1
|
Basu S, Mitra S, Singh O, Chandramohan B, Singru PS. Secretagogin in the brain and pituitary of the catfish, Clarias batrachus: Molecular characterization and regulation by insulin. J Comp Neurol 2022; 530:1743-1772. [PMID: 35322425 DOI: 10.1002/cne.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Secretagogin (scgn), is a novel hexa EF-hand, phylogenetically conserved calcium-binding protein. It serves as Ca2+ sensor and participates in Ca2+ -signaling and neuroendocrine regulation in mammals. However, its relevance in the brain of non-mammalian vertebrates has largely remained unexplored. To address this issue, we studied the cDNA encoding scgn, scgn mRNA expression, and distribution of scgn-equipped elements in the brain and pituitary of a teleost, Clarias batrachus (cb). The cbscgn cDNA consists of three transcripts (T) variants: T1 (2185 bp), T2 (2151 bp) and T3 (2060 bp). While 816 bp ORF in T1 and T2 encodes highly conserved six EF-hand 272 aa protein fully capable of Ca2+ -binding, 726-bp ORF in T3 encodes 242 aa protein. The T1 showed >90% and >70% identity with scgn of catfishes, and other teleosts and mammals, respectively. The T1-mRNA was widely expressed in the brain and pituitary, while the expression of T3 was restricted to the telencephalon. Application of the anti-scgn antiserum revealed a ∼32 kDa scgn-immunoreactive (scgn-i) band (known molecular weight of scgn) in the forebrain tissue, and immunohistochemically labeled neurons in the olfactory epithelium and bulb, telencephalon, preoptic area, hypothalamus, thalamus, and hindbrain. In the pituitary, scgn-i cells were seen in the pars distalis and intermedia. Insulin is reported to regulate scgn mRNA in the mammalian hippocampus, and feeding-related neuropeptides in the telencephalon of teleost. Intracranial injection of insulin significantly increased T1-mRNA expression and scgn-immunoreactivity in the telencephalon. We suggest that scgn may be an important player in the regulation of olfactory, neuroendocrine system, and energy balance functions in C. batrachus.
Collapse
Affiliation(s)
- Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Bathrachalam Chandramohan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
2
|
Secretagogin marks amygdaloid PKCδ interneurons and modulates NMDA receptor availability. Proc Natl Acad Sci U S A 2021; 118:1921123118. [PMID: 33558223 DOI: 10.1073/pnas.1921123118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The perception of and response to danger is critical for an individual's survival and is encoded by subcortical neurocircuits. The amygdaloid complex is the primary neuronal site that initiates bodily reactions upon external threat with local-circuit interneurons scaling output to effector pathways. Here, we categorize central amygdala neurons that express secretagogin (Scgn), a Ca2+-sensor protein, as a subset of protein kinase Cδ (PKCδ)+ interneurons, likely "off cells." Chemogenetic inactivation of Scgn+/PKCδ+ cells augmented conditioned response to perceived danger in vivo. While Ca2+-sensor proteins are typically implicated in shaping neurotransmitter release presynaptically, Scgn instead localized to postsynaptic compartments. Characterizing its role in the postsynapse, we found that Scgn regulates the cell-surface availability of NMDA receptor 2B subunits (GluN2B) with its genetic deletion leading to reduced cell membrane delivery of GluN2B, at least in vitro. Conclusively, we describe a select cell population, which gates danger avoidance behavior with secretagogin being both a selective marker and regulatory protein in their excitatory postsynaptic machinery.
Collapse
|
3
|
Sharma AK, Khandelwal R, Kumar MJM, Ram NS, Chidananda AH, Raj TA, Sharma Y. Secretagogin Regulates Insulin Signaling by Direct Insulin Binding. iScience 2019; 21:736-753. [PMID: 31734536 PMCID: PMC6864339 DOI: 10.1016/j.isci.2019.10.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/17/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Secretagogin (SCGN) is a β-cell enriched, secretory/cytosolic Ca2+-binding protein with unknown secretory regulation and functions. Recent findings suggest that SCGN deficiency correlates with compromised insulin response and diabetes. However, the (patho)physiological SCGN-insulin nexus remains unexplored. We here report that SCGN is an insulin-interacting protein. The protein-protein interaction between SCGN and insulin regulates insulin stability and increases insulin potency in vitro and in vivo. Mutagenesis studies suggest an indispensable role for N-terminal domain of SCGN in modulating insulin stability and function. SCGN supplementation in diabetogenic-diet-fed mice preserves physiological insulin responsiveness while relieving obesity and cardiovascular risk. SCGN-insulin interaction mediated alleviation of hyperinsulinemia by increased insulin internalization, which translates to reduced body fat and hepatic lipid accumulation, emerges as a plausible mechanism for the preservation of insulin responsiveness. These findings establish SCGN as a functional insulin-binding protein (InsBP) with therapeutic potential against diabetes. SCGN is an insulin-interacting calcium sensor protein SCGN binding protects insulin from aggregation SCGN potentiates insulin action in vivo SCGN administration into HFD-fed animals impedes insulin resistance
Collapse
Affiliation(s)
- Anand Kumar Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - M Jerald Mahesh Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - N Sai Ram
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Amrutha H Chidananda
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - T Avinash Raj
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India; Indian Institute of Science Education and Research (IISER), Berhampur, Odisha 760010, India.
| |
Collapse
|
4
|
Zahola P, Hanics J, Pintér A, Máté Z, Gáspárdy A, Hevesi Z, Echevarria D, Adori C, Barde S, Törőcsik B, Erdélyi F, Szabó G, Wagner L, Kovacs GG, Hökfelt T, Harkany T, Alpár A. Secretagogin expression in the vertebrate brainstem with focus on the noradrenergic system and implications for Alzheimer's disease. Brain Struct Funct 2019; 224:2061-2078. [PMID: 31144035 PMCID: PMC6591208 DOI: 10.1007/s00429-019-01886-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/03/2019] [Indexed: 12/04/2022]
Abstract
Calcium-binding proteins are widely used to distinguish neuronal subsets in the brain. This study focuses on secretagogin, an EF-hand calcium sensor, to identify distinct neuronal populations in the brainstem of several vertebrate species. By using neural tube whole mounts of mouse embryos, we show that secretagogin is already expressed during the early ontogeny of brainstem noradrenaline cells. In adults, secretagogin-expressing neurons typically populate relay centres of special senses and vegetative regulatory centres of the medulla oblongata, pons and midbrain. Notably, secretagogin expression overlapped with the brainstem column of noradrenergic cell bodies, including the locus coeruleus (A6) and the A1, A5 and A7 fields. Secretagogin expression in avian, mouse, rat and human samples showed quasi-equivalent patterns, suggesting conservation throughout vertebrate phylogeny. We found reduced secretagogin expression in locus coeruleus from subjects with Alzheimer’s disease, and this reduction paralleled the loss of tyrosine hydroxylase, the enzyme rate limiting noradrenaline synthesis. Residual secretagogin immunoreactivity was confined to small submembrane domains associated with initial aberrant tau phosphorylation. In conclusion, we provide evidence that secretagogin is a useful marker to distinguish neuronal subsets in the brainstem, conserved throughout several species, and its altered expression may reflect cellular dysfunction of locus coeruleus neurons in Alzheimer’s disease.
Collapse
Affiliation(s)
- Péter Zahola
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - János Hanics
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Gáspárdy
- Department of Anatomy, Semmelweis University, Budapest, Hungary
| | - Zsófia Hevesi
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Diego Echevarria
- Institute of Neuroscience, University of Miguel Hernandez de Elche, Alicante, Spain
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Beáta Törőcsik
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ludwig Wagner
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, SE-17165, Stockholm, Sweden
| | - Alán Alpár
- SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary. .,Department of Anatomy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Hansson SF, Zhou AX, Vachet P, Eriksson JW, Pereira MJ, Skrtic S, Jongsma Wallin H, Ericsson-Dahlstrand A, Karlsson D, Ahnmark A, Sörhede Winzell M, Magnone MC, Davidsson P. Secretagogin is increased in plasma from type 2 diabetes patients and potentially reflects stress and islet dysfunction. PLoS One 2018; 13:e0196601. [PMID: 29702679 PMCID: PMC5922551 DOI: 10.1371/journal.pone.0196601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
Beta cell dysfunction accompanies and drives the progression of type 2 diabetes mellitus (T2D), but there are few clinical biomarkers available to assess islet cell stress in humans. Secretagogin, a protein enriched in pancreatic islets, demonstrates protective effects on beta cell function in animals. However, its potential as a circulating biomarker released from human beta cells and islets has not been studied. In this study primary human islets, beta cells and plasma samples were used to explore secretion and expression of secretagogin in relation to the T2D pathology. Secretagogin was abundantly and specifically expressed and secreted from human islets. Furthermore, T2D patients had an elevated plasma level of secretagogin compared with matched healthy controls, which was confirmed in plasma of diabetic mice transplanted with human islets. Additionally, the plasma secretagogin level of the human cohort had an inverse correlation to clinical assessments of beta cell function. To explore the mechanism of secretagogin release in vitro, human beta cells (EndoC-βH1) were exposed to elevated glucose or cellular stress-inducing agents. Secretagogin was not released in parallel with glucose stimulated insulin release, but was markedly elevated in response to endoplasmic reticulum stressors and cytokines. These findings indicate that secretagogin is a potential novel biomarker, reflecting stress and islet cell dysfunction in T2D patients.
Collapse
Affiliation(s)
- Sara F. Hansson
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| | - Alex-Xianghua Zhou
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Paulina Vachet
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jan W. Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J. Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Stanko Skrtic
- Translational Medicine Unit CVRM, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Daniel Karlsson
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maria Sörhede Winzell
- Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maria Chiara Magnone
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Pia Davidsson
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
6
|
Garas FN, Shah RS, Kormann E, Doig NM, Vinciati F, Nakamura KC, Dorst MC, Smith Y, Magill PJ, Sharott A. Secretagogin expression delineates functionally-specialized populations of striatal parvalbumin-containing interneurons. eLife 2016; 5. [PMID: 27669410 PMCID: PMC5036963 DOI: 10.7554/elife.16088] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Corticostriatal afferents can engage parvalbumin-expressing (PV+) interneurons to rapidly curtail the activity of striatal projection neurons (SPNs), thus shaping striatal output. Schemes of basal ganglia circuit dynamics generally consider striatal PV+ interneurons to be homogenous, despite considerable heterogeneity in both form and function. We demonstrate that the selective co-expression of another calcium-binding protein, secretagogin (Scgn), separates PV+ interneurons in rat and primate striatum into two topographically-, physiologically- and structurally-distinct cell populations. In rats, these two interneuron populations differed in their firing rates, patterns and relationships with cortical oscillations in vivo. Moreover, the axons of identified PV+/Scgn+ interneurons preferentially targeted the somata of SPNs of the so-called 'direct pathway', whereas PV+/Scgn- interneurons preferentially targeted 'indirect pathway' SPNs. These two populations of interneurons could therefore provide a substrate through which either of the striatal output pathways can be rapidly and selectively inhibited to subsequently mediate the expression of behavioral routines.
Collapse
Affiliation(s)
- Farid N Garas
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rahul S Shah
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Eszter Kormann
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Natalie M Doig
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Federica Vinciati
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Kouichi C Nakamura
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Matthijs C Dorst
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology, Emory University, Atlanta, United States.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, United States
| | - Peter J Magill
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Hagel KR, Beriont J, Tessier CR. Drosophila Cbp53E Regulates Axon Growth at the Neuromuscular Junction. PLoS One 2015; 10:e0132636. [PMID: 26167908 PMCID: PMC4500412 DOI: 10.1371/journal.pone.0132636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/16/2015] [Indexed: 11/19/2022] Open
Abstract
Calcium is a primary second messenger in all cells that functions in processes ranging from cellular proliferation to synaptic transmission. Proper regulation of calcium is achieved through numerous mechanisms involving channels, sensors, and buffers notably containing one or more EF-hand calcium binding domains. The Drosophila genome encodes only a single 6 EF-hand domain containing protein, Cbp53E, which is likely the prototypic member of a small family of related mammalian proteins that act as calcium buffers and calcium sensors. Like the mammalian homologs, Cbp53E is broadly though discretely expressed throughout the nervous system. Despite the importance of calcium in neuronal function and growth, nothing is known about Cbp53E's function in neuronal development. To address this deficiency, we generated novel null alleles of Drosophila Cbp53E and examined neuronal development at the well-characterized larval neuromuscular junction. Loss of Cbp53E resulted in increases in axonal branching at both peptidergic and glutamatergic neuronal terminals. This overgrowth could be completely rescued by expression of exogenous Cbp53E. Overexpression of Cbp53E, however, only affected the growth of peptidergic neuronal processes. These findings indicate that Cbp53E plays a significant role in neuronal growth and suggest that it may function in both local synaptic and global cellular mechanisms.
Collapse
Affiliation(s)
- Kimberly R. Hagel
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jane Beriont
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Charles R. Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, South Bend, Indiana, United States of America
- * E-mail:
| |
Collapse
|
8
|
Gáti G, Lendvai D, Hökfelt T, Harkany T, Alpár A. Revival of Calcium-Binding Proteins for Neuromorphology: Secretagogin Typifies Distinct Cell Populations in the Avian Brain. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:82-92. [DOI: 10.1159/000357834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022]
|
9
|
Yamato E, Tashiro F, Miyazaki JI. Microarray analysis of novel candidate genes responsible for glucose-stimulated insulin secretion in mouse pancreatic β cell line MIN6. PLoS One 2013; 8:e61211. [PMID: 23560115 PMCID: PMC3616144 DOI: 10.1371/journal.pone.0061211] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/06/2013] [Indexed: 12/19/2022] Open
Abstract
Elucidating the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic islet β cells is important for understanding and treating diabetes. MIN6 cells, a transformed β-cell line derived from a mouse insulinoma, retain GSIS and are a popular in vitro model for insulin secretion. However, in long-term culture, MIN6 cells' GSIS capacity is lost. We previously isolated a subclone, MIN6 clone 4, from the parental MIN6 cells, that shows well-regulated insulin secretion in response to glucose, glybenclamide, and KCl, even after prolonged culture. To investigate the molecular mechanisms responsible for preserving GSIS in this subclone, we compared four groups of MIN6 cells: Pr-LP (parental MIN6, low passage number), Pr-HP (parental MIN6, high passage number), C4-LP (MIN6 clone 4, low passage number), and C4-HP (MIN6 clone 4, high passage number). Based on their capacity for GSIS, we designated the Pr-LP, C4-LP, and C4-HP cells as “responder cells.” In a DNA microarray analysis, we identified a group of genes with high expression in responder cells (“responder genes”), but extremely low expression in the Pr-HP cells. Another group of genes (“non-responder genes”) was expressed at high levels in the Pr-HP cells, but at extremely low levels in the responder cells. Some of the responder genes were involved in secretory machinery or glucose metabolism, including Chrebp, Scgn, and Syt7. Among the non-responder genes were Car2, Maf, and Gcg, which are not normally expressed in islet β cells. Interestingly, we found a disproportionate number of known imprinted genes among the responder genes. Our findings suggest that the global expression profiling of GSIS-competent and GSIS-incompetent MIN6 cells will help delineate the gene regulatory networks for insulin secretion.
Collapse
Affiliation(s)
- Eiji Yamato
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (EY); (JM)
| | - Fumi Tashiro
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun-ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (EY); (JM)
| |
Collapse
|
10
|
Shi TJS, Xiang Q, Zhang MD, Tortoriello G, Hammarberg H, Mulder J, Fried K, Wagner L, Josephson A, Uhlén M, Harkany T, Hökfelt T. Secretagogin is expressed in sensory CGRP neurons and in spinal cord of mouse and complements other calcium-binding proteins, with a note on rat and human. Mol Pain 2012; 8:80. [PMID: 23102406 PMCID: PMC3560279 DOI: 10.1186/1744-8069-8-80] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 10/10/2012] [Indexed: 11/18/2022] Open
Abstract
Background Secretagogin (Scgn), a member of the EF-hand calcium-binding protein (CaBP) superfamily, has recently been found in subsets of developing and adult neurons. Here, we have analyzed the expression of Scgn in dorsal root ganglia (DRGs) and trigeminal ganglia (TGs), and in spinal cord of mouse at the mRNA and protein levels, and in comparison to the well-known CaBPs, calbindin D-28k, parvalbumin and calretinin. Rat DRGs, TGs and spinal cord, as well as human DRGs and spinal cord were used to reveal phylogenetic variations. Results We found Scgn mRNA expressed in mouse and human DRGs and in mouse ventral spinal cord. Our immunohistochemical data showed a complementary distribution of Scgn and the three CaBPs in mouse DRG neurons and spinal cord. Scgn was expressed in ~7% of all mouse DRG neuron profiles, mainly small ones and almost exclusively co-localized with calcitonin gene-related peptide (CGRP). This co-localization was also seen in human, but not in rat DRGs. Scgn could be detected in the mouse sciatic nerve and accumulated proximal to its constriction. In mouse spinal cord, Scgn-positive neuronal cell bodies and fibers were found in gray matter, especially in the dorsal horn, with particularly high concentrations of fibers in the superficial laminae, as well as in cell bodies in inner lamina II and in some other laminae. A dense Scgn-positive fiber network and some small cell bodies were also found in the superficial dorsal horn of humans. In the ventral horn, a small number of neurons were Scgn-positive in mouse but not rat, confirming mRNA distribution. Both in mouse and rat, a subset of TG neurons contained Scgn. Dorsal rhizotomy strongly reduced Scgn fiber staining in the dorsal horn. Peripheral axotomy did not clearly affect Scgn expression in DRGs, dorsal horn or ventral horn neurons in mouse. Conclusions Scgn is a CaBP expressed in a subpopulation of nociceptive DRG neurons and their processes in the dorsal horn of mouse, human and rat, the former two co-expressing CGRP, as well as in dorsal horn neurons in all three species. Functional implications of these findings include the cellular refinement of sensory information, in particular during the processing of pain.
Collapse
Affiliation(s)
- Tie-Jun Sten Shi
- School of Life Science and Technology, Harbin Institute of Technology, 150001 Harbin, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Maj M, Milenkovic I, Bauer J, Berggård T, Veit M, Ilhan-Mutlu A, Wagner L, Tretter V. Novel insights into the distribution and functional aspects of the calcium binding protein secretagogin from studies on rat brain and primary neuronal cell culture. Front Mol Neurosci 2012; 5:84. [PMID: 22888312 PMCID: PMC3412267 DOI: 10.3389/fnmol.2012.00084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/17/2012] [Indexed: 11/13/2022] Open
Abstract
Secretagogin is a calcium binding protein (CBP) highly expressed in neuroendocrine cells. It has been shown to be involved in insulin secretion from pancreatic beta cells and is a strong candidate as a biomarker for endocrine tumors, stroke, and eventually psychiatric conditions. Secretagogin has been hypothesized to exert a neuroprotective role in neurodegenerative diseases like Alzheimer's disease. The expression pattern of Secretagogin is not conserved from rodents to humans. We used brain tissue and primary neuronal cell cultures from rat to further characterize this CBP in rodents and to perform a few functional assays in vitro. Immunohistochemistry on rat brain slices revealed a high density of Secretagogin-positive cells in distinct brain regions. Secretagogin was found in the cytosol or associated with subcellular compartments. We tested primary neuronal cultures for their suitability as model systems to further investigate functional properties of Secretagogin. These cultures can easily be manipulated by treatment with drugs or by transfection with test constructs interfering with signaling cascades that might be linked to the cellular function of Secretagogin. We show that, like in pancreatic beta cells and insulinoma cell lines, also in neurons the expression level of Secretagogin is dependent on extracellular insulin and glucose. Further, we show also for rat brain neuronal tissue that Secretagogin interacts with the microtubule-associated protein Tau and that this interaction is dependent on Ca(2+). Future studies should aim to study in further detail the molecular properties and function of Secretagogin in individual neuronal cell types, in particular the subcellular localization and trafficking of this protein and a possible active secretion by neurons.
Collapse
Affiliation(s)
- Magdalena Maj
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medizinische Universität Wien Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Alpár A, Attems J, Mulder J, Hökfelt T, Harkany T. The renaissance of Ca2+-binding proteins in the nervous system: secretagogin takes center stage. Cell Signal 2012; 24:378-387. [PMID: 21982882 PMCID: PMC3237847 DOI: 10.1016/j.cellsig.2011.09.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 02/03/2023]
Abstract
Effective control of the Ca(2+) homeostasis in any living cell is paramount to coordinate some of the most essential physiological processes, including cell division, morphological differentiation, and intercellular communication. Therefore, effective homeostatic mechanisms have evolved to maintain the intracellular Ca(2+) concentration at physiologically adequate levels, as well as to regulate the spatial and temporal dynamics of Ca(2+)signaling at subcellular resolution. Members of the superfamily of EF-hand Ca(2+)-binding proteins are effective to either attenuate intracellular Ca(2+) transients as stochiometric buffers or function as Ca(2+) sensors whose conformational change upon Ca(2+) binding triggers protein-protein interactions, leading to cell state-specific intracellular signaling events. In the central nervous system, some EF-hand Ca(2+)-binding proteins are restricted to specific subtypes of neurons or glia, with their expression under developmental and/or metabolic control. Therefore, Ca(2+)-binding proteins are widely used as molecular markers of cell identity whilst also predicting excitability and neurotransmitter release profiles in response to electrical stimuli. Secretagogin is a novel member of the group of EF-hand Ca(2+)-binding proteins whose expression precedes that of many other Ca(2+)-binding proteins in postmitotic, migratory neurons in the embryonic nervous system. Secretagogin expression persists during neurogenesis in the adult brain, yet becomes confined to regionalized subsets of differentiated neurons in the adult central and peripheral nervous and neuroendocrine systems. Secretagogin may be implicated in the control of neuronal turnover and differentiation, particularly since it is re-expressed in neoplastic brain and endocrine tumors and modulates cell proliferation in vitro. Alternatively, and since secretagogin can bind to SNARE proteins, it might function as a Ca(2+) sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. Thus, secretagogin emerges as a functionally multifaceted Ca(2+)-binding protein whose molecular characterization can unravel a new and fundamental dimension of Ca(2+)signaling under physiological and disease conditions in the nervous system and beyond.
Collapse
Affiliation(s)
- Alán Alpár
- European Neuroscience Institute at Aberdeen, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Johannes Attems
- Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Jan Mulder
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet, Tomtebodavägen 23A, S-17165 Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Tibor Harkany
- European Neuroscience Institute at Aberdeen, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden.
| |
Collapse
|
13
|
Reiter MH, Vila G, Knosp E, Baumgartner-Parzer SM, Wagner L, Stalla GK, Luger A. Opposite effects of serum- and glucocorticoid-regulated kinase-1 and glucocorticoids on POMC transcription and ACTH release. Am J Physiol Endocrinol Metab 2011; 301:E336-41. [PMID: 21586695 DOI: 10.1152/ajpendo.00155.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serum- and glucocorticoid-regulated kinase-1 (SGK1) is a glucocorticoid early-response gene; its function, however, has been elucidated mainly in the context of mineralocorticoid signaling. Here, we investigate the expression and function of SGK1 in the pituitary gland, one of the primary glucocorticoid targets. SGK1 is expressed in the human pituitary gland and colocalizes to ACTH. The AtT-20 murine corticotroph cell line was used for functional experiments. Glucocorticoids upregulated SGK1 mRNA and protein levels, parallel to decreasing proopiomelanocortin (POMC) transcription and ACTH release. Dexamethasone-induced changes in SGK1 protein were abolished by the steroid receptor antagonist RU-486 and reduced by the inhibition of PI 3-kinase with LY-294002. SGK1 overexpression increased CREB- and activator protein-1-dependent transcription, POMC transcription, and ACTH secretion but did not influence intracellular cAMP levels. SGK1 overexpression and corticotropin-releasing hormone had additive effects on POMC promoter activity but not on ACTH secretion. SGK1 knockdown by RNA interference decreased POMC promoter activity, demonstrating the importance of SGK1 for basal POMC signaling. In summary, SGK1 is strongly stimulated by glucocorticoids in pituitary corticotrophs; however, its effects on POMC transcription are antagonistic to the classical inhibitory glucocorticoid action, suggesting a cell-regulated counterregulatory mechanism to potentially detrimental glucocorticoid effects.
Collapse
Affiliation(s)
- Marie Helene Reiter
- Division of Endocrinology and Metabolism, Dept. of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ilhan A, Neziri D, Maj M, Mazal PR, Susani M, Base W, Gartner W, Wagner L. Expression of secretagogin in clear-cell renal cell carcinomas is associated with a high metastasis rate. Hum Pathol 2011; 42:641-8. [DOI: 10.1016/j.humpath.2010.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 11/29/2022]
|
15
|
D'Hertog W, Maris M, Thorrez L, Waelkens E, Overbergh L, Mathieu C. Two-dimensional gel proteome reference map of INS-1E cells. Proteomics 2011; 11:1365-9. [PMID: 21365744 DOI: 10.1002/pmic.201000006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 11/15/2010] [Accepted: 12/30/2010] [Indexed: 01/30/2023]
Abstract
The insulin-producing INS-1E rat cell line is widely used as a model for studying β-cells. It is a well-characterized cell line, mainly used in diabetes research. We established a 2-DE reference map for INS-1E cells. Using MALDI-TOF/TOF-MS/MS, we identified 546 spots. These included various proteins with an important role in β-cell physiology and with known roles as crucial proteins for diabetes development. We believe that the availability of this reference map will enhance our knowledge of β-cell physiology.
Collapse
Affiliation(s)
- Wannes D'Hertog
- Laboratory for Experimental Medicine and Endocrinology, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Bazwinsky-Wutschke I, Wolgast S, Mühlbauer E, Peschke E. Distribution patterns of calcium-binding proteins in pancreatic tissue of non-diabetic as well as type 2 diabetic rats and in rat insulinoma β-cells (INS-1). Histochem Cell Biol 2010; 134:115-27. [DOI: 10.1007/s00418-010-0721-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2010] [Indexed: 12/11/2022]
|
17
|
Mulder J, Spence L, Tortoriello G, Dinieri JA, Uhlén M, Shui B, Kotlikoff MI, Yanagawa Y, Aujard F, Hökfelt T, Hurd YL, Harkany T. Secretagogin is a Ca2+-binding protein identifying prospective extended amygdala neurons in the developing mammalian telencephalon. Eur J Neurosci 2010; 31:2166-77. [PMID: 20529129 DOI: 10.1111/j.1460-9568.2010.07275.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Ca(2+)-binding proteins (CBPs) calbindin D28k, calretinin and parvalbumin are phenotypic markers of functionally diverse subclasses of neurons in the adult brain. The developmental dynamics of CBP expression are precisely timed: calbindin and calretinin are present in prospective cortical interneurons from mid-gestation, while parvalbumin only becomes expressed during the early postnatal period in rodents. Secretagogin (scgn) is a CBP cloned from pancreatic beta and neuroendocrine cells. We hypothesized that scgn may be expressed by particular neuronal contingents during prenatal development of the mammalian telencephalon. We find that scgn is expressed in neurons transiting in the subpallial differentiation zone by embryonic day (E)11 in mouse. From E12, scgn(+) cells commute towards the extended amygdala and colonize the bed nucleus of stria terminalis, the interstitial nucleus of the posterior limb of the anterior commissure, the dorsal substantia innominata (SI) and the central and medial amygdaloid nuclei. Scgn(+) neurons can acquire a cholinergic phenotype in the SI or differentiate into GABA cells in the central amygdala. We also uncover phylogenetic differences in scgn expression as this CBP defines not only neurons destined to the extended amygdala but also cholinergic projection cells and cortical pyramidal cells in the fetal nonhuman primate and human brains, respectively. Overall, our findings emphasize the developmentally shared origins of neurons populating the extended amygdala, and suggest that secretagogin can be relevant to the generation of functional modalities in specific neuronal circuitries.
Collapse
Affiliation(s)
- Jan Mulder
- European Neuroscience Institute at Aberdeen, University of Aberdeen, Aberdeen, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ilhan A, Nabokikh A, Maj M, Vidakovic M, Nielsen JH, Prikoszovich T, Niederle B, Base W, Luger A, Wagner L. CXCL12/SDF-1 over-expression in human insulinomas and its biological relevance. Mol Cell Endocrinol 2009; 298:1-10. [PMID: 19013212 DOI: 10.1016/j.mce.2008.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 01/14/2023]
Abstract
This study was performed on the basis of previously obtained investigative gene array data concerning the over-expression of CXCL12/SDF-1 in human insulinomas versus human pancreatic islet preparations. The presence of CXCL12/SDF-1 was studied by RT-qPCR in human insulinomas (n=8) versus pancreatic islets (n=3), and was found to be significantly up-regulated in the former (p<0.012). The mRNA data were confirmed by immunostaining and confocal microscopy of human normal pancreatic islets, which showed the absence of CXCL12 protein and high expression in insulinoma tissue. Individual human insulinoma cells at cytospins stained positive for CXCL12 in the paranuclear region. These morphological data were extended by consecutive immunoblotting for cell-compartment-specific marker proteins of fractions obtained by sucrose gradient fractionation using Rin-5F insulinoma cells. CXCL12-containing fractions were positive for the membrane marker NSF but negative for SNAP-25 and appeared at a lighter density in the gradient than heavy insulin granules, suggesting packaging in specific granules different from insulin. In order to determine the biological relevance of the protein in insulinomas, we investigated the colony-forming potential of human CXCL12 stable-transfected rat Rin-5F insulinoma cells. These clones secreted human CXCL12 and contained 50-1000-fold higher copy numbers compared to its endogenous rat homologue. In colony-forming assays, these transfectant clones developed greater colony numbers, which were larger than wild-type and sham transfectants. To elucidate the mechanism of action, we identified a CXCL12 transfectant-specific increase in the pro-survival factor Mn-SOD, which is considered important for the inactivation of reactive oxygen species, thereby prolonging cell survival. These data demonstrate the importance of CXCL12 in the tumor biology of insulinoma.
Collapse
Affiliation(s)
- Aysegul Ilhan
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
In the present study, we characterized the gene product of open reading frame 3 encoded at human chromosome 20 (C20orf3), which represents a member of the lactonohydrolase super family. Multiple-tissue Northern blot analysis showed ubiquitous expression of the 2.4 kb transcript coding for 416 amino acids, with highest levels in human liver, placenta and kidney. After recombinant production of protein variants in Escherichia coli and insect cells, antibodies directed against different epitopes within the C20orf3 gene product were generated. Using these immunoreagents, protein expression was demonstrated in the liver, and glomerular and tubular structures of the kidney, as well as in endothelial cells and arterial wall. Positive staining was also observed at the pancreatic islets of Langerhans. Using immunoblotting, we identified three size variants. In line with the results of in silico analysis demonstrating a single transmembrane sequence (amino acids 40–61) at the N-terminus of the full-length protein, FACS cell-surface staining confirmed a mainly extracellular localization of the full-length protein. Sucrose density gradient cell fractionation revealed membrane association of the dominant 50 kDa variant in HepG2 and Rin-5F cells. The finding of a strong arylesterase activity with β-naphthyl acetate and phenyl acetate of the C20orf3 protein-containing fractions suggests potential involvement of this protein in enzymatic processes. C20orf3 promoter-driven reporter assays, which were verified by gene-specific RT-qPCR (real-time quantitative PCR) showed a strong inhibitory effect of human serum on transcription using the HEK-293 human embryonic kidney cell line. In conclusion, we characterized the structure and expression pattern of the C20orf3 gene product. According to a series of analogies with PON (paraoxonase) family members, we speculate that the C20orf3 gene product represents a new member of this important protein family present at the cellular level.
Collapse
|