit cotransport almost completely, while calphostin C, an inhibitor of PKC, produces a small activation of cotransport. The tyrosine kinase inhibitor genistein reduced K+ uptake while its inactive analog daidzein was without effect. The calmodulin kinase inhibitor KN-93 was without effect. We also investigated the effects of phosphatase inhibitors. Calyculin A (k(1/2)=21 nM) and okadaic acid (k(1/2)=915 nM) produced approximate doubling of K+ uptake, suggesting that phosphatase 1 is dominant. We also investigated the role of the cytoskeleton and its activation. Reduction of Ca(i)(2+) by preincubation in Ca2+ -free medium as well as by exposure to W-7, an inhibitor of the binding of Ca(2+) to calmodulin, reduced K+ uptake. Consistent with this, ML-7, a relatively specific inhibitor of the Ca2+ -calmodulin activated myosin light chain kinase, inhibited cotransport by 40%. The Ca2+ -calmodulin activated myosin light chain kinase contributes to the modulation of the cytoskeleton by regulating the actin-myosin interaction. Consistent with the above, disruption of the actin polymerization by cytochalasin D led to a decrease in K+ uptake. We conclude that extracellular Na+, K+ and Cl- are requirements for the function of the CBCEC Na(+)-K(+)-2Cl(-) cotransporter, while intracellular Cl- and extracellular HCO(3)(-) modulate its activity. Several protein kinases, including PKA, PKC, tyrosine kinase, and myosin light chain kinase, modulate the K+ uptake. Another modulating pathway for cotransport involves the state of the cytoskeleton.
Collapse
Affiliation(s)
- Friedrich P Diecke
- Department of Physiology and Pharmacology, UMDNJ-New Jersey Medical School, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
9
|
A Mathematical Model of Electrolyte and Fluid Transport across Corneal Endothelium. J Membr Biol 2005; 203:41-56. [DOI: 10.1007/s00232-004-0730-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
|
10
|
Abstract
Experiments were conducted on the transport properties of the rabbit corneal endothelium at 22 degrees C, at which temperature the endothelium was able to stabilize the hydration of corneal stroma at physiological values. When bicarbonate was omitted from the bathing solution, the cornea swelled at 11 +/- 1 microm x h(-1). The swelling was completely reversible upon the subsequent re-introduction of bicarbonate. Similar swelling rates were observed when the endothelial pump was irreversibly inhibited with ouabain. In an Ussing-type chamber, the endothelium developed an electrical resistance of 25.0 +/- 1.0 ohms x cm2 and a short circuit current (s.c.c.) of 6.0 +/- 1.1 microA x cm(-2). Neither electrical resistance of the corneal endothelium nor its s.c.c. were changed significantly after exposure to 0.5 mM amiloride. Ouabain abolished the s.c.c. but had no significant effect on resistance. When paired preparations were short-circuited, the endothelium developed a net H[14C]O3- flux of 0.24 +/- 0.03 micromoles x cm(-2) x h(-1) into the aqueous humour, which was close in magnitude and direction to the s.c.c. of 0.22 +/- 0.01 microEq x cm(-2) x h(-1). There was no significant net flux of 86Rb (0.04 +/- 0.03 micromoles x cm(-2) x h(-1)). Similar magnitude fluxes for both bicarbonate and rubidium were found with open-circuit preparations. It is suggested that a metabolically driven electrogenic bicarbonate current passing across the corneal endothelium is solely responsible for maintaining corneal hydration at 22 degrees C. Based on these and other studies, a model is proposed for active bicarbonate transport across corneal endothelium consisting of uphill entry into the cell through a baso-lateral membrane sodium/bicarbonate cotransporter (NBC) and downhill exit through an apical membrane anion channel. Studies on the transport properties of the endothelium at 35 degrees C are discussed and reasons suggested for the discrepancy between short circuit current and net bicarbonate flux at this closed eye temperature.
Collapse
Affiliation(s)
- J S Swan
- Department of Pharmacology, University of Bristol, School of Medical Sciences, Bristol, BS8 1TD, UK.
| | | |
Collapse
|
11
|
Kuang K, Li Y, Yiming M, Sánchez JM, Iserovich P, Cragoe EJ, Diecke FPJ, Fischbarg J. Intracellular [Na+], Na+ pathways, and fluid transport in cultured bovine corneal endothelial cells. Exp Eye Res 2004; 79:93-103. [PMID: 15183104 DOI: 10.1016/j.exer.2004.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 02/18/2004] [Indexed: 11/21/2022]
Abstract
The mechanism of fluid transport across corneal endothelium remains unclear. We examine here the relative contributions of cellular mechanisms of Na+ transport and the homeostasis of intracellular [Na+] in cultured bovine corneal endothelial cells, and the influence of ambient Na+ and HCO3- on the deturgescence of rabbit cornea. Bovine corneal endothelial cells plated on glass coverslips were incubated for 60 min with 10 microm of the fluorescent Na+ indicator SBFI precursor in HCO3- HEPES (BH) Ringer's solution. After loading, cells were placed in a perfusion chamber. Indicator fluorescence (490 nm) was determined with a Chance-Legallais time-sharing fluorometer. Its voltage output was the ratio of the emissions excited at 340 and 380 nm. For calibration, cells were treated with gramicidin D. For fluid transport measurements, rabbit corneas were mounted in a Dikstein-Maurice chamber, and stromal thickness was measured with a specular microscope. The steady-state [Na+]i in BH was 14.36+/-0.38 mM (n = mean+/-s.e.). Upon exposure to Na+ -free BH solution (choline substituted), [Na+]i decreased to 1.81+/-0.20mM (n = 19). When going from Na+ -free plus 100 microm ouabain to BH plus ouabain, [Na+]i increased to 46.17+/-2.50 (n = 6) with a half time of 1.26+/-0.04 min; if 0.1 microm phenamil plus ouabain were present, it reached only 21.78+/-1.50mm. The exponential time constants (min-1) were: 0.56+/-0.04 for the Na+ pump; 0.39+/-0.01 for the phenamil sensitive Na+ channel; and 0.17+/-0.02 for the ouabain-phenamil-insensitive pathways. In HCO3- free medium (gluconate substituted), [Na+]i was 14.03+/-0.11mM; upon changing to BH medium, it increased to 30.77+/-0.74 mm. This last [Na+]i increase was inhibited 66% by 100 microm DIDS. Using BH medium, corneal thickness remained nearly constant, increasing at a rate of only 2.9+/-0.9 microm hr-1 during 3 hr. However, stromal thickness increased drastically (swelling rate 36.1+/-2.6 microm hr-1) in corneas superfused with BH plus 100 microm ouabain. Na+ -free, HCO3- free solution and 100 microm DIDS also led to increased corneal swelling rates (17.7+/-3.6, 14.4+/-1.6 and 14.9+/-1.2 microm hr-1, respectively). The present results are explained by the presence of a DIDS-inhibitable Na+-HCO3- cotransporter and an epithelial Na+ channel, both previously found in these cells. On the other hand, the quantitative picture presented here appears a novelty. The changes we observe are consistent with pump-driven rapid exchange of intracellular Na+, and recirculation of fully 70% of the Na+ pump flux via apical Na+ channels.
Collapse
Affiliation(s)
- Kunyan Kuang
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, 630 West 168th St., New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kuang K, Yiming M, Wen Q, Li Y, Ma L, Iserovich P, Verkman AS, Fischbarg J. Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice. Exp Eye Res 2004; 78:791-8. [PMID: 15037113 DOI: 10.1016/j.exer.2003.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 11/13/2003] [Indexed: 11/22/2022]
Abstract
We explored the role of AQP1, the only known aquaporin in corneal endothelium, on active fluid transport and passive osmotic water movements across corneal endothelial layers cultured from AQP1 null mice and wildtype mice. AQP1 null mice had grossly transparent corneas, just as wildtype mice. Endothelial cell layers grown on permeable supports transported fluid at rates of (in microl h(-1) cm(-2), n = 9 mean+/-s.e.): 4.3+/-0.6, wildtype mice (MCE); 3.5+/-0.6, AQP1 null mice (KMCE; difference not significant). The osmotic water flow (also in microl h(-1) cm(-2)) induced by a 100 mOsm sucrose gradient across MCE cell layers (8.7+/-0.6, n = 8) was significantly greater than that across KMCE (5.7+/-0.7, n = 6, p = 0.007). When plated on glass coverslips, plasma membrane osmotic water permeability determined by light scattering was significantly higher for cells from wildtype vs. AQP1 null mice (in microm sec(-1): 74+/-4, n = 19 vs. 44+/-4 microm sec(-1), n = 11, p < 0.001). Unexpectedly, after 10% hypo-osmotic challenge, the extent of the regulatory volume recovery was significantly reduced for AQP1 null mice cells (in%: MCE controls, 99+/-1, n = 19 vs. KMCE: 64+/-5, n = 11, p < 0.001). Thus, as in other 'low rate' fluid transporting epithelia, deletion of AQP1 in mice corneal endothelium reduces osmotic water permeability but not active transendothelial fluid transport. However, that deletion impaired the extent of regulatory volume decrease after a hypo-osmotic challenge, suggesting a novel role for AQP1 in corneal endothelium.
Collapse
Affiliation(s)
- Kunyan Kuang
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Diecke FPJ, Wen Q, Sanchez JM, Kuang K, Fischbarg J. Immunocytochemical localization of Na+-HCO3- cotransporters and carbonic anhydrase dependence of fluid transport in corneal endothelial cells. Am J Physiol Cell Physiol 2004; 286:C1434-42. [PMID: 14960417 DOI: 10.1152/ajpcell.00539.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In corneal endothelium, there is evidence for basolateral entry of HCO(3)(-) into corneal endothelial cells via Na(+)-HCO(3)(-) cotransporter (NBC) proteins and for net HCO(3)(-) flux from the basolateral to the apical side. However, how HCO(3)(-) exits the cells through the apical membrane is unclear. We determined that cultured corneal endothelial cells transport HCO(3)(-) similarly to fresh tissue. In addition, Cl(-) channel inhibitors decreased fluid transport by at most 16%, and inhibition of membrane-bound carbonic anhydrase IV by benzolamide or dextran-bound sulfonamide decreased fluid transport by at most 29%. Therefore, more than half of the fluid transport cannot be accounted for by anion transport through apical Cl(-) channels, CO(2) diffusion across the apical membrane, or a combination of these two mechanisms. However, immunocytochemistry using optical sectioning by confocal microscopy and cryosections revealed the presence of NBC transporters in both the basolateral and apical cell membranes of cultured bovine corneal endothelial cells and freshly isolated rabbit endothelia. This newly detected presence of an apical NBC transporter is consistent with its being the missing mechanism sought. We discuss discrepancies with other reports and provide a model that accounts for the experimental observations by assuming different stoichiometries of the NBC transport proteins at the basolateral and apical sides of the cells. Such functional differences might arise either from the expression of different isoforms or from regulatory factors affecting the stoichiometry of a single isoform.
Collapse
|
14
|
Fischbarg J. On the mechanism of fluid transport across corneal endothelium and epithelia in general. ACTA ACUST UNITED AC 2004; 300:30-40. [PMID: 14598383 DOI: 10.1002/jez.a.10306] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mechanism by which fluid is transported across epithelial layers is still unclear. The prevalent idea is that fluid traverses these layers transcellularly, driven by local osmotic gradients secondary to electrolyte transport and utilizing the high osmotic permeability of aquaporins. However, recent findings that some aquaporin knockout mice epithelia transport fluid sow doubts on local osmosis. This review discusses recent evidence in corneal endothelium that points instead to electro-osmosis as the mechanism underlying fluid transport. In this concept, a local recirculating electrical current would result in electro-osmotic coupling at the level of the intercellular junctions, dragging fluid via the paracellular route. The text also mentions possible mechanisms for apical bicarbonate exit from endothelial cells, and discusses whether electro-osmosis could be a general mechanism.
Collapse
Affiliation(s)
- Jorge Fischbarg
- College of Physicians and Surgeons, Columbia University, New York, New York, 10032, USA.
| |
Collapse
|
15
|
Rauz S, Walker EA, Murray PI, Stewart PM. Expression and distribution of the serum and glucocorticoid regulated kinase and the epithelial sodium channel subunits in the human cornea. Exp Eye Res 2003; 77:101-8. [PMID: 12823993 DOI: 10.1016/s0014-4835(03)00088-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The sodium transporting capacity of the corneal endothelium is vital for preserving corneal transparency, and has traditionally been attributed to the endothelial pump transporting sodium and bicarbonate across the corneal endothelium, maintaining the cornea in a dehydrated state. Recent studies have shown that the enzyme, serum and glucocorticoid regulated kinase isoform 1 (SGK1), plays a pivotal role in the corticosteroid induction of epithelial sodium transport in tissues such as the distal nephron, through activation of the epithelial sodium channels (ENaC). This study was designed to identify whether these elements were present within the human cornea. In situ hybridisation studies were conducted on paraffin embedded sections from six human eyes, using in-house generated cRNA antisense probes for human SGK1 and ENaC subunits (alpha, beta, gamma), and confirmed expression of SGK1 and all ENaC subunits in the corneal endothelial cytoplasm. Although ENaC subunits were not demonstrated in the corneal epithelium, SGK1 mRNA was identified in the nuclear region of central basal cells of the corneal epithelium, and limbal epithelial cells. Minimal chromagen precipitation was seen in the Bowman's membrane, corneal stroma, or Descemet's membrane. Control experiments consisted of no antisense probe, competition of the labelled antisense cRNA probe by a 60-fold excess unlabelled antisense cRNA, and use of labelled sense cRNA probes, revealing minimal or no hybridisation signal throughout the corneal layers. These data define components of the mineralocorticoid regulatory pathways of sodium transport in human corneal endothelium, and provide evidence for an additional mechanism contributing to corneal transparency and the 'metabolic' sodium pump.
Collapse
Affiliation(s)
- Saaeha Rauz
- Academic Unit of Ophthalmology, Division of Immunity and Infection, University of Birmingham, Birmingham and Midland Eye Centre, Dudley Road, Birmingham B18 7QU, UK
| | | | | | | |
Collapse
|
16
|
Abstract
The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium and endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling sites between ion and water transport remain undefined. In the retinal pigment epithelium, a H+-lactate cotransporter transports water. This protein could be the site of coupling between salt and water in this epithelium. The distribution of aquaporins does not suggest a role for these proteins in a general model for water transport in ocular epithelia. Some water-transporting membranes contain aquaporins, others do not. The ultrastructure is also variable among the cell layers and cannot be fitted into a general model. On the other hand, the direction of cotransport in symporters complies with the direction of fluid transport in both the corneal epi- and endothelium, as well as the ciliary epithelium and retinal pigment epithelium.
Collapse
Affiliation(s)
- Steffen Hamann
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
17
|
Thiagarajah JR, Verkman AS. Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. J Biol Chem 2002; 277:19139-44. [PMID: 11891232 DOI: 10.1074/jbc.m202071200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two aquaporin (AQP)-type water channels are expressed in mammalian cornea, AQP1 in endothelial cells and AQP5 in epithelial cells. To test whether these aquaporins are involved in corneal fluid transport and transparency, we compared corneal thickness, water permeability, and response to experimental swelling in wild type mice and transgenic null mice lacking AQP1 and AQP5. Corneal thickness in fixed sections was remarkably reduced in AQP1 null mice and increased in AQP5 null mice. By z-scanning confocal microscopy, corneal thickness in vivo was (in microm, mean +/- S.E., n = 5 mice) 123 +/- 1 (wild type), 101 +/- 2 (AQP1 null), and 144 +/- 2 (AQP5 null). After exposure of the external corneal surface to hypotonic saline (100 mosm), the rate of corneal swelling (5.0 +/- 0.3 microm/min, wild type) was reduced by AQP5 deletion (2.7 +/- 0.1 microm/min). After exposure of the endothelial surface to hypotonic saline by anterior chamber perfusion, the rate of corneal swelling (7.1 +/- 1.0 microm/min, wild type) was reduced by AQP1 deletion (1.6 +/- 0.4 microm/min). Base-line corneal transparency was not impaired by AQP1 or AQP5 deletion. However, the recovery of corneal transparency and thickness after hypotonic swelling (10-min exposure of corneal surface to hypotonic saline) was remarkably delayed in AQP1 null mice with approximately 75% recovery at 7 min in wild type mice compared with 5% recovery in AQP1 null mice. Our data indicate that AQP1 and AQP5 provide the principal routes for corneal water transport across the endothelial and epithelial barriers, respectively. The impaired recovery of corneal transparency in AQP1 null mice provides evidence for the involvement of AQP1 in active extrusion of fluid from the corneal stroma across the corneal endothelium. The up-regulation of AQP1 expression and/or function in corneal endothelium may reduce corneal swelling and opacification following injury.
Collapse
Affiliation(s)
- Jay R Thiagarajah
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0521, USA
| | | |
Collapse
|
18
|
Sun XC, Bonanno JA. Expression, localization, and functional evaluation of CFTR in bovine corneal endothelial cells. Am J Physiol Cell Physiol 2002; 282:C673-83. [PMID: 11880256 PMCID: PMC4100724 DOI: 10.1152/ajpcell.00384.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HCO-dependent fluid secretion by the corneal endothelium controls corneal hydration and maintains corneal transparency. Recently, it has been shown that mRNA for the cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in the corneal endothelium; however, protein expression, functional localization, and a possible role in HCO transport have not been reported. Immunoblotting for CFTR showed a single band at approximately 170 kDa for both freshly isolated and primary cultures of bovine corneal endothelial cells. Indirect immunofluorescence confocal microscopy indicated that CFTR locates to the apical membrane. Relative changes in apical and basolateral chloride permeability were estimated by measuring the rate of fluorescence quenching of the halide-sensitive indicator 6-methoxy-N-ethylquinolinium iodide during Cl(-) influx in the absence and presence of forskolin (FSK). Apical and basolateral Cl(-) permeability increased 10- and 3-fold, respectively, in the presence of 50 microM FSK. FSK-activated apical chloride permeability was unaffected by H(2)DIDs (250 microM); however, 5-nitro-2-(3-phenylpropyl-amino)benzoic acid (NPPB; 50 microM) and glibenclamide (100 microM ) inhibited activated Cl(-) fluxes by 45% and 30%, respectively. FSK-activated basolateral Cl(-) permeability was insensitive to NPPB, glibenclamide, or furosemide but was inhibited 80% by H(2)DIDS. HCO permeability was estimated by measuring changes in intracellular pH in response to quickly lowering bath [HCO]. FSK (50 microM) increased apical HCO permeability by twofold, which was inhibited 42% by NPPB and 65% by glibenclamide. Basolateral HCO permeability was unaffected by FSK. Genistein (50 microM) significantly increased apical HCO and Cl(minus sign) permeability by 1.8- and 16-fold, respectively. When 50 microM genistein was combined with 50 microM FSK, there was no further increase in Cl(-) permeability; however, HCO permeability was reduced to the control level. In summary, we conclude that CFTR is present in the apical membrane of bovine corneal endothelium and could contribute to transendothelial Cl(-) and HCO transport. Furthermore, there is a cAMP-activated Cl(-) pathway on the basolateral membrane that is not CFTR.
Collapse
Affiliation(s)
- Xing Cai Sun
- Indiana University School of Optometry, 800 E. Atwater Ave., Bloomington, IN 47405, USA
| | | |
Collapse
|