1
|
Zou Y, Tian L, Pei L, Hao J, Chen T, Qi J, Qiu J, Xu Y, Hu X, Chen L, Dou X. SFAs facilitates ceramide's de novo synthesis via TLR4 and intensifies hepatocyte lipotoxicity. Int Immunopharmacol 2025; 147:114020. [PMID: 39793229 DOI: 10.1016/j.intimp.2025.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH), an advanced manifestation of non-alcoholic fatty liver disease (NAFLD), is characterized by hepatocyte injury, inflammation, and fibrosis. Saturated fatty acids (SFAs) have emerged as key contributors to hepatocyte lipotoxicity and disease progression. Toll-like receptor 4 (TLR4) acts as a sentinel for diverse ligands, including lipopolysaccharide (LPS) and endogenous molecules like palmitic acid (PA)-induced ceramide (CER) accumulation, promoting hepatocyte demise. However, the intricate mechanisms underlying TLR4's modulation of ceramide metabolism and their concerted effect on SFA-mediated hepatotoxicity remain elusive. METHODS A NASH mouse model with liver-specific TLR4 knockdown was established through palm oil feeding and AAV2/8 tail vein injection. Histological and biochemical assessments were conducted to evaluate the mice's condition and liver damage extent. Liquid chromatography-mass spectrometry (LC-MS) was employed to quantify ceramide levels in liver tissues, offering insights into NASH mechanisms. RESULTS The PO-fed model exhibited elevated serum ALT, AST, and liver TG levels, enhancing lipid accumulation and hepatocellular damage. TLR4 knock-down reduced liver mass and the liver-to-body weight ratio, signifying a decreased hepatic burden. Histopathological evaluations revealed substantial improvement in hepatic steatosis in TLR4-silenced PO-fed mice, with diminished lipid droplets and inflammatory infiltrates. LC-MS analysis showed a marked decrease in long-chain ceramides (C14, C16, C20) in TLR4-knockdown PO-fed mice. Furthermore, expression of MyD88, SPTLC1, SPTLC2, and inflammatory markers IL-1β, IL-6, TNF-α were significantly attenuated. CONCLUSION SFAs activate the TLR4 signaling pathway via MyD88, fostering ceramide de novo synthesis, which exacerbates hepatocyte lipotoxicity and accelerates NASH progression.
Collapse
Affiliation(s)
- Yuchao Zou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Lulu Tian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Liuhua Pei
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Jie Hao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Tianhang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Jiayu Qi
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Yinuo Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Xiaokai Hu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Lin Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| |
Collapse
|
2
|
Kovacs T, Cs. Szabo B, Kothalawala RC, Szekelyhidi V, Nagy P, Varga Z, Panyi G, Zakany F. Inhibition of the H V1 voltage-gated proton channel compromises the viability of human polarized macrophages in a polarization- and ceramide-dependent manner. Front Immunol 2024; 15:1487578. [PMID: 39742270 PMCID: PMC11685079 DOI: 10.3389/fimmu.2024.1487578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
The human voltage-gated proton channel (HV1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit HV1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied HV1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound. ClGBI may exert this effect principally by blocking HV1 since the sensitivity of polarized macrophages correlates well with their HV1 expression levels; inhibitors of other macrophage ion channels that may be susceptible for off-target ClGBI effects cause no viability reductions; and Zn2+, another non-specific HV1 blocker, exerts similar effects. As a potential mechanism behind the ClGBI-induced cell death, we identify a complex pH dysregulation involving acidification of the cytoplasm and alkalinization of the lysosomes, which eventually result in membrane ceramide accumulation. Furthermore, ClGBI effects are alleviated by ARC39, a selective acid sphingomyelinase inhibitor supporting the unequivocal significance of ceramide accumulation in the process. Altogether, our results suggest that HV1 inhibition leads to cellular toxicity in polarized macrophages in a polarization-dependent manner, which occurs due to a pH dysregulation and concomitant ceramide overproduction mainly depending on the activity of acid sphingomyelinase. The reduced macrophage viability and plausible concomitant changes in homeostatic M1-M2 balance could contribute to both the therapeutic and potential side effects of HV1 inhibitors that show great promise in the treatment of neuroinflammation and malignant diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Yang W, Li Q, Wang F, Zhang X, Zhang X, Wang M, Xue D, Zhao Y, Tang L. Exosomal miR-155-5p promote the occurrence of carotid atherosclerosis. J Cell Mol Med 2024; 28:e70187. [PMID: 39495676 PMCID: PMC11534067 DOI: 10.1111/jcmm.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Periodontitis is a significant independent risk factor for atherosclerosis. Yet, the exact mechanism of action is still not fully understood. In this study, we investigated the effect of exosomes-miR-155-5p derived from periodontal endothelial cells on atherosclerosis in vitro and in vivo. Higher expression of miR-155-5p was detected in the plasma exosomes of patients with chronic periodontitis (CP) and carotid atherosclerosis (CAS) compared to patients with CP. Also, the expression level of miR-155-5p was associated with the severity of CP. miR-155-5p-enriched exosomes from HUVECs increased the angiogenesis and permeability of HAECs and promoted the expression of angiogenesis, permeability, and inflammation genes. Along with the overexpression or inhibition of miR-155-5p, the biological effect of HUVECs-derived exosomes on HAECs changed correspondingly. In ApoE-/- mouse models, miR-155-5p-enriched exosomes promoted the occurrence of carotid atherosclerosis by increasing permeable and angiogenic activity. Collectively, these findings highlight a molecular mechanism of periodontitis in CAS, uncovering exosomal miR-155-5p derived periodontitis affecting carotid endothelial cells in an 'exosomecrine' manner. Exosomal miR-155-5p may be used as a biomarker and target for clinical intervention to control this intractable disease in future, and the graphic abstract was shown in Figure S1.
Collapse
Affiliation(s)
- Wen‐Wen Yang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing‐Xiang Li
- Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingChina
| | - Fei Wang
- Department of Vascular Surgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xin‐Ran Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xian‐Li Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Meng Wang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dong Xue
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Ying Zhao
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Lu Tang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
5
|
Fu Y, Hua Y, Alam N, Liu E. Progress in the Study of Animal Models of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:3120. [PMID: 39339720 PMCID: PMC11435380 DOI: 10.3390/nu16183120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has recently been proposed as an alternative term to NAFLD. MASLD is a globally recognized chronic liver disease that poses significant health concerns and is frequently associated with obesity, insulin resistance, and hyperlipidemia. To better understand its pathogenesis and to develop effective treatments, it is essential to establish suitable animal models. Therefore, attempts have been made to establish modelling approaches that are highly similar to human diet, physiology, and pathology to better replicate disease progression. Here, we reviewed the pathogenesis of MASLD disease and summarised the used animal models of MASLD in the last 7 years through the PubMed database. In addition, we have summarised the commonly used animal models of MASLD and describe the advantages and disadvantages of various models of MASLD induction, including genetic models, diet, and chemically induced models, to provide directions for research on the pathogenesis and treatment of MASLD.
Collapse
Affiliation(s)
- Yu Fu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (Y.H.)
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Yuxin Hua
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Y.F.); (Y.H.)
| | - Naqash Alam
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Enqi Liu
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| |
Collapse
|
6
|
Wallen TE, Morris M, Ammann A, Baucom MR, Price A, Schuster R, Makley AT, Goodman MD. Platelet Function is Independent of Sphingolipid Manipulation. J Surg Res 2024; 300:25-32. [PMID: 38795670 DOI: 10.1016/j.jss.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Previous literature suggests that sphingolipids may impact systemic coagulation and platelet aggregation, thus modulating the risks of thrombotic events. The goal of this investigation was to evaluate the role of serum sphingolipids on intrinsic platelet function to assess whether pharmacologic manipulation of sphingolipid metabolites would impact platelet aggregability. METHODS C57BL/6J mice were injected with either normal saline, 1 mg/kg FTY720 (synthetic sphingosine-1-phosphate [S1P] receptor analog), or 5 mg/kg SLM6031434 (sphingosine kinase two inhibitor). Mice were sacrificed at 6 h and whole blood (WB) was collected for impedance aggregometry assessing platelet responsiveness to arachidonic acid or adenosine diphosphate. Ex vivo studies utilized WB or platelet-rich plasma that was pretreated with S1P, FTY720, amitriptyline, or d-sphingosine then analyzed by aggregability and flow cytometry for platelet and platelet-derived microvesicle characteristics. RESULTS FTY720 and SLM6031434 pretreated induced similar arachidonic acid and adenosine diphosphate-mediated platelet aggregation as controls. Ex vivo WB and platelet-rich plasma treatment with S1P, FTY720, amitriptyline and d-sphingosine did not impact platelet aggregation. The percentages of CD41+, CD62P+ and CD41+/ceramide+, CD62P+/ceramide + platelets, and platelet-derived microvesicle were not significantly different between amitriptyline-treated and normal saline-treated cohorts. CONCLUSIONS Sphingolipid modulating agents, such as FTY720, SLM6031434, S1P, amitriptyline, ceramide, and d-sphingosine do not appear to independently impact platelet aggregation in murine models.
Collapse
Affiliation(s)
- Taylor E Wallen
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Mackenzie Morris
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Allison Ammann
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Mathew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Adam Price
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Rebecca Schuster
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Amy T Makley
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
7
|
Ramos-Molina B, Rossell J, Pérez-Montes de Oca A, Pardina E, Genua I, Rojo-López MI, Julián MT, Alonso N, Julve J, Mauricio D. Therapeutic implications for sphingolipid metabolism in metabolic dysfunction-associated steatohepatitis. Front Endocrinol (Lausanne) 2024; 15:1400961. [PMID: 38962680 PMCID: PMC11220194 DOI: 10.3389/fendo.2024.1400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver disease, has increased worldwide along with the epidemics of obesity and related dysmetabolic conditions characterized by impaired glucose metabolism and insulin signaling, such as type 2 diabetes mellitus (T2D). MASLD can be defined as an excessive accumulation of lipid droplets in hepatocytes that occurs when the hepatic lipid metabolism is totally surpassed. This metabolic lipid inflexibility constitutes a central node in the pathogenesis of MASLD and is frequently linked to the overproduction of lipotoxic species, increased cellular stress, and mitochondrial dysfunction. A compelling body of evidence suggests that the accumulation of lipid species derived from sphingolipid metabolism, such as ceramides, contributes significantly to the structural and functional tissue damage observed in more severe grades of MASLD by triggering inflammatory and fibrogenic mechanisms. In this context, MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), which represents the advanced form of MASLD, and hepatic fibrosis. In this review, we discuss the role of sphingolipid species as drivers of MASH and the mechanisms involved in the disease. In addition, given the absence of approved therapies and the limited options for treating MASH, we discuss the feasibility of therapeutic strategies to protect against MASH and other severe manifestations by modulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Joana Rossell
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Pardina
- Department de Biochemistry & Molecular Biology, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Idoia Genua
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marina I. Rojo-López
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
| | - María Teresa Julián
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Josep Julve
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Didac Mauricio
- Group of Endocrinology, Diabetes & Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Faculty of Medicine, University of Vic/Central University of Catalonia (UVIC/UCC), Vic, Spain
| |
Collapse
|
8
|
Bruijn N, van Lohuizen R, Boron M, Fitzek M, Gabriele F, Giuliani G, Melgarejo L, Řehulka P, Sebastianelli G, Triller P, Vigneri S, Özcan B, van den Brink AM. Influence of metabolic state and body composition on the action of pharmacological treatment of migraine. J Headache Pain 2024; 25:20. [PMID: 38347465 PMCID: PMC10863119 DOI: 10.1186/s10194-024-01724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Migraine is a disabling neurovascular disorder among people of all ages, with the highest prevalence in the fertile years, and in women. Migraine impacts the quality of life of affected individuals tremendously and, in addition, it is associated with highly prevalent metabolic diseases, such as obesity, diabetes mellitus and thyroid dysfunction. Also, the clinical response to drugs might be affected in patients with metabolic disease due to body composition and metabolic change. Therefore, the efficacy of antimigraine drugs could be altered in patients with both migraine and metabolic disease. However, knowledge of the pharmacology and the related clinical effects of antimigraine drugs in patients with metabolic disease are limited. Therefore, and given the clinical relevance, this article provides a comprehensive overview of the current research and hypotheses related to the influence of metabolic state and body composition on the action of antimigraine drugs. In addition, the influence of antimigraine drugs on metabolic functioning and, vice versa, the influence of metabolic diseases and its hormonal modulating medication on migraine activity is outlined. Future exploration on personalizing migraine treatment to individual characteristics is necessary to enhance therapeutic strategies, especially given its increasing significance in recent decades.
Collapse
Affiliation(s)
- Noor Bruijn
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Romy van Lohuizen
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Malgorzata Boron
- Department of Neurology, University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Mira Fitzek
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Francesca Gabriele
- Department of Applied Clinical Sciences and Biotechnology, Neuroscience Section, University of L'Aquila, L'Aquila, Italy
| | - Giada Giuliani
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Laura Melgarejo
- Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Pavel Řehulka
- St. Anne's University Hospital, Faculty of Medicine Masaryk University Czech Republic, Brno, Czech Republic
| | - Gabriele Sebastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Paul Triller
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Vigneri
- Casa Di Cura Santa Maria Maddalena, Neurology and Neurophysiology Service, Occhiobello, Italy
| | - Behiye Özcan
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Antoinette Maassen van den Brink
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Ji Y, Chen J, Pang L, Chen C, Ye J, Liu H, Chen H, Zhang S, Liu S, Liu B, Cheng C, Liu S, Zhong Y. The Acid Sphingomyelinase Inhibitor Amitriptyline Ameliorates TNF-α-Induced Endothelial Dysfunction. Cardiovasc Drugs Ther 2024; 38:43-56. [PMID: 36103099 PMCID: PMC10876840 DOI: 10.1007/s10557-022-07378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Inflammation associated endothelial cell (EC) dysfunction is key to atherosclerotic disease. Recent studies have demonstrated a protective role of amitriptyline in cardiomyocytes induced by hypoxia/reoxygenation. However, the mechanism by which amitriptyline regulates the inflammatory reaction in ECs remains unknown. Thus, the aim of this study was to investigate whether amitriptyline protects against inflammation in TNF-α-treated ECs. METHODS HUVECs were incubated with amitriptyline (2.5 μM) or TNF-α (20 ng/ml) for 24 h. EdU, tube formation, transwell, DHE fluorescence staining, and monocyte adhesion assays were performed to investigate endothelial function. Thoracic aortas were isolated from mice, and vascular tone was measured with a wire myograph system. The levels of ICAM-1, VCAM-1, MCP-1, phosphorylated MAPK and NF-κB were detected using western blotting. RESULTS Amitriptyline increased the phosphorylation of nitric oxide synthase (eNOS) and the release of NO. Amitriptyline significantly inhibited TNF-α-induced increases in ASMase activity and the release of ceramide and downregulated TNF-α-induced expression of proinflammatory proteins, including ICAM-1, VCAM-1, and MCP-1 in ECs, as well as the secretion of sICAM-1 and sVCAM-1. TNF-α treatment obviously increased monocyte adhesion and ROS production and impaired HUVEC proliferation, migration and tube formation, while amitriptyline rescued proliferation, migration, and tube formation and decreased monocyte adhesion and ROS production. Additionally, we demonstrated that amitriptyline suppressed TNF-α-induced MAPK phosphorylation as well as the activity of NF-κB in HUVECs. The results showed that the relaxation response of aortic rings to acetylcholine in the WT-TNF-α group was much lower than that in the WT group, and the sensitivity of aortic rings to acetylcholine in the WT-TNF-α group and WT-AMI-TNF-α group was significantly higher than that in the WT-TNF-α group. CONCLUSION These results suggest that amitriptyline reduces endothelial inflammation, consequently improving vascular endothelial function. Thus, the identification of amitriptyline as a potential strategy to improve endothelial function is important for preventing vascular diseases.
Collapse
Affiliation(s)
- Yang Ji
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jing Chen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Lihua Pang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Changnong Chen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Jinhao Ye
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Hao Liu
- Department of Anesthesia, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Huanzhen Chen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Songhui Zhang
- Department of Obstetrics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Shaojun Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Benrong Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Chuanfang Cheng
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| | - Yun Zhong
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China.
| |
Collapse
|
10
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Chihara K, Okada K, Uchida F, Miura I, Komine S, Warabi E, Takayama T, Suzuki H, Matsuzaka T, Ishibashi-Kanno N, Yamagata K, Yanagawa T, Bukawa H, Shoda J. Macrophage specific restoration of the Nrf2 gene in whole-body knockout mice ameliorates steatohepatitis induced by lipopolysaccharide from Porphyromonas gingivalis through enhanced hepatic clearance. PLoS One 2023; 18:e0291880. [PMID: 37862331 PMCID: PMC10588835 DOI: 10.1371/journal.pone.0291880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/06/2023] [Indexed: 10/22/2023] Open
Abstract
Lipopolysaccharide (LPS) derived from Porphyromonas gingivalis (P.g.), which causes periodontal disease, contributes to the development of non-alcoholic steatohepatitis (NASH). We investigated the role of Nrf2, an antioxidative stress sensor, in macrophages in the development of NASH induced by LPS from P.g. We generated macrophage-specific Nrf2 gene rescue mice (Nrf2-mRes), which express Nrf2 only in macrophages, using the cre/loxp system. Wild-type (WT) mice, whole body Nrf2-knockout (Nrf2-KO) mice, and Nrf2-mRes mice were fed a high-fat diet for 18 weeks, and LPS from P.g. was administered intraperitoneally for the last 6 weeks. Nrf2-KO mice developed severe steatohepatitis with liver inflammation and fibrosis compared with WT mice, and steatohepatitis was ameliorated in Nrf2-mRes mice. The mRNA expressions of Toll-like receptor (Tlr)-2, which activates inflammatory signaling pathways after LPS binding, and α-smooth muscle actin (αSma), which promotes hepatic fibrosis, were reduced in Nrf2-mRes mice compared with Nrf2-KO mice. The protein levels of LPS-binding protein in livers were increased in Nrf2-KO mice compared with WT mice; however, the levels were reduced in Nrf2-mRes mice despite similar numbers of F4/80 positive cells, which reflect macrophage/Kupffer cell infiltration into the livers. Nrf2 in macrophages ameliorates NASH through the increased hepatic clearance of LPS.
Collapse
Affiliation(s)
- Kanako Chihara
- Department of Oral and Maxillofacial Surgery, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Kosuke Okada
- Division of Medical Sciences, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Fumihiko Uchida
- Department of Oral and Maxillofacial Surgery, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Ikuru Miura
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka-shi, Fukuoka, Japan
| | - Shoichi Komine
- Department of Acupuncture and Moxibustion, Faculty of Human Care, Teikyo Heisei University, Toshima-ku, Tokyo, Japan
| | - Eiji Warabi
- Division of Biomedical Sciences, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Takako Takayama
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Hideo Suzuki
- Department of Gastroenterology, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Takashi Matsuzaka
- Transborder Medical Research Center, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Naomi Ishibashi-Kanno
- Department of Oral and Maxillofacial Surgery, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Kenji Yamagata
- Department of Oral and Maxillofacial Surgery, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Hiroki Bukawa
- Department of Oral and Maxillofacial Surgery, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Junichi Shoda
- Division of Medical Sciences, Institute of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
12
|
Lu Z, Li Y, Chowdhury N, Yu H, Syn WK, Lopes-Virella M, Yilmaz Ö, Huang Y. The Presence of Periodontitis Exacerbates Non-Alcoholic Fatty Liver Disease via Sphingolipid Metabolism-Associated Insulin Resistance and Hepatic Inflammation in Mice with Metabolic Syndrome. Int J Mol Sci 2023; 24:8322. [PMID: 37176029 PMCID: PMC10179436 DOI: 10.3390/ijms24098322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Clinical studies have shown that periodontitis is associated with non-alcoholic fatty liver disease (NAFLD). However, it remains unclear if periodontitis contributes to the progression of NAFLD. In this study, we generated a mouse model with high-fat diet (HFD)-induced metabolic syndrome (MetS) and NAFLD and oral P. gingivalis inoculation-induced periodontitis. Results showed that the presence of periodontitis increased insulin resistance and hepatic inflammation and exacerbated the progression of NAFLD. To determine the role of sphingolipid metabolism in the association between NAFLD and periodontitis, we also treated mice with imipramine, an inhibitor of acid sphingomyelinase (ASMase), and demonstrated that imipramine treatment significantly alleviated insulin resistance and hepatic inflammation, and improved NAFLD. Studies performed in vitro showed that lipopolysaccharide (LPS) and palmitic acid (PA), a major saturated fatty acid associated with MetS and NAFLD, synergistically increased the production of ceramide, a bioactive sphingolipid involved in NAFLD progression in macrophages but imipramine effectively reversed the ceramide production stimulated by LPS and PA. Taken together, this study showed for the first time that the presence of periodontitis contributed to the progression of NAFLD, likely due to alterations in sphingolipid metabolism that led to exacerbated insulin resistance and hepatic inflammation. This study also showed that targeting ASMase with imipramine improves NAFLD by reducing insulin resistance and hepatic inflammation.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nityananda Chowdhury
- Department of Oral Health Sciences, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hong Yu
- Department of Oral Health Sciences, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MI 63110, USA
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Universidad del Pa S Vasco/Euskal Herriko Univertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - Maria Lopes-Virella
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences, The James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yan Huang
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
13
|
Yang K, Nong K, Xu F, Chen Y, Yu J, Lin L, Hu X, Wang Y, Li T, Dong J, Wang J. Discovery of Novel N-Hydroxy-1,2,4-oxadiazole-5-formamides as ASM Direct Inhibitors for the Treatment of Atherosclerosis. J Med Chem 2023; 66:2681-2698. [PMID: 36786607 DOI: 10.1021/acs.jmedchem.2c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Acid sphingomyelinase (ASM), which regulates sphingolipid metabolism and lipid signaling, has been considered as a new potential target for the treatment of atherosclerosis. In this study, a series of benzene-heterocyclic-based ASM inhibitors were rationally designed, synthesized, and screened for the first time. As a result, some compounds showed favorable inhibitory activity against recombinant human ASM. The detailed SARs are also discussed. Compound 4i revealed good pharmacokinetic data and in vivo inhibitory activity against ASM by reducing the level of ceramide in mice plasma and liver. Pharmacodynamic studies confirmed that 4i could lessen lipid plaques in the aortic arch and aorta and reduce plasma ceramide concentration and Ox-LDL levels. Moreover, 4i was found to significantly decrease LPS-induced and Ox-LDL-induced cell inflammation by regulating the levels of ceramide and sphingomyelin. Overall, this study preliminarily demonstrates that ASM may be an effective target against atherosclerosis for the first time.
Collapse
Affiliation(s)
- Kan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Keyi Nong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory of Coordination Chemistry and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Fei Xu
- Department of Biochemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yu Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Yu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lizhi Lin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youzhi Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jibin Dong
- Department of Biochemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Alarcón-Vila C, Insausti-Urkia N, Torres S, Segalés-Rovira P, Conde de la Rosa L, Nuñez S, Fucho R, Fernández-Checa JC, García-Ruiz C. Dietary and genetic disruption of hepatic methionine metabolism induce acid sphingomyelinase to promote steatohepatitis. Redox Biol 2023; 59:102596. [PMID: 36610223 PMCID: PMC9827379 DOI: 10.1016/j.redox.2022.102596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Alcoholic (ASH) and nonalcoholic. (NASH).steatohepatitis are advanced.stages.of.fatty.liver.disease.Methionine adenosyltransferase 1A (MAT1A) plays a key role in hepatic methionine metabolism and germline Mat1a deletion in mice promotes NASH. Acid sphingomyelinase (ASMase) triggers hepatocellular apoptosis and liver fibrosis and has been shown to downregulate MAT1A expression in the context of fulminant liver failure. Given the role of ASMase in steatohepatitis development, we investigated the status of ASMase in Mat1a-/- mice and the regulation of ASMase by SAM/SAH. Consistent with its role in NASH, Mat1a-/- mice fed a choline-deficient (CD) diet exhibited macrosteatosis, inflammation, fibrosis and liver injury as well as reduced total and mitochondrial GSH levels. Our data uncovered an increased basal expression and activity of ASMase but not neutral SMase in Mat1a-/- mice, which further increased upon CD feeding. Interestingly, adenovirus-mediated shRNA expression targeting ASMase reduced ASMase activity and protected Mat1a-/- mice against CD diet-induced NASH. Similar results were observed in CD fed Mat1a-/- mice by pharmacological inhibition of ASMase with amitriptyline. Moreover, Mat1a/ASMase double knockout mice were resistant to CD-induced NASH. ASMase knockdown protected wild type mice against NASH induced by feeding a diet deficient in methionine and choline. Furthermore, Mat1a-/- mice developed acute-on-chronic ASH and this outcome was ameliorated by amitriptyline treatment. In vitro data in primary mouse hepatocytes revealed that decreased SAM/SAH ratio increased ASMase mRNA level and activity. MAT1A and ASMase mRNA levels exhibited an inverse correlation in liver samples from patients with ASH and NASH. Thus, disruption of methionine metabolism sensitizes to steatohepatitis by ASMase activation via decreased SAM/SAH. These findings imply that MAT1A deletion and ASMase activation engage in a self-sustained loop of relevance for steatohepatitis.
Collapse
Affiliation(s)
- Cristina Alarcón-Vila
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Naroa Insausti-Urkia
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Sandra Torres
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Paula Segalés-Rovira
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Laura Conde de la Rosa
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Susana Nuñez
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Raquel Fucho
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain
| | - Jose C Fernández-Checa
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain; University of Southern California Research Center for Liver Diseases, Keck School of Medicine, USC, Los Angeles, CA, USA.
| | - Carmen García-Ruiz
- Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, CSIC, Barcelona, Spain; Liver Unit, Hospital Clínic I Provincial, IDIBAPS, Barcelona, Spain; CIBERehd, University of Barcelona, Spain; University of Southern California Research Center for Liver Diseases, Keck School of Medicine, USC, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Kołakowski A, Dziemitko S, Chmielecka A, Żywno H, Bzdęga W, Charytoniuk T, Chabowski A, Konstantynowicz-Nowicka K. Molecular Advances in MAFLD—A Link between Sphingolipids and Extracellular Matrix in Development and Progression to Fibrosis. Int J Mol Sci 2022; 23:ijms231911380. [PMID: 36232681 PMCID: PMC9569877 DOI: 10.3390/ijms231911380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic-Associated Fatty Liver Disease (MAFLD) is a major cause of liver diseases globally and its prevalence is expected to grow in the coming decades. The main cause of MAFLD development is changed in the composition of the extracellular matrix (ECM). Increased production of matrix molecules and inflammatory processes lead to progressive fibrosis, cirrhosis, and ultimately liver failure. In addition, increased accumulation of sphingolipids accompanied by increased expression of pro-inflammatory cytokines in the ECM is closely related to lipogenesis, MAFLD development, and its progression to fibrosis. In our work, we will summarize all information regarding the role of sphingolipids e.g., ceramide and S1P in MAFLD development. These sphingolipids seem to have the most significant effect on macrophages and, consequently, HSCs which trigger the entire cascade of overproduction matrix molecules, especially type I and III collagen, proteoglycans, elastin, and also tissue inhibitors of metalloproteinases, which as a result cause the development of liver fibrosis.
Collapse
Affiliation(s)
- Adrian Kołakowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Sylwia Dziemitko
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | - Hubert Żywno
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Wiktor Bzdęga
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
- Department of Ophthalmology, Antoni Jurasz University Hospital No. 1, 85-094 Bydgoszcz, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | |
Collapse
|
16
|
The development of the Metabolic-associated Fatty Liver Disease during pharmacotherapy of mental disorders - a review. CURRENT PROBLEMS OF PSYCHIATRY 2022. [DOI: 10.2478/cpp-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction: Metabolic-associated Fatty Liver Disease (MAFLD) is a term for Non-alcoholic Fatty Liver Disease (NAFLD) that highlights its association with components of the Metabolic Syndrome (MetS). MAFLD is becoming a clinically significant problem due to its increasing role in the pathogenesis of cryptogenic cirrhosis of the liver.
Material and methods: The resulting work is a review of the most important information on the risk of MAFLD development in the context of the use of particular groups of psychotropic drugs. The study presents the epidemiology, with particular emphasis on the population of psychiatric patients, pathophysiology and scientific reports analyzing the effect of the psychotropic medications on MAFLD development.
Results: The drugs that can have the greatest impact on the development of MAFLD are atypical antipsychotics, especially olanzapine, and mood stabilizers (MS) - valproic acid (VPA). Their effect is indirect, mainly through dysregulation of organism’s carbohydrate and lipid metabolism.
Conclusions: The population of psychiatric patients is particularly vulnerable to the development of MAFLD. At the root of this disorder lies the specificity of mental disorders, improper dietary habits, low level of physical activity and tendency to addictions. Also, the negative impact of the psychotropic drugs on the systemic metabolism indirectly contributes to the development of MAFLD. In order to prevent fatty liver disease, it is necessary to monitor metabolic and liver parameters regularly, and patients should be screened by ultrasound examination of the liver. There are also important preventive actions from the medical professionals, including education of patients and sensitizing to healthy lifestyle.
Collapse
|
17
|
Wang J, Li L, Zhang Z, Zhang X, Zhu Y, Zhang C, Bi Y. Extracellular vesicles mediate the communication of adipose tissue with brain and promote cognitive impairment associated with insulin resistance. Cell Metab 2022; 34:1264-1279.e8. [PMID: 36070680 DOI: 10.1016/j.cmet.2022.08.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes with obesity-related insulin resistance as the main manifestation is associated with an increased risk of cognitive impairment. Adipose tissue plays an important role in this process. Here, we demonstrated that adipose tissue-derived extracellular vesicles (EVs) and their cargo microRNAs (miRNAs) mediate inter-organ communication between adipose tissue and the brain, which can be transferred into the brain in a membrane protein-dependent manner and enriched in neurons, especially in the hippocampus. Further investigation suggests that adipose tissue-derived EVs from high-fat diet (HFD)-fed mice or patients with diabetes induce remarkable synaptic loss and cognitive impairment. Depletion of miRNA cargo in these EVs significantly alleviates their detrimental effects on cognitive function. Collectively, these data suggest that targeting adipose tissue-derived EVs or their cargo miRNAs may provide a promising strategy for pharmaceutical interventions for cognitive impairment in diabetes.
Collapse
Affiliation(s)
- Jin Wang
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhou Zhang
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Xuhong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Ye Zhu
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China
| | - Chenyu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), NJU Institute of AI Biomedicine and Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing 210008, China.
| |
Collapse
|
18
|
Zietzer A, Düsing P, Reese L, Nickenig G, Jansen F. Ceramide Metabolism in Cardiovascular Disease: A Network With High Therapeutic Potential. Arterioscler Thromb Vasc Biol 2022; 42:1220-1228. [PMID: 36004640 DOI: 10.1161/atvbaha.122.318048] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Growing evidence suggests that ceramides play an important role in the development of atherosclerotic and valvular heart disease. Ceramides are biologically active sphingolipids that are produced by a complex network of enzymes. Lowering cellular and tissue levels of ceramide by inhibiting the ceramide-producing enzymes counteracts atherosclerotic and valvular heart disease development in animal models. In vascular tissues, ceramides are produced in response to hyperglycemia and TNF (tumor necrosis factor)-α signaling and are involved in NO-signaling and inflammation. In humans, elevated blood ceramide levels are associated with cardiovascular events. Furthermore, important cardiovascular risk factors, such as obesity and diabetes, have been linked to ceramide accumulation. This review summarizes the basic mechanisms of how ceramides drive cardiovascular disease locally and links these findings to the intriguing results of human studies on ceramides as biomarkers for cardiovascular events. Moreover, we discuss the current state of interventions to therapeutically influence vascular ceramide metabolism, both locally and systemically.
Collapse
Affiliation(s)
- Andreas Zietzer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Laurine Reese
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Germany
| |
Collapse
|
19
|
Inflammation Induced by Lipopolysaccharide and Palmitic Acid Increases Cholesterol Accumulation via Enhancing Myeloid Differentiation Factor 88 Expression in HepG2 Cells. Pharmaceuticals (Basel) 2022; 15:ph15070813. [PMID: 35890112 PMCID: PMC9322353 DOI: 10.3390/ph15070813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, multiple studies have shown that chronic inflammation disturbs cholesterol homeostasis and promotes its accumulation in the liver. The underlying molecular mechanism remains to be revealed. The relationship between the toll-like receptor 4 (TLR4) inflammatory signaling pathway and cholesterol accumulation was investigated in HepG2 cells treated with lipopolysaccharide (LPS) or palmitic acid (PA) for different lengths of time. In addition, the effects of pretreatment with 20μmol/L ST2825 (MyD88 inhibitor) were also studied in LPS- or PA-treated HepG2 cells and myeloid differentiation factor 88 (MyD88)-overexpressing HEK293T cells. The intracellular total and free cholesterol levels were measured using a commercial kit and filipin staining, respectively. The expression levels of sterol regulatory element-binding protein-2 (SREBP-2) and components in the TLR4 signaling pathway were determined using Western blotting. The treatments with LPS for 12 h and with PA for 24 h significantly increased the contents of intracellular total and free cholesterol, as well as the expression levels of SREBP-2 and components in the TLR4 signaling pathway. The inhibition of MyD88 by ST2825 significantly decreased the cholesterol content and the expression levels of SREBP-2 and components of the TLR4/MyD88/NF-κB pathway in HepG2 cells, as well as MyD88-overexpressing HEK293T cells. These results indicated that LPS and PA treatments increase SREBP-2-mediated cholesterol accumulation via the activation of the TLR4/MyD88/NF-κB signaling pathway in HepG2 cells.
Collapse
|
20
|
Dongliang Y, Yang R, Peng S, Deng J, Huo Y, Deng Z, Yau Y, Liu J, Liao D, Cheng C. Guanxin Xiaoban capsules could treat atherosclerosis by affecting the gut microbiome and inhibiting the AGE-RAGE signalling pathway. J Med Microbiol 2022; 71. [PMID: 35580023 DOI: 10.1099/jmm.0.001530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Atherosclerosis is a chronic disorder in which plaque builds up in the arteries and is associated with several cardiovascular and cerebrovascular diseases such as coronary artery disease, cerebral infarction and cerebral haemorrhage. Therefore, there is an urgent need to discover new medications to treat or prevent atherosclerosis.Hypothesis/Gap Statement. The active components of Guanxin Xiaoban capsules may have an effect on the gut microbiome of patients with atherosclerosis and have a role in their therapeutic targets.Aim. The aim of this study was to identify genes and pathways targeted by active ingredients in Guanxin Xiaoban capsules for the treatment of atherosclerosis based on network pharmacology and analysis of changes to the gut microbiome.Methods. Mice were treated with Guanxin Xiaoban capsules. The 16S rDNA genome sequence of all microorganisms from each group of faecal samples was used to evaluate potential structural changes in the gut microbiota after treatment with Guanxin Xiaoban capsules. Western blotting and real-time quantitative PCR were used to detect gene targets in aortic and liver tissues. Haematoxylin and eosin staining was used to observe improvements in mouse arterial plaques.Results. The gut microbiota of atherosclerotic mice is disturbed. After Guanxin Xiaoban treatment, the abundance of bacteria in the mice improved, with an increase in the proportion of Akkermansia and a significant decrease in the proportion of Faecalibaculum. The main ingredients of Guanxin Xiaoban capsules are calycosin, liquiritin, ferulic acid, ammonium glycyrrhizate, aloe emodin, rhein and emodin. The core genes of this network were determined to be glutathione S-transferase mu 1 (GSTM1), vascular endothelial growth factor A (VEGFA) and cyclin-dependent kinase inhibitor 1A (CDKN1A). The compound-target gene network revealed an interaction between multiple components and targets and contributed to a better understanding of the potential therapeutic effects of the capsules on atherosclerosis. In addition, expression of the AGE-receptor for the AGE (RAGE) pathway was significantly inhibited and the mice showed signs of arterial plaque reduction. Guanxin Xiaoban capsules may improve atherosclerosis and reduce the plaque area by inhibiting the AGE-RAGE signalling pathway to delay the development of atherosclerosis. This mechanism appears to involve changes in the gut microbiota. Therefore, Guanxin Xiaoban capsules have potential value as a treatment for atherosclerosis.
Collapse
Affiliation(s)
- Yin Dongliang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, PR China.,Department of Rehabilitation Medicine, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Rong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, PR China
| | - Sha Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, PR China
| | - Jing Deng
- Hunan Key Laboratory for Quality Evaluation of Bulk Herbs, Hunan University of Chinese Medicine, Changsha, PR China
| | - Yanjie Huo
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, PR China
| | - Zhe Deng
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| | - Yuenming Yau
- School of Medicine, Xiamen University, Xiamen, PR China
| | - Jianhe Liu
- Department of Cardiovascular Diseases, The First Hospital of Hunan University of Chinese Medicine, Changsha, PR China
| | - Duanfang Liao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, PR China
| | - Choufu Cheng
- Department of Cardiovascular Diseases, The First Hospital of Hunan University of Chinese Medicine, Changsha, PR China
| |
Collapse
|
21
|
Curcumin alleviates lipopolysaccharides-induced inflammation and apoptosis in vascular smooth muscle cells via inhibition of the NF-κB and JNK signaling pathways. Inflammopharmacology 2022; 30:517-525. [PMID: 35229255 DOI: 10.1007/s10787-021-00912-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/06/2021] [Indexed: 11/05/2022]
Abstract
Curcumin plays an important role in inflammation regulation. This study aimed to investigate the effect of curcumin on vascular smooth muscle cells (VSMCs) inflammation induced by lipopolysaccharide (LPS) and its mechanism. VSMCs were treated with different concentrations of curcumin (0, 50, 100 and 150 μg/mL). MTT assay and flow cytometry were used to analyze the effects of curcumin on LPS-induced VSMCs viability and apoptosis. The expression and release of inflammatory cytokines in VSMCs were detected by real-time quantitative polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Moreover, the proteins expressions of NF-κB and JNK signaling pathways were analyzed by western blot. Interestingly, the results showed that curcumin could reduce LPS induced inflammatory injury by increasing VSMC's viability, reducing apoptosis and inhibiting the release of inflammatory cytokines. In addition, curcumin increased the expression of Toll-like receptor 4 (TLR4) in LPS treated VSMCs. Mechanistically, we found that curcumin attenuated LPS-induced cell damage in VSMCs via inhibition of NF-κB and the JNK signal pathway. Curcumin can protect VSMCs from LPS induced inflammatory damage, which may be related to the blocking of NF-κB and the JNK signaling pathway. Herewith, curcumin could be potential therapeutics for the treatment of atherosclerosis.
Collapse
|
22
|
Li Y, Lu Z, Zhang L, Kirkwood CL, Kirkwood KL, Lopes-Virella MF, Huang Y. Inhibition of acid sphingomyelinase by imipramine abolishes the synergy between metabolic syndrome and periodontitis on alveolar bone loss. J Periodontal Res 2022; 57:173-185. [PMID: 34748647 PMCID: PMC8766925 DOI: 10.1111/jre.12951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Clinical studies have shown that metabolic syndrome (MetS) exacerbates periodontitis. However, the underlying mechanisms remain largely unknown. Since our animal study has shown that high-fat diet-induced MetS exacerbates lipopolysaccharide (LPS)-stimulated periodontitis in mouse model and our in vitro study showed that acid sphingomyelinase (aSMase) plays a key role in the amplification of LPS-triggered pro-inflammatory response by palmitic acid (PA) in macrophages, we tested our hypothesis that inhibitor of aSMase attenuates MetS-exacerbated periodontitis in animal model. Furthermore, to explore the potential underlying mechanisms, we tested our hypothesis that aSMase inhibitor downregulates pro-inflammatory and pro-osteoclastogenic gene expression in macrophages in vitro. MATERIAL AND METHODS We induced MetS and periodontitis in C57BL/6 mice by feeding high-fat diet (HFD) and periodontal injection of A. actinomycetemcomitans LPS, respectively, and treated mice with imipramine, a well-established inhibitor of aSMase. Micro-computed tomography (micro-CT), tartrate-resistant acid phosphatase staining, histological and pathological evaluations as well as cell cultures were performed to evaluate alveolar bone loss, osteoclast formation, periodontal inflammation and pro-inflammatory gene expression. RESULTS Analysis of metabolic parameter showed that while HFD induced MetS by increasing bodyweight, insulin resistance, cholesterol and free fatty acids, imipramine reduced free fatty acids but had no significant effects on other metabolic parameters. MicroCT showed that either MetS or periodontitis significantly reduced bone volume fraction (BVF) of maxilla and the combination of MetS and periodontitis further reduced BVF. However, imipramine increased BVF in mice with both MetS and periodontitis to a level similar to that in mice with periodontitis alone, suggesting that imipramine abolished the synergy between MetS and periodontitis on alveolar bone loss. Consistently, results showed that imipramine inhibited osteoclast formation and periodontal inflammation in mice with both MetS and periodontitis. To elucidate the mechanisms by which imipramine attenuates MetS-exacerbated periodontitis, we showed that imipramine inhibited the upregulation of pro-inflammatory cytokines and transcription factor c-FOS as well as ceramide production by LPS plus PA in macrophages. CONCLUSION This study has shown that imipramine as an inhibitor of aSMase abolishes the synergy between MetS and periodontitis on alveolar bone loss in animal model and inhibits pro-inflammatory and pro-osteoclastogenic gene expression in macrophages in vitro. This study provides the first evidence that aSMase is a potential therapeutic target for MetS-exacerbated periodontitis.
Collapse
Affiliation(s)
- Yanchun Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Zhongyang Lu
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Lixia Zhang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo
| | - Cameron L. Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo
| | - Keith L. Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo,,Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14214
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401
| | - Yan Huang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401,Correspondence to Yan Huang, M.D., Ph.D., Ralph H. Johnson Veterans Affairs Medical Center, and Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, 114 Doughty St. Charleston, SC29403, Tel: (843) 789-6824; Fax: (843) 876-5133;
| |
Collapse
|
23
|
Tanase DM, Gosav EM, Petrov D, Jucan AE, Lacatusu CM, Floria M, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Involvement of Ceramides in Non-Alcoholic Fatty Liver Disease (NAFLD) Atherosclerosis (ATS) Development: Mechanisms and Therapeutic Targets. Diagnostics (Basel) 2021; 11:2053. [PMID: 34829402 PMCID: PMC8621166 DOI: 10.3390/diagnostics11112053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (ATS) are worldwide known diseases with increased incidence and prevalence. These two are driven and are interconnected by multiple oxidative and metabolic functions such as lipotoxicity. A gamut of evidence suggests that sphingolipids (SL), such as ceramides, account for much of the tissue damage. Although in humans they are proving to be accurate biomarkers of adverse cardiovascular disease outcomes and NAFLD progression, in rodents, pharmacological inhibition or depletion of enzymes driving de novo ceramide synthesis prevents the development of metabolic driven diseases such as diabetes, ATS, and hepatic steatosis. In this narrative review, we discuss the pathways which generate the ceramide synthesis, the potential use of circulating ceramides as novel biomarkers in the development and progression of ATS and related diseases, and their potential use as therapeutic targets in NAFDL-ATS development which can further provide new clues in this field.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Daniela Petrov
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alina Ecaterina Jucan
- Department of Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Cristina Mihaela Lacatusu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, Emergency Military Clinical Hospital Iasi, 700483 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.M.T.); (E.M.G.); (C.R.)
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
24
|
Breiden B, Sandhoff K. Acid Sphingomyelinase, a Lysosomal and Secretory Phospholipase C, Is Key for Cellular Phospholipid Catabolism. Int J Mol Sci 2021; 22:9001. [PMID: 34445706 PMCID: PMC8396676 DOI: 10.3390/ijms22169001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Here, we present the main features of human acid sphingomyelinase (ASM), its biosynthesis, processing and intracellular trafficking, its structure, its broad substrate specificity, and the proposed mode of action at the surface of the phospholipid substrate carrying intraendolysosomal luminal vesicles. In addition, we discuss the complex regulation of its phospholipid cleaving activity by membrane lipids and lipid-binding proteins. The majority of the literature implies that ASM hydrolyses solely sphingomyelin to generate ceramide and ignores its ability to degrade further substrates. Indeed, more than twenty different phospholipids are cleaved by ASM in vitro, including some minor but functionally important phospholipids such as the growth factor ceramide-1-phosphate and the unique lysosomal lysolipid bis(monoacylglycero)phosphate. The inherited ASM deficiency, Niemann-Pick disease type A and B, impairs mainly, but not only, cellular sphingomyelin catabolism, causing a progressive sphingomyelin accumulation, which furthermore triggers a secondary accumulation of lipids (cholesterol, glucosylceramide, GM2) by inhibiting their turnover in late endosomes and lysosomes. However, ASM appears to be involved in a variety of major cellular functions with a regulatory significance for an increasing number of metabolic disorders. The biochemical characteristics of ASM, their potential effect on cellular lipid turnover, as well as a potential impact on physiological processes will be discussed.
Collapse
Affiliation(s)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, LIMES Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
25
|
Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother 2021; 139:111610. [PMID: 33957567 DOI: 10.1016/j.biopha.2021.111610] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Sphingomyelin (SM) can be converted into ceramide (Cer) by neutral sphingomyelinase (NSM) and acid sphingomyelinase (ASM). Cer is a second messenger of lipids and can regulate cell growth and apoptosis. Increasing evidence shows that NSM and ASM play key roles in many processes, such as apoptosis, immune function and inflammation. Therefore, NSM and ASM have broad prospects in clinical treatments, especially in cancer, cardiovascular diseases (such as atherosclerosis), nervous system diseases (such as Alzheimer's disease), respiratory diseases (such as chronic obstructive pulmonary disease) and the phenotype of dwarfisms in adolescents, playing a complex regulatory role. This review focuses on the physiological functions of NSM and ASM and summarizes their roles in certain diseases and their potential applications in therapy.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenglang Tan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
26
|
Tallon C, Hollinger KR, Pal A, Bell BJ, Rais R, Tsukamoto T, Witwer KW, Haughey NJ, Slusher BS. Nipping disease in the bud: nSMase2 inhibitors as therapeutics in extracellular vesicle-mediated diseases. Drug Discov Today 2021; 26:1656-1668. [PMID: 33798648 DOI: 10.1016/j.drudis.2021.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are indispensable mediators of intercellular communication, but they can also assume a nefarious role by ferrying pathological cargo that contributes to neurological, oncological, inflammatory, and infectious diseases. The canonical pathway for generating EVs involves the endosomal sorting complexes required for transport (ESCRT) machinery, but an alternative pathway is induced by the enrichment of lipid membrane ceramides generated by neutral sphingomyelinase 2 (nSMase2). Inhibition of nSMase2 has become an attractive therapeutic strategy for inhibiting EV biogenesis, and a growing number of small-molecule nSMase2 inhibitors have shown promising therapeutic activity in preclinical disease models. This review outlines the function of EVs, their potential role in disease, the discovery and efficacy of nSMase2 inhibitors, and the path to translate these findings into therapeutics.
Collapse
Affiliation(s)
- Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristen R Hollinger
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arindom Pal
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin J Bell
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Witwer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
He Q, Zeng J, Yao K, Wang W, Wu Q, Tang R, Xia X, Zou X. Long-term subcutaneous injection of lipopolysaccharides and high-fat diet induced non-alcoholic fatty liver disease through IKKε/ NF-κB signaling. Biochem Biophys Res Commun 2020; 532:362-369. [PMID: 32883523 DOI: 10.1016/j.bbrc.2020.08.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/25/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) was associated with increased level of lipopolysaccharides (LPS) which mechanism remained unclear on intervention between LPS and NAFLD. The aim was to explore the IKKε/NF-κB role and its intervention of LPS and high-fat diet (HFD) induced NAFLD. Male C57BL/6 mice were fed on high-fat diet (HFD) combined with or without simultaneously subcutaneous injection of LPS for 18 weeks. Body weight , blood biochemistry parameters, inflammatory mediator and liver lipid deposition were measured to evaluate LPS effect on NAFLD. Furthermore, IKKε selective inhibitor amlexanox (AM) was administrated by gavage to HFD + LPS induced mice. The indicators about metabolism and inflammation were examined and qRT-PCR, immunoblotting assay as well as immunohistochemistry were performed to assess IKKε/NF-κB activation and downstream gene expression. This study found that low-dose LPS + HFD aggravated more significant steatosis than simple HFD or high-dose LPS + HFD. Low-dose LPS exacerbated more prominent inflammation profile including increased IKKε and NF-κB expression in liver than HFD. Inhibiting IKKε/NF-κB signaling with amlexanox significantly prevented HFD + LPS induced metabolic disorders and hepatic steatosis. LPS-upregulated gene expression involved in glucolipid metabolism could be downregulated by amlexanox. Thus, the present study confirmed long-term combinational administration of subcutaneous low-dose LPS injection and HFD induced NAFLD model which had more significant phenotype in mice than simple HFD or high-dose LPS-induction. Targeting on IKKε/NF-κB signaling with its inhibitor amlexanox alleviated steatohepatitis, suggesting that IKKε/NF-κB signaling was responsible for effect of LPS and HFD on NAFLD.
Collapse
Affiliation(s)
- Qian He
- Department of Geriatrics, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Jun Zeng
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Kecheng Yao
- Department of Geriatrics, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Wei Wang
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Qiong Wu
- Department of Pediatrics, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Renmin Tang
- Department of Endocrinology, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China
| | - Xuan Xia
- Department of Physiology and Pathophysiology, College of Medical Sciences, China Three Gorges University, Yichang, 443002, Hubei Province, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002, Hubei Province, China.
| | - Xiulan Zou
- Department of Geriatrics, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China; Healthcare Center, The People's Hospital of China Three Gorges University/the First People's Hospital of Yichang, Yichang, 443000, Hubei Province, China.
| |
Collapse
|
28
|
Park WJ, Park JW. The role of sphingolipids in endoplasmic reticulum stress. FEBS Lett 2020; 594:3632-3651. [PMID: 32538465 DOI: 10.1002/1873-3468.13863] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) is an important intracellular compartment in eukaryotic cells and has diverse functions, including protein synthesis, protein folding, lipid metabolism and calcium homeostasis. ER functions are disrupted by various intracellular and extracellular stimuli that cause ER stress, including the inhibition of glycosylation, disulphide bond reduction, ER calcium store depletion, impaired protein transport to the Golgi, excessive ER protein synthesis, impairment of ER-associated protein degradation and mutated ER protein expression. Distinct ER stress signalling pathways, which are known as the unfolded protein response, are deployed to maintain ER homeostasis, and a failure to reverse ER stress triggers cell death. Sphingolipids are lipids that are structurally characterized by long-chain bases, including sphingosine or dihydrosphingosine (also known as sphinganine). Sphingolipids are bioactive molecules long known to regulate various cellular processes, including cell proliferation, migration, apoptosis and cell-cell interaction. Recent studies have uncovered that specific sphingolipids are involved in ER stress. This review summarizes the roles of sphingolipids in ER stress and human diseases in the context of pathogenic events.
Collapse
Affiliation(s)
- Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, South Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|