1
|
Gao JJ, Wu FY, Liu YJ, Li L, Lin YJ, Kang YT, Peng YM, Liu YF, Wang C, Ma ZS, Cao Y, Cao HY, Mo ZW, Li Y, Ou JS, Ou ZJ. Increase of PCSK9 expression in diabetes promotes VEGFR2 ubiquitination to inhibit endothelial function and skin wound healing. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2635-2649. [PMID: 39153050 DOI: 10.1007/s11427-023-2688-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 08/19/2024]
Abstract
Diabetic foot ulcers (DFUs) are a serious vascular disease. Currently, no effective methods are available for treating DFUs. Pro-protein convertase subtilisin/kexin type 9 (PCSK9) regulates lipid levels to promote atherosclerosis. However, the role of PCSK9 in DFUs remains unclear. In this study, we found that the expression of PCSK9 in endothelial cells (ECs) increased significantly under high glucose (HG) stimulation and in diabetic plasma and vessels. Specifically, PCSK9 promotes the E3 ubiquitin-protein ligase NEDD4 binding to vascular endothelial growth factor receptor 2 (VEGFR2), which led to the ubiquitination of VEGFR2, resulting in its degradation and downregulation in ECs. Furthermore, PCSK9 suppresses the expression and activation of AKT, endothelial nitric oxide synthase (eNOS), and ERK1/2, leading to decreased nitric oxide (NO) production and increased superoxide anion (O2._) generation, which impairs vascular endothelial function and angiogenesis. Importantly, using evolocumab to limit the increase in PCSK9 expression blocked the HG-induced inhibition of NO production and the increase in O2._ production, as well as inhibited the phosphorylation and expression of AKT, eNOS, and ERK1/2. Moreover, evolocumab improved vascular endothelial function and angiogenesis, and promoted wound healing in diabetes. Our findings suggest that targeting PCSK9 is a novel therapeutic approach for treating DFUs.
Collapse
Affiliation(s)
- Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Fang-Yuan Wu
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu-Jia Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Le Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yi-Jun Lin
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yue-Ting Kang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yi-Fang Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Chen Wang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Zhen-Sheng Ma
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Hong-Yu Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Zhi-Wei Mo
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Li Y, Chen YT, Liu JS, Liang KF, Song YK, Cao Y, Chen CY, Jian YP, Liu XJ, Xu YQ, Yuan HX, Ou ZJ, Ou JS. Oncoprotein-induced transcript 3 protein-enriched extracellular vesicles promotes NLRP3 ubiquitination to alleviate acute lung injury after cardiac surgery. J Mol Cell Cardiol 2024; 195:55-67. [PMID: 39089571 DOI: 10.1016/j.yjmcc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Acute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS. The correlations between "oncoprotein-induced transcript 3 protein (OIT3) positive" circulating EVs and postoperative ARDS were assessed. The effects of OIT3-overexpressed EVs on the cardiopulmonary bypass (CPB) -induced ALI in vivo and inflammation of human bronchial epithelial cells (BEAS-2B) were detected. OIT3 enriched in circulating EVs is reduced after cardiac surgery with CPB, especially with postoperative ARDS. The "OIT3 positive" EVs negatively correlate with lung edema, hypoxemia and CPB time. The OIT3-overexpressed EVs can be absorbed by pulmonary epithelial cells and OIT3 transferred by EVs triggered K48- and K63-linked polyubiquitination to inactivate NOD-like receptor protein 3 (NLRP3) inflammasome, and restrains pro-inflammatory cytokines releasing and immune cells infiltration in lung tissues, contributing to the alleviation of CPB-induced ALI. Overexpression of OIT3 in human bronchial epithelial cells have similar results. OIT3 promotes the E3 ligase Cbl proto-oncogene B associated with NLRP3 to induce the ubiquitination of NLRP3. Immunofluorescence tests reveal that OIT3 is reduced in the generation from the liver sinusoids endothelial cells (LSECs) and secretion in liver-derived EVs after CPB. In conclusion, OIT3 enriched in EVs is a promising biomarker of postoperative ARDS and a therapeutic target for ALI after cardiac surgery.
Collapse
Affiliation(s)
- Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Yuan-Kai Song
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Cai-Yun Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China.
| | - Zhi-Jun Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China; Division of Hypertension and Vascular Diseases, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, PR China.
| |
Collapse
|
3
|
Yuan HX, Chen YT, Li YQ, Wang YS, Ou ZJ, Li Y, Gao JJ, Deng MJ, Song YK, Fu L, Ci HB, Chang FJ, Cao Y, Jian YP, Kang BA, Mo ZW, Ning DS, Peng YM, Liu ZL, Liu XJ, Xu YQ, Xu J, Ou JS. Endothelial extracellular vesicles induce acute lung injury via follistatin-like protein 1. SCIENCE CHINA. LIFE SCIENCES 2024; 67:475-487. [PMID: 37219765 PMCID: PMC10202752 DOI: 10.1007/s11427-022-2328-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/06/2023] [Indexed: 05/24/2023]
Abstract
Cardiopulmonary bypass has been speculated to elicit systemic inflammation to initiate acute lung injury (ALI), including acute respiratory distress syndrome (ARDS), in patients after cardiac surgery. We previously found that post-operative patients showed an increase in endothelial cell-derived extracellular vesicles (eEVs) with components of coagulation and acute inflammatory responses. However, the mechanism underlying the onset of ALI owing to the release of eEVs after cardiopulmonary bypass, remains unclear. Plasma plasminogen-activated inhibitor-1 (PAI-1) and eEV levels were measured in patients with cardiopulmonary bypass. Endothelial cells and mice (C57BL/6, Toll-like receptor 4 knockout (TLR4-/-) and inducible nitric oxide synthase knockout (iNOS-/-)) were challenged with eEVs isolated from PAI-1-stimulated endothelial cells. Plasma PAI-1 and eEVs were remarkably enhanced after cardiopulmonary bypass. Plasma PAI-1 elevation was positively correlated with the increase in eEVs. The increase in plasma PAI-1 and eEV levels was associated with post-operative ARDS. The eEVs derived from PAI-1-stimulated endothelial cells could recognize TLR4 to stimulate a downstream signaling cascade identified as the Janus kinase 2/3 (JAK2/3)-signal transducer and activator of transcription 3 (STAT3)-interferon regulatory factor 1 (IRF-1) pathway, along with iNOS induction, and cytokine/chemokine production in vascular endothelial cells and C57BL/6 mice, ultimately contributing to ALI. ALI could be attenuated by JAK2/3 or STAT3 inhibitors (AG490 or S3I-201, respectively), and was relieved in TLR4-/- and iNOS-/- mice. eEVs activate the TLR4/JAK3/STAT3/IRF-1 signaling pathway to induce ALI/ARDS by delivering follistatin-like protein 1 (FSTL1), and FSTL1 knockdown in eEVs alleviates eEV-induced ALI/ARDS. Our data thus demonstrate that cardiopulmonary bypass may increase plasma PAI-1 levels to induce FSTL1-enriched eEVs, which target the TLR4-mediated JAK2/3/STAT3/IRF-1 signaling cascade and form a positive feedback loop, leading to ALI/ARDS after cardiac surgery. Our findings provide new insight into the molecular mechanisms and therapeutic targets for ALI/ARDS after cardiac surgery.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yan-Sheng Wang
- State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
- Division of Hypertension and Vascular Diseases, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Meng-Jie Deng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yuan-Kai Song
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Li Fu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Hong-Bo Ci
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Feng-Jun Chang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Bi-Ang Kang
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Ze-Long Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Jun Xu
- State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Abdolalian M, Khalaf-Adeli E, Yari F, Hosseini S, Kiaeefar P. Presurgical circulating platelet-derived microparticles level as a risk factor of blood transfusion in patients with valve heart disease undergoing cardiac surgery. Transfus Clin Biol 2024; 31:19-25. [PMID: 38029957 DOI: 10.1016/j.tracli.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Cell-derived microparticles (MPs) are membrane vesicles that have emerged as a potential biomarker for various diseases and their clinical complications. This study investigates the role of MPs as a risk factor for blood transfusion in patients with valve heart disease undergoing cardiac surgery. METHODS Forty adult patients undergoing heart valve surgery with cardiopulmonary bypass (CPB) were enrolled, and venous blood samples were collected prior to surgical incision. Plasma rich in MPs was prepared by double centrifugation, and the concentration of MPs was determined using the Bradford method. Flow cytometry analysis was performed to determine MPs count and phenotype. Patients were divided into "with transfusion" (n = 18) and "without transfusion" (n = 22) groups based on red blood cell (RBC) transfusion. RESULTS There was no significant difference in MPs concentration between the "with transfusion" and "without transfusion" groups. Although the count of preoperative platelet-derived MPs (PMPs), monocyte-derived MPs (MMPs), and red cell-derived MPs (RMPs) was higher in "without transfusion" group, these differences were not statistically significant. The preoperative PMPs count was negatively correlated with RBC transfusion (P = 0.005, r = -0.65). Multivariate logistic regression analysis revealed that the count of CD41+ PMPs, Hemoglobin (Hb), and RBC count were risk factors for RBC transfusion. CONCLUSION This study suggests that the presurgical levels of PMPs, Hb, and RBC count can serve as risk factors of RBC transfusion in patients with valve heart disease undergoing cardiac surgery. The findings provide insights into the potential use of MPs as biomarkers for blood transfusion prediction in cardiac surgery.
Collapse
Affiliation(s)
- Mehrnaz Abdolalian
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Elham Khalaf-Adeli
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Yari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Saeid Hosseini
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Li Z, Zhang W, Wang QR, Yang YJ, Liu XH, Cheng G, Chang FJ. Effect of Thrombolysis on Circulating Microparticles in Patients with ST-Segment Elevation Myocardial Infarction. Cardiovasc Ther 2023; 2023:5559368. [PMID: 38024103 PMCID: PMC10676276 DOI: 10.1155/2023/5559368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Objective We demonstrated that circulating microparticles (MPs) are increased in patients with coronary heart disease (both chronic coronary syndrome (CCS) and acute coronary syndrome). Whether thrombolysis affects MPs in patients with ST-segment elevation myocardial infarction (STEMI) with or without percutaneous coronary intervention (PCI) is unknown. Methods This study was divided into three groups: STEMI patients with thrombolysis (n = 18) were group T, patients with chronic coronary syndrome (n = 20) were group CCS, and healthy volunteers (n = 20) were the control group. Fasting venous blood was extracted from patients in the CCS and control groups, and venous blood was extracted from patients in the T group before (pre-T) and 2 hours after (post-T) thrombolysis. MPs from each group were obtained by centrifugation. After determining the concentration, the effects of MPs on endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) in rat myocardial tissue in vitro were detected by immunohistochemistry and western blotting. Changes in nitric oxide (NO) and oxygen free radicals (O2•-) were also detected. The effect of MPs on vasodilation in isolated rat thoracic aortae was detected. Results Compared with that in the control group (2.60 ± 0.38 mg/ml), the concentration of MPs was increased in patients with CCS (3.49 ± 0.72 mg/ml) and in STEMI patients before thrombolysis (4.17 ± 0.58 mg/ml). However, thrombolysis did not further increase MP levels (post-T, 4.23 ± 1.01 mg/ml) compared with those in STEMI patients before thrombolysis. Compared with those in the control group, MPs in both CCS and STEMI patients before thrombolysis inhibited the expression of eNOS (both immunohistochemistry and western blot analysis of phosphorylation at Ser1177), NO production in the isolated myocardium and vasodilation in vitro and stimulated the expression of iNOS (immunohistochemistry and western blot analysis of phosphorylation at Thr495), and the generation of O2•- in the isolated myocardium. The effects of MPs were further enhanced by MPs from STEMI patients 2 hours after thrombolysis. Conclusion Changes in MP function after thrombolysis may be one of the mechanisms leading to ischemia-reperfusion after thrombolysis.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Wei Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qun-Rang Wang
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xian'yang, China
| | - Yu-juan Yang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xin-Hong Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Gong Cheng
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Feng-Jun Chang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
6
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
7
|
Song YK, Yuan HX, Jian YP, Chen YT, Liang KF, Liu XJ, Ou ZJ, Liu JS, Li Y, Ou JS. Pentraxin 3 in Circulating Microvesicles: a Potential Biomarker for Acute Heart Failure After Cardiac Surgery with Cardiopulmonary Bypass. J Cardiovasc Transl Res 2022; 15:1414-1423. [PMID: 35879589 DOI: 10.1007/s12265-022-10253-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 10/16/2022]
Abstract
The aim of this study was to investigate whether pentraxin 3 (PTX3) in microvesicles (MVs) can be a valuable biomarker for the prediction of acute heart failure (AHF) after cardiac surgery with cardiopulmonary bypass (CPB). One hundred and twenty-four patients undergoing cardiac surgery with CPB were included and analyzed (29 with AHF and 95 without AHF). The concentrations of PTX3 in MVs isolated from plasma were measured by ELISA kits before, 12 h, and 3 days after surgery. Patients' demographics, medical history, surgical data, and laboratory results were collected. The levels of PTX3 in MVs were significantly elevated during perioperative surgery, which was increased more in the AHF group. The concentrations of PTX3 in MVs at postoperative 12 h were independent risk factors for AHF with the area under the ROC curve of 0.920. The concentration of PTX3 in MVs may be a novel biomarker for prediction of AHF after cardiac surgery.
Collapse
Affiliation(s)
- Yuan-Kai Song
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| |
Collapse
|
8
|
Yuan HX, Liang KF, Chen C, Li YQ, Liu XJ, Chen YT, Jian YP, Liu JS, Xu YQ, Ou ZJ, Li Y, Ou JS. Size Distribution of Microparticles: A New Parameter to Predict Acute Lung Injury After Cardiac Surgery With Cardiopulmonary Bypass. Front Cardiovasc Med 2022; 9:893609. [PMID: 35571221 PMCID: PMC9098995 DOI: 10.3389/fcvm.2022.893609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Acute lung injury (ALI) is a common complication after cardiac surgery with cardiopulmonary bypass (CPB). No precise way, however, is currently available to predict its occurrence. We and others have demonstrated that microparticles (MPs) can induce ALI and were increased in patients with ALI. However, whether MPs can be used to predict ALI after cardiac surgery with CPB remains unknown. Methods In this prospective study, 103 patients undergoing cardiac surgery with CPB and 53 healthy subjects were enrolled. MPs were isolated from the plasma before, 12 h after, and 3 d after surgery. The size distributions of MPs were measured by the LitesizerTM 500 Particle Analyzer. The patients were divided into two subgroups (ALI and non-ALI) according to the diagnosis of ALI. Descriptive and correlational analyzes were conducted between the size distribution of MPs and clinical data. Results Compared to the non-ALI group, the size at peak and interquartile range (IQR) of MPs in patients with ALI were smaller, but the peak intensity of MPs is higher. Multivariate logistic regression analysis indicated that the size at peak of MPs at postoperative 12 h was an independent risk factor for ALI. The area under the curve (AUC) of peak diameter at postoperative 12 h was 0.803. The best cutoff value of peak diameter to diagnose ALI was 223.05 nm with a sensitivity of 88.0% and a negative predictive value of 94.5%. The AUC of IQR at postoperative 12 h was 0.717. The best cutoff value of IQR to diagnose ALI was 132.65 nm with a sensitivity of 88.0% and a negative predictive value of 92.5%. Combining these two parameters, the sensitivity reached 92% and the negative predictive value was 96%. Conclusions Our findings suggested that the size distribution of MPs could be a novel biomarker to predict and exclude ALI after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chao Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhi-Jun Ou
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Yan Li
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
- Jing-Song Ou ;
| |
Collapse
|
9
|
Taguchi K, Kaneko N, Okudaira K, Matsumoto T, Kobayashi T. Endothelial dysfunction caused by circulating microparticles from diabetic mice is reduced by PD98059 through ERK and ICAM-1. Eur J Pharmacol 2021; 913:174630. [PMID: 34774495 DOI: 10.1016/j.ejphar.2021.174630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Endothelial dysfunction contributes to the development of diabetic complications and the production of circulating microparticles (MPs). Our previous study showed that diabetic mice-derived MPs (DM MPs) had increased levels of extracellular regulated protein kinase 1/2 (ERK1/2) and impaired endothelial-dependent relaxation in aortas when compared with control mice-derived MPs. This study was designed to investigate whether PD98059, an ERK1/2 inhibitor, affects the function of aortas and DM MPs. MPs were obtained from streptozotocin-induced DM, DM after PD98059 treatment, and ICR mice as control. The mice and MPs were then analyzed on the basis of their vascular function and enzyme expressions. Compared with the controls, platelet-derived MPs and ERK1/2 levels in the MPs were significantly elevated in the DM but showed little change in PD98059-treated DM. PD98059 mainly decreased ERK1/2 phosphorylation in the MPs. In the aortas of DM and DM MPs the endothelium-dependent vascular function was impaired, and there was a significantly greater improvement in the vascular function in the PD98059-treated DM aortas and the aortas treated with PD98059-treated DM MPs than in DM aortas and the aortas treated with DM MPs. Furthermore, DM MPs increased ERK1/2 and intracellular adhesion molecule-1 (ICAM-1) expressions in the aortas, but PD98059-treated DM MPs did not show these effects. For the first time, these results indicate that PD98059 treatment improves endothelial dysfunction in DM, and adhesion properties of DM MPs can be partly blocked by PD98059 via ERK and ICAM-1. These effects may explain some of the vascular complications in diabetes.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Nozomu Kaneko
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kanami Okudaira
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
10
|
Ma J, Yuan HX, Chen YT, Ning DS, Liu XJ, Peng YM, Chen C, Song YK, Jian YP, Li Y, Liu Z, Ou ZJ, Ou JS. Circulating endothelial microparticles: a promising biomarker of acute kidney injury after cardiac surgery with cardiopulmonary bypass. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:786. [PMID: 34268399 PMCID: PMC8246187 DOI: 10.21037/atm-20-7828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
Background Current diagnostic strategies for acute kidney injury (AKI) after cardiac surgery with cardiopulmonary bypass (CPB) are nonspecific and limited. Previously, we demonstrated that circulating microparticles (MPs) in patients with valve heart disease (VHD) and congenital heart diseases (CHD) induce endothelial dysfunction and neutrophil chemotaxis, which may result in kidney injury. We also found that circulating MPs increase after cardiac surgery with CPB and are related to cardiac function. However, the relationship between circulating MPs and AKI after CPB is unknown. Methods Eighty-five patients undergoing cardiac surgery with CPB were enrolled. Patients were divided into AKI and non-AKI groups based on the serum creatinine levels at 12 h and 3 d post-CPB. Circulating MPs were isolated from plasma, and their levels including its subtypes were detected by flow cytometer. Independent risk factors for the CPB-associated AKI (CPB-AKI) were determined by multivariate logistic regression analysis. Receiver operating characteristic (ROC) analysis was used to measure the prognostic potential of CPB-AKI. Results The morbidity of AKI at 12 h and 3 d after cardiac surgery with CPB was 40% and 31.76%, respectively. The concentrations of total MPs and platelet-derived MPs (PMP) remained unchanged at 12 h and then increased at 3 d post-CPB, while that of endothelial-derived MPs (EMP) increased at both time points. In patients with AKI, PMP and EMP were elevated compared with the patients without AKI. However, no significant change was detected on monocyte-derived MPs (MMP) at 12 h and 3 d post-CPB. The logistic regression analysis showed that EMP was the independent risk factor for AKI both at 12 h and 3 d post-CPB. The area under ROC for the concentrations of EMP at 12 h and 3 d post-CPB was 0.86 and 0.91, with the specificity up to 0.88 and 0.91, respectively. Conclusions Circulating EMP may serve as a potential biomarker of AKI after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Jian Ma
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chao Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yuan-Kai Song
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zui Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
11
|
Wang XL, Zhang W, Li Z, Han WQ, Wu HY, Wang QR, Liu XH, Xing K, Cheng G, Chang FJ. Vascular damage effect of circulating microparticles in patients with ACS is aggravated by type 2 diabetes. Mol Med Rep 2021; 23:474. [PMID: 33899122 PMCID: PMC8097757 DOI: 10.3892/mmr.2021.12113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/03/2020] [Indexed: 01/18/2023] Open
Abstract
As a common factor of both type 2 diabetes mellitus (T2DM) and acute coronary syndrome (ACS), circulating microparticles (MPs) may provide a link between these two diseases. The present study compared the content and function of MPs from patients with ACS with or without T2DM. MPs from healthy subjects (n=20), patients with ACS (n=24), patients with T2DM (n=20) and patients with combined ACS and T2DM (n=24) were obtained. After incubating rat thoracic tissue with MPs, the effect of MPs on endothelial‑dependent vasodilatation, expression of caveolin‑1 and endothelial nitric oxide synthase (eNOS), phosphorylation of eNOS at the S1177 and T495 sites and its association with heat shock protein 90 (Hsp90), and the generation of NO and superoxide anion (O2˙‑) were determined. MP concentrations were higher in patients with T2DM and patients with ACS with or without T2DM than in healthy subjects. Moreover, MPs from patients with T2DM or ACS led to impairment in endothelial‑dependent vasodilatation, decreased expression of NO, as well as eNOS and its phosphorylation at Ser1177 and association with Hsp90, but increased eNOS phosphorylation at T495, caveolin‑1 expression and O2˙‑ generation. These effects were strengthened by MPs from patients with ACS combined with T2DM. T2DM not only increased MP content but also resulted in greater vascular impairment effects in ACS. These results may provide novel insight into the treatment of patients with ACS and T2DM.
Collapse
Affiliation(s)
- Xu-Lan Wang
- Department of Nursing, Xian'yang Vocational and Technical College, Fengxi New Town United Avenue, Xi'an, Shaanxi 712000, P.R. China
| | - Wei Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Zhe Li
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Wen-Qi Han
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Hao-Yu Wu
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Qun-Rang Wang
- Department of Cardiology, Affiliated Hospital of Shaanxi Traditional Chinese Medicine University, Xianyang, Shaanxi 712000, P.R. China
| | - Xin-Hong Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Kun Xing
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Gong Cheng
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Feng-Jun Chang
- Department of Cardiology, Shaanxi Provincial People's Hospital and The Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
12
|
Li Y, Zhang YX, Ning DS, Chen J, Li SX, Mo ZW, Peng YM, He SH, Chen YT, Zheng CJ, Gao JJ, Yuan HX, Ou JS, Ou ZJ. Simvastatin inhibits POVPC-mediated induction of endothelial-to-mesenchymal cell transition. J Lipid Res 2021; 62:100066. [PMID: 33711324 PMCID: PMC8063863 DOI: 10.1016/j.jlr.2021.100066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT), the process by which an endothelial cell (EC) undergoes a series of molecular events that result in a mesenchymal cell phenotype, plays an important role in atherosclerosis. 1-Palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), derived from the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine, is a proinflammatory lipid found in atherosclerotic lesions. Whether POVPC promotes EndMT and how simvastatin influences POVPC-mediated EndMT remains unclear. Here, we treated human umbilical vein ECs with POVPC, simvastatin, or both, and determined their effect on EC viability, morphology, tube formation, proliferation, and generation of NO and superoxide anion (O2•-). Expression of specific endothelial and mesenchymal markers was detected by immunofluorescence and immunoblotting. POVPC did not affect EC viability but altered cellular morphology from cobblestone-like ECs to a spindle-like mesenchymal cell morphology. POVPC increased O2- generation and expression of alpha-smooth muscle actin, vimentin, Snail-1, Twist-1, transforming growth factor-beta (TGF-β), TGF-β receptor II, p-Smad2/3, and Smad2/3. POVPC also decreased NO production and expression of CD31 and endothelial NO synthase. Simvastatin inhibited POVPC-mediated effects on cellular morphology, production of O2•- and NO, and expression of specific endothelial and mesenchymal markers. These data demonstrate that POVPC induces EndMT by increasing oxidative stress, which stimulates TGF-β/Smad signaling, leading to Snail-1 and Twist-1 activation. Simvastatin inhibited POVPC-induced EndMT by decreasing oxidative stress, suppressing TGF-β/Smad signaling, and inactivating Snail-1 and Twist-1. Our findings reveal a novel mechanism of atherosclerosis that can be inhibited by simvastatin.
Collapse
Affiliation(s)
- Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Yi-Xin Zhang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Jing Chen
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shang-Xuan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Shi-Hui He
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Chun-Juan Zheng
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, People's Republic of China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, People's Republic of China; Division of Hypertension and Vascular Diseases, Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
13
|
Abstract
Extracellular vesicles (EVs) have received considerable attention in biological and clinical research due to their ability to mediate cell-to-cell communication. Based on their size and secretory origin, EVs are categorized as exosomes, microvesicles, and apoptotic bodies. Increasing number of studies highlight the contribution of EVs in the regulation of a wide range of normal cellular physiological processes, including waste scavenging, cellular stress reduction, intercellular communication, immune regulation, and cellular homeostasis modulation. Altered circulating EV level, expression pattern, or content in plasma of patients with cardiovascular disease (CVD) may serve as diagnostic and prognostic biomarkers in diverse cardiovascular pathologies. Due to their inherent characteristics and physiological functions, EVs, in turn, have become potential candidates as therapeutic agents. In this review, we discuss the evolving understanding of the role of EVs in CVD, summarize the current knowledge of EV-mediated regulatory mechanisms, and highlight potential strategies for the diagnosis and therapy of CVD. We also attempt to look into the future that may advance our understanding of the role of EVs in the pathogenesis of CVD and provide novel insights into the field of translational medicine.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
14
|
Xian S, Chen A, Wu X, Lu C, Wu Y, Huang F, Zeng Z. Activation of activin/Smad2 and 3 signaling pathway and the potential involvement of endothelial‑mesenchymal transition in the valvular damage due to rheumatic heart disease. Mol Med Rep 2020; 23:10. [PMID: 33179113 PMCID: PMC7673319 DOI: 10.3892/mmr.2020.11648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Rheumatic heart disease (RHD) is an autoimmune disease caused by rheumatic fever following group A hemolytic streptococcal infection and primarily affects the mitral valve. RHD is currently a major global health problem. However, the exact pathological mechanisms associated with RHD-induced cardiac valve damage remain to be elucidated. The endothelial-mesenchymal transition (EndMT) serves a key role in a number of diseases with an important role in cardiac fibrosis and the activin/Smad2 and 3 signaling pathway is involved in regulating the EndMT. Nevertheless, there are no studies to date, to the best of the authors' knowledge, investigating the association between RHD and EndMT. Thus, the aim of the current study was to investigate the potential role of EndMT in cardiac valve damage and assess whether activin/Smad2 and 3 signaling was activated during RHD-induced valvular injury in a rat model of RHD induced by inactivated Group A streptococci and complete Freund's adjuvant. Inflammation and fibrosis were assessed by hematoxylin and eosin and Sirius red staining. Serum cytokine and rheumatoid factor levels were measured using ELISA kits. Expression levels of activin/Smad2 and 3 signaling pathway-related factors [activin A, Smad2, Smad3, phosphorylated (p-)Smad2 and p-Smad3], EndMT-related factors [lymphoid enhancer factor-1 (LEF-1), Snail1, TWIST, zinc finger E-box-binding homeobox (ZEB)1, ZEB2, α smooth muscle actin (α-SMA) and type I collagen α 1 (COL1A1)], apoptosis-related markers (BAX and cleaved caspase-3) and valvular inflammation markers (NF-κB and p-NF-κB) were detected using reverse transcription-quantitative PCR and western blot analyses. Compared with the control group, the degree of valvular inflammation and fibrosis, serum levels of IL-6, IL-17, TNF-α and expression of apoptosis-related markers (BAX and cleaved caspase-3) and valvular inflammation marker (p-NF-κB), activin/Smad2 and 3 signaling pathway-related factors (activin A, p-Smad2 and p-Smad3), EndMT-related factors (LEF-1, Snail1, TWIST, ZEB 1, ZEB2, α-SMA and COL1A1) were significantly increased in the RHD group. These results suggested that the activin/Smad2 and 3 signaling pathway was activated during the development of valvular damage caused by RHD and that the EndMT is involved in RHD-induced cardiac valve damage.
Collapse
Affiliation(s)
- Shenglin Xian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ang Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaodan Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chuanghong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yunjiao Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhiyu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
15
|
Çiftel M, Yilmaz O. İnvestigation of endothelial dysfunction in children with acute rheumatic fever. Ann Pediatr Cardiol 2020; 13:199-204. [PMID: 32863654 PMCID: PMC7437618 DOI: 10.4103/apc.apc_201_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 05/06/2020] [Indexed: 12/04/2022] Open
Abstract
Background: Acute rheumatic fever (ARF) is an important cause of valvular heart disease in children. Endothelial dysfunction plays an important role in the pathogenesis of valvular heart diseases. The role of endothelial dysfunction in valvular heart diseases due to ARF is not exactly known. In ARF, autoimmune injury, inflammation, oxidative stress, and impairment of nitric oxide in valvular endothelium may be the causes of endothelial dysfunction. The purpose of this study is to evaluate endothelial dysfunction and arterial stiffness in children with ARF. Materials and Methods: Thirty-six patients diagnosed with ARF (the mean age was 11.80 ± 2.82 years) and 36 volunteered individuals with similar age, sex, and body mass index were included in the study. The study groups were compared in terms of M-mode echocardiography parameters, carotid arterial strain (CAS), beta-stiffness index (βSI), and flow-mediated dilation (FMD). Results: In patients with ARF, there was a decrease in FMD% (10.36 ± 7.26 and 12.76 ± 4.59; P < 0.001) compared to the control group. In addition, CAS (0.16 ± 0.06 and 0.18 ± 0.08; P = 0.44) and βSI (3.65 ± 1.61 and 3.57 ± 2.38; P = 0.24) were similar in the patient and the control groups. Furthermore, no correlation was detected between decreased FMD value and mitral regurgitation (r = −0.07; P = 0.66), aortic regurgitation (r = −0.04; P = 0.78), CAS (r = −0.08; P = 0.61), and βSİ (r = −0.20; P = 0.22). Conclusion: In our study, a decrease in FMD value, which is a marker of endothelial dysfunction, was found in children with rheumatic carditis.
Collapse
Affiliation(s)
- Murat Çiftel
- Department of Pediatric Cardiology, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Osman Yilmaz
- Department of Pediatric Cardiology, Etlik Training and Research Hospital, Etlik, Ankara, Turkey
| |
Collapse
|
16
|
Protein Compositions Changes of Circulating Microparticles in Patients With Valvular Heart Disease Subjected to Cardiac Surgery Contribute to Systemic Inflammatory Response and Disorder of Coagulation. Shock 2020; 52:487-496. [PMID: 30601407 DOI: 10.1097/shk.0000000000001309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We recently demonstrated that circulating microparticles (MPs) from patients with valvular heart diseases (VHD) subjected to cardiac surgery impaired endothelial function and vasodilation. However, it is unknown whether or not the protein composition of these circulating MPs actually changes in response to the disease and the surgery. Circulating MPs were isolated from age-matched control subjects (n = 50) and patients (n = 50) with VHD before and 72 h after cardiac surgery. Proteomics study was performed by liquid chromatography and mass spectrometry combined with isobaric tags for relative and absolute quantification technique. The differential proteins were identified by ProteinPilot, some of which were validated by Western blotting. Bio-informatic analysis of differential proteins was carried out. A total of 849 proteins were identified and 453 proteins were found in all three groups. Meanwhile, 165, 39, and 80 proteins were unique in the control, pre-operation, and postoperation groups respectively. The unique proteins were different in localization, molecular function, and biological process. The pro-inflammatory proteins were increased in VHD patients and more so postoperatively. Proteins related to coagulation were dramatically changed before and after surgery. The protein composition of circulating MPs was changed in patients with VHD undergoing cardiac surgery, which may lead to activation of the systemic inflammatory response and disorders of coagulation.
Collapse
|
17
|
Yuan HX, Chen CY, Li YQ, Ning DS, Li Y, Chen YT, Li SX, Fu MX, Li XD, Ma J, Jian YP, Liu DH, Mo ZW, Peng YM, Xu KQ, Ou ZJ, Ou JS. Circulating extracellular vesicles from patients with valvular heart disease induce neutrophil chemotaxis via FOXO3a and the inhibiting role of dexmedetomidine. Am J Physiol Endocrinol Metab 2020; 319:E217-E231. [PMID: 32516026 DOI: 10.1152/ajpendo.00062.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that circulating extracellular vesicles (EVs) from patients with valvular heart disease (VHD; vEVs) contain inflammatory components and inhibit endothelium-dependent vasodilation. Neutrophil chemotaxis plays a key role in renal dysfunction, and dexmedetomidine (DEX) can reduce renal dysfunction in cardiac surgery. However, the roles of vEVs in neutrophil chemotaxis and effects of DEX on vEVs are unknown. Here, we investigated the impact of vEVs on neutrophil chemotaxis in kidneys and the influence of DEX on vEVs. Circulating EVs were isolated from healthy subjects and patients with VHD. The effects of EVs on chemokine generation, forkhead box protein O3a (FOXO3a) pathway activation and neutrophil chemotaxis on cultured human umbilical vein endothelial cells (HUVECs) and kidneys in mice and the influence of DEX on EVs were detected. vEVs increased FOXO3a expression, decreased phosphorylation of Akt and FOXO3a, promoted FOXO3a nuclear translocation, and activated the FOXO3a signaling pathway in vitro. DEX pretreatment reduced vEV-induced CXCL4 and CCL5 expression and neutrophil chemotaxis in cultured HUVECs via the FOXO3a signaling pathway. vEVs were also found to suppress Akt phosphorylation and activate FOXO3a signaling to increase plasma levels of CXCL4 and CCL5 and neutrophil accumulation in kidney. The overall mechanism was inhibited in vivo with DEX pretreatment. Our data demonstrated that vEVs induced CXCL4-CCL5 to stimulate neutrophil infiltration in kidney, which can be inhibited by DEX via the FOXO3a signaling. Our findings reveal a unique mechanism involving vEVs in inducing neutrophils chemotaxis and may provide a novel basis for using DEX in reducing renal dysfunction in valvular heart surgery.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Cai-Yun Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu-Quan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shang-Xuan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meng-Xia Fu
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiao-Di Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian Ma
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dong-Hong Liu
- Department of Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kang-Qing Xu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
18
|
Li Y, Yuan H, Chen C, Chen C, Ma J, Chen Y, Li Y, Jian Y, Liu D, Ou Z, Ou J. Concentration of circulating microparticles: a new biomarker of acute heart failure after cardiac surgery with cardiopulmonary bypass. SCIENCE CHINA-LIFE SCIENCES 2020; 64:107-116. [PMID: 32548691 DOI: 10.1007/s11427-020-1708-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022]
Abstract
Acute heart failure (AHF) is a severe complication after cardiac surgery with cardiopulmonary bypass (CPB). Although some AHF biomarkers have been used in clinic, they have limitations when applied in the prediction and diagnosis of AHF after cardiac surgery with CPB, and there are still no effective and specific biomarkers. We and other researchers have shown that circulating microparticles (MPs) increased in a variety of cardiovascular diseases. However, whether the concentration of circulating MPs could be a new biomarker for AHF after cardiac surgery remains unknown. Here, 90 patients undergoing cardiac surgery with CPB and 45 healthy subjects were enrolled. Patients were assigned into AHF (n=14) or non-AHF (n=76) group according to the diagnosis criteria of AHF. The concentrations of circulating MPs were determined before, as well as 12 h and 3 days after operation with nanoparticle tracking analysis technique. MPs concentrations in patients before surgery were significantly higher than those of healthy subjects. Plasma levels of MPs were significantly elevated at 12 h after surgery in patients with AHF, but not in those without AHF, and the circulating MPs concentrations at 12 h after surgery were higher in AHF group compared with non-AHF group. Logistic regression analysis indicated that MPs concentration at postoperative 12 h was an independent risk factor for AHF. The area under receiver operating characteristic curve for MPs concentration at postoperative 12 h was 0.81 and the best cut-off value is 5.20×108 particles mL-1 with a sensitivity of 93% and a specificity of 10%. These data suggested that the concentration of circulating MPs might be a new biomarker for the occurrence of AHF after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Yuquan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Haoxiang Yuan
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Caiyun Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chao Chen
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Jian Ma
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yating Chen
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yan Li
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Yupeng Jian
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China
| | - Donghong Liu
- Department of Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhijun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China.,Division of Hypertension and Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingsong Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China. .,NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, China.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review summarizes the effects of microparticles and exosomes in the progression of atherosclerosis and the prospect for their diagnostic and therapeutic potentials. RECENT FINDINGS Microparticles and exosomes can induce endothelial dysfunction, vascular inflammation, coagulation, thrombosis, and calcification via their components of proteins and noncoding RNAs, which may promote the progression of atherosclerosis. The applications of microparticles and exosomes become the spotlight of clinical diagnosis and therapy. Microparticles and exosomes are members of extracellular vesicles, which are generated in various cell types by different mechanisms of cell membrane budding and multivesicular body secretion, respectively. They are important physiologic pathways of cell-to-cell communication in vivo and act as messengers accelerating or alleviating the process of atherosclerosis. Microparticles and exosomes may become diagnostic biomarkers and therapeutic approaches of atherosclerosis.
Collapse
|
20
|
Porro B, Songia P, Myasoedova VA, Valerio V, Moschetta D, Gripari P, Fusini L, Cavallotti L, Canzano P, Turnu L, Alamanni F, Camera M, Cavalca V, Poggio P. Endothelial Dysfunction in Patients with Severe Mitral Regurgitation. J Clin Med 2019; 8:jcm8060835. [PMID: 31212807 PMCID: PMC6616454 DOI: 10.3390/jcm8060835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/05/2023] Open
Abstract
Mitral valve prolapse (MVP) is the most common cause of severe mitral regurgitation. It has been reported that MVP patients—candidates for mitral valve repair (MVRep)—showed an alteration in the antioxidant defense systems as well as in the L-arginine metabolic pathway. In this study, we investigate if oxidative stress and endothelial dysfunction are an MVP consequence or driving factors. Forty-five patients undergoing MVRep were evaluated before and 6 months post surgery and compared to 29 controls. Oxidized (GSSG) and reduced (GSH) forms of glutathione, and L-arginine metabolic pathway were analyzed using liquid chromatography-tandem mass spectrometry methods while osteoprotegerin (OPG) through the ELISA kit and circulating endothelial microparticles (EMP) by flow cytometry. Six-month post surgery, in MVP patients, the GSSG/GSH ratio decreased while symmetric and asymmetric dimethylarginines levels remained comparable to the baseline. Conversely, OPG levels significantly increased when compared to their baseline. Finally, pre-MVRep EMP levels were significantly higher in patients than in controls and did not change post surgery. Overall, these results highlight that MVRep completely restores the increased oxidative stress levels, as evidenced in MVP patients. Conversely, no amelioration of endothelial dysfunction was evidenced after surgery. Thus, therapies aimed to restore a proper endothelial function before and after surgical repair could benefit MVP patients.
Collapse
Affiliation(s)
- Benedetta Porro
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Paola Songia
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | | | - Vincenza Valerio
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80138 Naples, Italy.
| | | | - Paola Gripari
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Laura Fusini
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | | | - Paola Canzano
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Linda Turnu
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | | | - Marina Camera
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Viviana Cavalca
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Paolo Poggio
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| |
Collapse
|
21
|
Luo R, Chen X, Ma H, Yao C, Liu M, Tao J, Li X. Myocardial caspase-3 and NF-κB activation promotes calpain-induced septic apoptosis: The role of Akt/eNOS/NO pathway. Life Sci 2019; 222:195-202. [PMID: 30807754 DOI: 10.1016/j.lfs.2019.02.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
AIMS To explore the potential mechanism that the role of the Akt/eNOS/NO pathway in calpain-induced caspase-3 and NF-κB activation during septic apoptosis. MAIN METHODS Septic rats were stimulated by LPS (8 mg/kg, i.p.). Myocardial calpain, caspase-3, NO, TNF-α and IL-1β levels were detected by ELISA. The levels of Akt/p-Akt, eNOS/p-eNOS, iNOS proteins and number of apoptotic cells were evaluated by immunohistochemistry, western blot and TUNEL method. KEY FINDINGS Compared with sham, LPS treatment resulted in 4.1-fold and 1.8-fold increases in myocardial calpain activity and caspase-3 activation, respectively, and a significant increase (6.8-fold) in apoptotic cardiomyocytes was observed. The administration of calpain inhibitors (calpain inhibitor-IV, PD150606 and PD151746) showed that p-Akt and p-eNOS protein levels were correlated with the levels of LPS-induced myocardial calpain and caspase-3 activity. In addition, the quantity of p-Akt protein and NO content were markedly attenuated by wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor. Pretreatment with L-NAME, an NOS inhibitor, induced a decrease in p-eNOS proteins and apoptosis in myocardial tissues, while iNOS proteins were strongly increased in septic rats. SIGNIFICANCE This study suggests that the Akt/eNOS/NO pathway might lead to a novel pharmacological therapy for cardiomyocytes apoptosis in sepsis.
Collapse
Affiliation(s)
- Rong Luo
- Temperature and Inflammation Research Center, Key Laboratory of Colleges and Universities in Sichuan Province, Chengdu Medical College, 610500, China
| | - Xuepin Chen
- Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Huihui Ma
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Chao Yao
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Mingjiang Liu
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jianhong Tao
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Xiaoping Li
- Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China.
| |
Collapse
|
22
|
Ye S, Shan XF, Han WQ, Zhang QR, Gao J, Jin AP, Wang Y, Sun CF, Zhang SL. Microparticles from Patients Undergoing Percutaneous Coronary Intervention Impair Vasodilatation by Uncoupling Endothelial Nitric Oxide Synthase. Shock 2018; 48:201-208. [PMID: 28002238 DOI: 10.1097/shk.0000000000000823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Percutaneous coronary interventions (PCIs) save countless acute myocardial infarction (AMI) patients. However, endothelial injury is still an inevitable complication. Circulating microparticles (MPs) play important roles in vascular dysfunction. Whether PCI affects function of MPs remains unclear. METHODS MPs were obtained from AMI patients (n = 38) both preoperatively and 24 h after PCI, and healthy subjects (n = 20). MPs origins were tested by flow cytometry. Rat thoracic aortas were incubated with MPs to determine the effects of MPs on phosphorylation of endothelial nitric oxide synthase (eNOS), caveolin-1 expression, eNOS association with heat shock protein 90 (Hsp90), generation of nitric oxide (NO) and superoxide anion (O2), and endothelial-dependent vasodilatation. RESULTS Compared with healthy subjects, MP concentrations increased in AMI patients. Undergoing PCI had no further effect on MPs concentration, but it results in increased endothelial-derived MPs proportion and decreased platelet-derived MP ratio. MPs from AMI patients decreased eNOS phosphorylation at Ser1177, increased eNOS phosphorylation at T495 and caveolin-1 expression, decreased eNOS association with Hsp90, decreased NO production but increased (O2) generation, damaged endothelial-dependent vasodilatation. All of these effects of MPs were strengthened by PCI. CONCLUSIONS PCI further enhances the vascular injury effect of MPs. Circulating MPs may be a potential therapeutic target for patients undergoing PCI.
Collapse
Affiliation(s)
- Sha Ye
- *Geriatric Vasculocardiology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China †Department of Children's Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumuqi, Xinjiang, China ‡Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China §Department of Cardiovascular Medicine, MOE, Ion Channel Disease Laboratory, MOE Key Laboratory of Environment and Genes Related to Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Martínez-Micaelo N, Beltrán-Debón R, Aragonés G, Faiges M, Alegret JM. MicroRNAs Clustered within the 14q32 Locus Are Associated with Endothelial Damage and Microparticle Secretion in Bicuspid Aortic Valve Disease. Front Physiol 2017; 8:648. [PMID: 28928672 PMCID: PMC5591958 DOI: 10.3389/fphys.2017.00648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/16/2017] [Indexed: 01/03/2023] Open
Abstract
Background: We previously described that PECAM+ circulating endothelial microparticles (EMPs) are elevated in bicuspid aortic valve (BAV) disease as a manifestation of endothelial damage. In this study, we hypothesized that this endothelial damage, is functionally related to the secretion of a specific pattern of EMP-associated miRNAs. Methods: We used a bioinformatics approach to correlate the PECAM+ EMP levels with the miRNA expression profile in plasma in healthy individuals and BAV patients (n = 36). In addition, using the miRNAs that were significantly associated with PECAM+ EMP levels, we inferred a miRNA co-expression network using a Gaussian graphical modeling approach to identify highly co-expressed miRNAs or miRNA clusters whose expression could functionally regulate endothelial damage. Results: We identified a co-expression network composed of 131 miRNAs whose circulating expression was significantly associated with PECAM+ EMP levels. Using a topological analysis, we found that miR-494 was the most important hub within the co-expression network. Furthermore, through positional gene enrichment analysis, we identified a cluster of 19 highly co-expressed miRNAs, including miR-494, that was located in the 14q32 locus on chromosome 14 (p = 1.9 × 10−7). We evaluated the putative biological role of this miRNA cluster by determining the biological significance of the genes targeted by the cluster using functional enrichment analysis. We found that this cluster was involved in the regulation of genes with various functions, specifically the “cellular nitrogen compound metabolic process” (p = 2.34 × 10−145), “immune system process” (p = 2.57 × 10−6), and “extracellular matrix organization” (p = 8.14 × 10−5) gene ontology terms and the “TGF-β signaling pathway” KEGG term (p = 2.59 × 10−8). Conclusions: Using an integrative bioinformatics approach, we identified the circulating miRNA expression profile associated with secreted PECAM+ EMPs in BAV disease. Additionally, we identified a highly co-expressed miRNA cluster that could mediate crucial biological processes in BAV disease, including the nitrogen signaling pathway, cellular activation, and the transforming growth factor beta signaling pathway. In conclusion, EMP-associated and co-expressed miRNAs could act as molecular effectors of the intercellular communication carried out by EMPs in response to endothelial damage.
Collapse
Affiliation(s)
- Neus Martínez-Micaelo
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i VirgiliReus, Spain
| | - Raúl Beltrán-Debón
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i VirgiliReus, Spain
| | - Gerard Aragonés
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i VirgiliReus, Spain
| | - Marta Faiges
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i VirgiliReus, Spain
| | - Josep M Alegret
- Grup de Recerca Cardiovascular, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i VirgiliReus, Spain.,Servei de Cardiologia, Hospital Universitari de Sant Joan, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
24
|
Cheng G, Shan XF, Wang XL, Dong WW, Li Z, Liu XH, Zhang W, Xing K, Chang FJ. Endothelial damage effects of circulating microparticles from patients with stable angina are reduced by aspirin through ERK/p38 MAPKs pathways. Cardiovasc Ther 2017; 35. [PMID: 28520220 DOI: 10.1111/1755-5922.12273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/11/2017] [Accepted: 05/14/2017] [Indexed: 01/11/2023] Open
Affiliation(s)
- Gong Cheng
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Xue-Feng Shan
- Department of Children's Cardiac surgery; First Affiliated Hospital of Xinjiang Medical University; Urumuqi Xinjiang China
| | - Xu-Lang Wang
- Department of Nursing; Xian'yang Vocational and Technical College; Xian'yang Shaanxi China
| | - Wei-Wei Dong
- Xinjiang Petroleum Institute; Urumuqi Xinjiang China
| | - Zhe Li
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Xin-Hong Liu
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Wei Zhang
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Kun Xing
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Feng-Jun Chang
- Department of Cardiology; Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| |
Collapse
|
25
|
Lin ZB, Ci HB, Li Y, Cheng TP, Liu DH, Wang YS, Xu J, Yuan HX, Li HM, Chen J, Zhou L, Wang ZP, Zhang X, Ou ZJ, Ou JS. Endothelial microparticles are increased in congenital heart diseases and contribute to endothelial dysfunction. J Transl Med 2017; 15:4. [PMID: 28049487 PMCID: PMC5210308 DOI: 10.1186/s12967-016-1087-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/18/2016] [Indexed: 11/24/2022] Open
Abstract
Background We previously demonstrated that endothelial microparticles (EMPs) are increased in mitral valve diseases and impair valvular endothelial cell function. Perioperative systemic inflammation is an important risk factor and complication of cardiac surgery. In this study, we investigate whether EMPs increase in congenital heart diseases to promote inflammation and endothelial dysfunction. Methods The level of plasma EMPs in 20 patients with atrial septal defect (ASD), 23 patients with ventricular septal defect (VSD), and 30 healthy subjects were analyzed by flow cytometry. EMPs generated from human umbilical vascular endothelial cells (HUVECs) were injected into C57BL6 mice, or cultured with HUVECs without or with siRNAs targeting P38 MAPK. The expression and/or phosphorylation of endothelial nitric oxide synthase (eNOS), P38 MAPK, and caveolin-1 in mouse heart and/or in cultured HUVECs were determined. We evaluated generation of nitric oxide (NO) in mouse hearts, and levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cultured HUVECs and in mice. Results EMPs were significantly elevated in patients with ASD and VSD, especially in those with pulmonary hypertension when compared with controls. EMPs increased caveolin-1 expression and P38 MAPK phosphorylation and decreased eNOS phosphorylation and NO production in mouse hearts. EMPs stimulated P38 MAPK expression, TNF-α and IL-6 production, which were all inhibited by siRNAs targeting P38 MAPK in cultured HUVECs. Conclusions EMPs were increased in adult patients with congenital heart diseases and may contribute to increased inflammation leading to endothelial dysfunction via P38 MAPK-dependent pathways. This novel data provides a potential therapeutic target to address important complications of surgery of congenial heart disease. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1087-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ze-Bang Lin
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, People's Republic of China.,The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, 510080, People's Republic of China.,National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, People's Republic of China
| | - Hong-Bo Ci
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, People's Republic of China.,The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, 510080, People's Republic of China.,National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, People's Republic of China
| | - Yan Li
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, People's Republic of China.,The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, 510080, People's Republic of China.,National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, People's Republic of China
| | - Tian-Pu Cheng
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, People's Republic of China.,The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, 510080, People's Republic of China.,National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, People's Republic of China
| | - Dong-Hong Liu
- Department of Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yan-Sheng Wang
- State Key Laboratory of Respiratory Disease, Guangzhou, 510080, People's Republic of China.,Guangzhou Institute of Respiratory Disease, Guangzhou, 510080, People's Republic of China.,The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, 510120, People's Republic of China
| | - Jun Xu
- State Key Laboratory of Respiratory Disease, Guangzhou, 510080, People's Republic of China.,Guangzhou Institute of Respiratory Disease, Guangzhou, 510080, People's Republic of China.,The First Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangzhou, 510120, People's Republic of China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, People's Republic of China.,The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, 510080, People's Republic of China.,National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, People's Republic of China
| | - Hua-Ming Li
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, People's Republic of China.,The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, 510080, People's Republic of China.,National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, People's Republic of China
| | - Jing Chen
- Division of Hypertension and Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Li Zhou
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, People's Republic of China.,The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, 510080, People's Republic of China
| | - Zhi-Ping Wang
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, People's Republic of China.,The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, 510080, People's Republic of China
| | - Xi Zhang
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, People's Republic of China.,The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, 510080, People's Republic of China
| | - Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, 510080, People's Republic of China.,National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, People's Republic of China
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, People's Republic of China. .,The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, 510080, People's Republic of China. .,National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, People's Republic of China. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
26
|
Ou ZJ, Chen J, Dai WP, Liu X, Yang YK, Li Y, Lin ZB, Wang TT, Wu YY, Su DH, Cheng TP, Wang ZP, Tao J, Ou JS. 25-Hydroxycholesterol impairs endothelial function and vasodilation by uncoupling and inhibiting endothelial nitric oxide synthase. Am J Physiol Endocrinol Metab 2016; 311:E781-E790. [PMID: 27600825 DOI: 10.1152/ajpendo.00218.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/02/2016] [Indexed: 12/24/2022]
Abstract
Endothelial dysfunction is a key early step in atherosclerosis. 25-Hydroxycholesterol (25-OHC) is found in atherosclerotic lesions. However, whether 25-OHC promotes atherosclerosis is unclear. Here, we hypothesized that 25-OHC, a proinflammatory lipid, can impair endothelial function, which may play an important role in atherosclerosis. Bovine aortic endothelial cells were incubated with 25-OHC. Endothelial cell proliferation, migration, and tube formation were measured. Nitric oxide (NO) production and superoxide anion generation were determined. The expression and phosphorylation of endothelial NO synthase (eNOS) and Akt as well as the association of eNOS and heat shock protein (HSP)90 were detected by immunoblot analysis and immunoprecipitation. Endothelial cell apoptosis was monitored by TUNEL staining and caspase-3 activity, and expression of Bcl-2, Bax, cleaved caspase-9, and cleaved caspase-3 were detected by immunoblot analysis. Finally, aortic rings from Sprague-Dawley rats were isolated and treated with 25-OHC, and endothelium-dependent vasodilation was evaluated. 25-OHC significantly inhibited endothelial cell proliferation, migration, and tube formation. 25-OHC markedly decreased NO production and increased superoxide anion generation. 25-OHC reduced the phosphorylation of Akt and eNOS and the association of eNOS and HSP90. 25-OHC also enhanced endothelial cell apoptosis by decreasing Bcl-2 expression and increasing cleaved caspase-9 and cleaved caspase-3 expressions as well as caspase-3 activity. 25-OHC impaired endothelium-dependent vasodilation. These data demonstrated that 25-OHC could impair endothelial function by uncoupling and inhibiting eNOS activity as well as by inducing endothelial cell apoptosis. Our findings indicate that 25-OHC may play an important role in regulating atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Jing Chen
- Division of Hypertension and Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Wei-Ping Dai
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Xiang Liu
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Yin-Ke Yang
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Yan Li
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Ze-Bang Lin
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Tian-Tian Wang
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Ying-Ying Wu
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Dan-Hong Su
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Tian-Pu Cheng
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Zhi-Ping Wang
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Jun Tao
- Division of Hypertension and Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and
| | - Jing-Song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; The Key Laboratory of Assisted Circulation, Ministry of Health, Guangzhou, China; Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China; and Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
27
|
Teixeira JH, Silva AM, Almeida MI, Barbosa MA, Santos SG. Circulating extracellular vesicles: Their role in tissue repair and regeneration. Transfus Apher Sci 2016; 55:53-61. [DOI: 10.1016/j.transci.2016.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Data on the circulating levels of endothelial microparticles are elevated in patients with bicuspid aortic valve and are related to aortic dilation. Data Brief 2016; 8:666-9. [PMID: 27453924 PMCID: PMC4943086 DOI: 10.1016/j.dib.2016.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/07/2016] [Accepted: 06/17/2016] [Indexed: 11/24/2022] Open
Abstract
The data included here support the research article "Circulating endothelial microparticles are elevated in bicuspid aortic valve (BAV) disease and related to aortic dilation" (Alegret et al., 2016 [1]) where circulating levels of platelet endothelial cell adhesion molecule (PECAM(+)) endothelial microparticles (EMPs) were identified as a biological variable related to aortic dilation in patients with BAV disease. The data presented in this article are composed by four tables and one figure containing the clinical and echocardiographic characteristics of the patients (Alegret et al., 2016 [1]) included in this study, and summarize the results of multivariate linear analyses. Furthermore, is also included a figure showing a representative flow cytometry dot plots and histograms used in PECAM(+) EMPs quantification is also included.
Collapse
|
29
|
Durante A, Zalewski J. Microparticles: A Novel Player in Cardiovascular Diseases. Cardiology 2016; 132:249-51. [PMID: 26329533 DOI: 10.1159/000437045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/19/2022]
|
30
|
Rammos C, Zeus T, Balzer J, Kubatz L, Hendgen-Cotta UB, Veulemans V, Hellhammer K, Totzeck M, Luedike P, Kelm M, Rassaf T. Percutaneous Mitral Valve Repair in Mitral Regurgitation Reduces Cell-Free Hemoglobin and Improves Endothelial Function. PLoS One 2016; 11:e0151203. [PMID: 26986059 PMCID: PMC4795750 DOI: 10.1371/journal.pone.0151203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/23/2016] [Indexed: 11/18/2022] Open
Abstract
Background and Objective Endothelial dysfunction is predictive for cardiovascular events and may be caused by decreased bioavailability of nitric oxide (NO). NO is scavenged by cell-free hemoglobin with reduction of bioavailable NO up to 70% subsequently deteriorating vascular function. While patients with mitral regurgitation (MR) suffer from an impaired prognosis, mechanisms relating to coexistent vascular dysfunctions have not been described yet. Therapy of MR using a percutaneous mitral valve repair (PMVR) approach has been shown to lead to significant clinical benefits. We here sought to investigate the role of endothelial function in MR and the potential impact of PMVR. Methods and Results Twenty-seven patients with moderate-to-severe MR treated with the MitraClip® device were enrolled in an open-label single-center observational study. Patients underwent clinical assessment, conventional echocardiography, and determination of endothelial function by measuring flow-mediated dilation (FMD) of the brachial artery using high-resolution ultrasound at baseline and at 3-month follow-up. Patients with MR demonstrated decompartmentalized hemoglobin and reduced endothelial function (cell-free plasma hemoglobin in heme 28.9±3.8 μM, FMD 3.9±0.9%). Three months post-procedure, PMVR improved ejection fraction (from 41±3% to 46±3%, p = 0.03) and NYHA functional class (from 3.0±0.1 to 1.9±1.7, p<0.001). PMVR was associated with a decrease in cell free plasma hemoglobin (22.3±2.4 μM, p = 0.02) and improved endothelial functions (FMD 4.8±1.0%, p<0.0001). Conclusion We demonstrate here that plasma from patients with MR contains significant amounts of cell-free hemoglobin, which is accompanied by endothelial dysfunction. PMVR therapy is associated with an improved hemoglobin decompartmentalization and vascular function.
Collapse
Affiliation(s)
- Christos Rammos
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Tobias Zeus
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Jan Balzer
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Laura Kubatz
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Ulrike B. Hendgen-Cotta
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Verena Veulemans
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Katharina Hellhammer
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Matthias Totzeck
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Peter Luedike
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Malte Kelm
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Tienush Rassaf
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, Moorenstrasse 5, 40225, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
31
|
Han WQ, Chang FJ, Wang QR, Pan JQ. Microparticles from Patients with the Acute Coronary Syndrome Impair Vasodilatation by Inhibiting the Akt/eNOS-Hsp90 Signaling Pathway. Cardiology 2015; 132:252-60. [DOI: 10.1159/000438782] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022]
Abstract
Objectives: Endothelial dysfunction is involved in the development of the acute coronary syndrome (ACS). Plasma microparticles (MPs) from other diseases have been demonstrated to initiate coagulation and endothelial dysfunction. However, whether MPs from ACS patients impair vasodilatation and endothelial function remains unclear. Methods: Patients (n = 62) with ACS and healthy controls (n = 30) were recruited for MP isolation. Rat thoracic aortas were incubated with MPs from ACS patients or healthy controls to determine the effects of MPs on endothelial-dependent vasodilatation, the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS), the interaction of eNOS with heat shock protein 90 (Hsp90), and nitric oxide (NO) and superoxide anion (O2-) production. The origin of MPs was assessed by flow cytometry. Results: MP concentrations were increased in patients with ACS compared with healthy controls. They were positively correlated with the degree of coronary artery stenosis. MPs from ACS patients impair endothelial-dependent vasodilatation, decrease both Akt and eNOS phosphorylation, decrease the interaction between eNOS and Hsp90, and decrease NO production but increase O2- generation in rat thoracic aortas. Endothelial-derived MPs and platelet-derived MPs made up nearly 75% of MPs. Conclusions: Our data indicate that MPs from ACS patients negatively affect endothelial-dependent vasodilatation via Akt/eNOS-Hsp90 pathways.
Collapse
|
32
|
Fu L, Hu XX, Lin ZB, Chang FJ, Ou ZJ, Wang ZP, Ou JS. Circulating microparticles from patients with valvular heart disease and cardiac surgery inhibit endothelium-dependent vasodilation. J Thorac Cardiovasc Surg 2015; 150:666-72. [DOI: 10.1016/j.jtcvs.2015.05.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/19/2015] [Accepted: 05/23/2015] [Indexed: 12/30/2022]
|
33
|
Berezin A, Zulli A, Kerrigan S, Petrovic D, Kruzliak P. Predictive role of circulating endothelial-derived microparticles in cardiovascular diseases. Clin Biochem 2015; 48:562-8. [PMID: 25697107 DOI: 10.1016/j.clinbiochem.2015.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
Abstract
Endothelial-derived microparticles (EMPs) are a novel biological marker of endothelium injury and vasomotion disorders that are involved in pathogenesis of cardiovascular, metabolic, and inflammatory diseases. Circulating levels of EMPs are thought to reflect a balance between cell stimulation, proliferation, apoptosis, and cell death. Increased EMPs may be defined in several cardiovascular diseases, such as stable and unstable coronary artery disease, acute and chronic heart failure, hypertension, arrhythmias, thromboembolism, asymptomatic atherosclerosis as well as renal failure, metabolic disorders (including type two diabetes mellitus, abdominal obesity, metabolic syndrome, insulin resistance) and dyslipidemia. This review highlights the controversial opinions regarding impact of circulating EMPs in major cardiovascular and metabolic diseases and summarizes the perspective implementation of the EMPs in risk stratification models.
Collapse
Affiliation(s)
- Alexander Berezin
- Internal Medicine Department, State Medical University, Zaporozhye, Ukraine
| | - Anthony Zulli
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Australia
| | - Steve Kerrigan
- Molecular and Cellular Therapeutics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel Petrovic
- Department of Histology and Embryology, School of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Kruzliak
- International Clinical Research Center, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
34
|
Liu MM, Flanagan TC, Lu CC, French AT, Argyle DJ, Corcoran BM. Culture and characterisation of canine mitral valve interstitial and endothelial cells. Vet J 2015; 204:32-9. [PMID: 25747697 DOI: 10.1016/j.tvjl.2015.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/07/2015] [Accepted: 01/18/2015] [Indexed: 10/24/2022]
Abstract
Valve interstitial cells (VICs) have an important role in the aetiopathogenesis of myxomatous mitral valve disease (MMVD) in the dog. Furthermore, there is evidence that valve endothelial cells (VECs) also contribute to disease development. In addition to examining native valve tissue to understand MMVD, another strategy is to separately examine VIC and VEC biology under in vitro culture conditions. The aim of this study was to isolate and characterise canine mitral VICs and VECs from normal dog valves using a combination of morphology, immunohistochemistry and reverse transcription PCR (RT-PCR). Canine mitral VECs and VICs were isolated and cultured in vitro. The two cell populations exhibited different morphologies and growth patterns. VECs, but not VICs, expressed the endothelial markers, platelet endothelial cell adhesion molecule (PECAM-1 or CD31) and acetylated low density lipoprotein (Dil-Ac-LDL). Both VECs and VICs expressed vimentin and embryonic non-smooth muscle myosin heavy chain (SMemb), an activated mesenchymal cell marker. The myofibroblast marker, alpha smooth muscle actin (α-SMA), was detected at the mRNA level in both VEC and VIC cultures, but only at the protein level in VIC cultures. The morphological heterogeneity and expression of non-endothelial phenotypic markers in VEC cultures suggested that a mixture of cell types was present, which might be due to cell contamination and/or endothelial-mesenchymal transition (EndoMT). The use of a specific endothelial culture medium for primary VEC cultures enhanced the endothelial properties of the cells and reduced α-SMA and SMemb expression.
Collapse
Affiliation(s)
- M-M Liu
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, the University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland EH25 9RG, United Kingdom
| | - T C Flanagan
- School of Medicine & Medical Science, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - C-C Lu
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, the University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland EH25 9RG, United Kingdom
| | - A T French
- University of Glasgow School of Veterinary Medicine, Bearsden Road, Glasgow, Scotland G61 1QH, United Kingdom
| | - D J Argyle
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, the University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland EH25 9RG, United Kingdom
| | - B M Corcoran
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, the University of Edinburgh, Easter Bush, Roslin, Mid-Lothian, Scotland EH25 9RG, United Kingdom.
| |
Collapse
|
35
|
Chang FJ, Yuan HY, Hu XX, Ou ZJ, Fu L, Lin ZB, Wang ZP, Wang SM, Zhou L, Xu YQ, Wang CP, Xu Z, Zhang X, Zhang CX, Ou JS. High density lipoprotein from patients with valvular heart disease uncouples endothelial nitric oxide synthase. J Mol Cell Cardiol 2014; 74:209-19. [DOI: 10.1016/j.yjmcc.2014.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/04/2014] [Accepted: 05/21/2014] [Indexed: 11/29/2022]
|
36
|
Idriss NK, Blann AD, Sayed DM, Gaber MA, Hassen HA, Kishk YT. Circulating Endothelial Cells and Platelet Microparticles in Mitral Valve Disease With and Without Atrial Fibrillation. Angiology 2014; 66:631-7. [PMID: 25115553 DOI: 10.1177/0003319714546183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypercoagulability in mitral valve disease (MVD), a cause of atrial fibrillation (AF) and stroke, is potentially due to endothelial damage/dysfunction (marked by circulating endothelial cells [CECs]), platelet activation (soluble P-selectin [sPsel], platelet microparticles [PMPs], and soluble CD40 [sCD40]), and oxidized low-density lipoprotein (oxLDL) cholesterol. We measured these variables in 24 patients with MVD as well as in 21 with MVD + AF and compared them with 20 healthy controls (HCs). The CECs and PMPs were measured by flow cytometry; sPsel, oxLDL, and CD40 by enzyme-linked immunosorbent assay. Compared with HCs, sPsel and PMPs were equally higher in MVD and MVD + AF; sCD40 and oxLDL were higher in MVD + AF than in HCs and MVD; and CECs were higher in MVD than in the HCs, with further increases in MVD + AF (all P < .001). We conclude that excess platelet activation is present in MVD regardless of AF, and that increased endothelial damage in MVD is greater when compounded by AF.
Collapse
Affiliation(s)
- Naglaa K Idriss
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Andrew D Blann
- Department of Medicine City Hospital, University of Birmingham Centre for Cardiovascular Sciences, Birmingham, United Kingdom
| | - Douaa M Sayed
- Department of Clinical Pathology, Faculty of Medicine, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Marwa A Gaber
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hosny A Hassen
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yehia Taha Kishk
- Department of Cardiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
37
|
Cavalca V, Tremoli E, Porro B, Veglia F, Myasoedova V, Squellerio I, Manzone D, Zanobini M, Trezzi M, Di Minno MND, Werba JP, Tedesco C, Alamanni F, Parolari A. Oxidative stress and nitric oxide pathway in adult patients who are candidates for cardiac surgery: patterns and differences. Interact Cardiovasc Thorac Surg 2013; 17:923-30. [PMID: 24014619 DOI: 10.1093/icvts/ivt386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We investigated whether oxidative stress and the arginine/nitric oxide pathway differ in control subjects and in adult patients who are candidates for the three most common cardiac surgical operations: coronary bypass surgery, aortic valve replacement for calcific non-rheumatic aortic stenosis or mitral valve repair for degenerative mitral insufficiency. METHODS In this prospective observational study, we studied 165 consecutive patients undergoing surgery from January to June 2011 (coronary bypass surgery, n = 63; aortic valve replacement for calcific non-rheumatic aortic stenosis, n = 51; mitral valve repair for degenerative mitral insufficiency, n = 51). Thirty-three healthy subjects with cardiovascular risk factors similar to surgery patients were also studied (Controls). Oxidative stress (the ratio of reduced and oxidized glutathione and urinary isoprostane), antioxidants (alpha- and gamma tocopherol) and factors involved in nitric oxide synthesis (arginine, symmetric and asymmetric dimethylarginine) were measured before surgery. Analysis of variance general linear models and principal component analysis were used for statistical analysis. RESULTS Surgical patients had increased levels of oxidative stress and decreased levels of antioxidants. Increased levels of nitric oxide inhibitor asymmetric dimethylarginine were detected in surgical candidates, suggesting arginine/nitric oxide pathway impairment. Concerning the differences among surgical procedures, higher oxidative stress and a major imbalance of the ratio between substrate and inhibitors of nitric oxide synthesis were evidenced in patients who were candidates for mitral valve repair with respect to coronary bypass surgery patients and patients with calcific non-rheumatic aortic stenosis. CONCLUSIONS Patients undergoing cardiac surgery have increased oxidative stress and a trend towards an impaired arginine/nitric oxide pathway with respect to Controls. Patients affected by mitral valve regurgitation show more pronounced perturbations in these pathways. The clinical implications of these findings need to be investigated.
Collapse
Affiliation(s)
- Viviana Cavalca
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|