1
|
Li X, Bi X, Wang S, Zhang Z, Li F, Zhao AZ. Therapeutic Potential of ω-3 Polyunsaturated Fatty Acids in Human Autoimmune Diseases. Front Immunol 2019; 10:2241. [PMID: 31611873 PMCID: PMC6776881 DOI: 10.3389/fimmu.2019.02241] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
The recognition of ω-3 polyunsaturated acids (PUFAs) as essential fatty acids to normal growth and health was realized more than 80 years ago. However, the awareness of the long-term nutritional intake of ω-3 PUFAs in lowering the risk of a variety of chronic human diseases has grown exponentially only since the 1980s (1, 2). Despite the overwhelming epidemiological evidence, many attempts of using fish-oil supplementation to intervene human diseases have generated conflicting and often ambiguous outcomes; null or weak supporting conclusions were sometimes derived in the subsequent META analysis. Different dosages, as well as the sources of fish-oil, may have contributed to the conflicting outcomes of intervention carried out at different clinics. However, over the past decade, mounting evidence generated from genetic mouse models and clinical studies has shed new light on the functions and the underlying mechanisms of ω-3 PUFAs and their metabolites in the prevention and treatment of rheumatoid arthritis, systemic lupus erythematosus (SLE), multiple sclerosis, and type 1 diabetes. In this review, we have summarized the current understanding of the effects as well as the underlying mechanisms of ω-3 PUFAs on autoimmune diseases.
Collapse
Affiliation(s)
- Xiaoxi Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.,Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xinyun Bi
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Allan Z Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Silva JC, Jones JG. Improving Metabolic Control Through Functional Foods. Curr Med Chem 2019; 26:3424-3438. [DOI: 10.2174/0929867324666170523130123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022]
Abstract
Background:
Functional foods are designed to have physiological benefits and reduce the
risk of chronic disease beyond basic nutritional functions. Conditions related to overnutrition such as
Metabolic Syndrome and Type 2 diabetes are increasingly serious concerns in Western societies. Several
nutrient classes are considered to protect against these conditions and this review focuses on the latest
clinical and preclinical evidence supporting their efficacy and the molecular mechanisms by which they
act.
Methods:
The review searched the literature for information and data on the following functional food
components and their protective effects against Metabolic Syndrome and Type 2 Diabetes: Dietary fiber;
Medium-chain triglycerides and Ketone esters; ω3 Polyunsaturated fatty acids and Antioxidants.
Results:
Data from a hundred and four studies were reviewed and summarized. They indicate that dietary
fiber results in the production of beneficial short chain fatty acids via intestinal microbiota, as well
as increasing intestinal secretion of incretins and satiety peptides. Medium chain triglycerides and ketone
esters promote thermogenesis, inhibit lipolysis and reduce inflammation. They also decrease endogenous
synthesis of triglycerides and fatty acids. ω3-PUFA’s act to soften inflammation through an
increase in adiponectin secretion. Antioxidants are involved in the protection of insulin sensitivity by
PTP1B suppression and SIRT1 activation.
Conclusion:
Functional foods have actions that complement and/or potentiate other lifestyle interventions
for reversing Metabolic Syndrome and Type 2 Diabetes. Functional foods contribute to reduced
food intake by promoting satiety, less weight gain via metabolic uncoupling and improved insulin sensitivity
via several distinct mechanisms.
Collapse
Affiliation(s)
- João C.P. Silva
- Center for Neurosciences and Cell Biology, UC Biotech, Cantanhede, Portugal
| | - John G. Jones
- Center for Neurosciences and Cell Biology, UC Biotech, Cantanhede, Portugal
| |
Collapse
|
3
|
Vemuri M, Adkins Y, Mackey BE, Kelley DS. Docosahexaenoic Acid and Eicosapentaenoic Acid Did not Alter
trans
‐10,
cis
‐12 Conjugated Linoleic Acid Incorporation into Mice Brain and Eye Lipids. Lipids 2017; 52:763-769. [DOI: 10.1007/s11745-017-4282-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/27/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Madhuri Vemuri
- Department of Nutrition, Western Human Nutrition Research Center, ARS, USDAUniversity of California Davis430 West Health Sciences DriveDavisCA95616USA
- Variety Knowledge SolutionsBuilding 5, GachibowliHyderabadIndia
| | - Yuriko Adkins
- Department of Nutrition, Western Human Nutrition Research Center, ARS, USDAUniversity of California Davis430 West Health Sciences DriveDavisCA95616USA
| | | | - Darshan S. Kelley
- Department of Nutrition, Western Human Nutrition Research Center, ARS, USDAUniversity of California Davis430 West Health Sciences DriveDavisCA95616USA
| |
Collapse
|
4
|
Kim Y, Kim J, Whang KY, Park Y. Impact of Conjugated Linoleic Acid (CLA) on Skeletal Muscle Metabolism. Lipids 2016; 51:159-78. [PMID: 26729488 DOI: 10.1007/s11745-015-4115-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Abstract
Conjugated linoleic acid (CLA) has garnered special attention as a food bioactive compound that prevents and attenuates obesity. Although most studies on the effects of CLA on obesity have focused on the reduction of body fat, a number of studies have demonstrated that CLA also increases lean body mass and enhances physical performances. It has been suggested that these effects may be due in part to physiological changes in the skeletal muscle, such as changes in the muscle fiber type transformation, alteration of the intracellular signaling pathways in muscle metabolism, or energy metabolism. However, the mode of action for CLA in muscle metabolism is not completely understood. The purpose of this review is to summarize the current knowledge of the effects of CLA on skeletal muscle metabolism. Given that CLA not only reduces body fat, but also improves lean mass, there is great potential for the use of CLA to improve muscle metabolism, which would have a significant health impact.
Collapse
Affiliation(s)
- Yoo Kim
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Jonggun Kim
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Kwang-Youn Whang
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA.
| |
Collapse
|
5
|
Dietary docosahexaenoic acid reverses nonalcoholic steatohepatitis and fibrosis caused by conjugated linoleic acid supplementation in mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
6
|
Dual effects of the non-esterified fatty acid receptor ‘GPR40’ for human health. Prog Lipid Res 2015; 58:40-50. [DOI: 10.1016/j.plipres.2015.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 01/12/2015] [Indexed: 11/18/2022]
|
7
|
Dietary conjugated α-linolenic acid did not improve glucose tolerance in a neonatal pig model. Eur J Nutr 2013; 53:761-8. [DOI: 10.1007/s00394-013-0580-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/25/2013] [Indexed: 10/26/2022]
|
8
|
Hötger K, Hammon HM, Weber C, Görs S, Tröscher A, Bruckmaier RM, Metges CC. Supplementation of conjugated linoleic acid in dairy cows reduces endogenous glucose production during early lactation. J Dairy Sci 2013; 96:2258-2270. [PMID: 23375968 DOI: 10.3168/jds.2012-6127] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/10/2012] [Indexed: 02/02/2023]
Abstract
Trans-10,cis-12 conjugated linoleic acid (CLA) supplementation causes milk fat depression in dairy cows, but CLA effects on glucose metabolism are not clear. The objective of the study was to investigate glucose metabolism, especially endogenous glucose production (eGP) and glucose oxidation (GOx), as well as hepatic genes involved in endogenous glucose production in Holstein cows supplemented either with 50 g of rumen-protected CLA (9% trans-10,cis-12 and 10% cis-9,trans-11; CLA; n=10) or 50 g of control fat (24% C18:2; Ctrl; n=10) from wk 2 before parturition to wk 9 of lactation. Animal performance data were recorded and blood metabolites and hormones were taken weekly from 2 wk before to 12 wk after parturition. During wk 3 and 9 after parturition, glucose tolerance tests were performed and eGP and GOx were measured by [U-(13)C] glucose infusion. Liver biopsies were taken at the same time to measure total fat and glycogen concentrations and gene expression of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and carnitine palmitoyl-transferase 1. Conjugated linoleic acid feeding reduced milk fat, but increased milk lactose output; milk yield was higher starting 5 wk after parturition in CLA-fed cows than in Ctrl-fed cows. Energy balance was more negative during CLA supplementation, and plasma concentrations of glucose were higher immediately after calving in CLA-fed cows. Conjugated linoleic acid supplementation did not affect insulin release during glucose tolerance tests, but reduced eGP in wk 3, and eGP and GOx increased with time after parturition. Hepatic gene expression of cytosolic phosphoenolpyruvate carboxykinase tended to be lower in CLA-fed cows than in Ctrl-fed cows. In spite of lower eGP in CLA-fed cows, lactose output and plasma glucose concentrations were greater in CLA-fed cows than in Ctrl-fed cows. This suggests a CLA-related glucose sparing effect most likely due to lower glucose utilization for milk fat synthesis and probably because of a more efficient whole-body energy utilization in CLA-fed cows.
Collapse
Affiliation(s)
- Kristin Hötger
- Department of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Harald M Hammon
- Department of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Claudia Weber
- Department of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Solvig Görs
- Department of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | | | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Cornelia C Metges
- Department of Nutritional Physiology 'Oskar Kellner', Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany.
| |
Collapse
|
9
|
Pacini G, Omar B, Ahrén B. Methods and models for metabolic assessment in mice. J Diabetes Res 2013; 2013:986906. [PMID: 23762879 PMCID: PMC3673320 DOI: 10.1155/2013/986906] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/23/2013] [Indexed: 12/02/2022] Open
Abstract
The development of new therapies for the treatment of type 2 diabetes requires robust, reproducible and well validated in vivo experimental systems. Mice provide the most ideal animal model for studies of potential therapies. Unlike larger animals, mice have a short gestational period, are genetically similar, often give birth to many offspring at once and can be housed as multiple groups in a single cage. The mouse model has been extensively metabolically characterized using different tests. This report summarizes how these tests can be executed and how arising data are analyzed to confidently determine changes in insulin resistance and insulin secretion with high reproducibility. The main tests for metabolic assessment in the mouse reviewed here are the glucose clamp, the intravenous and the oral glucose tolerance tests. For all these experiments, including some commonly adopted variants, we describe: (i) their performance; (ii) their advantages and limitations; (iii) the empirical formulas and mathematical models implemented for the analysis of the data arising from the experimental procedures to obtain reliable measurements of peripheral insulin sensitivity and beta cell function. Finally, a list of previous applications of these methods and analytical techniques is provided to better comprehend their use and the evidences that these studies yielded.
Collapse
Affiliation(s)
- G Pacini
- Metabolic Unit, ISIB CNR, Padua, Italy.
| | | | | |
Collapse
|
10
|
Fedor DM, Adkins Y, Mackey BE, Kelley DS. Docosahexaenoic Acid PreventsTrans-10,Cis-12–Conjugated Linoleic Acid-Induced Nonalcoholic Fatty Liver Disease in Mice by Altering Expression of Hepatic Genes Regulating Fatty Acid Synthesis and Oxidation. Metab Syndr Relat Disord 2012; 10:175-80. [DOI: 10.1089/met.2011.0113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Dawn M. Fedor
- Western Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture and Department of Nutrition, University of California Davis, Davis, California
| | - Yuriko Adkins
- Western Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture and Department of Nutrition, University of California Davis, Davis, California
| | - Bruce E. Mackey
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - Darshan S. Kelley
- Western Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture and Department of Nutrition, University of California Davis, Davis, California
| |
Collapse
|
11
|
Makni M, Fetoui H, Gargouri NK, Garoui EM, Zeghal N. Antidiabetic effect of flax and pumpkin seed mixture powder: effect on hyperlipidemia and antioxidant status in alloxan diabetic rats. J Diabetes Complications 2011; 25:339-45. [PMID: 21106396 DOI: 10.1016/j.jdiacomp.2010.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/14/2010] [Accepted: 09/08/2010] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species play a crucial role in the pathogenesis of diabetes and its complications. This study aims to examine the effects of flax and pumpkin powder seed mixture on alloxan induced diabetes in Wistar rats. Animals were allocated into three groups of six rats each: a control group (CD), diabetic group (DD) and diabetic rats fed with flax and pumpkin seed mixture (DMS) group. The diabetic rats (DD) presented a significant increase in glycemia, plasma and liver lipid parameters such as total lipid, total cholesterol and triglycerides compared to the control group (CD). In addition, plasma and liver malonaldialdehyde levels (MDA, an index of lipid peroxidation) significantly increased compared to (CD). Antioxidant enzymes activities such as catalase, superoxide dismutase, and reduced glutathione (GSH) levels significantly decreased in the plasma and liver of diabetic rats compared to controls. Diet supplemented with flax and pumpkin seed mixture in the DMS group ameliorated antioxidant enzymes activities and level of GSH in diabetic rats and significantly decreased MDA levels. The present study revealed a significant increase in the activities of aspartate aminotransferase and alanine aminotransferase on diabetic status, indicating considerable hepatocellular injury. The administration of flax and pumpkin seed mixture attenuated the increased levels of the plasma enzymes produced by the induction of diabetes and caused a subsequent recovery towards normalization comparable to the control group animals. Our results thus suggest that flax and pumpkin seed mixture supplemented to diet may be helpful in preventing diabetic complications in adult rats.
Collapse
Affiliation(s)
- Mohamed Makni
- Animal Physiology Laboratory, Faculty of Sciences, BP 1171, 3000 Sfax, Tunisia
| | | | | | | | | |
Collapse
|
12
|
Schmidt J, Liebscher K, Merten N, Grundmann M, Mielenz M, Sauerwein H, Christiansen E, Due-Hansen ME, Ulven T, Ullrich S, Gomeza J, Drewke C, Kostenis E. Conjugated linoleic acids mediate insulin release through islet G protein-coupled receptor FFA1/GPR40. J Biol Chem 2011; 286:11890-4. [PMID: 21339298 DOI: 10.1074/jbc.c110.200477] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Among dietary components, conjugated linoleic acids (CLAs) have attracted considerable attention as weight loss supplements in the Western world because they reduce fat stores and increase muscle mass. However, a number of adverse effects are also ascribed to the intake of CLAs such as aggravation of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2 diabetes. Using different recombinant cellular systems engineered to stably express FFA1 and a set of diverse functional assays including the novel, label-free non-invasive dynamic mass redistribution technology (Corning® Epic® biosensor), both CLA isomers cis-9, trans-11-CLA and trans-10, cis-12-CLA were found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type but not FFA1-/- knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components in widely used nutraceuticals, a finding with significant implication for development of FFA1 modulators to treat type 2 diabetes.
Collapse
Affiliation(s)
- Johannes Schmidt
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Branca RT, Warren WS. In vivo NMR detection of diet-induced changes in adipose tissue composition. J Lipid Res 2011; 52:833-9. [PMID: 21270099 DOI: 10.1194/jlr.d012468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We introduce an in vivo spectroscopic method to assess the effects of diet on fatty acid composition of the predominant chemical constituent of adipocytes in mice. To do this, we make use of a nonlinear NMR signal that, unlike a standard NMR signal, is intrinsically insensitive to local magnetic field inhomogeneities and which naturally suppresses the large water signal from nonfatty tissues. Our method yields fat composition information from fat depots distributed over large sample volumes in a single experiment, without requiring the use of tedious shimming procedures, voxel selection, or water suppression. Our results suggest that this method can reveal clear differences in adipose tissue composition of mice fed a standard chow diet compared with mice fed a diet rich in polyunsaturated fatty acids. With further developments this method could be used to obtain information on human lipid composition noninvasively and to track changes in lipid composition induced by diet intervention, pharmaceutical drugs, and exercise.
Collapse
Affiliation(s)
- Rosa T Branca
- Chemistry Department, Duke University, Durham, NC, USA.
| | | |
Collapse
|
14
|
Costa CASD, Carlos AS, dos Santos ADS, Monteiro AMV, Moura EGD, Nascimento-Saba CCA. Abdominal adiposity, insulin and bone quality in young male rats fed a high-fat diet containing soybean or canola oil. Clinics (Sao Paulo) 2011; 66:1811-6. [PMID: 22012056 PMCID: PMC3180158 DOI: 10.1590/s1807-59322011001000022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/30/2011] [Accepted: 07/05/2011] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES A low ratio of omega-6/omega-3 polyunsaturated fatty acids is associated with healthy bone properties. However, fatty diets can induce obesity. Our objective was to evaluate intra-abdominal adiposity, insulin, and bone growth in rats fed a high-fat diet containing low ratios of omega-6/omega-3 provided in canola oil. METHODS After weaning, rats were grouped and fed either a control diet (7S), a high-fat diet containing soybean oil (19S) or a high-fat diet of canola oil (19C) until they were 60 days old. Differences were considered to be significant if p<0.05. RESULTS After 60 days, the 19S and 19C groups showed more energy intake, body density growth and intraabdominal fat mass. However, the 19S group had a higher area (200%) and a lower number (44%) of adipocytes, while the 7S and 19C groups did not differ. The serum concentrations of glucose and insulin and the insulin resistance index were significantly increased in the 19C group (15%, 56%, and 78%, respectively) compared to the 7S group. Bone measurements of the 19S and 19C groups showed a higher femur mass (25%) and a higher lumbar vertebrae mass (11%) and length (5%). Computed tomography analysis revealed more radiodensity in the proximal femoral epiphysis and lumbar vertebrae of 19C group compared to the 7S and 19S groups. CONCLUSIONS Our results suggest that the amount and source of fat used in the diet after weaning increase body growth and fat depots and affect insulin resistance and, consequently, bone health.
Collapse
|
15
|
Wei D, Li J, Shen M, Jia W, Chen N, Chen T, Su D, Tian H, Zheng S, Dai Y, Zhao A. Cellular production of n-3 PUFAs and reduction of n-6-to-n-3 ratios in the pancreatic beta-cells and islets enhance insulin secretion and confer protection against cytokine-induced cell death. Diabetes 2010; 59:471-8. [PMID: 19933995 PMCID: PMC2809969 DOI: 10.2337/db09-0284] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate the direct impact of n-3 polyunsaturated fatty acids (n-3 PUFAs) on the functions and viability of pancreatic beta-cells. RESEARCH DESIGN AND METHODS We developed an mfat-1 transgenic mouse model in which endogenous production of n-3 PUFAs was achieved through overexpressing a C. elegans n-3 fatty acid desaturase gene, mfat-1. The islets and INS-1 cells expressing mfat-1 were analyzed for insulin secretion and viability in response to cytokine treatment. RESULTS The transgenic islets contained much higher levels of n-3 PUFAs and lower levels of n-6 PUFAs than the wild type. Insulin secretion stimulated by glucose, amino acids, and glucagon-like peptide-1 (GLP-1) was significantly elevated in the transgenic islets. When challenged with tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and gamma-interferon (IFN-gamma), the transgenic islets completely resisted cytokine-induced cell death. Adenoviral transduction of mfat-1 gene in wild-type islets and in INS-1 cells led to acute changes in the cellular levels of n-3- and n-6 PUFAs and recapitulated the results in the transgenic islets. The expression of mfat-1 led to decreased production of prostaglandin E(2) (PGE(2)), which in turn contributed to the elevation of insulin secretion. We further found that cytokine-induced activation of NF-kappaB and extracellular signal-related kinase 1/2 (ERK(1/2)) was significantly attenuated and that the expression of pancreatic duodenal hemeobox-1 (PDX-1), glucokinase, and insulin-1 was increased as a result of n-3 PUFA production. CONCLUSIONS Stable cellular production of n-3 PUFAs via mfat-1 can enhance insulin secretion and confers strong resistance to cytokine-induced beta-cell destruction. The utility of mfat-1 gene in deterring type 1 diabetes should be further explored in vivo.
Collapse
Affiliation(s)
- Dong Wei
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Endocrinology, the Second People's Hospital of Chengdu, Chengdu, China
| | - Jie Li
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Miaoda Shen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wei Jia
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Nuoqi Chen
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tao Chen
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dongming Su
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haoming Tian
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shusen Zheng
- Department of Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yifan Dai
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Allan Zhao
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu Province, China
- Corresponding author: Allan Zhao,
| |
Collapse
|
16
|
Ji S, Hardy RW, Wood PA. Transgenic expression of n-3 fatty acid desaturase (fat-1) in C57/BL6 mice: Effects on glucose homeostasis and body weight. J Cell Biochem 2009; 107:809-17. [PMID: 19396841 DOI: 10.1002/jcb.22179] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The fat-1 gene, derived from Caenorhabditis elegans, encodes for a fatty acid n-3 desaturase. In order to study the potential metabolic benefits of n-3 fatty acids, independent of dietary fatty acids, we developed seven lines of fat-1 transgenic mice (C57/BL6) controlled by the regulatory sequences of the adipocyte protein-2 (aP2) gene for adipocyte-specific expression (AP-lines). We were unable to obtain homozygous fat-1 transgenic offspring from the two highest expressing lines, suggesting that excessive expression of this enzyme may be lethal during gestation. Serum fatty acid analysis of fat-1 transgenic mice (AP-3) fed a high n-6 unsaturated fat (HUSF) diet had an n-6/n-3 fatty acid ratio reduced by 23% (P < 0.025) and the n-3 fatty acid eicosapentaenoic acid (EPA) concentration increased by 61% (P < 0.020). Docosahexaenoic acid (DHA) was increased by 19% (P < 0.015) in white adipose tissue. Male AP-3-fat-1 line of mice had improved glucose tolerance and reduced body weight with no change in insulin sensitivity when challenged with a high-carbohydrate (HC) diet. In contrast, the female AP-3 mice had reduced glucose tolerance and no change in insulin sensitivity or body weight. These findings indicate that male transgenic fat-1 mice have improved glucose tolerance likely due to increased insulin secretion while female fat-1 mice have reduced glucose tolerance compared to wild-type mice. Finally the inability of fat-1 transgenic mice to generate homozygous offspring suggests that prolonged exposure to increased concentrations of n-3 fatty acids may be detrimental to reproduction.
Collapse
Affiliation(s)
- Shaonin Ji
- Department of Genetics, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
17
|
Derosa G, Maffioli P, D'Angelo A, Salvadeo SAT, Ferrari I, Fogari E, Gravina A, Mereu R, Randazzo S, Cicero AFG. Effects of long chain omega-3 fatty acids on metalloproteinases and their inhibitors in combined dyslipidemia patients. Expert Opin Pharmacother 2009; 10:1239-47. [PMID: 19397392 DOI: 10.1517/14656560902865601] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We evaluate the effect of a standardized dietary supplementation with omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the level of some markers of vascular remodeling in patients with combined dyslipidemia. Three hundred and thirty-three patients received placebo or n-3 PUFAs for 6 months. We evaluated body mass index, glycemic profile, blood pressure, lipid profile, lipoprotein(a), plasminogen activator inhibitor-1, homocysteine, fibrinogen, high-sensitivity C reactive protein, ADP, MMP-2 and MMP-9, and tissue inhibitors of metalloproteinase-1 and -2. A significant increase of high-density lipoprotein-cholesterol, and a significant decrease of triglycerides were present after 3 and 6 months with n-3 PUFAs intake. A significant plasminogen activator inhibitor-1, fibrinogen and high-sensitivity C reactive protein decrease was obtained after 3 and 6 months and a significant ADP increase was observed after 3 and 6 months of n-3 PUFAs. A significant MMP-2, MMP-9, tissue inhibitors of metalloproteinase-1 and tissue inhibitors of metalloproteinase-2 decrease was obtained after 6 months compared to the baseline value with n-3 PUFAs intake. n-3 PUFAs give a better lipid profile and a better improvement of coagulation, fibrinolytic and inflammatory parameters than placebo. Furthermore, lowers levels of MMP-2, MMP-9 and their tissue inhibitors are obtained with n-3 PUFAs compared to placebo.
Collapse
Affiliation(s)
- G Derosa
- University of Pavia, Department of Internal Medicine and Therapeutics, P.le C. Golgi, 2 - 27100, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sebbagh N, Cruciani-Guglielmacci C, Ouali F, Berthault MF, Rouch C, Sari DC, Magnan C. Comparative effects of Citrullus colocynthis, sunflower and olive oil-enriched diet in streptozotocin-induced diabetes in rats. DIABETES & METABOLISM 2009; 35:178-84. [DOI: 10.1016/j.diabet.2008.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022]
|
19
|
Mullen A, Loscher CE, Roche HM. Anti-inflammatory effects of EPA and DHA are dependent upon time and dose-response elements associated with LPS stimulation in THP-1-derived macrophages. J Nutr Biochem 2009; 21:444-50. [PMID: 19427777 DOI: 10.1016/j.jnutbio.2009.02.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 01/06/2009] [Accepted: 02/05/2009] [Indexed: 11/26/2022]
Abstract
The long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of fish oil, eicosapentanoic (EPA) and docosahexanoic (DHA) acids are considered cardioprotective. Inflammation elicited by macrophages is increasingly recognised in the aetiology of metabolic syndrome. This study investigated the differential anti-inflammatory potential of EPA and DHA through cytokine production and nuclear factor (NF)-kappaB signalling in a human macrophage model. We investigated the dependency of LC n-3 PUFA immune-modulation on concentration and duration of lipopolysaccharide (LPS) activation. Interleukin (IL)-1beta, IL-6 and tumor necrosis factor-alpha secretion from EPA, DHA and control cells were differentially limited by LPS concentration. In all cases, there was no benefit in activating cells with >0.1 microg/ml LPS. LC n-3 PUFA decreased proinflammatory cytokines production, an effect modulated by LPS concentration. Expression of the transcription factor NF-kappaB p65 was significantly reduced in the nucleus and retained in the cytoplasm of EPA- and/or DHA-treated macrophages during 5-h activation with 0.1 microg/ml LPS. Nuclear binding of p65 was significantly reduced in EPA- and DHA-treated cells at 2-h LPS activation. Over the time course, expression of nuclear IkappaBalpha was significantly reduced, cytoplasmic NF-kappaB p50 significantly increased and cytoplasmic cleaving enzyme IkappaB inhibitor complex significantly reduced in LC n-3 PUFA-treated cells. EPA and DHA down-regulated the production of proinflammatory cytokines associated with the aetiology of metabolic syndrome, NF-kappaB transcriptional activity and upstream cytoplasmic signalling events. Immune responses are dynamic, and the present study suggests a nutrient sensitive window of LPS activation at which EPA and DHA are strongly anti-inflammatory.
Collapse
Affiliation(s)
- Anne Mullen
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Review results from recent human and animal studies regarding the effects of n-3 polyunsaturated fatty acid (PUFA) in the prevention of insulin resistance. RECENT FINDINGS Overall, results from animal studies indicate that fish oil and individual n-3 PUFA [alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)] prevented insulin resistance in animal models; results from two studies in mice showed that EPA increased insulin secretion. ALA, EPA, and DHA may act at different sites and involve different mechanisms. Fish oil or purified EPA reduced insulin resistance in some but not other human studies in normal weight and obese individuals. Discrepancies may be due to differences in health status of participants, macronutrient, fatty acid, and antioxidant nutrient composition of basal diet; amount, duration, and fatty acid composition of n-3 PUFA, and methods used to assess insulin resistance. Moderate amounts of n-3 PUFA did not improve or deteriorate glucose control in type 2 diabetics. SUMMARY n-3 PUFA supplementation has clinical significance in the prevention and reversal of insulin resistance. However, increased intake of n-3 PUFA should be part of an overall healthy lifestyle that includes weight control, exercise, and reduction in the intake of refined sugars, n-6, saturated, and trans fatty acids.
Collapse
Affiliation(s)
- Dawn Fedor
- Western Human Nutrition Research Center, ARS, USDA Department of Nutrition, University of California, Davis, California 95616, USA
| | | |
Collapse
|
21
|
Pacini G, Ahrén M, Ahrén B. Reappraisal of the intravenous glucose tolerance index for a simple assessment of insulin sensitivity in mice. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1316-24. [PMID: 19211728 DOI: 10.1152/ajpregu.90575.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice are increasingly used in studies where measuring insulin sensitivity (IS) is a common procedure. The glucose clamp is labor intensive, cannot be used in large numbers of animals, cannot be repeated in the same mouse, and has been questioned as a valid tool for IS in mice; thus, the minimal model with 50-min intravenous glucose tolerance test (IVGTT) data was adapted for studies in mice. However, specific software and particular ability was needed. The aim of this study was to establish a simple procedure for evaluating IS during IVGTT in mice (CS(I)). IVGTTs (n = 520) were performed in NMRI and C57BL/6J mice (20-25g). After glucose injection (1 g/kg), seven samples were collected for 50 min for glucose and insulin measurements, analyzed with a minimal model that provided the validated reference IS (S(I)). By using the regression CS(I) = alpha(1) + alpha(2) x K(G)/AUC(D), where K(G) is intravenous glucose tolerance index and AUC(d) is the dynamic area under the curve, IS was calculated in 134 control animals randomly selected (regression CS(I) vs. S(I): r = 0.66, P < 0.0001) and yielded alpha(1) = 1.93 and alpha(2) = 0.24. K(G) is the slope of log (glucose(5-20)) and AUC(D) is the mean dynamic area under insulin curve in the IVGTT. By keeping fixed alpha(1) and alpha(2), CS(I) was validated in 143 control mice (4.7 +/- 0.2 min*microU(-1)*ml(-1), virtually identical to S(I): 4.7 +/- 0.3, r = 0.89, P < 0.0001); and in 123 mice in different conditions: transgenic, addition of neuropeptides, incretins, and insulin (CS(I): 6.0 +/- 0.4 vs. S(I): 6.1 +/- 0.4, r = 0.94, P < 0.0001). In the other 120 animals, CS(I) revealed its ability to segregate different categories, as does S(I). This easily usable formula for calculating CS(I) overcomes many experimental obstacles and may be a simple alternative to more complex procedures when large numbers of mice or repeated experiments in the same animals are required.
Collapse
Affiliation(s)
- Giovanni Pacini
- Metabolic Unit, Institute of Biomedical Engineering, National Research Council, Padova, Italy.
| | | | | |
Collapse
|
22
|
Flaxseed oil prevents trans-10, cis-12-conjugated linoleic acid-induced insulin resistance in mice. Br J Nutr 2008; 101:701-8. [PMID: 18710604 DOI: 10.1017/s0007114508027451] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD) are found in 35 and 30 % of US adults, respectively. Trans-10, cis-12-conjugated linoleic acid (CLA) has been found to cause both these disorders in several animal models. We hypothesised that IR and NAFLD caused by CLA result from n-3 fatty acid deficiency. Pathogen-free C57BL/6N female mice (aged 8 weeks; n 10) were fed either a control diet or diets containing trans-10, cis-12-CLA (0.5 %) or CLA+flaxseed oil (FSO) (0.5 %+0.5 %) for 8 weeks. Weights of livers, concentration of circulating insulin, values of homeostatic model 1 (HOMA1) for IR and HOMA1 for beta cell function were higher by 160, 636, 985 and 968 % in the CLA group compared with those in the control group. FSO decreased fasting glucose by 20 % and liver weights by 37 % compared with those in the CLA group; it maintained circulating insulin, HOMA1-IR and HOMA1 for beta cell function at levels found in the control group. CLA supplementation decreased n-6 and n-3 wt% concentrations of liver lipids by 57 and 73 % and increased the n-6:n-3 ratio by 58 % compared with corresponding values in the control group. FSO increased n-6 and n-3 PUFA in liver lipids by 33 and 342 % and decreased the n-6:n-3 ratio by 70 % compared with corresponding values in the CLA group. The present results suggest that some adverse effects of CLA may be due to n-3 PUFA deficiency and that these can be corrected by a concomitant increase in the intake of alpha-linolenic acid, 18 : 3n-3.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. RECENT FINDINGS Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor alpha, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22:6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor alpha. Hepatic metabolism of 22:6,n-3, however, generates 20:5,n-3, a strong peroxisome proliferator-activated receptor alpha activator. In contrast to peroxisome proliferator-activated receptor alpha, 22:6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22:6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. SUMMARY These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor alpha, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks.
Collapse
Affiliation(s)
- Donald B Jump
- Department of Nutrition and Exercise Sciences, Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331-5109, USA.
| |
Collapse
|
24
|
Sneddon AA, Tsofliou F, Fyfe CL, Matheson I, Jackson DM, Horgan G, Winzell MS, Wahle KWJ, Ahren B, Williams LM. Effect of a conjugated linoleic acid and omega-3 fatty acid mixture on body composition and adiponectin. Obesity (Silver Spring) 2008; 16:1019-24. [PMID: 18356842 DOI: 10.1038/oby.2008.41] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to determine the effect of supplementation with conjugated linoleic acids (CLAs) plus n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) on body composition, adiposity, and hormone levels in young and older, lean and obese men. Young (31.4+/-3.9 years) lean (BMI, 23.6+/-1.5 kg/m2; n=13) and obese (BMI, 32.4+/-1.9 kg/m2; n=12) and older (56.5+/-4.6 years) lean (BMI, 23.6+/-1.5 kg/m2; n=20) and obese (BMI, 32.0+/-1.6 kg/m2; n=14) men participated in a double-blind placebo-controlled, randomized crossover study. Subjects received either 6 g/day control fat or 3 g/day CLA (50:50 cis-9, trans-11:trans-10, cis-12) and 3 g/day n-3 LC-PUFA for 12 weeks with a 12-week wash-out period between crossovers. Body composition was assessed by dual-energy X-ray absorptiometry. Fasting adiponectin, leptin, glucose, and insulin concentrations were measured and insulin resistance estimated by homeostasis model assessment for insulin resistance (HOMA-IR). In the younger obese subjects, CLA plus n-3 LC-PUFA supplementation compared with control fat did not result in increased abdominal fat and raised both fat-free mass (2.4%) and adiponectin levels (12%). CLA plus n-3 LC-PUFA showed no significant effects on HOMA-IR in any group but did increase fasting glucose in older obese subjects. In summary, supplementation with CLA plus n-3 LC-PUFA prevents increased abdominal fat mass and raises fat-free mass and adiponectin levels in younger obese individuals without deleteriously affecting insulin sensitivity, whereas these parameters in young and older lean and older obese individuals were unaffected, apart from increased fasting glucose in older obese men.
Collapse
Affiliation(s)
- Alan A Sneddon
- Vascular Health Division, Rowett Research Institute, Aberdeen, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang Y, Torres-Gonzalez M, Tripathy S, Botolin D, Christian B, Jump DB. Elevated hepatic fatty acid elongase-5 activity affects multiple pathways controlling hepatic lipid and carbohydrate composition. J Lipid Res 2008; 49:1538-52. [PMID: 18376007 DOI: 10.1194/jlr.m800123-jlr200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatic fatty acid elongase-5 (Elovl-5) plays an important role in long chain monounsaturated and polyunsaturated fatty acid synthesis. Elovl-5 activity is regulated during development, by diet, hormones, and drugs, and in chronic disease. This report examines the impact of elevated Elovl-5 activity on hepatic function. Adenovirus-mediated induction of Elovl5 activity in livers of C57BL/6 mice increased hepatic and plasma levels of dihomo-gamma-linolenic acid (20:3,n-6) while suppressing hepatic arachidonic acid (20:4,n-6) and docosahexaenoic acid (22:6,n-3) content. The fasting-refeeding response of peroxisome proliferator-activated receptor alpha-regulated genes was attenuated in mice with elevated Elovl5 activity. In contrast, the fasting-refeeding response of hepatic sterol-regulatory element binding protein-1 (SREBP-1)-regulated and carbohydrate-regulatory element binding protein/Max-like factor X-regulated genes, Akt and glycogen synthase kinase (Gsk)-3beta phosphorylation, and the accumulation of hepatic glycogen content and nuclear SREBP-1 were not impaired by elevated Elovl5 activity. Hepatic triglyceride content and the phosphorylation of AMP-activated kinase alpha and Jun kinase 1/2 were reduced by elevated Elovl5 activity. Hepatic phosphoenolpyruvate carboxykinase expression was suppressed, while hepatic glycogen content and phosphorylated Gsk-3beta were significantly increased, in livers of fasted mice with increased Elovl5 activity. As such, hepatic Elovl5 activity may affect hepatic glucose production during fasting. In summary, Elovl5-induced changes in hepatic fatty acid content affect multiple pathways regulating hepatic lipid and carbohydrate composition.
Collapse
Affiliation(s)
- Yun Wang
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The type and quantity of dietary fat ingested contributes to the onset and progression of chronic diseases, like diabetes and atherosclerosis. The liver plays a central role in whole body lipid metabolism and responds rapidly to changes in dietary fat composition. Polyunsaturated fatty acids (PUFA) play a key role in membrane composition and function, metabolism and the control of gene expression. Certain PUFA, like the n-3 PUFA, enhance hepatic fatty acid oxidation and inhibit fatty acid synthesis and VLDL secretion, in part, by regulating gene expression. Our studies have established that key transcription factors, like PPARalpha, SREBP-1, ChREBP and MLX, are regulated by n-3 PUFA, which in turn control levels of proteins involved in lipid and carbohydrate metabolism. Of the n-3 PUFA, 22:6,n-3 has recently been established as a key controller of hepatic lipid synthesis. 22:6,n-3 controls the 26S proteasomal degradation of the nuclear form of SREBP-1. SREBP-1 is a major transcription factor that controls the expression of multiple genes involved fatty acid synthesis and desaturation. 22:6,n-3 suppresses nuclear SREBP-1, which in turn suppresses lipogenesis. This mechanism is achieved, in part, through control of the phosphorylation status of protein kinases. This review will examine both the general features of PUFA-regulated hepatic gene transcription and highlight the unique mechanisms by which 22:6,n-3 impacts gene expression. The outcome of this analysis will reveal that changes in hepatic 22:6,n-3 content has a major impact on hepatic lipid and carbohydrate metabolism. Moreover, the mechanisms involve 22:6,n-3 control of several well-known signaling pathways, such as Akt, Erk1/2, Gsk3beta and PKC (novel or atypical). 22:6,n-3 control of these same signaling pathways in non-hepatic tissues may help to explain the diverse actions of n-3 PUFA on such complex physiological processes as visual acuity and learning.
Collapse
|
27
|
Vemuri M, Kelley DS, Mackey BE, Rasooly R, Bartolini G. Docosahexaenoic Acid (DHA) But Not Eicosapentaenoic Acid (EPA) Prevents Trans-10, Cis-12 Conjugated Linoleic Acid (CLA)–Induced Insulin Resistance in Mice. Metab Syndr Relat Disord 2007; 5:315-22. [DOI: 10.1089/met.2007.0007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Madhuri Vemuri
- Western Human Nutrition Research Center, ARS, USDA, and Department of Nutrition, University of California, Davis, California
| | - Darshan S. Kelley
- Western Human Nutrition Research Center, ARS, USDA, and Department of Nutrition, University of California, Davis, California
| | | | - Reuven Rasooly
- Western Human Nutrition Research Center, ARS, USDA, and Department of Nutrition, University of California, Davis, California
| | - Giovanni Bartolini
- Western Human Nutrition Research Center, ARS, USDA, and Department of Nutrition, University of California, Davis, California
| |
Collapse
|
28
|
Holness MJ, Smith ND, Greenwood GK, Sugden MC. PPARalpha activation reverses adverse effects induced by high-saturated-fat feeding on pancreatic beta-cell function in late pregnancy. Am J Physiol Endocrinol Metab 2007; 292:E1087-94. [PMID: 17164438 DOI: 10.1152/ajpendo.00375.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined whether the additional demand for insulin secretion imposed by dietary saturated fat-induced insulin resistance during pregnancy is accommodated at late pregnancy, already characterized by insulin resistance. We also assessed whether effects of dietary saturated fat are influenced by PPARalpha activation or substitution of 7% of dietary fatty acids (FAs) with long-chain omega-3 FA, manipulations that improve insulin action in the nonpregnant state. Glucose tolerance at day 19 of pregnancy in the rat was impaired by high-saturated-fat feeding throughout pregnancy. Despite modestly enhanced glucose-stimulated insulin secretion (GSIS) in vivo, islet perifusions revealed an increased glucose threshold and decreased glucose responsiveness of GSIS in the saturated-fat-fed pregnant group. Thus, insulin resistance evoked by dietary saturated fat is partially countered by augmented insulin secretion, but compensation is compromised by impaired islet function. Substitution of 7% of saturated FA with long-chain omega-3 FA suppressed GSIS in vivo but did not modify the effect of saturated-fat feeding to impair GSIS by perifused islets. PPARalpha activation (24 h) rescued impaired islet function that was identified using perifused islets, but GSIS in vivo was suppressed such that glucose tolerance was not improved, suggesting modification of the feedback loop between insulin action and secretion.
Collapse
Affiliation(s)
- Mark J Holness
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, St.Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
29
|
Neschen S, Morino K, Dong J, Wang-Fischer Y, Cline GW, Romanelli AJ, Rossbacher JC, Moore IK, Regittnig W, Munoz DS, Kim JH, Shulman GI. n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner. Diabetes 2007; 56:1034-41. [PMID: 17251275 DOI: 10.2337/db06-1206] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have suggested that n-3 fatty acids, abundant in fish oil, protect against high-fat diet-induced insulin resistance through peroxisome proliferator-activated receptor (PPAR)-alpha activation and a subsequent decrease in intracellular lipid abundance. To directly test this hypothesis, we fed PPAR-alpha null and wild-type mice for 2 weeks with isocaloric high-fat diets containing 27% fat from either safflower oil or safflower oil with an 8% fish oil replacement (fish oil diet). In both genotypes the safflower oil diet blunted insulin-mediated suppression of hepatic glucose production (P < 0.02 vs. genotype control) and PEPCK gene expression. Feeding wild-type mice a fish oil diet restored hepatic insulin sensitivity (hepatic glucose production [HGP], P < 0.002 vs. wild-type mice fed safflower oil), whereas in contrast, in PPAR-alpha null mice failed to counteract hepatic insulin resistance (HGP, P = NS vs. PPAR-alpha null safflower oil-fed mice). In PPAR-alpha null mice fed the fish oil diet, safflower oil plus fish oil, hepatic insulin resistance was dissociated from increases in hepatic triacylglycerol and acyl-CoA but accompanied by a more than threefold increase in hepatic diacylglycerol concentration (P < 0.0001 vs. genotype control). These data support the hypothesis that n-3 fatty acids protect from high-fat diet-induced hepatic insulin resistance in a PPAR-alpha-and diacylglycerol-dependent manner.
Collapse
Affiliation(s)
- Susanne Neschen
- Yale University School of Medicine, Howard Hughes Medical Institute, Departments of Internal Medicine, The Anlyan Center, P.O. Box 9812, New Haven, CT 06536-8012, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Salas-Salvadó J, Márquez-Sandoval F, Bulló M. Conjugated linoleic acid intake in humans: a systematic review focusing on its effect on body composition, glucose, and lipid metabolism. Crit Rev Food Sci Nutr 2006; 46:479-88. [PMID: 16864141 DOI: 10.1080/10408390600723953] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Studies performed on different species show that the consumption of conjugated linoleic acid (CLA) leads to a loss of fat and total body weight, reduces the plasma concentrations of total and LDL cholesterol, and has an antiinflammatory effect. This article reviews the clinical trials on human beings that evaluate how mixtures of CLA isomers administered as supplements or CLA-enriched products can affect total body weight, body composition, plasma lipid profile, glycemia, insulinemia, insulin sensitivity, lipid oxidation, and inflammation. After analyzing the few studies published to date in reduced samples of healthy humans or patients with overweight, obesity, metabolic syndrome, or diabetes, we deduce that there is not enough evidence to show that conjugated linoleic acid has an effect on weight and body composition in humans. However, some of these studies have observed that the administration of various CLA isomers has adverse effects on lipid profile (it decreases HDL cholesterol concentration and increases Lp(a) circulating levels), glucose metabolism (glycemia, insulinemia or insulin sensitivity), lipid oxidation, inflammation, or endothelial function. Therefore, long-term randomized clinical trials, controlled with placebo, need to be made in large samples of patients to evaluate the efficacy and safety of CLA isomers before its indiscriminate use in human beings can be recommended.
Collapse
Affiliation(s)
- J Salas-Salvadó
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut de Reus, Spain.
| | | | | |
Collapse
|
31
|
Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G. Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 2006; 17:789-810. [PMID: 16650752 DOI: 10.1016/j.jnutbio.2006.02.009] [Citation(s) in RCA: 424] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/21/2006] [Accepted: 02/24/2006] [Indexed: 01/20/2023]
Abstract
Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid [linoleic acid (LA), 18:2n-6] commonly found in beef, lamb and dairy products. The most abundant isomer of CLA in nature is the cis-9, trans-11 (c9t11) isomer. Commercially available CLA is usually a 1:1 mixture of c9t11 and trans-10, cis-12 (t10c12) isomers with other isomers as minor components. Conjugated LA isomer mixture and c9t11 and t10c12 isomers alone have been attributed to provide several health benefits that are largely based on animal and in vitro studies. Conjugated LA has been attributed many beneficial effects in prevention of atherosclerosis, different types of cancer, hypertension and also known to improve immune function. More recent literature with availability of purified c9t11 and t10c12 isomers suggests that t10c12 is the sole isomer involved in antiadipogenic role of CLA. Other studies in animals and cell lines suggest that the two isomers may act similarly or antagonistically to alter cellular function and metabolism, and may also act through different signaling pathways. The effect of CLA and individual isomers shows considerable variation between different strains (BALB/C mice vs. C57BL/6 mice) and species (e.g., rats vs. mice). The dramatic effects seen in animal studies have not been reflected in some clinical studies. This review comprehensively discusses the recent studies on the effects of CLA and individual isomers on body composition, cardiovascular disease, bone health, insulin resistance, mediators of inflammatory response and different types of cancer, obtained from both in vitro and animal studies. This review also discusses the latest available information from clinical studies in these areas of research.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|