1
|
Aldosterone rapidly activates p-PKC delta and GPR30 but suppresses p-PKC epsilon protein levels in rat kidney. Endocr Regul 2020; 53:154-164. [PMID: 31517630 DOI: 10.2478/enr-2019-0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Aldosterone rapidly enhances protein kinase C (PKC) alpha and beta1 proteins in the rat kidney. The G protein-coupled receptor 30 (GPR30)-mediated PKC pathway is involved in the inhibition of the potassium channel in HEK-239 cells. GPR30 mediates rapid actions of aldosterone in vitro. There are no reports available regarding the aldosterone action on other PKC isoforms and GPR30 proteins in vivo. The aim of the present study was to examine rapid actions of aldosterone on protein levels of phosphorylated PKC (p-PKC) delta, p-PKC epsilon, and GPR30 simultaneously in the rat kidney. METHODS Male Wistar rats were intraperitoneally injected with normal saline solution or aldosterone (150 µg/kg body weight). After 30 minutes, abundance and immunoreactivity of p-PKC delta, p-PKC epsilon, and GPR30 were determined by Western blot analysis and immunohisto-chemistry, respectively. RESULTS Aldosterone administration significantly increased the renal protein abundance of p-PKC delta by 80% (p<0.01) and decreased p-PKC epsilon protein by 50% (p<0.05). Aldosterone injection enhanced protein immunoreactivity of p-PKC delta but suppressed p-PKC epsilon protein intensity in both kidney cortex and medulla. Protein abundance of GPR30 was elevated by aldosterone treatment (p<0.05), whereas the immunoreactivity was obviously changed in the kidney cortex and inner medulla. Aldosterone translocated p-PKC delta and GPR30 proteins to the brush border membrane of proximal convoluted tubules. CONCLUSIONS This is the first in vivo study simultaneously demonstrating that aldosterone administration rapidly elevates protein abundance of p-PKC delta and GPR30, while p-PKC epsilon protein is suppressed in rat kidney. The stimulation of p-PKC delta protein levels by aldosterone may be involved in the activation of GPR30.
Collapse
|
2
|
Cheung JY, Merali S, Wang J, Zhang XQ, Song J, Merali C, Tomar D, You H, Judenherc-Haouzi A, Haouzi P. The central role of protein kinase C epsilon in cyanide cardiotoxicity and its treatment. Toxicol Sci 2019; 171:247-257. [PMID: 31173149 PMCID: PMC6735853 DOI: 10.1093/toxsci/kfz137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023] Open
Abstract
In adult mouse myocytes, brief exposure to sodium cyanide (CN) in the presence of glucose does not decrease ATP levels, yet produces profound reduction in contractility, intracellular Ca2+ concentration ([Ca2+]i) transient and L-type Ca2+ current (ICa) amplitudes. We analyzed proteomes from myocytes exposed to CN, focusing on ionic currents associated with excitation-contraction coupling. CN induced phosphorylation of α1c subunit of L-type Ca2+ channel and α2 subunit of Na+-K+-ATPase. Methylene blue (MB), a CN antidote that we previously reported to ameliorate CN-induced reduction in contraction, [Ca2+]i transient and ICa amplitudes, was able to reverse this phosphorylation. CN decreased Na+-K+-ATPase current contributed by α2 but not α1 subunit, an effect that was also counteracted by MB. Peptide consensus sequences suggested CN-induced phosphorylation was mediated by protein kinase C epsilon (PKCε). Indeed, CN stimulated PKC kinase activity and induced PKCε membrane translocation, effects that were prevented by MB. Pre-treatment with myristoylated PKCε translocation activator or inhibitor peptides mimicked and inhibited the effects of CN on ICa and myocyte contraction, respectively. We conclude that CN activates PKCε, which phosphorylates L-type Ca2+ channel and Na+-K+-ATPase, resulting in depressed cardiac contractility. We hypothesize that this inhibition of ion fluxes represents a novel mechanism by which the cardiomyocyte reduces its ATP demand (decreased ion fluxes and contractility), diminishes ATP turnover and preserves cell viability. However, this cellular protective effect translates into life-threatening cardiogenic shock in vivo, thereby creating a profound disconnect between survival mechanisms at the cardiomyocyte level from those at the level of the whole organism.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA.,Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Salim Merali
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA
| | - JuFang Wang
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Xue-Qian Zhang
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Jianliang Song
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Carmen Merali
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA
| | - Dhanendra Tomar
- Center for Translational Medicine and Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | - Hanning You
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, PA
| | | | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
3
|
Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J, Bridge JHB, Chen-Izu Y, Clancy CE, Edwards A, Goldhaber J, Kaplan J, Lingrel JB, Pavlovic D, Philipson K, Sipido KR, Xie ZJ. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol 2015; 593:1361-82. [PMID: 25772291 PMCID: PMC4376416 DOI: 10.1113/jphysiol.2014.282319] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/30/2014] [Indexed: 12/17/2022] Open
Abstract
This paper is the third in a series of reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation–contraction coupling and arrhythmias: Na+ channel and Na+ transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on cardiac Na+/Ca2+ exchange (NCX) and Na+/K+-ATPase (NKA). While the relevance of Ca2+ homeostasis in cardiac function has been extensively investigated, the role of Na+ regulation in shaping heart function is often overlooked. Small changes in the cytoplasmic Na+ content have multiple effects on the heart by influencing intracellular Ca2+ and pH levels thereby modulating heart contractility. Therefore it is essential for heart cells to maintain Na+ homeostasis. Among the proteins that accomplish this task are the Na+/Ca2+ exchanger (NCX) and the Na+/K+ pump (NKA). By transporting three Na+ ions into the cytoplasm in exchange for one Ca2+ moved out, NCX is one of the main Na+ influx mechanisms in cardiomyocytes. Acting in the opposite direction, NKA moves Na+ ions from the cytoplasm to the extracellular space against their gradient by utilizing the energy released from ATP hydrolysis. A fine balance between these two processes controls the net amount of intracellular Na+ and aberrations in either of these two systems can have a large impact on cardiac contractility. Due to the relevant role of these two proteins in Na+ homeostasis, the emphasis of this review is on recent developments regarding the cardiac Na+/Ca2+ exchanger (NCX1) and Na+/K+ pump and the controversies that still persist in the field.
Collapse
Affiliation(s)
- Michael J Shattock
- King's College London BHF Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London, SE1 7EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Pavlovic D, Fuller W, Shattock MJ. Novel regulation of cardiac Na pump via phospholemman. J Mol Cell Cardiol 2013; 61:83-93. [PMID: 23672825 DOI: 10.1016/j.yjmcc.2013.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/19/2022]
Abstract
As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange, thus setting cardiac Ca load and contractility. As Na influx varies with electrical excitation, heart rate and pathology, the dynamic regulation of Na efflux is essential. It is now widely recognized that phospholemman, a 72 amino acid accessory protein which forms part of the Na pump complex, is the key nexus linking cellular signaling to pump regulation. Phospholemman is the target of a variety of post-translational modifications (including phosphorylation, palmitoylation and glutathionation) and these can dynamically alter the activity of the Na pump. This review summarizes our current understanding of the multiple regulatory mechanisms that converge on phospholemman and govern NA pump activity in the heart. The corrected Fig. 4 is reproduced below. The publisher would like to apologize for any inconvenience caused. [corrected].
Collapse
Affiliation(s)
- Davor Pavlovic
- Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, London, UK.
| | | | | |
Collapse
|
5
|
Galougahi KK, Liu CC, Garcia A, Fry NAS, Hamilton EJ, Rasmussen HH, Figtree GA. Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling. J Physiol 2013; 591:2999-3015. [PMID: 23587884 DOI: 10.1113/jphysiol.2013.252817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The widely reported stimulation of the cardiac Na(+)-K(+) pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na(+) levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits and reduced myocardial O2(•-)-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na(+)-K(+) pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na(+) in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure.
Collapse
|
6
|
Fuller W, Tulloch LB, Shattock MJ, Calaghan SC, Howie J, Wypijewski KJ. Regulation of the cardiac sodium pump. Cell Mol Life Sci 2012; 70:1357-80. [PMID: 22955490 PMCID: PMC3607738 DOI: 10.1007/s00018-012-1134-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/27/2012] [Accepted: 08/13/2012] [Indexed: 01/24/2023]
Abstract
In cardiac muscle, the sarcolemmal sodium/potassium ATPase is the principal quantitative means of active transport at the myocyte cell surface, and its activity is essential for maintaining the trans-sarcolemmal sodium gradient that drives ion exchange and transport processes that are critical for cardiac function. The 72-residue phosphoprotein phospholemman regulates the sodium pump in the heart: unphosphorylated phospholemman inhibits the pump, and phospholemman phosphorylation increases pump activity. Phospholemman is subject to a remarkable plethora of post-translational modifications for such a small protein: the combination of three phosphorylation sites, two palmitoylation sites, and one glutathionylation site means that phospholemman integrates multiple signaling events to control the cardiac sodium pump. Since misregulation of cytosolic sodium contributes to contractile and metabolic dysfunction during cardiac failure, a complete understanding of the mechanisms that control the cardiac sodium pump is vital. This review explores our current understanding of these mechanisms.
Collapse
Affiliation(s)
- W Fuller
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, College of Medicine Dentistry and Nursing, University of Dundee, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
7
|
White CN, Liu CC, Garcia A, Hamilton EJ, Chia KKM, Figtree GA, Rasmussen HH. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity. J Biol Chem 2010; 285:13712-20. [PMID: 20194511 DOI: 10.1074/jbc.m109.090225] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular signaling can inhibit the membrane Na(+)-K(+) pump via protein kinase C (PKC)-dependent activation of NADPH oxidase and a downstream oxidative modification, glutathionylation, of the beta(1) subunit of the pump alpha/beta heterodimer. It is firmly established that cAMP-dependent signaling also regulates the pump, and we have now examined the hypothesis that such regulation can be mediated by glutathionylation. Exposure of rabbit cardiac myocytes to the adenylyl cyclase activator forskolin increased the co-immunoprecipitation of NADPH oxidase subunits p47(phox) and p22(phox), required for its activation, and increased superoxide-sensitive fluorescence. Forskolin also increased glutathionylation of the Na(+)-K(+) pump beta(1) subunit and decreased its co-immunoprecipitation with the alpha(1) subunit, findings similar to those already established for PKC-dependent signaling. The decrease in co-immunoprecipitation indicates a decrease in the alpha(1)/beta(1) subunit interaction known to be critical for pump function. In agreement with this, forskolin decreased ouabain-sensitive electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange ratio) of voltage-clamped, internally perfused myocytes. The decrease was abolished by the inclusion of superoxide dismutase, the inhibitory peptide for the epsilon-isoform of PKC or inhibitory peptide for NADPH oxidase in patch pipette solutions that perfuse the intracellular compartment. Pump inhibition was also abolished by inhibitors of protein kinase A and phospholipase C. We conclude that cAMP- and PKC-dependent inhibition of the cardiac Na(+)-K(+) pump occurs via a shared downstream oxidative signaling pathway involving NADPH oxidase activation and glutathionylation of the pump beta(1) subunit.
Collapse
Affiliation(s)
- Caroline N White
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney 2065, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
White CN, Figtree GA, Liu CC, Garcia A, Hamilton EJ, Chia KKM, Rasmussen HH. Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase. Am J Physiol Cell Physiol 2009; 296:C693-700. [DOI: 10.1152/ajpcell.00648.2008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sarcolemmal Na+-K+ pump, pivotal in cardiac myocyte function, is inhibited by angiotensin II (ANG II). Since ANG II activates NADPH oxidase, we tested the hypothesis that NADPH oxidase mediates the pump inhibition. Exposure to 100 nmol/l ANG II increased superoxide-sensitive fluorescence of isolated rabbit ventricular myocytes. The increase was abolished by pegylated superoxide dismutase (SOD), by the NADPH oxidase inhibitor apocynin, and by myristolated inhibitory peptide to ε-protein kinase C (εPKC), previously implicated in ANG II-induced Na+-K+ pump inhibition. A role for εPKC was also supported by an ANG II-induced increase in coimmunoprecipitation of εPKC with the receptor for the activated kinase and with the cytosolic p47 phox subunit of NADPH oxidase. ANG II decreased electrogenic Na+-K+ pump current in voltage-clamped myocytes. The decrease was abolished by SOD, by the gp91ds inhibitory peptide that blocks assembly and activation of NADPH oxidase, and by εPKC inhibitory peptide. Since colocalization should facilitate NADPH oxidase-dependent regulation of the Na+-K+ pump, we examined whether there is physical association between the pump subunits and NADPH oxidase. The α1-subunit coimmunoprecipitated with caveolin 3 and with membrane-associated p22 phox and cytosolic p47 phox NADPH oxidase subunits at baseline. ANG II had no effect on α1/caveolin 3 or α1/p22 phox interaction, but it increased α1/p47 phox coimmunoprecipitation. We conclude that ANG II inhibits the Na+-K+ pump via PKC-dependent NADPH oxidase activation.
Collapse
|
9
|
White CN, Hamilton EJ, Garcia A, Wang D, Chia KKM, Figtree GA, Rasmussen HH. Opposing effects of coupled and uncoupled NOS activity on the Na+-K+ pump in cardiac myocytes. Am J Physiol Cell Physiol 2007; 294:C572-8. [PMID: 18057120 DOI: 10.1152/ajpcell.00242.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pharmacological delivery of nitric oxide (NO) stimulates the cardiac Na(+)-K(+) pump. However, effects of NO synthesized by NO synthase (NOS) often differ from the effects of NO delivered pharmacologically. In addition, NOS can become "uncoupled" and preferentially synthesize O(2)(.-), which often has opposing effects to NO. We tested the hypothesis that NOS-synthesized NO stimulates Na(+)-K(+) pump activity, and uncoupling of NOS inhibits it. To image NO, we loaded isolated rabbit cardiac myocytes with 4,5-diaminofluorescein-2 diacetate (DAF-2 DA) and measured fluorescence with confocal microscopy. L-arginine (L-arg; 500 micromol/l) increased DAF-2 DA fluorescence by 51% compared with control (n = 8; P < 0.05). We used the whole cell patch-clamp technique to measure electrogenic Na(+)-K(+) pump current (I(p)). Mean I(p) of 0.35 +/- 0.03 pA/pF (n = 44) was increased to 0.48 +/- 0.03 pA/pF (n = 7, P < 0.05) by 10 micromol/l L-Arg in pipette solutions. This increase was abolished by NOS inhibition with radicicol or by NO-activated guanylyl cyclase inhibition with 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one. We next examined the effect of uncoupling NOS using paraquat. Paraquat (1 mmol/l) induced a 51% increase in the fluorescence intensity of O(2)(.-)-sensitive dye dihydroethidium compared with control (n = 9; P < 0.05). To examine the functional effects of uncoupling, we measured I(p) with 100 micromol/l paraquat included in patch pipette solutions. This decreased I(p) to 0.28 +/- 0.03 pA/pF (n = 12; P < 0.001). The paraquat-induced pump inhibition was abolished by superoxide dismutase (in pipette solutions). We conclude that NOS-mediated NO synthesis stimulates the Na(+)-K(+) pump, whereas uncoupling of NOS causes O(2)(.-)-mediated pump inhibition.
Collapse
Affiliation(s)
- C N White
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Horton JW, Tan J, White DJ, Maass DL. Burn injury decreases myocardial Na-K-ATPase activity: role of PKC inhibition. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1684-92. [PMID: 17634196 DOI: 10.1152/ajpregu.00219.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiomyocyte sodium accumulation after burn injury precedes the development of myocardial contractile dysfunction. The present study examined the effects of burn injury on Na-K-ATPase activity in adult rat hearts after major burn injury and explored the hypothesis that burn-related changes in myocardial Na-K-ATPase activity are PKC dependent. A third-degree burn injury (or sham burn) was given over 40% total body surface area, and rats received lactated Ringer solution (4 ml·kg−1·% burn−1). Subgroups of rats were killed 2, 4, or 24 h after burn ( n = 6 rats/time period), hearts were homogenized, and Na-K-ATPase activity was determined from ouabain-sensitive phosphate generation from ATP by cardiac sarcolemmal vesicles. Additional groups of rats were studied at several times after burn to determine the time course of myocyte sodium loading and the time course of myocardial dysfunction. Additional groups of sham burn-injured and burn-injured rats were given calphostin, an inhibitor of PKC, and Na-K-ATPase activity, cell Na+, and myocardial function were measured. Burn injury caused a progressive rise in cardiomyocyte Na+, and myocardial Na-K-ATPase activity progressively decreased after burn, while PKC activity progressively rose. Administration of calphostin to inhibit PKC activity prevented both the burn-related decrease in myocardial Na-K-ATPase and the rise in intracellular Na+and improved postburn myocardial contractile performance. We conclude that burn-related inhibition of Na-K-ATPase likely contributes to the cardiomyocyte accumulation of intracellular Na+. Since intracellular Na+is one determinant of electrical-mechanical recovery after insults such as burn injury, burn-related inhibition of Na-K-ATPase may be critical in postburn recovery of myocardial contractile function.
Collapse
Affiliation(s)
- Jureta W Horton
- Dept. of Surgery, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9160, USA.
| | | | | | | |
Collapse
|
11
|
Hansen PS, Clarke RJ, Buhagiar KA, Hamilton E, Garcia A, White C, Rasmussen HH. Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes. Am J Physiol Cell Physiol 2006; 292:C1070-7. [PMID: 17020934 DOI: 10.1152/ajpcell.00288.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of diabetes on sarcolemmal Na(+)-K(+) pump function is important for our understanding of heart disease associated with diabetes and design of its treatment. We induced diabetes characterized by hyperglycemia but no other major metabolic disturbances in rabbits. Ventricular myocytes isolated from diabetic rabbits and controls were voltage clamped and internally perfused with the whole cell patch-clamp technique. Electrogenic Na(+)-K(+) pump current (I(p), arising from the 3:2 Na(+)-to-K(+) exchange ratio) was identified as the shift in holding current induced by Na(+)-K(+) pump blockade with 100 micromol/l ouabain in most experiments. There was no effect of diabetes on I(p) recorded when myocytes were perfused with pipette solutions containing 80 mmol/l Na(+) to nearly saturate intracellular Na(+)-K(+) pump sites. However, diabetes was associated with a significant decrease in I(p) measured when pipette solutions contained 10 mmol/l Na(+). The decrease was independent of membrane voltage but dependent on the intracellular concentration of K(+). There was no effect of diabetes on the sensitivity of I(p) to extracellular K(+). Pump inhibition was abolished by restoration of euglycemia or by in vivo angiotensin II receptor blockade with losartan. We conclude that diabetes induces sarcolemmal Na(+)-K(+) pump inhibition that can be reversed with pharmacological intervention.
Collapse
Affiliation(s)
- Peter S Hansen
- Dept. of Cardiology, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Palmer ML, Lee SY, Carlson D, Fahrenkrug S, O'Grady SM. Stable knockdown of CFTR establishes a role for the channel in P2Y receptor-stimulated anion secretion. J Cell Physiol 2006; 206:759-70. [PMID: 16245306 DOI: 10.1002/jcp.20519] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
P2Y receptor regulation of anion secretion was investigated in porcine endometrial gland (PEG) epithelial cells. P2Y2, P2Y4, and P2Y6 receptors were detected in monolayers of PEG cells and immunocytochemistry indicated that P2Y4 receptors were located in the apical membrane. Apical membrane current measurements showed that Ca2+-dependent and PKC-dependent Cl- channels were activated following treatment with uridine triphosphate (UTP) (5 microM). Current-voltage relationships comparing calcium-dependent and PKC-dependent UTP responses under biionic conditions showed significant differences in selectivity between Cl-)and I- for the PKC-dependent conductance (P(I)/P(Cl) = 0.76), but not for Ca2+-dependent conductance (PI/P(Cl) = 1.02). The I-/Cl- permeability ratio for the PKC-dependent conductance was identical to that measured for 8-cpt cAMP. Furthermore, PKC stimulation using phorbol 12-myristate 13-acetate (PMA) activated an apical membrane Cl- conductance that was blocked by the CFTR selective inhibitor, CFTRinh-172. CFTR silencing, accomplished by stable expression of small hairpin RNAs (shRNA), blocked the PKC-activated conductance associated with UTP stimulation and provided definitive evidence of a role for CFTR in anion secretion. CFTR activation increased the initial magnitude of Cl- secretion, and provided a more sustained secretory response compared to conditions where only Ca2+-activated Cl- channels were activated by UTP. Measurements of [cAMP]i following UTP and PMA stimulation were not significantly different than untreated controls. Thus, these results demonstrate that UTP and PMA activation of CFTR occurs independently of increases in intracellular cAMP and extend the findings of earlier studies of CFTR regulation by PKC in Xenopus oocytes to a mammalian anion secreting epithelium.
Collapse
Affiliation(s)
- Melissa L Palmer
- Department of Physiology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|
13
|
Jhandier MN, Kruglov EA, Lavoie EG, Sévigny J, Dranoff JA. Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2. J Biol Chem 2005; 280:22986-92. [PMID: 15799977 DOI: 10.1074/jbc.m412371200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bile duct epithelia are the target of a number of "cholangiopathies" characterized by disordered bile ductular proliferation. Although mechanisms for bile ductular proliferation are unknown, recent evidence suggests that extracellular nucleotides regulate cell proliferation via activation of P2Y receptors. Portal fibroblasts may regulate bile duct epithelial P2Y receptors via expression of the ecto-nucleotidase NTPDase2. Thus, we tested the hypothesis that portal fibroblasts regulate bile duct epithelial proliferation via expression of NTPDase2. We generated a novel co-culture model of Mz-ChA-1 human cholangiocarcinoma cells and primary portal fibroblasts. Cell proliferation was measured by bromodeoxyuridine uptake. NTPDase2 expression was assessed by immunofluorescence and quantitative real-time reverse transcription PCR. NTPDase2 expression in portal fibroblasts was blocked using short interfering RNA. NTPDase2 overexpression in portal myofibroblasts isolated from bile duct-ligated rats was achieved by cDNA transfection. Co-culture of Mz-ChA-1 cells with portal fibroblasts decreased their proliferation to 26% of control. Similar decreases in Mz-ChA-1 proliferation were induced by the soluble ecto-nucleotidase apyrase and the P2 receptor inhibitor suramin. The proliferation of Mz-ChA-1 cells returned to baseline when NTPDase2 expression in portal fibroblasts was inhibited using NTPDase2-specific short interfering RNA. Untransfected portal myofibroblasts lacking NTPDase2 had no effect on Mz-ChA-1 proliferation, yet portal myofibroblasts transfected with NTPDase2 cDNA inhibited Mz-ChA-1 proliferation. We conclude that portal fibroblasts inhibit bile ductular proliferation via expression of NTPDase2 and blockade of P2Y activation. Loss of NTPDase2 may mediate the bile ductular proliferation typical of obstructive cholestasis. This novel cross-talk signaling pathway may mediate pathologic alterations in bile ductular proliferation in other cholangiopathic conditions.
Collapse
Affiliation(s)
- M Nauman Jhandier
- Yale Liver Center and Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND Studies in animals and humans indicate a role for kinins in the actions of angiotensin type 1 (AT1) receptor blockers. However, the effect of these compounds on kinin levels in humans is unknown. METHODS AND RESULTS We measured angiotensin (Ang), bradykinin (BK), and kallidin peptides in subjects with essential hypertension administered placebo, losartan (50 mg OD), and eprosartan (600 mg OD) in randomized order in a double-blind, 3-period, 3-treatment, crossover trial. Peptides were measured in arterial blood using high-performance liquid chromatography-based radioimmunoassays. Losartan increased blood levels of BK-(1-9) and hydroxylated BK-(1-9) by approximately 2-fold and reduced the BK-(1-7)/BK-(1-9) ratio by 55%. There was a trend for eprosartan to produce similar changes in bradykinin levels. There were no changes in blood kallidin levels. Both losartan and eprosartan increased plasma levels of Ang I, Ang II, and Ang-(2-8), and eprosartan increased Ang-(3-8) levels. Ang-(1-7) and Ang-(1-9) levels were unchanged. There was an associated 30% to 35% reduction in Ang II/Ang I ratio and 63% to 69% reduction in Ang-(1-7)/Ang I ratio. Plasma ACE activity was unchanged. CONCLUSIONS Losartan increases bradykinin levels. The reductions in BK-(1-7)/BK-(1-9), Ang II/Ang I, and Ang-(1-7)/Ang I ratios suggest that the increased bradykinin levels were the result of reduced metabolism by ACE and neutral endopeptidase. Increased bradykinin levels may represent a class effect of AT1 receptor blockers that contributes to their therapeutic actions and may also contribute to the angioedema that may accompany this therapy.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.
| | | | | |
Collapse
|
15
|
Yin H, Chao L, Chao J. Kallikrein/kinin protects against myocardial apoptosis after ischemia/reperfusion via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling pathways. J Biol Chem 2004; 280:8022-30. [PMID: 15611141 DOI: 10.1074/jbc.m407179200] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Our previous study has shown that human tissue kallikrein protected against ischemia/reperfusion-induced myocardial injury. In the present study, we investigated the protective role of local kallikrein gene delivery in ischemia/reperfusion-induced cardiomyocyte apoptosis and its signaling mechanisms in promoting cardiomyocyte survival. Adenovirus carrying the human tissue kallikrein gene was delivered locally into the heart using a catheter-based technique. Expression and localization of recombinant human kallikrein in rat myocardium after gene transfer were determined immunohistochemically. Kallikrein gene delivery markedly reduced reperfusion-induced cardiomyocyte apoptosis identified by both in situ nick end-labeling and DNA fragmentation. Delivery of the kallikrein gene increased phosphorylation of Src, Akt, glycogen synthase kinase (GSK)-3beta, and Bad(Ser-136) but reduced caspase-3 activation in rat myocardium after reperfusion. The protective effect of kallikrein on apoptosis and its signaling mediators was blocked by icatibant and dominant-negative Akt, indicating a kinin B2 receptor-Akt-mediated event. Similarly, kinin or transduction of kallikrein in cultured cardiomyocytes promoted cell viability and attenuated apoptosis induced by hypoxia/reoxygenation. The effect of kallikrein on cardiomyocyte survival was blocked by dominant-negative Akt and a constitutively active mutant of GSK-3beta, but it was facilitated by constitutively active Akt, catalytically inactive GSK-3beta, lithium, and caspase-3 inhibitor. Moreover, kallikrein promoted Bad.14-3-3 complex formation and inhibited Akt-GSK-3beta-dependent activation of caspase-3, whereas caspase-3 administration caused reduction of the Bad.14-3-3 complex, indicating an interaction between Akt-GSK-caspase-3 and Akt-Bad.14-3-3 signaling pathways. In conclusion, kallikrein/kinin protects against cardiomyocyte apoptosis in vivo and in vitro via Akt-Bad.14-3-3 and Akt-GSK-3beta-caspase-3 signaling pathways.
Collapse
Affiliation(s)
- Hang Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425-2211, USA
| | | | | |
Collapse
|
16
|
Kim JH, Nam JH, Kim MH, Koh DS, Choi SJ, Kim SJ, Lee JE, Min KM, Uhm DY, Kim SJ. Purinergic receptors coupled to intracellular Ca2+ signals and exocytosis in rat prostate neuroendocrine cells. J Biol Chem 2004; 279:27345-56. [PMID: 15100230 DOI: 10.1074/jbc.m313575200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat prostate neuroendocrine cells (RPNECs) display a variety of ion channels and exhibit alpha-adrenergic regulation of cytosolic Ca(2+) concentration ([Ca(2+)])(c). In this study, purinergic regulation of [Ca(2+)](c) and exocytosis was investigated in freshly isolated single RPNECs showing chromogranin A immunoreactivity. The presence of P2X and P2Y receptors in RPNECs was verified by the transient activation of Ca(2+)-permeable cationic channels and the release of Ca(2+) from intracellular stores by extracellular ATP, respectively. The transient inward cationic current was effectively activated by alpha,beta-methyleneadenosine 5'-triphosphate (alpha,beta-MeATP) and blocked by 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate, suggesting the presence of a P2X(1) or P2X(3) subtype. For the release of stored Ca(2+), ATP and UTP were equally potent, indicating the functional expression of the P2Y(2) or P2Y(4) subtype. The mRNAs for P2X(1) and P2Y(2) were confirmed from reverse transcription-PCR analysis of RPNECs. The application of alpha,beta-MeATP induced large and transient increases in [Ca(2+)](c), which were not attenuated by the blockers of voltage-activated Ca(2+) channels or by depleting intracellular Ca(2+) stores, but were abolished by omitting extracellular Ca(2+). The application of UTP increased [Ca(2+)](c) to 55% of the peak Delta[Ca(2+)](c) induced by alpha,beta-MeATP. The application of alpha,beta-MeATP induced exocytotic responses of RPNECs as monitored by carbon fiber amperometry and capacitance measurements. To our interest, the application of UTP did not induce amperometric currents, but reduced the membrane capacitance, indicating a net endocytosis. From these results, we postulate that a sharp rise in [Ca(2+)](c) by the P2X-mediated Ca(2+) influx is required for exocytosis, whereas the relatively slow release of stored Ca(2+) induces endocytosis in RPNECs.
Collapse
Affiliation(s)
- Jun Hee Kim
- Department of Physiology and Center for Molecular Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mihailidou AS, Mardini M, Funder JW. Rapid, nongenomic effects of aldosterone in the heart mediated by epsilon protein kinase C. Endocrinology 2004; 145:773-80. [PMID: 14605011 DOI: 10.1210/en.2003-1137] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aldosterone elevates Na+/K+/2Cl- cotransporter activity in rabbit cardiomyocytes within 15 min, an effect blocked by K-canrenoate and thus putatively mineralocorticoid receptor mediated. Increased cotransporter activity raises intracellular [Na+] sufficient to produce a secondary increase in Na+-K+ pump activity; when this increase in intracellular [Na+] is prevented, a rapid effect of aldosterone to lower pump activity is seen. Addition of transcription inhibitor actinomycin D did not change basal or aldosterone-induced lowered pump activity, indicating a direct, nongenomic action of aldosterone. We examined a possible role for protein kinase C (PKC) in the rapid nongenomic effects of aldosterone. Single ventricular myocytes and pipette solutions containing 10 mm intracellular [Na+] were used in patch clamp studies to measure Na+-K+ pump activity. Aldosterone lowered pump current, an effect abolished by epsilon PKC (epsilonPKC) inhibition but neither alphaPKC nor scrambled epsilonPKC; addition of epsilonPKC activator peptide mimicked the rapid aldosterone effect. In rabbits chronically infused with aldosterone, the lowered pump current in cardiomyocytes was acutely (< or =15 min) restored by epsilonPKC inhibition. These studies show that rapid effects of aldosterone on Na+-K+ pump activity are nongenomic and specifically epsilonPKC mediated; in addition, such effects may be prolonged (7 d) and long-lived ( approximately 4 h isolated cardiomyocyte preparation time). The rapid, prolonged, long-lived effects can be rapidly (< or =15 min) reversed by epsilonPKC blockade, suggesting a hitherto unrecognized complexity of aldosterone action in the heart and perhaps by extension other tissues.
Collapse
Affiliation(s)
- Anastasia S Mihailidou
- Department of Cardiology, Royal North Shore Hospital, Pacific Highway, St. Leonards, Sydney, New South Wales 2065, Australia.
| | | | | |
Collapse
|
18
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 581] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
19
|
Pretorius M, Murphey LJ, McFarlane JA, Vaughan DE, Brown NJ. Angiotensin-converting enzyme inhibition alters the fibrinolytic response to cardiopulmonary bypass. Circulation 2003; 108:3079-83. [PMID: 14656921 DOI: 10.1161/01.cir.0000105765.54573.60] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased plasminogen activator inhibitor-1 (PAI-1) concentrations after coronary artery bypass grafting (CABG) are associated with increased risk of vein graft occlusion. Because angiotensin II stimulates PAI-1 expression, we tested the hypothesis that preoperative angiotensin-converting enzyme (ACE) inhibition decreases PAI-1 expression after CABG. METHODS AND RESULTS We measured the effects of cardiopulmonary bypass (CPB) on PAI-1 antigen and tissue-type plasminogen activator (tPA) antigen and activity in 31 patients taking an ACE inhibitor (ACEI) who were randomized to continue ACEI until the morning of surgery (ACEI group, n=19) or to discontinue it 48 hours before surgery (No-ACEI group, n=12). Arterial blood samples were taken at baseline before CPB, twice during CPB, after separation from CPB, and on postoperative day 1 (POD1). CPB caused an early decrease in PAI-1 antigen, followed by an increase in PAI-1 antigen on POD1 (P<0.001 for effect of time). ACE inhibition attenuated the increase in PAI-1 antigen such that both PAI-1 antigen on POD1 (P=0.013) and the change in PAI-1 antigen from baseline to POD1 (P=0.009) were higher in the No-ACEI group (from 17.0+/-5.0 to 48.7+/-8.8 ng/mL) versus the ACEI group (from 19.9+/-3.4 to 33.1+/-6.2 ng/mL). There was no significant difference between the 2 groups in intraoperative tPA activity (P=0.259); however, the increase in tPA activity was significantly greater in the ACEI group than in the No-ACEI group (P=0.030). CONCLUSIONS Preoperative ACEI attenuates the increase in PAI-1 after CABG, suggesting a role for ACE inhibition in reducing the risk of acute graft thrombosis.
Collapse
Affiliation(s)
- Mias Pretorius
- Department of Anesthesiology, Vanderbilt University, Nashville, Tenn, USA.
| | | | | | | | | |
Collapse
|
20
|
Buhagiar KA, Hansen PS, Kong BY, Clarke RJ, Fernandes C, Rasmussen HH. Dietary cholesterol alters Na+/K+ selectivity at intracellular Na+/K+ pump sites in cardiac myocytes. Am J Physiol Cell Physiol 2003; 286:C398-405. [PMID: 14522815 DOI: 10.1152/ajpcell.00016.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A modest diet-induced increase in serum cholesterol in rabbits increases the sensitivity of the sarcolemmal Na+/K+ pump to intracellular Na+, whereas a large increase in cholesterol levels decreases the sensitivity to Na+. To examine the mechanisms, we isolated cardiac myocytes from controls and from rabbits with diet-induced increases in serum cholesterol. The myocytes were voltage clamped with the use of patch pipettes that contained osmotically balanced solutions with Na+ in a concentration of 10 mM and K+ in concentrations ([K+]pip) ranging from 0 to 140 mM. There was no effect of dietary cholesterol on electrogenic Na+/K+ current (Ip) when pipette solutions were K+ free. A modest increase in serum cholesterol caused a [K+]pip-dependent increase in Ip, whereas a large increase caused a [K+]pip-dependent decrease in Ip. Modeling suggested that pump stimulation with a modest increase in serum cholesterol can be explained by a decrease in the microscopic association constant KK describing the backward reaction E1 + 2K+ --> E2(K+)2, whereas pump inhibition with a large increase in serum cholesterol can be explained by an increase in KK. Because hypercholesterolemia upregulates angiotensin II receptors and because angiotensin II regulates the Na+/K+ pump in cardiac myocytes in a [K+]pip-dependent manner, we blocked angiotensin synthesis or angiotensin II receptors in vivo in cholesterol-fed rabbits. This abolished cholesterol-induced pump inhibition. Because the epsilon-isoform of protein kinase C (epsilonPKC) mediates effects of angiotensin II on the pump, we included specific epsilonPKC-blocking peptide in patch pipette filling solutions. The peptide reversed cholesterol-induced pump inhibition.
Collapse
Affiliation(s)
- Kerrie A Buhagiar
- University of Sydney, Department of Cardiology, Royal North Shore Hospital, Pacific Highway, St. Leonards, Sydney, NSW 2065, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Simonis G, Braun MU, Kirrstetter M, Schön SP, Strasser RH. Mechanisms of myocardial remodeling: ramiprilat blocks the expressional upregulation of protein kinase C-epsilon in the surviving myocardium early after infarction. J Cardiovasc Pharmacol 2003; 41:780-7. [PMID: 12717110 DOI: 10.1097/00005344-200305000-00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inhibition of angiotensin-converting enzyme (ACEI) after myocardial infarction reduces remodeling of the surviving myocardium. The cellular signaling mechanisms contributing to remodeling are not fully elucidated. Goal of the current study was to test whether protein kinase C (PKC) is regulated in the surviving myocardium shortly after infarction and whether this regulation is influenced by ACEI. Rats were subjected to anterior wall myocardial infarction in vivo or sham operation. After 15-45 min, mRNA levels and protein expression of the major cardiac PKC isoforms were measured in the ischemic and the remote myocardium. The influence of ACEI on PKC was tested by pretreating the rats with ramiprilat. In the ischemic region of the myocardium, a significant increase of the mRNA for PKC-delta and PKC-epsilon was observed in close correlation with increased isoform protein expression. In the surviving, remote myocardium, however, only PKC-epsilon expression was significantly augmented both at the mRNA level (158%) and at the protein level (149%). PKC-delta and PKC-alpha were unchanged. Treatment with ramiprilat could abolish this isoform-specific PKC regulation in both areas. These data characterize for the first time an isoform-specific transcriptional regulation process of PKC in the surviving myocardium after infarction. This induction of PKC-epsilon can be prevented by ACEI. It is speculated that PKC-epsilon plays a role in the signal transduction of early remodeling after infarction.
Collapse
Affiliation(s)
- Gregor Simonis
- Department of Cardiology, Dresden University of Technology, Dresden, Germany
| | | | | | | | | |
Collapse
|
22
|
Bui BV, Armitage JA, Tolcos M, Cooper ME, Vingrys AJ. ACE inhibition salvages the visual loss caused by diabetes. Diabetologia 2003; 46:401-8. [PMID: 12687339 DOI: 10.1007/s00125-003-1042-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Revised: 10/15/2002] [Indexed: 11/27/2022]
Abstract
AIMS We consider the nature of retinal dysfunction in streptozotocin rats and assess the functional benefits of administering an angiotensin enzyme inhibitor or an inhibitor of advanced glycation end product formation. METHODS Sprague-Dawley rats (n=44) were randomly assigned to control (C=12, C(p)=4, C(a)=4) and diabetic groups (Streptozotocin, D=24). Diabetes was diagnosed based on a range of physiological and biochemical parameters at 4, 8 and 12 weeks. Streptozotocin animals were administered insulin daily (4 units protophane). Animals were treated with either an Angiotensin Converting Enzyme inhibitor (perindopril, C(p)=4, D(p)=8) or an inhibitor of advanced glycation end product formation (aminoguanidine, C(a)=4, D(a)=8). Dark-adapted electroretinograms were measured on anaesthetized animals at 12 weeks following streptozotocin treatment. Photoreceptoral and inner retinal responses were extracted, modelled and compared using ANOVA. RESULTS Streptozotocin injection increased blood glucose, glycosylated haemoglobin, fluid intake and urine volume, whereas body weight was decreased. Perindopril treatment produced improvements (p<0.05) in all indices, whereas aminoguanidine therapy produced some improvement in blood glucose and water intake. Streptozotocin rats showed losses of photoreceptoral-P3 (-27%), postreceptoral-P2 (-15%) and oscillatory potential (-19%) amplitudes of a similar magnitude. Perindopril therapy returned photoreceptoral and inner retinal function to within control limits. However, aminoguanidine treatment gave no significant functional improvement. CONCLUSIONS Our findings provide evidence for a selective neuropathy in diabetes with a primary photoreceptoral lesion. Treatment with perindopril, an angiotensin converting enzyme inhibitor, ameliorates the neuropathy.
Collapse
Affiliation(s)
- B V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
23
|
Pandit SV, Giles WR, Demir SS. A mathematical model of the electrophysiological alterations in rat ventricular myocytes in type-I diabetes. Biophys J 2003; 84:832-41. [PMID: 12547767 PMCID: PMC1302663 DOI: 10.1016/s0006-3495(03)74902-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our mathematical model of the rat ventricular myocyte (Pandit et al., 2001) was utilized to explore the ionic mechanism(s) that underlie the altered electrophysiological characteristics associated with the short-term model of streptozotocin-induced, type-I diabetes. The simulations show that the observed reductions in the Ca(2+)-independent transient outward K(+) current (I(t)) and the steady-state outward K(+) current (I(ss)), along with slowed inactivation of the L-type Ca(2+) current (I(CaL)), can result in the prolongation of the action potential duration, a well-known experimental finding. In addition, the model demonstrates that the slowed reactivation kinetics of I(t) in diabetic myocytes can account for the more pronounced rate-dependent action potential duration prolongation in diabetes, and that a decrease in the electrogenic Na(+)-K(+) pump current (I(NaK)) results in a small depolarization in the resting membrane potential (V(rest)). This depolarization reduces the availability of the Na(+) channels (I(Na)), thereby resulting in a slower upstroke (dV/dt(max)) of the diabetic action potential. Additional simulations suggest that a reduction in the magnitude of I(CaL), in combination with impaired sarcoplasmic reticulum uptake can lead to a decreased sarcoplasmic reticulum Ca(2+) load. These factors contribute to characteristic abnormal [Ca(2+)](i) homeostasis (reduced peak systolic value and rate of decay) in myocytes from diabetic animals. In combination, these simulation results provide novel information and integrative insights concerning plausible ionic mechanisms for the observed changes in cardiac repolarization and excitation-contraction coupling in rat ventricular myocytes in the setting of streptozotocin-induced, type-I diabetes.
Collapse
Affiliation(s)
- Sandeep V Pandit
- Joint Graduate Program in Biomedical Engineering, The University of Memphis, Memphis, Tennessee 38152-3210, USA
| | | | | |
Collapse
|
24
|
Lankford AR, Byford AM, Ashton KJ, French BA, Lee JK, Headrick JP, Matherne GP. Gene expression profile of mouse myocardium with transgenic overexpression of A1 adenosine receptors. Physiol Genomics 2002; 11:81-9. [PMID: 12388787 DOI: 10.1152/physiolgenomics.00008.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic mice with cardiac-specific overexpression of adenosine A(1) receptors (A(1)AR) have demonstrated metabolic and functional tolerance to myocardial ischemia. We utilized cDNA microarrays to test the hypothesis that the cardioprotective mechanism(s) of A(1) overexpression involves altered gene expression. Total RNA extracted from the left ventricles from A(1) transgenic (n = 4) and wild-type (n = 6) mice was hybridized to Affymetrix mgU74A chips. Comparison of RNA expression levels in transgenic to wild-type myocardium revealed approximately 636 known genes with expression significantly altered by greater than 25%. We observed increased expressions of genes including NADH dehydrogenase, the GLUT4 glucose transporter, Na-K-ATPase, sarcolemmal K(ATP) channels, and Bcl-xl in A(1)AR-overexpressing hearts. We also observed decreased expression of pro-apoptotic genes including a 50% reduction in message level of caspase-8. Protein expression of GLUT4 and caspase-8 was also altered comparable to the differences in gene expression. These data illustrate genes with chronically altered patterns of expression in A(1) transgenic mouse myocardium that may be related to adenosine receptor overexpression-mediated cardioprotection.
Collapse
Affiliation(s)
- Amy R Lankford
- Department of Pediatrics and Cardiovascular Research Center, University of Virginia Health System, Charlottesville Virginia 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bode HP, Wang L, Cassio D, Leite MF, St-Pierre MV, Hirata K, Okazaki K, Sears ML, Meda P, Nathanson MH, Dufour JF. Expression and regulation of gap junctions in rat cholangiocytes. Hepatology 2002; 36:631-40. [PMID: 12198655 DOI: 10.1053/jhep.2002.35274] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocytes and other digestive epithelia exchange second messengers and coordinate their functions by communicating through gap junctions. However, little is known about intercellular communication in cholangiocytes. The aim of this study was to examine expression and regulation of gap junctions in cholangiocytes. Connexin expression was determined by confocal immunofluorescence in rat bile ducts and in normal rat cholangiocyte (NRC) cells, a polarized cholangiocyte cell line. Intercellular Ca(2+) signaling was monitored by fluorescent microscopy. Microinjection studies assessed regulation of gap junction permeability in NRC cells and in SKHep1 cells, a liver-derived cell line engineered to express connexin 43. Immunochemistry showed that cholangiocytes from normal rat liver as well as the NRC cells express connexin 43. Localization of apical, basolateral, and tight junction proteins confirmed that NRC cells are well polarized. Apical exposure to ATP induced Ca(2+) oscillations that were coordinated among neighboring NRC cells, and inhibition of gap junction conductance desynchronized the Ca(2+) oscillations. NRC cells transfected with a connexin 43 antisense were significantly less coupled. Transcellular dye spreading was inhibited by activation of protein kinase A or protein kinase C. The same was observed in transfected SKHep1 cells, which expressed only connexin 43. Rat cholangiocytes and NRC cells express connexin 43, which permits synchronization of Ca(2+) signals among cells. Permeability of connexin 43-gap junctions is negatively regulated by protein kinases A and C. In conclusion, cholangiocytes have the capacity for intercellular communication of second messenger signals via gap junctions in a fashion that is under hormonal control.
Collapse
Affiliation(s)
- Hans-Peter Bode
- Department of Gastroenterology, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Due in part to the recent development of new experimental models, cholangiocytes--the epithelial cells that line the bile ducts--are increasingly recognized as important transporting epithelia actively involved in the absorption and secretion of water, ions, and solutes. New biologic concepts have emerged including the identification and topography of receptors and flux proteins involved in the molecular mechanisms of ductal bile secretion. Individually isolated or perfused bile duct units from livers of rats and mice serve as new, physiologically relevant in vitro models to study cholangiocyte transport. Biliary tree dimensions and novel insights into anatomic remodeling of proliferating bile ducts have emerged from three-dimensional reconstruction using computed tomographic scanning and sophisticated software. Moreover, new pathologic concepts have arisen regarding the interaction of cholangiocytes with pathogens. These concepts may provide the framework for new therapies for the cholangiopathies, a group of important hepatobiliary diseases in which cholangiocytes are the target cell.
Collapse
Affiliation(s)
- Pamela Tietz
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Medical School, Rochester, Minnesota 55905, USA
| | | |
Collapse
|