1
|
Noone J, Mucinski JM, DeLany JP, Sparks LM, Goodpaster BH. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab 2024; 36:702-724. [PMID: 38262420 DOI: 10.1016/j.cmet.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.
Collapse
Affiliation(s)
- John Noone
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | - James P DeLany
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA.
| |
Collapse
|
2
|
Jia L, Yang Y, Sun F, Tao H, Lu C, Yang JJ. Mitochondrial quality control in liver fibrosis: Epigenetic hallmarks and therapeutic strategies. Cell Signal 2024; 115:111035. [PMID: 38182067 DOI: 10.1016/j.cellsig.2024.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND AND AIM Mitochondrial quality control (MQC) plays a significant role in the progression of liver fibrosis, with key processes such as mitochondrial fission, fusion, mitophagy and biogenesis maintaining mitochondrial homeostasis. To understand the molecular mechanisms underlying epigenetic regulation of mitochondrial quality control in liver fibrosis, with the aim of uncovering novel therapeutic targets for treating, mitigating, and potentially reversing liver fibrosis, in light of the most recent advances in this field. METHODS We searched PubMed, Web of Science, and Scopus for published manuscripts using terms "mitochondrial quality control" "mitochondrial fission" "mitochondrial fusion" "mitochondrial biogenesis" "mitophagy" "liver fibrosis" "epigenetic regulation" "DNA methylation" "RNA methylation" "histone modification" and "non-coding RNA". Manuscripts were collated, studied and carried forward for discussion where appropriate. RESULTS Mitochondrial fission, fusion, biogenesis, and mitophagy regulate the homeostasis of mitochondria, and the imbalance of mitochondrial homeostasis can induce liver fibrosis. Epigenetic regulation, including DNA methylation, RNA methylation, histone modifications, and non-coding RNAs, plays a significant role in regulating the processes of mitochondrial homeostasis. CONCLUSION Mitochondrial quality control and epigenetic mechanisms are intricately linked to the pathogenesis of liver fibrosis. Understanding these molecular interactions provides insight into potential therapeutic strategies. Further research is necessary to translate these findings into clinical applications, with a focus on developing epigenetic drugs to ameliorate liver fibrosis by modulating MQC and epigenetic pathways.
Collapse
Affiliation(s)
- Lin Jia
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China
| | - Feng Sun
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Chao Lu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
3
|
Influence of mTOR-regulated anabolic pathways on equine skeletal muscle health. J Equine Vet Sci 2023; 124:104281. [PMID: 36905972 DOI: 10.1016/j.jevs.2023.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Skeletal muscle is a highly dynamic organ that is essential for locomotion as well as endocrine regulation in all populations of horses. However, despite the importance of adequate muscle development and maintenance, the mechanisms underlying protein anabolism in horses on different diets, exercise programs, and at different life stages remain obscure. Mechanistic target of rapamycin (mTOR) is a key component of the protein synthesis pathway and is regulated by biological factors such as insulin and amino acid availability. Providing a diet ample in vital amino acids, such as leucine and glutamine, is essential in activating sensory pathways that recruit mTOR to the lysosome and assist in the translation of important downstream targets. When the diet is well balanced, mitochondrial biogenesis and protein synthesis are activated in response to increased exercise bouts in the performing athlete. It is important to note that the mTOR kinase pathways are multi-faceted and very complex, with several binding partners and targets that lead to specific functions in protein turnover of the cell, and ultimately, the capacity to maintain or grow muscle mass. Further, these pathways are likely altered across the lifespan, with an emphasis of growth in young horses while decreases in musculature with aged horses appears to be attributable to degradation or other regulators of protein synthesis rather than alterations in the mTOR pathway. Previous work has begun to pinpoint ways in which the mTOR pathway is influenced by diet, exercise, and age; however, future research is warranted to quantify the functional outcomes related to changes in mTOR. Promisingly, this could provide direction on appropriate management techniques to support skeletal muscle growth and maximize athletic potential in differing equine populations.
Collapse
|
4
|
Davis AR, Goodenough CG, Westerlind KC, Strange R, Deaver JW, Ryan PJ, Riechman SE, Fluckey JD. Myokines derived from contracting skeletal muscle suppress anabolism in MCF7 breast cancer cells by inhibiting mTOR. Front Physiol 2022; 13:1033585. [PMID: 36388131 PMCID: PMC9644210 DOI: 10.3389/fphys.2022.1033585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/06/2022] [Indexed: 08/27/2023] Open
Abstract
There is strong evidence that physical activity has a profound protective effect against multiple types of cancer. Here, we show that this effect may be mediated by factors released from skeletal muscle during simulated exercise, in situ, which suppress canonical anabolic signaling in breast cancer. We report attenuated growth of MCF7 breast cancer cells in the presence of a rodent-derived exercise conditioned perfusate, independent of prior exercise training. This reduction was concomitant with increased levels of DEPTOR protein and reduced mTOR activity.
Collapse
Affiliation(s)
- Amanda R. Davis
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| | - Chelsea G. Goodenough
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| | - Kim C. Westerlind
- University of Colorado Health Sciences Center, Denver, CO, United States
| | - Robert Strange
- University of Colorado Health Sciences Center, Denver, CO, United States
| | - John W. Deaver
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| | - Patrick J. Ryan
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| | - Steven E. Riechman
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| | - James D. Fluckey
- Texas A&M University, School of Education and Human Development, College Station, TX, United States
| |
Collapse
|
5
|
Freitas EDS, Katsanos CS. (Dys)regulation of Protein Metabolism in Skeletal Muscle of Humans With Obesity. Front Physiol 2022; 13:843087. [PMID: 35350688 PMCID: PMC8957804 DOI: 10.3389/fphys.2022.843087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/07/2022] [Indexed: 01/22/2023] Open
Abstract
Studies investigating the proteome of skeletal muscle present clear evidence that protein metabolism is altered in muscle of humans with obesity. Moreover, muscle quality (i.e., strength per unit of muscle mass) appears lower in humans with obesity. However, relevant evidence to date describing the protein turnover, a process that determines content and quality of protein, in muscle of humans with obesity is quite inconsistent. This is due, at least in part, to heterogeneity in protein turnover in skeletal muscle of humans with obesity. Although not always evident at the mixed-muscle protein level, the rate of synthesis is generally lower in myofibrillar and mitochondrial proteins in muscle of humans with obesity. Moreover, alterations in the synthesis of protein in muscle of humans with obesity are manifested more readily under conditions that stimulate protein synthesis in muscle, including the fed state, increased plasma amino acid availability to muscle, and exercise. Current evidence supports various biological mechanisms explaining impairments in protein synthesis in muscle of humans with obesity, but this evidence is rather limited and needs to be reproduced under more defined experimental conditions. Expanding our current knowledge with direct measurements of protein breakdown in muscle, and more importantly of protein turnover on a protein by protein basis, will enhance our understanding of how obesity modifies the proteome (content and quality) in muscle of humans with obesity.
Collapse
Affiliation(s)
| | - Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic in Arizona, Scottsdale, AZ, United States
| |
Collapse
|
6
|
Lim S, Deaver JW, Rosa-Caldwell ME, Lee DE, Morena da Silva F, Cabrera AR, Schrems ER, Saling LW, Washington TA, Fluckey JD, Greene NP. Muscle miR-16 deletion results in impaired insulin sensitivity and contractile function in a sex-dependent manner. Am J Physiol Endocrinol Metab 2022; 322:E278-E292. [PMID: 35068192 PMCID: PMC8897019 DOI: 10.1152/ajpendo.00333.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/22/2022]
Abstract
microRNAs (miRs) are linked to various human diseases including type 2 diabetes mellitus (T2DM) and emerging evidence suggests that miRs may serve as potential therapeutic targets. Lower miR-16 content is consistent across different models of T2DM; however, the role of miR-16 in muscle metabolic health is still elusive. Therefore, the purpose of this study was to investigate how deletion of miR-16 in mice affects skeletal muscle metabolic health and contractile function in both sexes. This study was conducted using both 1) in vitro and 2) in vivo experiments. In in vitro experiments, we used C2C12 myoblasts to test if inhibition or overexpression of miR-16 affected insulin-mediated glucose handling. In in vivo experiments, we generated muscle-specific miR-16 knockout (KO) mice fed a high-fat diet (HFD) to assess how miR-16 content impacts metabolic and contractile properties including glucose tolerance, insulin sensitivity, muscle contractile function, protein anabolism, and mitochondrial network health. In in vitro experiments, although inhibition of miR-16 induced impaired insulin signaling (P = 0.002) and glucose uptake (P = 0.014), overexpression of miR-16 did not attenuate lipid overload-induced insulin resistance using the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol. In in vivo experiments, miR-16 deletion induced both impaired muscle contractility (P = 0.031-0.033), and mitochondrial network health (P = 0.008-0.018) in both sexes. However, although males specifically exhibited impaired insulin sensitivity following miR-16 deletion (P = 0.030), female KO mice showed pronounced glucose intolerance (P = 0.046), corresponding with lower muscle weights (P = 0.015), and protein hyperanabolism (P = 0.023). Our findings suggest distinct sex differences in muscle adaptation in response to miR-16 deletion and miR-16 may serve as a key regulator for metabolic dysregulation in T2DM.NEW & NOTEWORTHY We set to investigate the role of miR-16 in skeletal muscle during diet-induced insulin resistance. Our data provide novel evidence that the lack of miR-16 induced multiple aberrations in insulin sensitivity, muscle contractility, mitochondrial network health, and protein turnover in a sex-dependent manner. Interestingly, miR-16 deletion leads to insulin resistance in males and exacerbated glucose intolerance in females, suggesting different mechanisms of metabolic dysregulation with a lack of miR-16 between sexes.
Collapse
Affiliation(s)
- Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - J William Deaver
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - David E Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Landen W Saling
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
7
|
Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021; 71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
Maintenance of skeletal muscle mass and function is an incredibly nuanced balance of anabolism and catabolism that can become distorted within different pathological conditions. In this paper we intend to discuss the distinct intracellular signaling events that regulate muscle protein atrophy for a given clinical occurrence. Aside from the common outcome of muscle deterioration, several conditions have at least one or more distinct mechanisms that creates unique intracellular environments that facilitate muscle loss. The subtle individuality to each of these given pathologies can provide both researchers and clinicians with specific targets of interest to further identify and increase the efficacy of medical treatments and interventions.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Steven Machek
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
8
|
O'Reilly CL, Uranga S, Fluckey JD. Culprits or consequences: Understanding the metabolic dysregulation of muscle in diabetes. World J Biol Chem 2021; 12:70-86. [PMID: 34630911 PMCID: PMC8473417 DOI: 10.4331/wjbc.v12.i5.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) continues to rise despite the amount of research dedicated to finding the culprits of this debilitating disease. Skeletal muscle is arguably the most important contributor to glucose disposal making it a clear target in insulin resistance and T2D research. Within skeletal muscle there is a clear link to metabolic dysregulation during the progression of T2D but the determination of culprits vs consequences of the disease has been elusive. Emerging evidence in skeletal muscle implicates influential cross talk between a key anabolic regulatory protein, the mammalian target of rapamycin (mTOR) and its associated complexes (mTORC1 and mTORC2), and the well-described canonical signaling for insulin-stimulated glucose uptake. This new understanding of cellular signaling crosstalk has blurred the lines of what is a culprit and what is a consequence with regard to insulin resistance. Here, we briefly review the most recent understanding of insulin signaling in skeletal muscle, and how anabolic responses favoring anabolism directly impact cellular glucose disposal. This review highlights key cross-over interactions between protein and glucose regulatory pathways and the implications this may have for the design of new therapeutic targets for the control of glucoregulatory function in skeletal muscle.
Collapse
Affiliation(s)
| | - Selina Uranga
- Health and Kinesiology, Texas A&M University, TX 77843, United States
| | - James D Fluckey
- Health and Kinesiology, Texas A&M University, TX 77843, United States
| |
Collapse
|
9
|
Varanoske AN, Shankaran M, Hennigar SR, Berryman CE, Margolis LM, Field TJ, Palacios H, Nyangau E, Mohammed H, Kelly AM, Anderson BJ, Evans WJ, McClung JP, Hellerstein MK, Pasiakos SM. Energy Restriction Suppresses Muscle Protein Synthesis, and High Protein Diets Extend Protein Half-Lives Across the Muscle Proteome in Obese Female Zucker Rats. J Nutr 2021; 151:2551-2563. [PMID: 34132333 DOI: 10.1093/jn/nxab181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Effects of high protein (HP) diets and prolonged energy restriction (ER) on integrated muscle protein kinetics have not been determined. OBJECTIVE The objective of this study was to measure protein kinetics in response to prolonged ER and HP on muscle protein synthesis (MPS; absolute rates of synthesis) and muscle protein breakdown (MPB; half-lives) for proteins across the muscle proteome. METHODS Female 6-wk-old obese Zucker rats (Leprfa+/fa+, n = 48) were randomly assigned to one of four diets for 10 wk: ad libitum-standard protein (AL-SP; 15% kcal from protein), AL-HP (35% kcal from protein), ER-SP, and ER-HP (both fed 60% feed consumed by AL-SP). During week 10, heavy/deuterated water (2H2O) was administered by intraperitoneal injection, and isotopic steady-state was maintained via 2H2O in drinking water. Rats were euthanized after 1 wk, and mixed-MPS as well as fractional replacement rate (FRR), relative concentrations, and half-lives of individual muscle proteins were quantified in the gastrocnemius. Data were analyzed using 2-factor (energy × protein) ANOVAs and 2-tailed t-tests or binomial tests as appropriate. RESULTS Absolute MPS was lower in ER than AL for mixed-MPS (-29.6%; P < 0.001) and MPS of most proteins measured [23/26 myofibrillar, 48/60 cytoplasmic, and 46/60 mitochondrial (P < 0.05)], corresponding with lower gastrocnemius mass in ER compared with AL (-29.4%; P < 0.001). Although mixed-muscle protein half-life was not different between groups, prolonged half-lives were observed for most individual proteins in HP compared with SP in ER and AL (P < 0.001), corresponding with greater gastrocnemius mass in HP than SP (+5.3%; P = 0.043). CONCLUSIONS ER decreased absolute bulk MPS and most individual MPS rates compared with AL, and HP prolonged half-lives of most proteins across the proteome. These data suggest that HP, independent of energy intake, may reduce MPB, and reductions in MPS may contribute to lower gastrocnemius mass during ER by reducing protein deposition in obese female Zucker rats.
Collapse
Affiliation(s)
- Alyssa N Varanoske
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Stephen R Hennigar
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.,Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Claire E Berryman
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.,Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Tyler J Field
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hector Palacios
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Edna Nyangau
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hussein Mohammed
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Alyssa M Kelly
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Bradley J Anderson
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - William J Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - James P McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
10
|
Huwatibieke B, Yin W, Liu L, Jin Y, Xiang X, Han J, Zhang W, Li Y. Mammalian Target of Rapamycin Signaling Pathway Regulates Mitochondrial Quality Control of Brown Adipocytes in Mice. Front Physiol 2021; 12:638352. [PMID: 34335285 PMCID: PMC8317026 DOI: 10.3389/fphys.2021.638352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/26/2021] [Indexed: 01/13/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an important protein kinase that senses changes in extracellular and intracellular energy levels and plays a key role in regulating energy metabolism. Brown adipose tissue, which can be converted to white adipose tissue, contains a large number of mitochondria and regulates energy expenditure through thermogenesis. Because obesity is a process of fat accumulation due to chronic excessive energy intake, we attempted to determine whether the mTOR signaling pathway can affect the mitochondrial quality control of brown adipocytes through sensing energy status, thereby regulating brown/white adipocyte transformation. In the present study, through activation or inhibition of mTOR signaling, we detected mitochondrial biogenesis, dynamics, and autophagy-related markers in brown adipocytes. We found that activation of mTOR signaling downregulated the expression of mitochondrial biogenesis, dynamics, and autophagy-relevant markers and inhibited the mitochondrial quality control of brown adipocytes, indicating a phenotypic transformation of brown to white adipocytes. In contrast, inhibition of mTOR signaling upregulated the expression of mitochondrial biogenesis, dynamics, and mitophagy-relevant markers and strengthened mitochondrial quality control, suggesting an inhibition of the phenotypic transformation of brown to white adipocytes. In conclusion, the mTOR signaling pathway plays an important role in modulating the transformation of adipocytes by regulating mitochondrial quality control.
Collapse
Affiliation(s)
- Bahetiyaer Huwatibieke
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenzhen Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lingchao Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Integration of Chinese and Western Medicine, Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xinxin Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Pathology, Central Hospital of Zibo, Zibo, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Integration of Chinese and Western Medicine, Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
11
|
Zapata-Bustos R, Finlayson J, Langlais PR, Coletta DK, Luo M, Grandjean D, De Filippis EA, Mandarino L. Altered Transcription Factor Expression Responses to Exercise in Insulin Resistance. Front Physiol 2021; 12:649461. [PMID: 33897458 PMCID: PMC8058368 DOI: 10.3389/fphys.2021.649461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Insulin resistant muscle is resistant to gene expression changes induced by acute exercise. This study was undertaken to identify transcription factors that differentially respond to exercise in insulin resistance. Candidate transcription factors were identified from analysis of 5'-untranslated regions (5'-UTRs) of exercise responsive genes and from analysis of the 5'-UTRs of genes coding for proteins that differ in abundance in insulin resistance. RESEARCH DESIGN AND METHODS Twenty participants took part in this study. Insulin sensitivity was assessed by an euglycemic clamp. Participants were matched for aerobic capacity and performed a single 48 min bout of exercise with sets at 70 and 90% of maximum heart rate. Muscle biopsies were obtained at resting conditions, 30 min and 24 h after exercise. Global proteomics analysis identified differentially abundant proteins in muscle. The 5'-UTRs of genes coding for significant proteins were subjected to transcription factor enrichment analysis to identify candidate transcription factors. Q-rt-PCR to determine expression of candidate transcription factors was performed on RNA from resting and post-exercise muscle biopsies; immunoblots quantified protein abundance. RESULTS Proteins involved in mitochondrial function, protein targeting and translation, and metabolism were among those significantly different between lean and obese groups. Transcription factor enrichment analysis of genes coding for these proteins revealed new candidate transcription factors to be evaluated along the previously identified factors. Q-rt-PCR analysis of RNA and immunoblot analysis from pre- and post-exercise muscle biopsies revealed several transcription and growth factors that had altered responses to exercise in insulin resistant participants. A significant increase (EGR3 and CTGF) and decrease (RELA and ATF2) in the mRNA expression of transcription and growth factors was found after exercise in the lean group, but not in the obese participants. CONCLUSIONS These results confirm findings of an association between insulin sensitivity and transcription factor mRNA response to exercise and show that obesity also may be a sufficient prerequisite for exercise resistance. Analysis of the muscle proteome together with determination of effects of exercise on expression of transcription factors suggests that abnormal responses of transcription factors to exercise may be responsible for differences in protein abundances in insulin resistant muscle.
Collapse
Affiliation(s)
- Rocio Zapata-Bustos
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jean Finlayson
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Dawn K. Coletta
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Moulun Luo
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| | | | | | - Lawrence Mandarino
- Division of Endocrinology, Department of Medicine, University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity and Metabolism, University of Arizona Health Sciences, Tucson, AZ, United States
| |
Collapse
|
12
|
Lee DE, Brown JL, Rosa‐Caldwell ME, Perry RA, Brown LA, Haynie WS, Washington TA, Wiggs MP, Rajaram N, Greene NP. Cancer-induced Cardiac Atrophy Adversely Affects Myocardial Redox State and Mitochondrial Oxidative Characteristics. JCSM RAPID COMMUNICATIONS 2021; 4:3-15. [PMID: 33693448 PMCID: PMC7939061 DOI: 10.1002/rco2.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UNLABELLED Cachexia presents in 80% of advanced cancer patients; however, cardiac atrophy in cachectic patients receives little attention. This cardiomyopathy contributes to increased occurrence of adverse cardiac events compared to age-matched population norms. Research on cardiac atrophy has focused on remodeling; however, alterations in metabolic properties may be a primary contributor. PURPOSE Determine how cancer-induced cardiac atrophy alters mitochondrial turnover, mitochondrial mRNA translation machinery and in-vitro oxidative characteristics. METHODS Lewis lung carcinoma (LLC) tumors were implanted in C57BL6/J mice and grown for 28days to induce cardiac atrophy. Endogenous metabolic species, and markers of mitochondrial function were assessed. H9c2 cardiomyocytes were cultured in LLC-conditioned media with(out) the antioxidant MitoTempo. Cells were analyzed for ROS, oxidative capacity, and hypoxic resistance. RESULTS LLC heart weights were ~10% lower than controls. LLC hearts demonstrated ~15% lower optical redox ratio (FAD/FAD+NADH) compared to PBS controls. When compared to PBS, LLC hearts showed ~50% greater COX-IV and VDAC, attributed to ~50% lower mitophagy markers. mt-mRNA translation machinery was elevated similarly to markers of mitochondrial content. mitochondrial DNA-encoded Cytb was ~30% lower in LLC hearts. ROS scavengers GPx-3 and GPx-7 were ~50% lower in LLC hearts. Treatment of cardiomyocytes with LLC-conditioned media resulted in higher ROS (25%), lower oxygen consumption rates (10% at basal, 75% at maximal), and greater susceptibility to hypoxia (~25%) -- which was reversed by MitoTempo. CONCLUSION These results substantiate metabolic cardiotoxic effects attributable to tumor-associated factors and provide insight into interactions between mitochondrial mRNA translation, ROS mitigation, oxidative capacity and hypoxia resistance.
Collapse
Affiliation(s)
- David E. Lee
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
- Laboratory for Functional Optical Imaging and Spectroscopy, Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jacob L. Brown
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Megan E. Rosa‐Caldwell
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Richard A. Perry
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Lemuel A. Brown
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Wesley S. Haynie
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Tyrone A. Washington
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| | - Michael P. Wiggs
- Department of Health and Kinesiology, University of Texas at Tyler, Tyler, Texas, USA
| | - Narasimhan Rajaram
- Laboratory for Functional Optical Imaging and Spectroscopy, Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nicholas P. Greene
- Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
13
|
Rosa-Caldwell ME, Benson CA, Lee DE, Brown JL, Washington TA, Greene NP, Wiggs MP. Mitochondrial Function and Protein Turnover in the Diaphragm are Altered in LLC Tumor Model of Cancer Cachexia. Int J Mol Sci 2020; 21:E7841. [PMID: 33105841 PMCID: PMC7660065 DOI: 10.3390/ijms21217841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
It is established that cancer cachexia causes limb muscle atrophy and is strongly associated with morbidity and mortality; less is known about how the development of cachexia impacts the diaphragm. The purpose of this study was to investigate cellular signaling mechanisms related to mitochondrial function, reactive oxygen species (ROS) production, and protein synthesis during the development of cancer cachexia. C57BL/J6 mice developed Lewis Lung Carcinoma for either 0 weeks (Control), 1 week, 2 weeks, 3 weeks, or 4 weeks. At designated time points, diaphragms were harvested and analyzed. Mitochondrial respiratory control ratio was ~50% lower in experimental groups, which was significant by 2 weeks of cancer development, with no difference in mitochondrial content markers COXIV or VDAC. Compared to the controls, ROS was 4-fold elevated in 2-week animals but then was not different at later time points. Only one antioxidant protein, GPX3, was altered by cancer development (~70% lower in experimental groups). Protein synthesis, measured by a fractional synthesis rate, appeared to become progressively lower with the cancer duration, but the mean difference was not significant. The development and progression of cancer cachexia induces marked alterations to mitochondrial function and ROS production in the diaphragm and may contribute to increased cachexia-associated morbidity and mortality.
Collapse
Affiliation(s)
- Megan E. Rosa-Caldwell
- Exercise Science Research Center, Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.R.-C.); (D.E.L.); (J.L.B.); (N.P.G.)
| | - Conner A. Benson
- Integrative Physiology and Nutrition Laboratory Name, Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX 75799, USA;
| | - David E. Lee
- Exercise Science Research Center, Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.R.-C.); (D.E.L.); (J.L.B.); (N.P.G.)
| | - Jacob L. Brown
- Exercise Science Research Center, Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.R.-C.); (D.E.L.); (J.L.B.); (N.P.G.)
| | - Tyrone A. Washington
- Exercise Science Research Center, Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nicholas P. Greene
- Exercise Science Research Center, Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.R.-C.); (D.E.L.); (J.L.B.); (N.P.G.)
| | - Michael P. Wiggs
- Integrative Physiology and Nutrition Laboratory Name, Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX 75799, USA;
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
14
|
Molecular changes in transcription and metabolic pathways underlying muscle atrophy in the CuZnSOD null mouse model of sarcopenia. GeroScience 2020; 42:1101-1118. [PMID: 32394347 DOI: 10.1007/s11357-020-00189-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
Mice lacking the superoxide anion scavenger CuZn superoxide dismutase (Sod1-/- mice) develop a number of age-related phenotypes, including an early progression of muscle atrophy and weakness (sarcopenia) associated with loss of innervation. The purpose of this study was to delineate the early development of sarcopenia in the Sod1-/- mice and to measure changes in the muscle transcriptome, proteome, and eicosanoid profile at the stage when sarcopenia is markedly induced in this model (7-9 months of age). We found a strong correlation between muscle atrophy and mitochondrial state 1 hydroperoxide production, which was 40% higher in isolated mitochondria from Sod1-/- mouse gastrocnemius muscle by 2 months of age. The primary pathways showing altered gene expression in Sod1-/- mice identified by RNA-seq transcriptomic analysis are protein ubiquitination, synaptic long-term potentiation, calcium signaling, phospholipase C signaling, AMPK, and TWEAK signaling. Targeted proteomics shows elevated expression of mitochondrial proteins, fatty acid metabolism enzymes, tricarboxylic acid (TCA) cycle enzymes, and antioxidants, while enzymes involved in carbohydrate metabolism are downregulated in Sod1-/- mice. LC-MS analysis of lipids in gastrocnemius muscle detected 78 eicosanoids, of which 31 are significantly elevated in muscle from Sod1-/- mice. These data suggest that mitochondrial hydroperoxide generation is elevated prior to muscle atrophy and may be a potential driving factor of changes in the transcriptome, proteome, and eicosanoid profile of the Sod1-/- mice. Together, these analyses revealed important molecular events that occur during muscle atrophy, which will pave the way for future studies using new approaches to treat sarcopenia.
Collapse
|
15
|
Ehrlicher SE, Stierwalt HD, Miller BF, Newsom SA, Robinson MM. Mitochondrial adaptations to exercise do not require Bcl2-mediated autophagy but occur with BNIP3/Parkin activation. FASEB J 2020; 34:4602-4618. [PMID: 32030805 DOI: 10.1096/fj.201902594rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 12/27/2022]
Abstract
Understanding the mechanisms regulating mitochondrial respiratory function and adaptations to metabolic challenges, such as exercise and high dietary fat, is necessary to promote skeletal muscle health and attenuate metabolic disease. Autophagy is a constitutively active degradation pathway that promotes mitochondrial turnover and transiently increases postexercise. Recent evidence indicates Bcl2 mediates exercise-induced autophagy and skeletal muscle adaptions to training during high-fat diet. We determined if improvements in mitochondrial respiration due to exercise training required Bcl2-mediated autophagy using a transgenic mouse model of impaired inducible autophagy (Bcl2AAA ). Mitochondrial adaptations to a treadmill exercise training protocol, in either low-fat or high-fat diet fed mice, did not require Bcl2-mediated autophagy activation. Instead, training increased protein synthesis rates and basal autophagy in the Bcl2AAA mice, while acute exercise activated BNIP3 and Parkin autophagy. High-fat diet stimulated lipid-specific mitochondrial adaptations. These data demonstrate increases in basal mitochondrial turnover, not transient activation with exercise, mediate adaptations to exercise and high-fat diet.
Collapse
Affiliation(s)
- Sarah E Ehrlicher
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Harrison D Stierwalt
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sean A Newsom
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
16
|
Energy Expenditure and Changes in Body Composition during Submarine Deployment-An Observational Study "DasBoost 2-2017". Nutrients 2020. [PMID: 31952273 DOI: 10.3390/nu12010226.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study was designed to objectively assess the effects of 3-months submarine deployment on behavioural and metabolic determinants of metabolic health. In 13 healthy, non-obese volunteers, we using stable isotope dilution, and plasma and urinary biochemistry to characterize metabolic health before and after a 3-month submarine deployment. Volunteers worked in 6-h shifts. After deployment, we observed reduced fat-free mass (mean ± SD, -4.1 ± 3.3 kg, p = 0.003) and increased adiposity (21.9 ± 3.2% fat mass to 24.4 ± 4.7%, p = 0.01). Changes in fat-free mass were positively associated with physical activity (+0.8 kg per 0.1 increase in PAL, p = 0.03). The average physical activity level was 1.64 ± 0.26 and total energy expenditure during deployment was 2937 ± 498 kcal/d, while energy intake was 3158 ± 786 kcal/d. Fasting glucose (p = 0.03), and triglycerides (p = 0.01) declined, whereas fasting free fatty acids increased (p = 0.04). Plasma vitamin D and B12 concentrations decreased (-14%, p = 0.04, and -44%, p = 0.001, respectively), and plasma calcium, and magnesium increased (+51%, p = 0.01, and +5%, p = 0.02). Haemoglobin was unchanged, but haematocrit decreased (-2.2 ± 2.1%, p = 0.005). In conclusion, submarine deployment impairs fat-free mass maintenance and promotes adiposity. High physical activity may prevent the decline in fat-free mass. Our study confirms the need to counteract Vitamin D and B12 deficiencies, and suggests impairments in erythrocyte metabolism.
Collapse
|
17
|
Rietjens G, Most J, Joris PJ, Helmhout P, Plasqui G. Energy Expenditure and Changes in Body Composition during Submarine Deployment-An Observational Study "DasBoost 2-2017". Nutrients 2020; 12:nu12010226. [PMID: 31952273 PMCID: PMC7019715 DOI: 10.3390/nu12010226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
The present study was designed to objectively assess the effects of 3-months submarine deployment on behavioural and metabolic determinants of metabolic health. In 13 healthy, non-obese volunteers, we using stable isotope dilution, and plasma and urinary biochemistry to characterize metabolic health before and after a 3-month submarine deployment. Volunteers worked in 6-h shifts. After deployment, we observed reduced fat-free mass (mean ± SD, −4.1 ± 3.3 kg, p = 0.003) and increased adiposity (21.9 ± 3.2% fat mass to 24.4 ± 4.7%, p = 0.01). Changes in fat-free mass were positively associated with physical activity (+0.8 kg per 0.1 increase in PAL, p = 0.03). The average physical activity level was 1.64 ± 0.26 and total energy expenditure during deployment was 2937 ± 498 kcal/d, while energy intake was 3158 ± 786 kcal/d. Fasting glucose (p = 0.03), and triglycerides (p = 0.01) declined, whereas fasting free fatty acids increased (p = 0.04). Plasma vitamin D and B12 concentrations decreased (−14%, p = 0.04, and −44%, p = 0.001, respectively), and plasma calcium, and magnesium increased (+51%, p = 0.01, and +5%, p = 0.02). Haemoglobin was unchanged, but haematocrit decreased (−2.2 ± 2.1%, p = 0.005). In conclusion, submarine deployment impairs fat-free mass maintenance and promotes adiposity. High physical activity may prevent the decline in fat-free mass. Our study confirms the need to counteract Vitamin D and B12 deficiencies, and suggests impairments in erythrocyte metabolism.
Collapse
Affiliation(s)
- Gerard Rietjens
- Training Medicine and Training Physiology, Army Command/Directory of Personnel, Royal Netherlands Army, Ministry of Defence, Herculeslaan 1, 3584 AB Utrecht, The Netherlands; (G.R.); (P.H.)
- Department of Human Physiology and Sports Medicine, Vrije Universiteit Brussel, Pleinlaan 2, U-Residence, Verd. 1, 1050 Etterbeek, Brussels, Belgium
| | - Jasper Most
- Training Medicine and Training Physiology, Army Command/Directory of Personnel, Royal Netherlands Army, Ministry of Defence, Herculeslaan 1, 3584 AB Utrecht, The Netherlands; (G.R.); (P.H.)
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (P.J.J.); (G.P.)
- Correspondence: ; Tel.: +31-43-38-81-506
| | - Peter J. Joris
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (P.J.J.); (G.P.)
| | - Pieter Helmhout
- Training Medicine and Training Physiology, Army Command/Directory of Personnel, Royal Netherlands Army, Ministry of Defence, Herculeslaan 1, 3584 AB Utrecht, The Netherlands; (G.R.); (P.H.)
| | - Guy Plasqui
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (P.J.J.); (G.P.)
| |
Collapse
|
18
|
Chen TT, Peng S, Wang Y, Hu Y, Shen Y, Xu Y, Yin J, Liu C, Cao J. Improvement of Mitochondrial Activity and Fibrosis by Resveratrol Treatment in Mice with Schistosoma japonicum Infection. Biomolecules 2019; 9:biom9110658. [PMID: 31717714 PMCID: PMC6920829 DOI: 10.3390/biom9110658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023] Open
Abstract
Schistosomiasis caused by Schistosoma japonicum is a major parasitic disease in the People's Republic of China. Liver fibrosis is the main pathological mechanism of schistosomiasis, and it is also the major lesion. The common drug used for its treatment, praziquantel (PZQ), does not have a marked effect on liver fibrosis. Resveratrol (RSV), which is an antioxidant, improves mitochondrial function and also attenuates liver fibrosis. The combination of PZQ and RSV has been found to have a synergistic antischistosomal effect on Schistosoma mansoni; additionally, the activity of PZQ is enhanced in the presence of RSV. Here, we examine the therapeutic effects of RSV on the S. japonicum infection in a mouse model, and we investigate RSV as a novel therapeutic agent for mitochondrial function and schistosomiasis-associated liver fibrosis (SSLF). Mitochondrial membrane potential was examined using flow cytometry analysis. The expression of the mitochondrial biogenesis genes PGC-α and fibrosis-associated genes collagen I, collagen III and α-SMA were examined using western blot analysis. Fibrosis-associated histological changes were examined using Masson trichrome staining. Additionally, the effects of RSV on S. japonicum adult worms were examined using scanning electron microscopy and transmission electron microscopy. RSV treatment improved mitochondrial function by increasing membrane potential and increasing PGC-α expression (mitochondrial biogenesis). Further, RSV attenuated liver injury, including liver scarring, by decreasing collagen deposition and the extent of fibrosis, based on the decrease in expression of the fibrosis-related genes. RSV also decreased the adult worm count and caused considerable physical damage to the worm. These results indicate that RSV upregulates mitochondrial biogenesis and inhibits fibrosis. RSV may have potential as a therapeutic target for the treatment of fibrosis in schistosomiasis.
Collapse
Affiliation(s)
- Tina Tuwen Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shihyi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Yanjuan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Yuxin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Congshan Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, Shanghai 200025, China; (T.T.C.); (Y.W.); (Y.H.); (Y.S.); (Y.X.); (J.Y.); (C.L.)
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- WHO Collaborating Center for Tropical Diseases, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
19
|
Calonne J, Isacco L, Miles-Chan J, Arsenijevic D, Montani JP, Guillet C, Boirie Y, Dulloo AG. Reduced Skeletal Muscle Protein Turnover and Thyroid Hormone Metabolism in Adaptive Thermogenesis That Facilitates Body Fat Recovery During Weight Regain. Front Endocrinol (Lausanne) 2019; 10:119. [PMID: 30873123 PMCID: PMC6403129 DOI: 10.3389/fendo.2019.00119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: The recovery of body composition after weight loss is characterized by an accelerated rate of fat recovery (preferential catch-up fat) resulting partly from an adaptive suppression of thermogenesis. Although the skeletal muscle has been implicated as an effector site for such thrifty (energy conservation) metabolism driving catch-up fat, the underlying mechanisms remain to be elucidated. We test here the hypothesis that this thrifty metabolism driving catch-up fat could reside in a reduced rate of protein turnover (an energetically costly "futile" cycle) and in altered local thyroid hormone metabolism in skeletal muscle. Methods: Using a validated rat model of semistarvation-refeeding in which catch-up fat is driven solely by suppressed thermogenesis, we measured after 1 week of refeeding in refed and control animals the following: (i) in-vivo rates of protein synthesis in hindlimb skeletal muscles using the flooding dose technique of 13C-labeled valine incorporation in muscle protein, (ii) ex-vivo muscle assay of net formation of thyroid hormone tri-iodothyronine (T3) from precursor hormone thyroxine (T4), and (iii) protein expression of skeletal muscle deiodinases (type 1, 2, and 3). Results: We show that after 1 week of calorie-controlled refeeding, the fractional protein synthesis rate was lower in skeletal muscles of refed animals than in controls (by 30-35%, p < 0.01) despite no between-group differences in the rate of skeletal muscle growth or whole-body protein deposition-thereby underscoring concomitant reductions in both protein synthesis and protein degradation rates in skeletal muscles of refed animals compared to controls. These differences in skeletal muscle protein turnover during catch-up fat were found to be independent of muscle type and fiber composition, and were associated with a slower net formation of muscle T3 from precursor hormone T4, together with increases in muscle protein expression of deiodinases which convert T4 and T3 to inactive forms. Conclusions: These results suggest that diminished skeletal muscle protein turnover, together with altered local muscle metabolism of thyroid hormones leading to diminished intracellular T3 availability, are features of the thrifty metabolism that drives the rapid restoration of the fat reserves during weight regain after caloric restriction.
Collapse
Affiliation(s)
- Julie Calonne
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Laurie Isacco
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH AuvergneClermont-Ferrand, France
- EA3920 and EPSI Platform, Bourgogne Franche-Comté UniversitéBesançon, France
| | - Jennifer Miles-Chan
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Denis Arsenijevic
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Jean-Pierre Montani
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Christelle Guillet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH AuvergneClermont-Ferrand, France
| | - Yves Boirie
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH AuvergneClermont-Ferrand, France
| | - Abdul G. Dulloo
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
- *Correspondence: Abdul G. Dulloo
| |
Collapse
|
20
|
Brown JL, Lee DE, Rosa-Caldwell ME, Brown LA, Perry RA, Haynie WS, Huseman K, Sataranatarajan K, Van Remmen H, Washington TA, Wiggs MP, Greene NP. Protein imbalance in the development of skeletal muscle wasting in tumour-bearing mice. J Cachexia Sarcopenia Muscle 2018; 9:987-1002. [PMID: 30328290 PMCID: PMC6204589 DOI: 10.1002/jcsm.12354] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer cachexia occurs in approximately 80% of cancer patients and is a key contributor to cancer-related death. The mechanisms controlling development of tumour-induced muscle wasting are not fully elucidated. Specifically, the progression and development of cancer cachexia are underexplored. Therefore, we examined skeletal muscle protein turnover throughout the development of cancer cachexia in tumour-bearing mice. METHODS Lewis lung carcinoma (LLC) was injected into the hind flank of C57BL6/J mice at 8 weeks age with tumour allowed to develop for 1, 2, 3, or 4 weeks and compared with PBS injected control. Muscle size was measured by cross-sectional area analysis of haematoxylin and eosin stained tibialis anterior muscle. 2 H2 O was used to assess protein synthesis throughout the development of cancer cachexia. Immunoblot and RT-qPCR were used to measure regulators of protein turnover. TUNEL staining was utilized to measure apoptotic nuclei. LLC conditioned media (LCM) treatment of C2C12 myotubes was used to analyse cancer cachexia in vitro. RESULTS Muscle cross-sectional area decreased ~40% 4 weeks following tumour implantation. Myogenic signalling was suppressed in tumour-bearing mice as soon as 1 week following tumour implantation, including lower mRNA contents of Pax7, MyoD, CyclinD1, and Myogenin, when compared with control animals. AchRδ and AchRε mRNA contents were down-regulated by ~50% 3 weeks following tumour implantation. Mixed fractional synthesis rate protein synthesis was ~40% lower in 4 week tumour-bearing mice when compared with PBS controls. Protein ubiquitination was elevated by ~50% 4 weeks after tumour implantation. Moreover, there was an increase in autophagy machinery after 4 weeks of tumour growth. Finally, ERK and p38 MAPK phosphorylations were fourfold and threefold greater than control muscle 4 weeks following tumour implantation, respectively. Inhibition of p38 MAPK, but not ERK MAPK, in vitro partially rescued LCM-induced loss of myotube diameter. CONCLUSIONS Our findings work towards understanding the pathophysiological signalling in skeletal muscle in the initial development of cancer cachexia. Shortly following the onset of the tumour-bearing state alterations in myogenic regulatory factors are apparent, suggesting early onset alterations in the capacity for myogenic induction. Cancer cachexia presents with a combination of a loss of protein synthesis and increased markers of protein breakdown, specifically in the ubiquitin-proteasome system. Also, p38 MAPK may be a potential therapeutic target to combat cancer cachexia via a p38-FOX01-atrogene-ubiquitin-proteasome mechanism.
Collapse
Affiliation(s)
- Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - David E Lee
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lemuel A Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard A Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kendra Huseman
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Kavithalakshmi Sataranatarajan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK, 73104, USA.,Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Michael P Wiggs
- Integrated Physiology and Nutrition Laboratory, Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX, 75799, USA
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
21
|
Shimkus KL, Shirazi-Fard Y, Wiggs MP, Ullah ST, Pohlenz C, Gatlin DM, Carroll CC, Hogan HA, Fluckey JD. Responses of skeletal muscle size and anabolism are reproducible with multiple periods of unloading/reloading. J Appl Physiol (1985) 2018; 125:1456-1467. [PMID: 30091665 DOI: 10.1152/japplphysiol.00736.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical unloading has long been understood to contribute to rapid and substantial adaptations within skeletal muscle, most notably, muscle atrophy. Studies have often demonstrated that many of the alterations resulting from disuse are reversed with a reintroduction of load and have supported the concept of muscle plasticity. We hypothesized that adaptations during disuse and recovery were a repeatable/reproducible phenomenon, which we tested with repeated changes in mechanical load. Rats were assigned to one of the following five groups: animals undergoing one or two bouts of hindlimb unloading (28 days), with or without recovery (56 day), or control. Following the completion of their final time point, posterior crural muscles were studied. Muscle sizes were lower following 28 days of disuse but fully recovered with a 56-day reloading period, regardless of the number of disuse/recovery cycles. Mixed protein fractional synthesis rates consistently reflected mass and loading conditions (supported by anabolic signaling), whereas the myofibrillar protein synthesis response varied among muscles. Amino acid concentrations were assessed in the gastrocnemius free pool and did not correlate with muscle atrophy associated with mechanical unloading. Muscle collagen concentrations were higher following the second unloading period and remained elevated following 56 days of recovery. Anabolic responses to alterations in load are preserved throughout multiple perturbations, but repeated periods of unloading may cause additive strain to muscle structure (collagen). This study suggests that whereas mass and anabolism are reproducibly reflective of the loading environment, repeated exposure to unloading and/or reloading may impact the overall structural integrity of muscle. NEW & NOTEWORTHY Repeatability should be considered a component of skeletal muscle plasticity during atrophy and recovery. Muscle anabolism is equally affected during a first or second disuse bout and returns equally with adequate recovery. Elevated muscle collagen concentrations observed after the second unloading period suggest altered structural integrity with repeated disuse.
Collapse
Affiliation(s)
- Kevin L Shimkus
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| | - Yasaman Shirazi-Fard
- Department of Mechanical Engineering, Texas A&M University , College Station, Texas
| | - Michael P Wiggs
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| | - Shaik T Ullah
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| | - Camilo Pohlenz
- Department of Wildlife and Fisheries, Texas A&M University , College Station, Texas
| | - Delbert M Gatlin
- Department of Wildlife and Fisheries, Texas A&M University , College Station, Texas
| | - Chad C Carroll
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| | - Harry A Hogan
- Department of Mechanical Engineering, Texas A&M University , College Station, Texas
| | - James D Fluckey
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| |
Collapse
|
22
|
Newsom SA, Miller BF, Hamilton KL, Ehrlicher SE, Stierwalt HD, Robinson MM. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment. Am J Physiol Endocrinol Metab 2017; 313:E552-E562. [PMID: 28698283 PMCID: PMC5792140 DOI: 10.1152/ajpendo.00144.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022]
Abstract
Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 wk of a high-fat compared with a low-fat diet. For 8 additional weeks, diets were enriched with pioglitazone to restore insulin sensitivity compared with nonenriched control low-fat or high-fat diets. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10-12 High-resolution respirometry was performed using palmitoyl-l-carnitine, glutamate+malate, and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl- l-carnitine oxidation were increased in mice consuming a high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H2O2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with a high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with a high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance.
Collapse
Affiliation(s)
- Sean A Newsom
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Benjamin F Miller
- Department of Health and Exercise Science, College of Health and Human Sciences, Colorado State University, Fort Collins, Colorado; and
| | - Karyn L Hamilton
- Department of Health and Exercise Science, College of Health and Human Sciences, Colorado State University, Fort Collins, Colorado; and
| | - Sarah E Ehrlicher
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Harrison D Stierwalt
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon;
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
Brown JL, Rosa-Caldwell ME, Lee DE, Brown LA, Perry RA, Shimkus KL, Blackwell TA, Fluckey JD, Carson JA, Dridi S, Washington TA, Greene NP. PGC-1α4 gene expression is suppressed by the IL-6-MEK-ERK 1/2 MAPK signalling axis and altered by resistance exercise, obesity and muscle injury. Acta Physiol (Oxf) 2017; 220:275-288. [PMID: 27809412 DOI: 10.1111/apha.12826] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/13/2016] [Accepted: 10/29/2016] [Indexed: 12/13/2022]
Abstract
AIM PGC-1α4 is a novel regulator of muscle hypertrophy; however, there is limited understanding of the regulation of its expression and role in many (patho)physiological conditions. Therefore, our purpose was to elicit signalling mechanisms regulating gene expression of Pgc1α4 and examine its response to (patho)physiological stimuli associated with altered muscle mass. METHODS IL-6 knockout mice and pharmacological experiments in C2C12 myocytes were used to identify regulation of Pgc1α4 transcription. To examine Pgc1α4 gene expression in (patho)physiological conditions, obese and lean Zucker rats with/without resistance exercise (RE), ageing mice and muscle regeneration from injury were examined. RESULTS In IL-6 knockout mice, Pgc1α4mRNA was ~sevenfold greater than wild type. In C2C12 cells, Pgc1α4mRNA was suppressed ~70% by IL-6. Suppression of Pgc1α4 by IL-6 was prevented by MEK-ERK-MAPK inhibition. RE led to ~260% greater Pgc1α4mRNA content in lean rats. However, obese Zucker rats exhibited ~270% greater Pgc1α4mRNA than lean, sedentary with no further augmentation by RE. No difference was seen in IL-6mRNA or ERK-MAPK phosphorylation in Zucker rats. Aged mice demonstrated ~50% lower Pgc1α4mRNA and ~fivefold greater ERK-MAPK phosphorylation than young despite unchanged Il-6mRNA. During muscle regeneration, Pgc1α4 content is ~30% and IL-6mRNA >threefold of uninjured controls 3 days following injury; at 5 days, Pgc1α4 was >twofold greater in injured mice with no difference in IL-6mRNA. CONCLUSION Our findings reveal a novel mechanism suppressing Pgc1α4 gene expression via IL-6-ERK-MAPK and suggest this signalling axis may inhibit Pgc1α4 in some, but not all, (patho)physiological conditions.
Collapse
Affiliation(s)
- J. L. Brown
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - M. E. Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - D. E. Lee
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - L. A. Brown
- Exercise Muscle Biology Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - R. A. Perry
- Exercise Muscle Biology Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - K. L. Shimkus
- Muscle Biology Laboratory; Department of Health & Kinesiology; Texas A&M University; College Station TX USA
| | - T. A. Blackwell
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - J. D. Fluckey
- Muscle Biology Laboratory; Department of Health & Kinesiology; Texas A&M University; College Station TX USA
| | - J. A. Carson
- Integrative Muscle Biology Laboratory; Department of Exercise Science; University of South Carolina; Columbia SC USA
| | - S. Dridi
- Center of Excellence for Poultry Science; University of Arkansas; Fayetteville AR USA
| | - T. A. Washington
- Exercise Muscle Biology Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - N. P. Greene
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| |
Collapse
|
24
|
The Impact of Shiftwork on Skeletal Muscle Health. Nutrients 2017; 9:nu9030248. [PMID: 28282858 PMCID: PMC5372911 DOI: 10.3390/nu9030248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/26/2017] [Accepted: 03/03/2017] [Indexed: 01/11/2023] Open
Abstract
(1) Background: About one in four workers undertake shift rosters that fall outside the traditional 7 a.m.-6 p.m. scheduling. Shiftwork alters workers' exposure to natural and artificial light, sleep patterns, and feeding patterns. When compared to the rest of the working population, shiftworkers are at a greater risk of developing metabolic impairments over time. One fundamental component of metabolic health is skeletal muscle, the largest organ in the body. However, cause-and-effect relationships between shiftwork and skeletal muscle health have not been established; (2) Methods: A critical review of the literature was completed using online databases and reference lists; (3) Results: We propose a conceptual model drawing relationships between typical shiftwork consequences; altered light exposure, sleep patterns, and food and beverage consumption, and drivers of skeletal muscle health-protein intake, resistance training, and hormone release. At present, there is no study investigating the direct effect of shiftwork on skeletal muscle health. Instead, research findings showing that acute consequences of shiftwork negatively influence skeletal muscle homeostasis support the validity of our model; (4) Conclusion: Further research is required to test the potential relationships identified in our review, particularly in shiftwork populations. Part of this testing could include skeletal muscle specific interventions such as targeted protein intake and/or resistance-training.
Collapse
|
25
|
Strickland JC, Smith MA. Animal models of resistance exercise and their application to neuroscience research. J Neurosci Methods 2016; 273:191-200. [PMID: 27498037 PMCID: PMC5075509 DOI: 10.1016/j.jneumeth.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/24/2016] [Accepted: 08/03/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Numerous studies have demonstrated that participation in regular resistance exercise (e.g., strength training) is associated with improvements in mental health, memory, and cognition. However, less is known about the neurobiological mechanisms mediating these effects. The goal of this mini-review is to describe and evaluate the available animal models of resistance exercise that may prove useful for examining CNS activity. NEW METHOD Various models have been developed to examine resistance exercise in laboratory animals. COMPARISON WITH EXISTING METHODS Resistance exercise models vary in how the resistance manipulation is applied, either through direct stimulation of the muscle (e.g., in situ models) or through behavior maintained by operant contingencies (e.g., whole organism models). Each model presents distinct advantages and disadvantages for examining central nervous system (CNS) activity, and consideration of these attributes is essential for the future investigation of underlying neurobiological substrates. RESULTS Potential neurobiological mechanisms mediating the effects of resistance exercise on pain, anxiety, memory, and drug use have been efficiently and effectively investigated using resistance exercise models that minimize stress and maximize the relative contribution of resistance over aerobic factors. CONCLUSIONS Whole organism resistance exercise models that (1) limit the use of potentially stressful stimuli and (2) minimize the contribution of aerobic factors will be critical for examining resistance exercise and CNS function.
Collapse
Affiliation(s)
| | - Mark A Smith
- Department of Psychology, Davidson College, Davidson, NC, USA; Program in Neuroscience, Davidson College, Davidson, NC, USA.
| |
Collapse
|
26
|
The effects of resistance exercise on cocaine self-administration, muscle hypertrophy, and BDNF expression in the nucleus accumbens. Drug Alcohol Depend 2016; 163:186-94. [PMID: 27137405 PMCID: PMC4880539 DOI: 10.1016/j.drugalcdep.2016.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/07/2016] [Accepted: 04/14/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Exercise is associated with positive outcomes in drug abusing populations and reduces drug self-administration in laboratory animals. To date, most research has focused on aerobic exercise, and other types of exercise have not been examined. This study examined the effects of resistance exercise (strength training) on cocaine self-administration and BDNF expression, a marker of neuronal activation regulated by aerobic exercise. METHODS Female rats were assigned to either exercising or sedentary conditions. Exercising rats climbed a ladder wearing a weighted vest and trained six days/week. Training consisted of a three-set "pyramid" in which the number of repetitions and resistance varied across three sets: eight climbs carrying 70% body weight (BW), six climbs carrying 85% BW, and four climbs carrying 100% BW. Rats were implanted with intravenous catheters and cocaine self-administration was examined. Behavioral economic measures of demand intensity and demand elasticity were derived from the behavioral data. BDNF mRNA expression was measured via qRT-PCR in the nucleus accumbens following behavioral testing. RESULTS Exercising rats self-administered significantly less cocaine than sedentary rats. A behavioral economic analysis revealed that exercise increased demand elasticity for cocaine, reducing consumption at higher unit prices. Exercising rats had lower BDNF expression in the nucleus accumbens core than sedentary rats. CONCLUSIONS These data indicate that resistance exercise decreases cocaine self-administration and reduces BDNF expression in the nucleus accumbens after a history of cocaine exposure. Collectively, these findings suggest that strength training reduces the positive reinforcing effects of cocaine and may decrease cocaine use in human populations.
Collapse
|
27
|
Lee DE, Brown JL, Rosa ME, Brown LA, Perry RA, Wiggs MP, Nilsson MI, Crouse SF, Fluckey JD, Washington TA, Greene NP. microRNA-16 Is Downregulated During Insulin Resistance and Controls Skeletal Muscle Protein Accretion. J Cell Biochem 2016; 117:1775-87. [DOI: 10.1002/jcb.25476] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/17/2015] [Indexed: 12/28/2022]
Affiliation(s)
- David E. Lee
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville Arkansas 72701
| | - Jacob L. Brown
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville Arkansas 72701
| | - Megan E. Rosa
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville Arkansas 72701
| | - Lemuel A. Brown
- Exercise Muscle Biology Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville Arkansas 72701
| | - Richard A. Perry
- Exercise Muscle Biology Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville Arkansas 72701
| | - Michael P. Wiggs
- Muscle Biology Laboratory; Department of Health and Kinesiology; Texas A&M University; College Station Texas 77843
| | - Mats I. Nilsson
- Muscle Biology Laboratory; Department of Health and Kinesiology; Texas A&M University; College Station Texas 77843
| | - Stephen F. Crouse
- Applied Exercise Science Laboratory; Department of Health and Kinesiology; Texas A&M University; College Station Texas 77843
| | - James D. Fluckey
- Muscle Biology Laboratory; Department of Health and Kinesiology; Texas A&M University; College Station Texas 77843
| | - Tyrone A. Washington
- Exercise Muscle Biology Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville Arkansas 72701
| | - Nicholas P. Greene
- Integrative Muscle Metabolism Laboratory; Human Performance Laboratory; Department of Health; Human Performance and Recreation; University of Arkansas; Fayetteville Arkansas 72701
- Muscle Biology Laboratory; Department of Health and Kinesiology; Texas A&M University; College Station Texas 77843
- Applied Exercise Science Laboratory; Department of Health and Kinesiology; Texas A&M University; College Station Texas 77843
| |
Collapse
|
28
|
Greene NP, Lee DE, Brown JL, Rosa ME, Brown LA, Perry RA, Henry JN, Washington TA. Mitochondrial quality control, promoted by PGC-1α, is dysregulated by Western diet-induced obesity and partially restored by moderate physical activity in mice. Physiol Rep 2015; 3:3/7/e12470. [PMID: 26177961 PMCID: PMC4552545 DOI: 10.14814/phy2.12470] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle mitochondrial degeneration is a hallmark of insulin resistance/obesity marked by lost function, enhanced ROS emission, and altered morphology which may be ameliorated by physical activity (PA). However, no prior report has examined mitochondrial quality control regulation throughout biogenesis, fusion/fission dynamics, autophagy, and mitochondrial permeability transition pore (MPTP) in obesity. Therefore, we determined how each process is impacted by Western diet (WD)-induced obesity and whether voluntary PA may alleviate derangements in mitochondrial quality control mechanisms. Despite greater mitochondrial content following WD (COX-IV and Cytochrome C), induction of biogenesis controllers appears impaired (failed induction of PGC-1α). Mitochondrial fusion seems diminished (reduced MFN2, Opa1 proteins), with no significant changes in fission, suggesting a shift in balance of dynamics regulation favoring fission. Autophagy flux was promoted in WD (reduced p62, increased LC3II:I ratio); however, mitophagy marker BNIP3 is reduced in WD which may indicate reduced mitophagy despite enhanced total autophagy flux. MPTP regulator Ant mRNA is reduced by WD. Few processes were impacted by physical activity. Finally, mitochondrial quality control processes are partially promoted by PGC-1α, as PGC-1α transgenic mice display elevated mitochondrial biogenesis and autophagy flux. Additionally, these mice exhibit elevated Mfn1 and Opa1 mRNA, with no change in protein content suggesting these factors are transcriptionally promoted by PGC-1α overexpression. These data demonstrate dysfunctions across mitochondrial quality control in obesity and that PGC-1α is sufficient to promote multiple, but not necessarily all, aspects of mitochondrial quality control. Mitochondrial quality control may therefore be an opportune target to therapeutically treat metabolic disease.
Collapse
Affiliation(s)
- Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - David E Lee
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Megan E Rosa
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Lemuel A Brown
- Exercise Muscle Biology Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Richard A Perry
- Exercise Muscle Biology Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Jordyn N Henry
- Integrative Muscle Metabolism Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
29
|
McLean CS, Mielke C, Cordova JM, Langlais PR, Bowen B, Miranda D, Coletta DK, Mandarino LJ. Gene and MicroRNA Expression Responses to Exercise; Relationship with Insulin Sensitivity. PLoS One 2015; 10:e0127089. [PMID: 25984722 PMCID: PMC4436215 DOI: 10.1371/journal.pone.0127089] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/10/2015] [Indexed: 02/07/2023] Open
Abstract
Background Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner. Methods and Findings Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5’-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene. Conclusions These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle.
Collapse
Affiliation(s)
- Carrie S. McLean
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Clinton Mielke
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Jeanine M. Cordova
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Paul R. Langlais
- Mayo Clinic in Arizona, Scottsdale, Arizona, United States of America
| | - Benjamin Bowen
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Danielle Miranda
- Mayo Clinic in Arizona, Scottsdale, Arizona, United States of America
| | - Dawn K. Coletta
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Lawrence J. Mandarino
- School for the Science of Health Care Delivery, Arizona State University, Tempe, Arizona, United States of America
- Mayo Clinic in Arizona, Scottsdale, Arizona, United States of America
- * E-mail:
| |
Collapse
|
30
|
Boudreaux RD, Swift JM, Gasier HG, Wiggs MP, Hogan HA, Fluckey JD, Bloomfield SA. Increased resistance during jump exercise does not enhance cortical bone formation. Med Sci Sports Exerc 2014; 46:982-9. [PMID: 24743108 DOI: 10.1249/mss.0000000000000195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. METHODS Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. RESULTS Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. CONCLUSION These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.
Collapse
Affiliation(s)
- Ramon D Boudreaux
- 1Department of Biomedical Engineering, Texas A&M University, College Station, TX; 2Department of Health and Kinesiology, Texas A&M University, College Station, TX; and 3Department of Mechanical Engineering, Texas A&M University, College Station, TX
| | | | | | | | | | | | | |
Collapse
|
31
|
Gran P, Larsen AE, Bonham M, Dordevic AL, Rupasinghe T, Silva C, Nahid A, Tull D, Sinclair AJ, Mitchell CJ, Cameron-Smith D. Muscle p70S6K phosphorylation in response to soy and dairy rich meals in middle aged men with metabolic syndrome: a randomised crossover trial. Nutr Metab (Lond) 2014; 11:46. [PMID: 25302072 PMCID: PMC4190399 DOI: 10.1186/1743-7075-11-46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/22/2014] [Indexed: 12/25/2022] Open
Abstract
Background The mammalian target of rapamycin (mTOR) pathway is the primary regulator of muscle protein synthesis. Metabolic syndrome (MetS) is characterized by central obesity and insulin resistance; little is known about how MetS affects the sensitivity of the mTOR pathway to feeding. Methods The responsiveness of mTOR pathway targets such as p706Sk to a high protein meal containing either dairy or soy foods was investigated in healthy insulin sensitive middle-aged men and those presenting with metabolic syndrome (MetS). Twenty male subjects (10 healthy controls, 10 MetS) participated in a single-blinded randomized cross-over study. In a random sequence, subjects ingested energy-matched breakfasts composed predominately of either dairy-protein or soy-protein foods. Skeletal muscle biopsies were collected in the fasted state and at 2 and 4 h post-meal ingestion for the analysis of mTOR- and insulin-signalling kinase activation. Results Phosphorylated Akt and Insulin receptor substrate 1 (IRS1) increased during the postabsorptive period with no difference between groups. mTOR (Ser448) and ribosomal protein S6 phosphorylation increased 2 h following dairy meal consumption only. p70S6K (Thr389) phosphorylation was increased after feeding only in the control subjects and not in the MetS group. Conclusions These data demonstrate that the consumption of a dairy-protein rich but not a soy-protein rich breakfast activates the phosphorylation of mTOR and ribosomal protein S6, required for protein synthesis in human skeletal muscle. Unlike healthy controls, subjects with MetS did not increase muscle p70S6K(Thr389) phosphorylation in response to a mixed meal. Trial registration This trial was registered with the Australian New Zealand Clinical Trials Registry (ANZCTR) as ACTRN12610000562077.
Collapse
Affiliation(s)
- Petra Gran
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria Australia
| | - Amy E Larsen
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria Australia
| | - Maxine Bonham
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria Australia
| | - Aimee L Dordevic
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, University of Melbourne, Parkville, Victoria Australia
| | - Claudio Silva
- Metabolomics Australia, University of Melbourne, Parkville, Victoria Australia
| | - Amsha Nahid
- Metabolomics Australia, University of Melbourne, Parkville, Victoria Australia
| | - Dedreia Tull
- Metabolomics Australia, University of Melbourne, Parkville, Victoria Australia
| | - Andrew J Sinclair
- School of Medicine, Deakin University, Waurn Ponds, Victoria Australia
| | - Cameron J Mitchell
- The Liggins Institute, Faculty of Medical and Science Health, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023 New Zealand
| | - David Cameron-Smith
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria Australia ; The Liggins Institute, Faculty of Medical and Science Health, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023 New Zealand
| |
Collapse
|
32
|
Greene NP, Nilsson MI, Washington TA, Lee DE, Brown LA, Papineau AM, Shimkus KL, Greene ES, Crouse SF, Fluckey JD. Impaired exercise-induced mitochondrial biogenesis in the obese Zucker rat, despite PGC-1α induction, is due to compromised mitochondrial translation elongation. Am J Physiol Endocrinol Metab 2014; 306:E503-11. [PMID: 24398401 DOI: 10.1152/ajpendo.00671.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previously, we demonstrated that high-volume resistance exercise stimulates mitochondrial protein synthesis (a measure of mitochondrial biogenesis) in lean but not obese Zucker rats. Here, we examined factors involved in regulating mitochondrial biogenesis in the same animals. PGC-1α was 45% higher following exercise in obese but not lean animals compared with sedentary counterparts. Interestingly, exercised animals demonstrated greater PPARδ protein in both lean (47%) and obese (>200%) animals. AMPK phosphorylation (300%) and CPT-I protein (30%) were elevated by exercise in lean animals only, indicating improved substrate availability/flux. These findings suggest that, despite PGC-1α induction, obese animals were resistant to exercise-induced synthesis of new mitochondrial and oxidative protein. Previously, we reported that most anabolic processes are upregulated in these same obese animals regardless of exercise, so the purpose of this study was to assess specific factors associated with the mitochondrial genome as possible culprits for impaired mitochondrial biogenesis. Exercise resulted in higher mRNA contents of mitochondrial transcription factor A (∼50% in each phenotype) and mitochondrial translation initiation factor 2 (31 and 47% in lean and obese, respectively). However, mitochondrial translation elongation factor-Tu mRNA was higher following exercise in lean animals only (40%), suggesting aberrant regulation of mitochondrial translation elongation as a possible culprit in impaired mitochondrial biogenesis following exercise with obesity.
Collapse
Affiliation(s)
- Nicholas P Greene
- Applied Exercise Science Laboratory, Department of Health and Kinesiology, Texas A & M University, College Station, Texas
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Malin SK, Hinnerichs KR, Echtenkamp BG, Evetovich TK, Engebretsen BJ. Effect of adiposity on insulin action after acute and chronic resistance exercise in non-diabetic women. Eur J Appl Physiol 2013; 113:2933-41. [PMID: 24072034 DOI: 10.1007/s00421-013-2725-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 09/06/2013] [Indexed: 01/12/2023]
Abstract
PURPOSE Obesity may attenuate metabolic health improvements following lifestyle interventions. However, the effect of adiposity on insulin action following resistance exercise in young non-diabetic women is unknown. The purpose of this study was to test the hypothesis that adiposity attenuates improvements in insulin sensitivity and glucose-stimulated insulin secretion (INS0-60/GLC0-60) after both acute resistance exercise (ARE) and progressive training (PRT). METHODS Twenty-six young non-diabetic women (21.2 ± 0.7 years) were randomly assigned to control (C; n = 7; BF 40.1 ± 2.1 %) or exercise groups: normal body fat (NBF; n = 8; BF 29.9 ± 2.3 %) and high body fat (HBF; n = 12; BF 48.2 ± 1.4 %). Acute whole-body exercises were performed at 60 % of 1-RM for three sets of 8-12 repetitions, and PRT was performed 3 days/week for 7 weeks. A 75 g OGTT was conducted before and after ARE and PRT to estimate insulin sensitivity (Matsuda index) and INS0-60/GLC0-60. Insulin area under the curve (AUC) was calculated using the trapezoidal model. RESULTS ARE had no statistical effect on insulin action across groups. Strength and fat-free mass (via DXA) increased after PRT in both NBF and HBF (p < 0.05), but only HBF women decreased BF (p < 0.01). HBF women were less insulin sensitive at baseline compared to NBF women (p < 0.05). Insulin sensitivity increased 95 % and INS0-60/GLC0-60 decreased 32 % following PRT in NBF, but not HBF or C (p < 0.05). After training, enhanced insulin sensitivity was inversely related to decreased INS0-60/GLC0-60 (r = -0.71, p < 0.001), fasting insulin (r = -0.71, p < 0.001), and insulin AUC (r = -0.85, p < 0.001). CONCLUSION Seven weeks of PRT increases insulin sensitivity and reduces glucose-stimulated insulin secretion in NBF, but not HBF women. Obesity attenuates exercise-induced improvements in glucose regulation in young non-diabetic women.
Collapse
Affiliation(s)
- Steven K Malin
- Energy Metabolism Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA
| | | | | | | | | |
Collapse
|
34
|
Nilsson MI, Dobson JP, Greene NP, Wiggs MP, Shimkus KL, Wudeck EV, Davis AR, Laureano ML, Fluckey JD. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity. FASEB J 2013; 27:3905-16. [PMID: 23804240 DOI: 10.1096/fj.12-224006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity may impair protein synthesis rates and cause anabolic resistance to growth factors, hormones, and exercise, ultimately affecting skeletal muscle mass and function. To better understand muscle wasting and anabolic resistance with obesity, we assessed protein 24-h fractional synthesis rates (24-h FSRs) in selected hind-limb muscles of sedentary and resistance-exercised lean and obese Zucker rats. Despite atrophied hind-limb muscles (-28% vs. lean rats), 24-h FSRs of mixed proteins were significantly higher in quadriceps (+18%) and red or white gastrocnemius (+22 or +38%, respectively) of obese animals when compared to lean littermates. Basal synthesis rates of myofibrillar (+8%) and mitochondrial proteins (-1%) in quadriceps were not different between phenotypes, while manufacture of cytosolic proteins (+12%) was moderately elevated in obese cohorts. Western blot analyses revealed a robust activation of p70S6k (+178%) and a lower expression of the endogenous mTOR inhibitor DEPTOR (-28%) in obese rats, collectively suggesting that there is an obesity-induced increase in net protein turnover favoring degradation. Lastly, the protein synthetic response to exercise of mixed (-7%), myofibrillar (+6%), and cytosolic (+7%) quadriceps subfractions was blunted compared to the lean phenotype (+34, +40, and +17%, respectively), indicating a muscle- and subfraction-specific desensitization to the anabolic stimulus of exercise in obese animals.
Collapse
Affiliation(s)
- Mats I Nilsson
- 1Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Miller MW, Knaub LA, Olivera-Fragoso LF, Keller AC, Balasubramaniam V, Watson PA, Reusch JEB. Nitric oxide regulates vascular adaptive mitochondrial dynamics. Am J Physiol Heart Circ Physiol 2013; 304:H1624-33. [PMID: 23585138 PMCID: PMC3680775 DOI: 10.1152/ajpheart.00987.2012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/11/2013] [Indexed: 01/06/2023]
Abstract
Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-L-arginine methyl ester (L-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day L-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. L-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, L-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover.
Collapse
Affiliation(s)
- Matthew W Miller
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Masgrau A, Mishellany-Dutour A, Murakami H, Beaufrère AM, Walrand S, Giraudet C, Migné C, Gerbaix M, Metz L, Courteix D, Guillet C, Boirie Y. Time-course changes of muscle protein synthesis associated with obesity-induced lipotoxicity. J Physiol 2012; 590:5199-210. [PMID: 22802586 DOI: 10.1113/jphysiol.2012.238576] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The object of the study was to investigate the sequential changes of protein synthesis in skeletal muscle during establishment of obesity, considering muscle typology. Adult Wistar rats were fed a standard diet for 16 weeks (C; n = 14), or a high-fat, high-sucrose diet for 16 (HF16; n = 14) or 24 weeks (HF24; n = 15). Body composition was measured using a dual-energy X-ray absorptiometry scanner. The fractional synthesis rates (FSRs) of muscle protein fractions were calculated in tibialis anterior (TA) and soleus muscles by incorporation of l-13C-valine in muscle protein. Muscle lipid and mitochondria contents were determined using histochemical analysis. Obesity occurred in an initial phase, from 1 to 16 weeks, with an increase in weight (P < 0.05), fat mass (P < 0.001), muscle mass (P < 0.001) and FSR in TA (actin: 5.3 ± 0.2 vs. 8.8 ± 0.5% day−1, C vs. HF16, P < 0.001) compared with standard diet. The second phase, from 16 to 24 weeks, was associated with a weight stabilization, a decrease in muscle mass (P < 0.05) and a decrease in FSR in TA (mitochondrial: 5.6 ± 0.2 vs. 4.2 ± 0.4% day−1, HF16 vs. HF24, P < 0.01) compared with HF16 group. Muscle lipid content was increased in TA in the second phase of obesity development (P < 0.001). Muscle mass, lipid infiltration and muscle protein synthesis were differently affected, depending on the stage of obesity development and muscle typology. Chronic lipid infiltration in glycolytic muscle is concomitant with a reduction of muscle protein synthesis, suggesting that muscle lipid infiltration in response to a high-fat diet is deleterious for the incorporation of amino acid in skeletal muscle proteins.
Collapse
Affiliation(s)
- Aurélie Masgrau
- French National Institute for Agricultural Research (INRA), UMR 1019, UNH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tardif N, Salles J, Guillet C, Gadéa E, Boirie Y, Walrand S. Obésité sarcopénique et altérations du métabolisme protéique musculaire. NUTR CLIN METAB 2011. [DOI: 10.1016/j.nupar.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Abstract
PURPOSE OF REVIEW Although it is well established that obesity is accompanied by various degrees of metabolic impairments especially in the regulation of carbohydrate and lipid metabolism, the influence of obesity on protein metabolism is not clearly understood. The purpose of this review is to present data describing the modification in protein metabolism that have been reported in the clinical setting of obesity. RECENT FINDINGS Recent findings suggest that protein metabolism at the whole-body level is less sensitive to insulin action. Impairments in skeletal muscle protein synthesis rates in the postabsorptive state and in response to anabolic factors are reported in obese human. Finally, chronic excessive energy intake and increased adiposity in rats, without the appearance of other metabolic disturbances, do not induce any changes in tissue protein synthesis rates. SUMMARY Body composition in obesity is characterized by elevated fat mass but also lean body mass which is considered either increased or decreased (in the case of sarcopenic obesity). Thus protein metabolism as reflected by changes in protein synthesis and breakdown might be modified in obese individuals but it is still largely debated. Only a few studies have investigated muscle protein kinetics during obesity and do not lead to the same conclusions prolonging the controversies. Indeed, obesity is associated with many metabolic disturbances which might constitute confounding factors differently affecting muscle protein metabolism.
Collapse
Affiliation(s)
- Christelle Guillet
- Unité de Nutrition Humaine, Clermont Université, Université d'Auvergne, France.
| | | | | |
Collapse
|
39
|
Pung YF, Chilian WM. Corruption of coronary collateral growth in metabolic syndrome: Role of oxidative stress. World J Cardiol 2010; 2:421-7. [PMID: 21191543 PMCID: PMC3011137 DOI: 10.4330/wjc.v2.i12.421] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/23/2010] [Accepted: 10/30/2010] [Indexed: 02/06/2023] Open
Abstract
The myocardium adapts to ischemic insults in a variety of ways. One adaptation is the phenomenon of acute preconditioning, which can greatly ameliorate ischemic damage. However, this effect wanes within a few hours and does not confer chronic protection. A more chronic adaptation is the so-called second window of preconditioning, which enables protection for a few days. The most potent adaptation invoked by the myocardium to minimize the effects of ischemia is the growth of blood vessels in the heart, angiogenesis and arteriogenesis (collateral growth), which prevent the development of ischemia by enabling flow to a jeopardized region of the heart. This brief review examines the mechanisms underlying angiogenesis and arteriogenesis in the heart. The concept of a redox window, which is an optimal redox state for vascular growth, is discussed along with signaling mechanisms invoked by reactive oxygen species that are stimulated during ischemia-reperfusion. Finally, the review discusses of some of the pathologies, especially the metabolic syndrome, that negatively affect collateral growth through the corruption of redox signaling processes.
Collapse
Affiliation(s)
- Yuh Fen Pung
- Yuh Fen Pung, William M Chilian, Department of Integrative Medical Sciences, Northeastern Ohio Universities College of Medicine and Pharmacy, Rootstown, OH 44272, United States
| | | |
Collapse
|
40
|
Swift JM, Gasier HG, Swift SN, Wiggs MP, Hogan HA, Fluckey JD, Bloomfield SA. Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise. J Appl Physiol (1985) 2010; 109:1600-7. [PMID: 20930128 DOI: 10.1152/japplphysiol.00596.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cancellous bone of the proximal tibia metaphysis (PTM) and femoral neck (FN). Sprague-Dawley rats (male, 6 mo old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or sedentary cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE during 5 wk of training. PTM cancellous volumetric bone mineral density (vBMD), assessed by in vivo peripheral quantitative computed tomography scans, significantly increased in both exercise groups (+9%; P < 0.001), resulting in part from 130% (HRE; P = 0.003) and 213% (LRE; P < 0.0001) greater bone formation (measured by standard histomorphometry) vs. CC. Additionally, mineralizing surface (%MS/BS) and mineral apposition rate were higher (50-90%) in HRE and LRE animals compared with controls. PTM bone microarchitecture was enhanced with LRE, resulting in greater trabecular thickness (P = 0.03) and bone volume fraction (BV/TV; P = 0.04) vs. CC. Resorption surface was reduced by nearly 50% in both exercise paradigms. Increased PTM bone mass in the LRE group translated into a 161% greater elastic modulus (P = 0.04) vs. CC. LRE and HRE increased FN vBMD (10%; P < 0.0001) and bone mineral content (∼ 20%; P < 0.0001) and resulted in significantly greater FN strength vs. CC. For the vast majority of variables, there was no difference in the cancellous bone response between the two exercise groups, although LRE resulted in significantly greater body mass accrual and bone formation response. These results suggest that jumping at minimal resistance provides a similar anabolic stimulus to cancellous bone as jumping at loads exceeding body mass.
Collapse
Affiliation(s)
- J M Swift
- Department of Health and Kinesiology, MS 4243, Texas A&M University, College Station, TX 77843-4243, USA
| | | | | | | | | | | | | |
Collapse
|