1
|
Martin D, Bargh M, Pennington K. Effect of oral contraceptive consumption timing on substrate metabolism, cognition, and exercise performance in females: a randomised controlled trial. Eur J Appl Physiol 2025:10.1007/s00421-025-05733-1. [PMID: 40029411 DOI: 10.1007/s00421-025-05733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
PURPOSE The pharmacokinetic profile of oral contraceptives (OCs) results in an acute, transient increase in circulating synthetic reproductive hormones. This study aimed to assess the acute effects of OC ingestion on cognitive function, substrate metabolism and exercise performance. METHODS Sixteen combined OC users ingested either their OC or placebo (PLA) in a randomised, double-blind, crossover manner. After 60 min, participants completed tests of verbal memory and verbal fluency, followed by sub-maximal treadmill exercise for 6 min at 70% lactate threshold (LT) and 90% LT where respiratory exchange ratio (RER), carbohydrate oxidation, fat oxidation, heart rate (HR), rating of perceived exertion (RPE), felt arousal and feeling scale were recorded. Participants then completed an incremental ramp test to exhaustion to assess time to exhaustion (TTE) and peak oxygen uptake (VO2peak), before ingesting the pill corresponding to the opposing condition RESULTS: Compared to PLA, the OC condition has a significantly lower RER, arousal and feeling scale and significantly higher verbal fluency score (all P < 0.05) with no differences in other variables (P > 0.05). CONCLUSION Combined OC ingestion acutely affects substrate metabolism, affective responses to exercise and verbal fluency. The timing of OC ingestion should be considered in relation to aspects of physiological function.
Collapse
Affiliation(s)
- Dan Martin
- School of Sport and Exercise Science, College of Health and Science, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Mel Bargh
- School of Sport and Exercise Science, College of Health and Science, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK
| | | |
Collapse
|
2
|
Dole A, Sims S, Gan H, Gill N, Beaven M. Continuous Glucose Monitoring Underreports Blood Glucose During a Simulated Ultraendurance Run in Eumenorrheic Female Runners. Int J Sports Physiol Perform 2025; 20:265-274. [PMID: 39719136 DOI: 10.1123/ijspp.2024-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 12/26/2024]
Abstract
PURPOSE Continuous-glucose-monitoring (CGM) sensors provide near-real-time glucose data and have been introduced commercially as a tool to inform nutrition decisions. The aim of this pilot study was to explore how factors such as the menstrual phase, extended running duration, and carbohydrates affect CGM outcomes among trained eumenorrheic females in an outdoor simulated ultraendurance running event. METHODS Twelve experienced female ultrarunners (age 39 [6] y) participated in this crossover study. Participants completed an ultraendurance simulation run of 4 hours in the midfollicular and midluteal phases of their menstrual cycle, which consisted of a 3-hour fasted outdoor run (FASTED) followed by a 1-hour treadmill run (TREAD), where 3 standardized 20-g oral glucose doses were provided. RESULTS Using a mixed linear model, the menstrual phase was statistically significant for differences in glucose measurements from CGM compared with capillary glucose sampling during TREAD (P = .02) but not FASTED. Additionally, the CGM sensor reported glucose levels with an average of -0.43 mmol·L-1 (95% CI, - 0.86 to -0.005) and -1.02 mmol·L-1 (95% CI, -1.63 to -0.42) lower in fasted and fed scenarios, respectively, when compared with capillary glucose. CONCLUSION CGM underreports capillary glucose during fasted and fed exercise. Factors contributing to this underreporting between the sampling methods (CGM vs capillary) were dependent on a combination of exogenous glucose availability, individual biological differences, and the menstrual phase.
Collapse
Affiliation(s)
- Andrew Dole
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, University of Waikato, Tauranga, New Zealand
- Adams Centre for High Performance, Mount Maunganui, New Zealand
| | - Stacy Sims
- Sports Performance Research Institute of New Zealand SPRINZ, Auckland University of Technology, Auckland, New Zealand
- Stanford Lifestyle Medicine, Stanford University, Palo Alto, CA, USA
| | - Han Gan
- Department of Mathematics, University of Waikato, Hamilton, New Zealand
| | - Nic Gill
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, University of Waikato, Tauranga, New Zealand
| | - Martyn Beaven
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, University of Waikato, Tauranga, New Zealand
| |
Collapse
|
3
|
Laitano O, Oki K, Charkoudian N. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Physiology (Bethesda) 2025; 40:0. [PMID: 39189870 DOI: 10.1152/physiol.00028.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Understanding physiological mechanisms of tolerance to heat exposure, and potential ways to improve such tolerance, is increasingly important in the context of ongoing climate change. We discuss the concept of heat tolerance in humans and experimental models (primarily rodents), including intracellular mechanisms and improvements in tolerance with heat acclimation.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Kentaro Oki
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| |
Collapse
|
4
|
MacGregor K, Ellefsen S, Pillon NJ, Hammarström D, Krook A. Sex differences in skeletal muscle metabolism in exercise and type 2 diabetes mellitus. Nat Rev Endocrinol 2024:10.1038/s41574-024-01058-9. [PMID: 39604583 DOI: 10.1038/s41574-024-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
This Review focuses on currently available literature describing sex differences in skeletal muscle metabolism in humans, as well as highlighting current research gaps within the field. These discussions serve as a call for action to address the current lack of sufficient sex-balanced studies in skeletal muscle research, and the resulting limitations in understanding sex-specific physiological and pathophysiological responses. Although the participation of women in studies has increased, parity between the sexes remains elusive, affecting the validity of conclusions drawn from studies with limited numbers of participants. Changes in skeletal muscle metabolism contribute to the development of metabolic disease (such as type 2 diabetes mellitus), and maintenance of skeletal muscle mass is a key component for health and the ability to maintain an independent life during ageing. Exercise is an important factor in maintaining skeletal muscle health and insulin sensitivity, and offers promise for both prevention and treatment of metabolic disease. With the increased realization of the promise of precision medicine comes the need to increase patient stratification and improve the understanding of responses in different populations. In this context, a better understanding of sex-dependent differences in skeletal muscle metabolism is essential.
Collapse
Affiliation(s)
- Kirstin MacGregor
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Stian Ellefsen
- Inland University of Applied Sciences, Lillehammer, Norway
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna Krook
- Inland University of Applied Sciences, Lillehammer, Norway.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Mirzaei Khalil Abadi M, Hemmatinafar M, Koushkie Jahromi M. Effects of menstrual cycle on cognitive function, cortisol, and metabolism after a single session of aerobic exercise. PLoS One 2024; 19:e0311979. [PMID: 39471167 PMCID: PMC11521275 DOI: 10.1371/journal.pone.0311979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 11/01/2024] Open
Abstract
AIM This study aimed to investigate the effects of the two pre-ovulatory and mid-luteal phases of the menstrual cycle on cognitive function, as well as possible mediators of metabolism and salivary cortisol, at rest and after an aerobic exercise session. STUDY DESIGN Twelve active young unmarried women aged 22-30 years volunteered to participate in the study. The participants performed a 20-min exercise session on a cycle ergometer at 60-70% of their reserve heart rate twice, during the follicular (pre-ovulation: days 7-10) and luteal (mid-luteal: days 21-24) phases of the menstrual cycle. Saliva samples were collected to measure cortisol. Fat utilization, respiratory exchange ratio (RER), and energy expenditure (during exercise) were measured using a spiroergometer. Cognitive function was assessed using the Stroop test. Cognitive function and cortisol levels were measured before and after each exercise session. RESULTS The findings of this study indicated no significant differences in variables during the resting follicular and luteal phases. Cortisol levels and cognitive function were increased after exercise compared with before exercise in both the follicular and luteal phases. Cortisol and fat utilization after exercise were significantly higher in the follicular phase than in the luteal phase. There were no significant differences between the follicular and luteal phasesregarding the effects of exercise on cognitive function, energy expenditure, and RER. CONCLUSION In general, the follicular and luteal phases of menstruation may not affect cognitive function in response to a single aerobic exercise session, although they change some metabolic factors and cortisol.
Collapse
Affiliation(s)
| | - Mohammad Hemmatinafar
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Maryam Koushkie Jahromi
- Department of Sport Sciences, School of Education and Psychology, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Xega V, Liu JL. Beyond reproduction: unraveling the impact of sex hormones on cardiometabolic health. MEDICAL REVIEW (2021) 2024; 4:284-300. [PMID: 39135604 PMCID: PMC11317208 DOI: 10.1515/mr-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024]
Abstract
This review thoroughly explores the multifaceted roles of sexual hormones, emphasizing their impact beyond reproductive functions and underscoring their significant influence on cardiometabolic regulation. It analyzes the broader physiological implications of estrogen, testosterone, and progesterone, highlighting their effects on metabolic syndrome, lipid metabolism, glucose homeostasis, and cardiovascular health. Drawing from diverse molecular, clinical, and therapeutic studies, the paper delves into the intricate interplay between these hormones and cardiometabolic processes. By presenting a comprehensive analysis that goes beyond traditional perspectives, and recognizing sexual hormones as more than reproductive agents, the review sheds light on their broader significance in health and disease management, advocating for holistic and personalized medical approaches.
Collapse
Affiliation(s)
- Viktoria Xega
- MeDiC Program, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Jun-Li Liu
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Li J, Zhang S, Sun Y, Li J, Feng Z, Li H, Zhang M, Yan T, Han J, Duan Y. Liver ChREBP deficiency inhibits fructose-induced insulin resistance in pregnant mice and female offspring. EMBO Rep 2024; 25:2097-2117. [PMID: 38532128 PMCID: PMC11014959 DOI: 10.1038/s44319-024-00121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
High fructose intake during pregnancy increases insulin resistance (IR) and gestational diabetes mellitus (GDM) risk. IR during pregnancy primarily results from elevated hormone levels. We aim to determine the role of liver carbohydrate response element binding protein (ChREBP) in insulin sensitivity and lipid metabolism in pregnant mice and their offspring. Pregnant C57BL/6J wild-type mice and hepatocyte-specific ChREBP-deficient mice were fed with a high-fructose diet (HFrD) or normal chow diet (NC) pre-delivery. We found that the combination of HFrD with pregnancy excessively activates hepatic ChREBP, stimulating progesterone synthesis by increasing MTTP expression, which exacerbates IR. Increased progesterone levels upregulated hepatic ChREBP via the progesterone-PPARγ axis. Placental progesterone activated the progesterone-ChREBP loop in female offspring, contributing to IR and lipid accumulation. In normal dietary conditions, hepatic ChREBP modestly affected progesterone production and influenced IR during pregnancy. Our findings reveal the role of hepatic ChREBP in regulating insulin sensitivity and lipid homeostasis in both pregnant mice consuming an HFrD and female offspring, and suggest it as a potential target for managing gestational metabolic disorders, including GDM.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuyao Sun
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jian Li
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300052, China
| | - Zian Feng
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huaxin Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengxue Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tengteng Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China.
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
8
|
Oxfeldt M, Frederiksen LK, Gunnarson T, Hansen M. Influence of menstrual cycle phase and oral contraceptive phase on exercise performance in endurance-trained females. J Sports Med Phys Fitness 2024; 64:236-247. [PMID: 38213268 DOI: 10.23736/s0022-4707.23.15458-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND Limited data exists on the influence of menstrual cycle (MC) phase and oral contraceptive (OC) phase on physical performance in endurance-trained females due to poor control regarding MC verification and differentiation. We aimed to evaluate exercise performance and the respiratory response to exercise in three distinct phases of the MC and OC cycle in endurance-trained females. METHODS Using a prospective cohort study design, we recruited trained females (Vo2max 52±4 mL O2/min/kg) who were either not using oral contraceptives (NOC) or using monophasic OCs. NOC were tested in the early and late follicular phase (FP) and the mid-luteal phase (LP). OC-users were tested in the withdrawal phase (WP) and two times in the active OC phase (OCP). The test battery included DXA scans, blood sampling, a submaximal bike test, a maximal isometric knee-extensor strength test, 4 and 20-second bike sprints, and a 6 min time trial on a bike. MC phases were verified by the use of ovulation kits and circulating sex hormone levels. RESULTS After the exclusion of four NOCs due to inadequate sex hormone levels, 11 NOC and 13 OC users were included in the final analysis. 6 min time trial performance, sprint performance, and most submaximal exercise intensity variables did not differ between MC phases and OC cycle phases. However, in NOC, ventilation (L/min) during exercise at 30% of aerobic peak power was 7.6% lower in the late FP compared to the LP (P<0.05). In OC users, muscle strength was 3.9% higher in the early OCP compared to WP (P<0.05), whereas body mass was higher in the late OCP compared to WP (P<0.05). CONCLUSIONS Collectively, our study suggests that MC phase and OCP influence exercise performance to a limited extent in endurance-trained females.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, University of Aarhus, Aarhus, Denmark
| | - Louise K Frederiksen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Gunnarson
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hansen
- Department of Public Health, University of Aarhus, Aarhus, Denmark -
| |
Collapse
|
9
|
Abo SMC, Casella E, Layton AT. Sexual Dimorphism in Substrate Metabolism During Exercise. Bull Math Biol 2024; 86:17. [PMID: 38228814 DOI: 10.1007/s11538-023-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024]
Abstract
During aerobic exercise, women oxidize significantly more lipids and less carbohydrates than men. This sexual dimorphism in substrate metabolism has been attributed, in part, to the observed differences in epinephrine and glucagon levels between men and women during exercise. To identify the underpinning candidate physiological mechanisms for these sex differences, we developed a sex-specific multi-scale mathematical model that relates cellular metabolism in the organs to whole-body responses during exercise. We conducted simulations to test the hypothesis that sex differences in the exercise-induced changes to epinephrine and glucagon would result in the sexual dimorphism of hepatic metabolic flux rates via the glucagon-to-insulin ratio (GIR). Indeed, model simulations indicate that the shift towards lipid metabolism in the female model is primarily driven by the liver. The female model liver exhibits resistance to GIR-mediated glycogenolysis, which helps maintain hepatic glycogen levels. This decreases arterial glucose levels and promotes the oxidation of free fatty acids. Furthermore, in the female model, skeletal muscle relies on plasma free fatty acids as the primary fuel source, rather than intramyocellular lipids, whereas the opposite holds true for the male model.
Collapse
Affiliation(s)
- Stéphanie M C Abo
- Department of Applied Mathematics, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada.
| | - Elisa Casella
- Department of Applied Mathematics, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
- Cheriton School of Computer Science, Department of Biology, and School of Pharmacy, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
10
|
Homer KA, Cross MR, Helms ER. Peak Week Carbohydrate Manipulation Practices in Physique Athletes: A Narrative Review. SPORTS MEDICINE - OPEN 2024; 10:8. [PMID: 38218750 PMCID: PMC10787737 DOI: 10.1186/s40798-024-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND Physique athletes are ranked by a panel of judges against the judging criteria of the corresponding division. To enhance on-stage presentation and performance, competitors in certain categories (i.e. bodybuilding and classic physique) achieve extreme muscle size and definition aided by implementing acute "peaking protocols" in the days before competition. Such practices can involve manipulating nutrition and training variables to increase intramuscular glycogen and water while minimising the thickness of the subcutaneous layer. Carbohydrate manipulation is a prevalent strategy utilised to plausibly induce muscle glycogen supercompensation and subsequently increase muscle size. The relationship between carbohydrate intake and muscle glycogen saturation was first examined in endurance event performance and similar strategies have been adopted by physique athletes despite the distinct physiological dissimilarities and aims between the sports. OBJECTIVES The aim of this narrative review is to (1) critically examine and appraise the existing scientific literature relating to carbohydrate manipulation practices in physique athletes prior to competition; (2) identify research gaps and provide direction for future studies; and (3) provide broad practical applications based on the findings and physiological reasoning for coaches and competitors. FINDINGS The findings of this review indicate that carbohydrate manipulation practices are prevalent amongst physique athletes despite a paucity of experimental evidence demonstrating the efficacy of such strategies on physique performance. Competitors have also been observed to manipulate water and electrolytes in conjunction with carbohydrate predicated on speculative physiological mechanisms which may be detrimental for performance. CONCLUSIONS Further experimental evidence which closely replicates the nutritional and training practices of physique athletes during peak week is required to make conclusions on the efficacy of carbohydrate manipulation strategies. Quasi-experimental designs may be a feasible alternative to randomised controlled trials to examine such strategies due to the difficulty in recruiting the population of interest. Finally, we recommend that coaches and competitors manipulate as few variables as possible, and experiment with different magnitudes of carbohydrate loads in advance of competition if implementing a peaking strategy.
Collapse
Affiliation(s)
- Kai A Homer
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand.
| | - Matt R Cross
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand
| | - Eric R Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632, New Zealand
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
11
|
Lee SJL, Sim MP, VAN Rens FECA, Peiffer JJ. Fatigue Resistance Is Altered during the High-Hormone Phase of Eumenorrheic Females but Not Oral Contraceptive Users. Med Sci Sports Exerc 2024; 56:92-102. [PMID: 37699150 DOI: 10.1249/mss.0000000000003289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
PURPOSE This study aimed to examine the effect of ovarian hormones and their synthetic equivalents on substrate utilization and fatigue resistance during a race-specific cycling protocol. METHODS Seventeen well-trained female cyclists (nine eumenorrheic females, eight oral contraceptive users) completed two experimental trials, in a randomized order, in their low- (follicular/sugar pill) and high-hormone (luteal/active pill) phases. Each 91-min trial consisted of a 45-min moderate-intensity component (submaximal cycling, or SMC) followed by 6 min of high-intensity (HIT) and then a fatigue resistance test (FRT): 6 × 1-min all-out efforts with 1-min active recovery. Meals, comprising carbohydrate (CHO) intake of 8 g·kg -1 body mass, were standardized 24-h pretrial. An electrolyte-only solution was provided ad libitum during each trial. RESULTS In eumenorrheic females, a large reduction in average power during FRT was observed in the luteal phase (277 ± 31 vs 287 ± 33 W; P = 0.032). Greater CHO ox (~ 4%, P = 0.020) during SMC and ventilatory inefficiencies during SMC and HIT (~7%, P < 0.001) were also observed in the luteal phase. In contraceptive users, despite some phasal changes in cardiorespiratory and metabolic data in SMC (~6% higher blood glucose and ~2% higher minute ventilation in active pill phase), none of the performance parameters in the FRT were different. CONCLUSIONS Fatigue resistance was compromised only in high-hormone phase of the menstrual cycle, with eumenorrheic females likely susceptible because of increased CHO utilization during SMC. Hormone-induced ventilatory inefficiencies may also have increased metabolic demand. These findings emphasize the need to maintain CHO availability for power production, particularly in high-hormone phases.
Collapse
Affiliation(s)
| | | | - Fleur E C A VAN Rens
- Discipline of Exercise Science, Murdoch University, Perth, Western Australia, AUSTRALIA
| | | |
Collapse
|
12
|
Matsuda T, Takahashi H, Nakamura M, Ogata H, Kanno M, Ishikawa A, Sakamaki-Sunaga M. Influence of the Menstrual Cycle on Muscle Glycogen Repletion After Exhaustive Exercise in Eumenorrheic Women. J Strength Cond Res 2023; 37:e273-e279. [PMID: 35836304 DOI: 10.1519/jsc.0000000000004306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Matsuda, T, Takahashi, H, Nakamura, M, Ogata, H, Kanno, M, Ishikawa, A, and Sakamaki-Sunaga, M. Influence of the menstrual cycle on muscle glycogen repletion after exhaustive exercise in eumenorrheic women. J Strength Cond Res 37(4): e273-e279, 2023-The purpose of this study was to investigate the effect of the menstrual cycle on muscle glycogen repletion postexercise. Eleven women with regular menstrual cycles (age: 20.2 ± 1.3 years, height: 161.1 ± 4.8 cm, and body mass: 55.5 ± 5.7 kg) were assessed in 3 phases of the cycle: the early follicular phase (E-FP), late follicular phase (L-FP), and luteal phase (LP). Each test day began with glycogen-depleting exercise, followed by 5 hours of recovery. Muscle glycogen concentrations, using 13 C-magnetic resonance spectroscopy, and estradiol, progesterone, blood glucose, blood lactate, free fatty acid (FFA), and insulin concentrations were measured at t = 0, 120, and 300 minutes postexercise. During the 5-hour recovery period, subjects consumed 1.2g·(kg body mass) -1 ·h -1 of carbohydrates every 30 minutes. The muscle glycogen concentrations increased at t = 120 and t = 300 minutes postexercise ( p < 0.01) but were not significantly different between the menstrual cycle phases ( p = 0.30). Blood lactate concentrations were significantly higher in the L-FP and LP than in the E-FP ( p < 0.05). Nonetheless, the blood glucose, FFA, insulin concentrations, and the exercise time until exhaustion in the E-FP, L-FP, and LP were similar (blood glucose, p = 0.17; FFA, p = 0.50; insulin, p = 0.31; exercise time, p = 0.67). In conclusion, the menstrual cycle did not influence muscle glycogen repletion after exercise.
Collapse
Affiliation(s)
- Tomoka Matsuda
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hideyuki Takahashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Mariko Nakamura
- Department of Sport Science, Japan Institute of Sports Sciences, Tokyo, Japan ; and
| | - Hazuki Ogata
- Department of Exercise Physiology, Nippon Sport Science University, Tokyo, Japan
| | - Moe Kanno
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Akira Ishikawa
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | | |
Collapse
|
13
|
Interaction predictors of self-perception menstrual symptoms and influence of the menstrual cycle on physical performance of physically active women. Eur J Appl Physiol 2023; 123:601-607. [PMID: 36371725 DOI: 10.1007/s00421-022-05086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To analyze the physical performance, self-perception menstrual symptoms, of physically active eumenorrheic women with endogenous ovarian cycle in two phases of the menstrual cycle. METHODS Twenty-six women participated in the study (age 25.8 ± 3.9 years; height 1.64 ± 0.58 m; mass 64 ± 12.32 kg; menarche 11.69 ± 1.28 years). Assessments were performed in two phases of the menstrual cycle (MC), Early-Follicular Phase (FP) and Mid-Luteal Phase (LP), performance was assessed through total time to exhaustion (TTE), complete stages (CE), and final speed (FE), through a graded exercise test (GXT). Information on the participants' menstrual symptoms and their perceptions of the influence of MC on their performance were also collected. Data normality was assessed using the Shapiro-Wilk test. Paired analyses were conducted (t test or Wilcoxon) to examine the responses between the menstrual phases. The interaction analysis of symptom predictors was performed by multiple linear regression, with a significance level of p ≤ 0.05. RESULTS There was no significant difference in physical performance between the phases during the GXT in TTE (mean difference 8.50; 95% CI - 11.99 to 42; p = 0.36). During FP, women with heavy flow had shorter performance in the GXT (t = - 2.5; p = 0.01), demonstrating an r2 = 0.32. In LP, for the women who reported not having the perception of the influence of the menstrual cycle on exercise, the total test time was longer (t = 2.55; p = 0.01), with an r2 = 0.45. CONCLUSION There was no difference in physical performance between FP and LP. However, menstrual flow intensity and perception of cycle interference demonstrated a decrease in TTE.
Collapse
|
14
|
Understanding the female athlete: molecular mechanisms underpinning menstrual phase differences in exercise metabolism. Eur J Appl Physiol 2023; 123:423-450. [PMID: 36402915 DOI: 10.1007/s00421-022-05090-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022]
Abstract
Research should equitably reflect responses in men and women. Including women in research, however, necessitates an understanding of the ovarian hormones and menstrual phase variations in both cellular and systems physiology. This review outlines recent advances in the multiplicity of ovarian hormone molecular signaling that elucidates the mechanisms for menstrual phase variability in exercise metabolism. The prominent endogenous estrogen, 17-β-estradiol (E2), molecular structure is bioactive in stabilizing plasma membranes and quenching free radicals and both E2 and progesterone (P4) promote the expression of antioxidant enzymes attenuating exercise-induced muscle damage in the late follicular (LF) and mid-luteal (ML) phases. E2 and P4 bind nuclear hormone receptors and membrane-bound receptors to regulate gene expression directly or indirectly, which importantly includes cross-regulated expression of their own receptors. Activation of membrane-bound receptors also regulates kinases causing rapid cellular responses. Careful analysis of these signaling pathways explains menstrual phase-specific differences. Namely, E2-promoted plasma glucose uptake during exercise, via GLUT4 expression and kinases, is nullified by E2-dominant suppression of gluconeogenic gene expression in LF and ML phases, ameliorated by carbohydrate ingestion. E2 signaling maximizes fat oxidation capacity in LF and ML phases, pending low-moderate exercise intensities, restricted nutrient availability, and high E2:P4 ratios. P4 increases protein catabolism during the luteal phase by indeterminate mechanisms. Satellite cell function supported by E2-targeted gene expression is countered by P4, explaining greater muscle strengthening from follicular phase-based training. In totality, this integrative review provides causative effects, supported by meta-analyses for quantitative actuality, highlighting research opportunities and evidence-based relevance for female athletes.
Collapse
|
15
|
Torres-Aguilera I, Pinto-Hernandez P, Iglesias-Gutierrez E, Terrados N, Fernandez-Sanjurjo M. Circulating plasma levels of miR-106b-5p predicts maximal performance in female and male elite kayakers. Front Sports Act Living 2023; 5:1040955. [PMID: 36866085 PMCID: PMC9971444 DOI: 10.3389/fspor.2023.1040955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Plasma miR-106b-5p levels have been described as an exercise performance predictor in male amateur runners, although no information is available about female athletes. The aim of this study was to analyze the predictive value on sports performance of plasma miR-106b-5p levels in elite female and male kayakers at the beginning and at the end of a training macrocycle, as well as the potential underlying molecular mechanisms using an in silico approach. Materials and Methods Eight elite male (26.2 ± 3.6 years) and seven elite female (17.4 ± 0.5 years) kayakers from the Spanish national team. Two fasting blood samples were collected, starting point of the season (A) and maximum fitness level (B). Circulating plasma levels of miR-106b-5p were analyzed by RT-qPCR. Maximal 500 m performance was recorded at B. Results and Discussion miR-106b-5p levels had no differences between A and B neither in women nor in men. In men but not in women, miR-106b-5p levels showed a negative significant correlation with performance in B which highlights its predictive value for performance. However, in women, progesterone emerged as a determinant and the ratio miR-106b-5p/progesterone showed a significant negative correlation with performance. In silico analysis reveals potential targets in a number of genes of relevant to exercise. Conclusions miR-106b-5p emerges as a biomarker of athletic performance in men and in women, if the menstrual cycle is considered. This highlights the need to analyze molecular response to exercise in men and women separately, and considering the stage of the menstrual cycle in women as a relevant factor.
Collapse
Affiliation(s)
| | - Paola Pinto-Hernandez
- Department of Functional Biology (Physiology), University of Oviedo, Oviedo, Spain,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Eduardo Iglesias-Gutierrez
- Department of Functional Biology (Physiology), University of Oviedo, Oviedo, Spain,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain,Correspondence: Eduardo Iglesias-Gutierrez
| | - Nicolas Terrados
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain,Unidad Regional de Medicina Deportiva, Avilés, Spain
| | - Manuel Fernandez-Sanjurjo
- Department of Functional Biology (Physiology), University of Oviedo, Oviedo, Spain,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
16
|
Takahashi K, Kitaoka YU, Matsunaga Y, Hatta H. Effects of Endurance Training on Metabolic Enzyme Activity and Transporter Proteins in Skeletal Muscle of Ovariectomized Mice. Med Sci Sports Exerc 2023; 55:186-198. [PMID: 36170569 DOI: 10.1249/mss.0000000000003045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Estrogen deficiency or insufficiency can occur under several conditions, leading to negative health outcomes. To establish an effective countermeasure against estrogen loss, we investigated the effects of endurance training on ovariectomy (OVX)-induced metabolic disturbances. METHODS Female Institute of Cancer Research mice underwent OVX or sham operations. On day 7 of recovery, the mice were randomized to remain either sedentary or undergo 5 wk of treadmill running (15-20 m·min -1 , 60 min, 5 d·wk -1 ). During week 5 of the training, all animals performed a treadmill running test (15 m·min -1 , 60 min). RESULTS After the experimental period, OVX resulted in greater gains in body mass, fat mass, and triglyceride content in the gastrocnemius muscle. OVX enhanced phosphofructokinase activity in the plantaris muscle and decreased lactate dehydrogenase activity in the plantaris and soleus muscles. OVX decreased the protein content of NDUFB8, a mitochondrial respiratory chain subunit, but did not decrease other mitochondrial proteins or enzyme activities. Endurance training significantly enhanced mitochondrial enzyme activity and protein content in the skeletal muscles. Although OVX increased the respiratory exchange ratio during the treadmill running test, and postexercise blood lactate levels, endurance training normalized these parameters. CONCLUSIONS The present findings suggest that endurance training is a viable strategy to counteract the negative metabolic consequences in hypoestrogenism.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, Tokyo, JAPAN
| | - Y U Kitaoka
- Department of Human Sciences, Kanagawa University, Kanagawa, JAPAN
| | - Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, Tokyo, JAPAN
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Tokyo, JAPAN
| |
Collapse
|
17
|
Masson SWC, Dissanayake WC, Broome SC, Hedges CP, Peeters WM, Gram M, Rowlands DS, Shepherd PR, Merry TL. A role for β-catenin in diet-induced skeletal muscle insulin resistance. Physiol Rep 2023; 11:e15536. [PMID: 36807886 PMCID: PMC9937784 DOI: 10.14814/phy2.15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 02/19/2023] Open
Abstract
A central characteristic of insulin resistance is the impaired ability for insulin to stimulate glucose uptake into skeletal muscle. While insulin resistance can occur distal to the canonical insulin receptor-PI3k-Akt signaling pathway, the signaling intermediates involved in the dysfunction are yet to be fully elucidated. β-catenin is an emerging distal regulator of skeletal muscle and adipocyte insulin-stimulated GLUT4 trafficking. Here, we investigate its role in skeletal muscle insulin resistance. Short-term (5-week) high-fat diet (HFD) decreased skeletal muscle β-catenin protein expression 27% (p = 0.03), and perturbed insulin-stimulated β-cateninS552 phosphorylation 21% (p = 0.009) without affecting insulin-stimulated Akt phosphorylation relative to chow-fed controls. Under chow conditions, mice with muscle-specific β-catenin deletion had impaired insulin responsiveness, whereas under HFD, both mice exhibited similar levels of insulin resistance (interaction effect of genotype × diet p < 0.05). Treatment of L6-GLUT4-myc myocytes with palmitate lower β-catenin protein expression by 75% (p = 0.02), and attenuated insulin-stimulated β-catenin phosphorylationS552 and actin remodeling (interaction effect of insulin × palmitate p < 0.05). Finally, β-cateninS552 phosphorylation was 45% lower in muscle biopsies from men with type 2 diabetes while total β-catenin expression was unchanged. These findings suggest that β-catenin dysfunction is associated with the development of insulin resistance.
Collapse
Affiliation(s)
- Stewart W. C. Masson
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Waruni C. Dissanayake
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Sophie C. Broome
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Christopher P. Hedges
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
| | - Wouter M. Peeters
- School of Sport, Exercise and NutritionMassey UniversityAucklandNew Zealand
- Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| | - Martin Gram
- School of Sport, Exercise and NutritionMassey UniversityAucklandNew Zealand
| | - David S. Rowlands
- School of Sport, Exercise and NutritionMassey UniversityAucklandNew Zealand
| | - Peter R. Shepherd
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Troy L. Merry
- Discipline of Nutrition, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandAucklandNew Zealand
| |
Collapse
|
18
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
19
|
DAM TINEVRIST, DALGAARD LINEBARNER, SEVDALIS VASSILIS, BIBBY BOMARTIN, JANSE DE JONGE XANNE, GRAVHOLT CLAUSH, HANSEN METTE. Muscle Performance during the Menstrual Cycle Correlates with Psychological Well-Being, but Not Fluctuations in Sex Hormones. Med Sci Sports Exerc 2022; 54:1678-1689. [PMID: 36106832 PMCID: PMC9473716 DOI: 10.1249/mss.0000000000002961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE We aimed to study variations in strength and power performance during the menstrual cycle (MC) in eumenorrheic young women and during the pill cycle in oral contraceptives (OC) users. METHODS Forty healthy, normal-weight women between 18 and 35 yr (n = 30 eumenorrheic women; n = 10 OC users) completed this prospective cohort study. Seven to nine times during the MC/pill-cycle, the participants completed a physical performance test series, a questionnaire about psychological well-being, blood sampling, and determination of body mass. The physical tests included isometric handgrip strength, elbow flexor strength, countermovement jump (CMJ) height, and a 10-s Wingate bike test. RESULTS No direct correlation was observed between the variations in sex hormones and physical performance parameters. However, positive correlations were observed between physical performance outcomes and self-reported motivation, perception of own physical performance level, pleasure level, and arousal level. CMJ was 6% lower in the late luteal phase (LL) compared with the midluteal phase (ML) (P = 0.04). Wingate peak power was 3% lower in early follicular (EF) compared with the ML (P = 0.04). Furthermore, Wingate average power was 2%-5% lower in LL compared with all other MC phases. In line with these observations, physical pain was higher in EF and LL, and the pleasure level was lower in EF compared with the other MC phases. In OC users, we observed no variation in performance and self-reported parameters between the placebo-pill phase and the OC-pill phase. CONCLUSIONS Impairments in CMJ and Wingate performance were observed at the end and start of MC compared with other MC phases, which were associated with lower psychological well-being, but not the sex hormone fluctuations.
Collapse
Affiliation(s)
- TINE VRIST DAM
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, DENMARK
| | - LINE BARNER DALGAARD
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, DENMARK
| | - VASSILIS SEVDALIS
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, DENMARK
| | - BO MARTIN BIBBY
- Section of Biostatistics, Department of Public Health, Aarhus University, Aarhus, DENMARK
| | | | - CLAUS H. GRAVHOLT
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, DENMARK
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, DENMARK
| | - METTE HANSEN
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, DENMARK
| |
Collapse
|
20
|
Anhê GF, Bordin S. The adaptation of maternal energy metabolism to lactation and its underlying mechanisms. Mol Cell Endocrinol 2022; 553:111697. [PMID: 35690287 DOI: 10.1016/j.mce.2022.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Maternal energy metabolism undergoes a singular adaptation during lactation that allows for the caloric enrichment of milk. Changes in the mammary gland, changes in the white adipose tissue, brown adipose tissue, liver, skeletal muscles and endocrine pancreas are pivotal for this adaptation. The present review details the landmark studies describing the enzymatic modulation and the endocrine signals behind these metabolic changes. We will also update this perspective with data from recent studies showing transcriptional and post-transcriptional mechanisms that mediate the adaptation of the maternal metabolism to lactation. The present text will also bring experimental and observational data that describe the long-term consequences that short periods of lactation impose to maternal metabolism.
Collapse
Affiliation(s)
- Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
21
|
Abstract
Sex and gender differences are seen in cognitive disturbances in a variety of neurological and psychiatry diseases. Men are more likely to have cognitive symptoms in schizophrenia whereas women are more likely to have more severe cognitive symptoms with major depressive disorder and Alzheimer's disease. Thus, it is important to understand sex and gender differences in underlying cognitive abilities with and without disease. Sex differences are noted in performance across various cognitive domains - with males typically outperforming females in spatial tasks and females typically outperforming males in verbal tasks. Furthermore, there are striking sex differences in brain networks that are activated during cognitive tasks and in learning strategies. Although rarely studied, there are also sex differences in the trajectory of cognitive aging. It is important to pay attention to these sex differences as they inform researchers of potential differences in resilience to age-related cognitive decline and underlying mechanisms for both healthy and pathological cognitive aging, depending on sex. We review literature on the progressive neurodegenerative disorder, Alzheimer's disease, as an example of pathological cognitive aging in which human females show greater lifetime risk, neuropathology, and cognitive impairment, compared to human males. Not surprisingly, the relationships between sex and cognition, cognitive aging, and Alzheimer's disease are nuanced and multifaceted. As such, this chapter will end with a discussion of lifestyle factors, like education and diet, as modifiable factors that can alter cognitive aging by sex. Understanding how cognition changes across age and contributing factors, like sex differences, will be essential to improving care for older adults.
Collapse
|
22
|
Nishikawa M, Ohara N, Naito Y, Saito Y, Amma C, Tatematsu K, Baoyindugurong J, Miyazawa D, Hashimoto Y, Okuyama H. Rapeseed (canola) oil aggravates metabolic syndrome-like conditions in male but not in female stroke-prone spontaneously hypertensive rats (SHRSP). Toxicol Rep 2022; 9:256-268. [PMID: 35242585 PMCID: PMC8866840 DOI: 10.1016/j.toxrep.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
Canola oil shortens life of male SHRSP. Testis is the target of canola oil toxicity. Inhibition of negative regulation by testosterone of aldosterone production may be a trigger of canola oil toxicity. Facilitation of hypertension by aldosterone may lead to life-shortening. Increased plasma lipids by canola oil have no relevance to life-shortening.
This study was conducted to investigate whether or not there are sex differences in canola oil (CAN)-induced adverse events in the rat and to understand the involvement and the role of testosterone in those events, including life-shortening. Stroke-prone spontaneously hypertensive rats (SHRSP) of both sexes were fed a diet containing 10 wt/wt% soybean oil (SOY, control) or CAN as the sole dietary fat. The survival of the males fed the CAN diet was significantly shorter than that of those fed the SOY diet. In contrast, the survival of the females was not affected by CAN. The males fed the CAN diet showed elevated blood pressure, thrombopenia and insulin-tolerance, which are major symptoms of metabolic syndrome, whereas such changes by the CAN diet were not found in the females. Plasma testosterone was significantly lower in animals of both sexes fed the CAN diet than in those fed the SOY diet, but interestingly, the lowered testosterone was accompanied by a marked increase in plasma aldosterone only in the males. These results demonstrate significant sex differences in CAN-toxicity and suggest that those sex differences may be attributable to the increased aldosterone level, which triggers aggravation of the genetic diseases specific to SHRSP, that is, metabolic syndrome-like conditions, but only in the males. The present results also suggest that testosterone may negatively regulate aldosterone production in the physiology of the males, and the inhibition of that negative regulation caused by the CAN diet is one of the possible causes of the adverse events.
Collapse
Affiliation(s)
- Mai Nishikawa
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Naoki Ohara
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
- Corresponding author.
| | - Yukiko Naito
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Yoshiaki Saito
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Chihiro Amma
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Kenjiro Tatematsu
- Gifu Pharmaceutical University, 5-6-1 Mitabora, Gifu, Gifu 502-8585, Japan
| | - Jinhua Baoyindugurong
- Inner Mongolia Agricultural University, College of Food Science and Engineering, Zhaowuda Rd. 306, Hohhot, Inner Mongolia 010018, PR China
| | - Daisuke Miyazawa
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Yoko Hashimoto
- School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Harumi Okuyama
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| |
Collapse
|
23
|
Hackney AC. Menstrual Cycle Hormonal Changes and Energy Substrate Metabolism in Exercising Women: A Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910024. [PMID: 34639326 PMCID: PMC8508274 DOI: 10.3390/ijerph181910024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 01/12/2023]
Abstract
This article discusses the research supporting that the hormonal changes across the menstrual cycle phases affect a woman's physiology during exercise, specifically addressing aspects of energy substrate metabolism and macro-nutrient utilization and oxidation. The overarching aim is to provide a perspective on what are the limitations of earlier research studies that have concluded such hormonal changes do not affect energy metabolism. Furthermore, suggestions are made concerning research approaches in future studies to increase the likelihood of providing evidence-based data in support of the perspective that menstrual cycle hormonal changes do affect energy metabolism in exercising women.
Collapse
Affiliation(s)
- Anthony C. Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC 27599, USA; ; Tel.: +1-919-962-0334
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Stanisic J, Koricanac G, Culafic T, Romic S, Stojiljkovic M, Kostic M, Ivkovic T, Tepavcevic S. The effects of low-intensity exercise on cardiac glycogenesis and glycolysis in male and ovariectomized female rats on a fructose-rich diet. J Food Biochem 2021; 45:e13930. [PMID: 34494282 DOI: 10.1111/jfbc.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
We previously reported that low-intensity exercise prevented cardiac insulin resistance induced by a fructose-rich diet (FRD). To examine whether low-intensity exercise could prevent the disturbances of key molecules of cardiac glucose metabolism induced by FRD in male and ovariectomized (ovx) female rats, animals were exposed to 10% fructose solution (SF) or underwent both fructose diet and exercise (EF). Exercise prevented a decrease in cardiac GSK-3β phosphorylation induced by FRD in males (p < .001 vs. SF). It also prevented a decrease in PFK-2 phosphorylation in ovx females (p < .001 vs. SF) and increased the expression of PFK-2 in males (p < .05 vs. control). Exercise did not prevent a decrease in plasma membrane GLUT1 and GLUT4 levels in ovx females on FRD. The only effect of exercise on glucose transporters that could be indicated as beneficial is an augmented GLUT4 protein expression in males (p < .05 vs. control). Obtained results suggest that low-intensity exercise prevents harmful effects of FRD towards cardiac glycogenesis in males and glycolysis in ovx females. PRACTICAL APPLICATIONS: Low-intensity exercise, equivalent to brisk walking, was able to prevent disturbances in cardiac glycolysis regulation in ovx female and the glycogen synthesis pathway in male rats. In terms of human health, although molecular mechanisms of beneficial effects of exercise on cardiac glucose metabolism vary between genders, low-intensity running may be a useful non-pharmacological approach in the prevention of cardiac metabolic disorders in both men and postmenopausal women.
Collapse
Affiliation(s)
- Jelena Stanisic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana Culafic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Kostic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Ivkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Masson SWC, Woodhead JST, D'Souza RF, Broome SC, MacRae C, Cho HC, Atiola RD, Futi T, Dent JR, Shepherd PR, Merry TL. β-Catenin is required for optimal exercise- and contraction-stimulated skeletal muscle glucose uptake. J Physiol 2021; 599:3897-3912. [PMID: 34180063 DOI: 10.1113/jp281352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Loss of β-catenin impairs in vivo and isolated muscle exercise/contraction-stimulated glucose uptake. β-Catenin is required for exercise-induced skeletal muscle actin cytoskeleton remodelling. β-Catenin675 phosphorylation during exercise may be intensity dependent. ABSTRACT The conserved structural protein β-catenin is an emerging regulator of vesicle trafficking in multiple tissues and supports insulin-stimulated glucose transporter 4 (GLUT4) translocation in skeletal muscle by facilitating cortical actin remodelling. Actin remodelling may be a convergence point between insulin and exercise/contraction-stimulated glucose uptake. Here we investigated whether β-catenin is involved in regulating exercise/contraction-stimulated glucose uptake. We report that the muscle-specific deletion of β-catenin induced in adult mice (BCAT-mKO) impairs both exercise- and contraction (isolated muscle)-induced glucose uptake without affecting running performance or canonical exercise signalling pathways. Furthermore, high intensity exercise in mice and contraction of myotubes and isolated muscles led to the phosphorylation of β-cateninS675 , and this was impaired by Rac1 inhibition. Moderate intensity exercise in control and Rac1 muscle-specific knockout mice did not induce muscle β-cateninS675 phosphorylation, suggesting exercise intensity-dependent regulation of β-cateninS675 . Introduction of a non-phosphorylatable S675A mutant of β-catenin into myoblasts impaired GLUT4 translocation and actin remodelling stimulated by carbachol, a Rac1 and RhoA activator. Exercise-induced increases in cross-sectional phalloidin staining (F-actin marker) of gastrocnemius muscle was impaired in muscle from BCAT-mKO mice. Collectively our findings suggest that β-catenin is required for optimal glucose transport in muscle during exercise/contraction, potentially via facilitating actin cytoskeleton remodelling.
Collapse
Affiliation(s)
- Stewart W C Masson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Randall F D'Souza
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sophie C Broome
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Caitlin MacRae
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Hyun C Cho
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Robert D Atiola
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tumanu Futi
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jessica R Dent
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Boisseau N, Isacco L. Substrate metabolism during exercise: sexual dimorphism and women's specificities. Eur J Sport Sci 2021; 22:672-683. [PMID: 34134602 DOI: 10.1080/17461391.2021.1943713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this review is to discuss sexual dimorphism of energy metabolism, and to describe the impact of women's hormonal status on substrate oxidation during exercise. Many evidences indicate that sex steroids play a pivotal role in the sex-related differences of body composition and energy substrate storage. Compared with men, women rely more on fat and less on carbohydrates at the same relative exercise intensity. Scientific data suggest that 17-β oestradiol is a key hormone for the regulation of body composition and substrate metabolism. However, in women, measurements with stable isotopic tracers did not highlight any difference in whole-body substrate oxidation rates between the follicular and luteal phases of the menstrual cycle during endurance exercise. The remaining discrepancies about the effect of menstrual cycle-related hormone fluctuations on substrate oxidation could be partly explained by the exercise intensity, which is an important regulator of substrate oxidation. Due to their specific nature and concentration, the synthetic ovarian hormones contained in oral contraceptives also influence substrate metabolism during endurance exercise. However, more studies are needed to confirm that oral contraceptives increase lipolytic activity during endurance exercise without any substantial (or detectable) effect on substrate utilization. Pregnancy and menopause also modify body composition and substrate utilization during exercise through specific hormonal fluctuations.This review highlights that the hormonal status is likely to affect substrate oxidation during exercise in women emphasizing the need to take it into consideration to optimize their health and performance.
Collapse
Affiliation(s)
- Nathalie Boisseau
- Laboratory of Metabolic Adaptations to Exercise under Physiological and Pathological conditions (AME2P), University Clermont Auvergne (UCA), EA 3533, Clermont-Ferrand, France
| | - Laurie Isacco
- Laboratory of Metabolic Adaptations to Exercise under Physiological and Pathological conditions (AME2P), University Clermont Auvergne (UCA), EA 3533, Clermont-Ferrand, France.,EA3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance Health Innovation (EPSI) platform, Univ. Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
27
|
Kang JH, Park JE, Dagoon J, Masson SWC, Merry TL, Bremner SN, Dent JR, Schenk S. Sirtuin 1 is not required for contraction-stimulated glucose uptake in mouse skeletal muscle. J Appl Physiol (1985) 2021; 130:1893-1902. [PMID: 33886385 DOI: 10.1152/japplphysiol.00065.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While it has long been known that contraction robustly stimulates skeletal muscle glucose uptake, the molecular steps regulating this increase remain incompletely defined. The mammalian ortholog of Sir2, sirtuin 1 (SIRT1), is an NAD+-dependent protein deacetylase that is thought to link perturbations in energy flux associated with exercise to subsequent cellular adaptations. Nevertheless, its role in contraction-stimulated glucose uptake has not been described. The objective of this study was to determine the importance of SIRT1 to contraction-stimulated glucose uptake in mouse skeletal muscle. Using a radioactive 2-deoxyglucose uptake (2DOGU) approach, we measured ex vivo glucose uptake in unstimulated (rested) and electrically stimulated (100 Hz contraction every 15 s for 10 min; contracted) extensor digitorum longus (EDL) and soleus from ∼15-wk-old male and female mice with muscle-specific knockout of SIRT1 deacetylase activity and their wild-type littermates. Skeletal muscle force decreased over the contraction protocol, although there were no differences in the rate of fatigue between genotypes. In EDL and soleus, loss of SIRT1 deacetylase activity did not affect contraction-induced increase in glucose uptake in either sex. Interestingly, the absolute rate of contraction-stimulated 2DOGU was ∼1.4-fold higher in female compared with male mice, regardless of muscle type. Taken together, our findings demonstrate that SIRT1 is not required for contraction-stimulated glucose uptake in mouse skeletal muscle. Moreover, to our knowledge, this is the first demonstration of sex-based differences in contraction-stimulated glucose uptake in mouse skeletal muscle.NEW & NOTEWORTHY Here, we demonstrate that glucose uptake in response to ex vivo contractions is not affected by the loss of sirtuin 1 (SIRT1) deacetylase function in muscle, regardless of sex or muscle type. Interestingly, however, similar to studies on insulin-stimulated glucose uptake, we demonstrate that contraction-stimulated glucose uptake is robustly higher in female compared with the male skeletal muscle. To our knowledge, this is the first demonstration of sex-based differences in contraction-stimulated glucose uptake in skeletal muscle.
Collapse
Affiliation(s)
- Ji H Kang
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Ji E Park
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Jason Dagoon
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Stewart W C Masson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Shannon N Bremner
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Jessica R Dent
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
28
|
García-Pinillos F, Bujalance-Moreno P, Jérez-Mayorga D, Velarde-Sotres Á, Anaya-Moix V, Pueyo-Villa S, Lago-Fuentes C. Training Habits of Eumenorrheic Active Women during the Different Phases of Their Menstrual Cycle: A Descriptive Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3662. [PMID: 33915851 PMCID: PMC8036617 DOI: 10.3390/ijerph18073662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine the training habits of eumenorrheic active women during their menstrual cycle (MC), and its perceived influence on physical performance regarding their athletic level. A group of 1250 sportswomen filled in a questionnaire referring to demographic information, athletic performance and MC-related training habits. Of the participants, 81% reported having a stable duration of MC, with most of them (57%) lasting 26-30 days. Concerning MC-related training habits, 79% indicated that their MC affects athletic performance, although 71% did not consider their MC in their training program, with no differences or modifications in training volume or in training intensity for low-level athletes (LLA) and high-level athletes (HLA) with hormonal contraceptive (HC) use. However, LLA with a normal MC adapted their training habits more, compared with HLA, also stopping their training (47.1% vs. 16.1%, respectively). Thus, different training strategies should be designed for HLA and LLA with a normal MC, but this is not so necessary for HLA and LLA who use HC. To sum up, training adaptations should be individually designed according to the training level and use or non-use of HC, always taking into account the pain suffered during the menstrual phase in most of the athletes.
Collapse
Affiliation(s)
- Felipe García-Pinillos
- Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco 4811230, Chile;
- Faculty of Sports Sciences, University of Granada, 18010 Granada, Spain
| | | | - Daniel Jérez-Mayorga
- Facultad de Ciencias de la Rehabilitación, Universidad Andrés Bello, Santiago 7591538, Chile;
| | - Álvaro Velarde-Sotres
- Faculty of Health Sciences, Universidad Europea del Atlántico, 39011 Santander, Spain;
- Department of Education, Universidad Internacional Iberoamericana, Campeche 24560, Mexico; (V.A.-M.); (S.P.-V.)
| | - Vanessa Anaya-Moix
- Department of Education, Universidad Internacional Iberoamericana, Campeche 24560, Mexico; (V.A.-M.); (S.P.-V.)
- Department of Languages and Education, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Silvia Pueyo-Villa
- Department of Education, Universidad Internacional Iberoamericana, Campeche 24560, Mexico; (V.A.-M.); (S.P.-V.)
- Department of Languages and Education, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Carlos Lago-Fuentes
- Faculty of Health Sciences, Universidad Europea del Atlántico, 39011 Santander, Spain;
| |
Collapse
|
29
|
Samad N, Nguyen HH, Scott D, Ebeling PR, Milat F. Musculoskeletal Health in Premature Ovarian Insufficiency. Part One: Muscle. Semin Reprod Med 2021; 38:277-288. [PMID: 33418593 DOI: 10.1055/s-0040-1721797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accelerated bone loss and muscle decline coexist in women with premature ovarian insufficiency (POI), but there are significant gaps in our understanding of musculoskeletal health in POI. This article is the first of a two-part review which describes estrogen signaling in muscle and its role in musculoskeletal health and disease. Current evidence regarding the utility of available diagnostic tests and therapeutic options is also discussed. A literature review from January 2000 to March 2020 was conducted to identify relevant studies. Women with POI experience significant deterioration in musculoskeletal health due to the loss of protective effects of estrogen. In addition to bone loss, muscle decay and dysfunction is now increasingly recognized. Nevertheless, there is a paucity of validated tools to assess muscle parameters. There is a growing need to acknowledge bone-muscle codependence to design new therapies which target both muscle and bone, resulting in improved physical performance and reduced morbidity and mortality. More high-quality research and international collaborations are needed to address the deficiencies in our understanding and management of musculoskeletal health in women with POI.
Collapse
Affiliation(s)
- Navira Samad
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.,Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria, Australia
| |
Collapse
|
30
|
Castelán F, Cuevas-Romero E, Martínez-Gómez M. The Expression of Hormone Receptors as a Gateway toward Understanding Endocrine Actions in Female Pelvic Floor Muscles. Endocr Metab Immune Disord Drug Targets 2021; 20:305-320. [PMID: 32216732 DOI: 10.2174/1871530319666191009154751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/06/2019] [Accepted: 07/19/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To provide an overview of the hormone actions and receptors expressed in the female pelvic floor muscles, relevant for understanding the pelvic floor disorders. METHODS We performed a literature review focused on the expression of hormone receptors mainly in the pelvic floor muscles of women and female rats and rabbits. RESULTS The impairment of the pelvic floor muscles can lead to the onset of pelvic floor dysfunctions, including stress urinary incontinence in women. Hormone milieu is associated with the structure and function alterations of pelvic floor muscles, a notion supported by the fact that these muscles express different hormone receptors. Nuclear receptors, such as steroid receptors, are up till now the most investigated. The present review accounts for the limited studies conducted to elucidate the expression of hormone receptors in pelvic floor muscles in females. CONCLUSION Hormone receptor expression is the cornerstone in some hormone-based therapies, which require further detailed studies on the distribution of receptors in particular pelvic floor muscles, as well as their association with muscle effectors, involved in the alterations relevant for understanding pelvic floor disorders.
Collapse
Affiliation(s)
- Francisco Castelán
- Department of Cellular Biology and Physiology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico.,Tlaxcala Center for Behavioral Biology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Estela Cuevas-Romero
- Tlaxcala Center for Behavioral Biology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Margarita Martínez-Gómez
- Department of Cellular Biology and Physiology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico.,Tlaxcala Center for Behavioral Biology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
31
|
Hevener AL, Ribas V, Moore TM, Zhou Z. ERα in the Control of Mitochondrial Function and Metabolic Health. Trends Mol Med 2021; 27:31-46. [PMID: 33020031 DOI: 10.1016/j.molmed.2020.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Decrements in metabolic health elevate disease risk, including type 2 diabetes, heart disease, and certain cancers. Thus, treatment strategies to combat metabolic dysfunction are needed. Reduced ESR1 (estrogen receptor, ERα) expression is observed in muscle from women, men, and animals presenting clinical features of the metabolic syndrome. Human studies of natural expression of ESR1 in metabolic tissues show that muscle expression of ESR1 is positively correlated with markers of metabolic health, including insulin sensitivity. Herein, we highlight the important impact of ERα on mitochondrial form and function and present how these actions of the receptor govern metabolic homeostasis. Studies identifying ERα-regulated pathways for disease prevention will lay the foundation for the design of novel therapeutics to improve the health of women while limiting secondary complications that have plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA; Iris Cantor-UCLA Women's Health Research Center, University of California, Los Angeles, CA 90095, USA.
| | - Vicent Ribas
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| | - Timothy M Moore
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| | - Zhenqi Zhou
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Leonard AN, Shill AL, Thackray AE, Stensel DJ, Bishop NC. Fasted plasma asprosin concentrations are associated with menstrual cycle phase, oral contraceptive use and training status in healthy women. Eur J Appl Physiol 2020; 121:793-801. [PMID: 33289860 PMCID: PMC7892699 DOI: 10.1007/s00421-020-04570-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022]
Abstract
Purpose Asprosin, an orexigenic hormone that stimulates hepatic glucose release, is elevated in insulin resistance and associated with obesity. Plasma asprosin concentrations may also be related to female sex hormone levels; higher levels are reported in women with polycystic ovary syndrome (PCOS) but this may be related to peripheral insulin resistance also associated with PCOS. Clarification of female-specific factors influence on the plasma asprosin response is crucial for studies investigating asprosin. Therefore, this study determined the association of menstrual phase, oral contraceptive (OC) use (as a pharmacological influence on sex hormone levels) and training status (as a physiological influence on sex hormone levels) on plasma asprosin levels in pre-menopausal women. Methods Fasting plasma asprosin, 17β-estradiol (E2) and progesterone, were assessed in 32 healthy untrained and trained women with regular menstrual cycles (non-OC; n = 8 untrained, n = 6 trained) or using OC (n = 10 untrained, n = 8 trained) during early follicular, late follicular and mid-luteal menstrual phases (or the time-period equivalent for OC users). Results Asprosin was lower in OC (0.75 ± 0.38 ng mL−1) than non-OC users (1.00 ± 0.37 ng mL−1; p = 0.022). Across a cycle, asprosin was highest in the early follicular equivalent time-point in OC users (0.87 ± 0.37 ng mL−1) but highest in the mid-luteal phase in non-OC users (1.09 ± 0.40 ng mL−1). Asprosin concentrations varied more across a cycle in untrained than trained women, with higher concentrations in the early follicular phase compared to the late follicular and mid-luteal (training status-by-menstrual phase interaction p = 0.028). Conclusion These findings highlight the importance of considering OC use, menstrual cycle phase and to a lesser extent training status when investigating circulating asprosin concentrations in females. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-020-04570-8.
Collapse
Affiliation(s)
- A N Leonard
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - A L Shill
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- English Institute of Sport, Loughborough, UK
| | - A E Thackray
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - D J Stensel
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Nicolette C Bishop
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK.
| |
Collapse
|
33
|
Masson SWC, Sorrenson B, Shepherd PR, Merry TL. β-catenin regulates muscle glucose transport via actin remodelling and M-cadherin binding. Mol Metab 2020; 42:101091. [PMID: 33011305 PMCID: PMC7568189 DOI: 10.1016/j.molmet.2020.101091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Skeletal muscle glucose disposal following a meal is mediated through insulin-stimulated movement of the GLUT4-containing vesicles to the cell surface. The highly conserved scaffold-protein β-catenin is an emerging regulator of vesicle trafficking in other tissues. Here, we investigated the involvement of β-catenin in skeletal muscle insulin-stimulated glucose transport. Methods Glucose homeostasis and transport was investigated in inducible muscle specific β-catenin knockout (BCAT-mKO) mice. The effect of β-catenin deletion and mutation of β-catenin serine 552 on signal transduction, glucose uptake and protein–protein interactions were determined in L6-G4-myc cells, and β-catenin insulin-responsive binding partners were identified via immunoprecipitation coupled to label-free proteomics. Results Skeletal muscle specific deletion of β-catenin impaired whole-body insulin sensitivity and insulin-stimulated glucose uptake into muscle independent of canonical Wnt signalling. In response to insulin, β-catenin was phosphorylated at serine 552 in an Akt-dependent manner, and in L6-G4-myc cells, mutation of β-cateninS552 impaired insulin-induced actin-polymerisation, resulting in attenuated insulin-induced glucose transport and GLUT4 translocation. β-catenin was found to interact with M-cadherin in an insulin-dependent β-cateninS552-phosphorylation dependent manner, and loss of M-cadherin in L6-G4-myc cells attenuated insulin-induced actin-polymerisation and glucose transport. Conclusions Our data suggest that β-catenin is a novel mediator of glucose transport in skeletal muscle and may contribute to insulin-induced actin-cytoskeleton remodelling to support GLUT4 translocation. Deletion of β-catenin from the muscles of adult mice attenuates skeletal muscle glucose uptake. Insulin stimulates phosphorylation of β-cateninS552 by a mechanism involving Akt, and this is required for insulin's effects on both GLUT4 trafficking and actin remodelling. Insulin promotes β-catenin/M-cadherin binding, to support cortical actin remodelling associated with GLUT4 translocation.
Collapse
Affiliation(s)
- Stewart W C Masson
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Brie Sorrenson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
34
|
Acharya KD, Nettles SA, Lichti CF, Warre-Cornish K, Polit LD, Srivastava DP, Denner L, Tetel MJ. Dopamine-induced interactions of female mouse hypothalamic proteins with progestin receptor-A in the absence of hormone. J Neuroendocrinol 2020; 32:e12904. [PMID: 33000549 PMCID: PMC7591852 DOI: 10.1111/jne.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Abstract
Neural progestin receptors (PR) function in reproduction, neural development, neuroprotection, learning, memory and the anxiety response. In the absence of progestins, PR can be activated by dopamine (DA) in the rodent hypothalamus to elicit female sexual behaviour. The present study investigated mechanisms of DA activation of PR by testing the hypothesis that proteins from DA-treated hypothalami interact with PR in the absence of progestins. Ovariectomised, oestradiol-primed mice were infused with a D1-receptor agonist, SKF38393 (SKF), into the third ventricle 30 minutes prior to death. Proteins from SKF-treated hypothalami were pulled-down with glutathione S-transferase-tagged mouse PR-A or PR-B and the interactomes were analysed by mass spectrometry. The largest functional group to interact with PR-A in a DA-dependent manner was synaptic proteins. To test the hypothesis that DA activation of PR regulates synaptic proteins, we developed oestradiol-induced PR-expressing hypothalamic-like neurones derived from human-induced pluripotent stem cells (hiPSCs). Similar to progesterone (P4), SKF treatment of hiPSCs increased synapsin1/2 expression. This SKF-dependent effect was blocked by the PR antagonist RU486, suggesting that PR are necessary for this DA-induced increase. The second largest DA-dependent PR-A protein interactome comprised metabolic regulators involved in glucose metabolism, lipid synthesis and mitochondrial energy production. Interestingly, hypothalamic proteins interacted with PR-A, but not PR-B, in an SKF-dependent manner, suggesting that DA promotes the interaction of multiple hypothalamic proteins with PR-A. These in vivo and in vitro results indicate novel mechanisms by which DA can differentially activate PR isoforms in the absence of P4 and provide a better understanding of ligand-independent PR activation in reproductive, metabolic and mental health disorders in women.
Collapse
Affiliation(s)
| | | | - Cheryl F. Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Marc J. Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA 02481
| |
Collapse
|
35
|
Hevener AL, Ribas V, Moore TM, Zhou Z. The Impact of Skeletal Muscle ERα on Mitochondrial Function and Metabolic Health. Endocrinology 2020; 161:5735479. [PMID: 32053721 PMCID: PMC7017798 DOI: 10.1210/endocr/bqz017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The incidence of chronic disease is elevated in women after menopause. Increased expression of ESR1 (the gene that encodes the estrogen receptor alpha, ERα) in muscle is highly associated with metabolic health and insulin sensitivity. Moreover, reduced muscle expression levels of ESR1 are observed in women, men, and animals presenting clinical features of the metabolic syndrome (MetSyn). Considering that metabolic dysfunction elevates chronic disease risk, including type 2 diabetes, heart disease, and certain cancers, treatment strategies to combat metabolic dysfunction and associated pathologies are desperately needed. This review will provide published work supporting a critical and protective role for skeletal muscle ERα in the regulation of mitochondrial function, metabolic homeostasis, and insulin action. We will provide evidence that muscle-selective targeting of ERα may be effective for the preservation of mitochondrial and metabolic health. Collectively published findings support a compelling role for ERα in the control of muscle metabolism via its regulation of mitochondrial function and quality control. Studies identifying ERα-regulated pathways essential for disease prevention will lay the important foundation for the design of novel therapeutics to improve metabolic health of women while limiting secondary complications that have historically plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
- Iris Cantor-UCLA Women’s Health Research Center, University of California, Los Angeles, California
- Correspondence: Andrea L. Hevener, PhD, University of California, Los Angeles, David Geffen School of Medicine, Division of Endocrinology, Diabetes, and Hypertension, 650 Charles E. Young Drive, CHS Suite 34-115B, Los Angeles, California 90095–7073. E-mail:
| | - Vicent Ribas
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
- Current Affiliation: Vicent Ribas, Department of cell death and proliferation Instituto de Investigaciones Biomédicas de Barcelona, (IIBB-CSIC) Spanish National Research Council C/Rosselló 179, 6th floor 08036, Barcelona Spain
| | - Timothy M Moore
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
| | - Zhenqi Zhou
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
| |
Collapse
|
36
|
Handgraaf S, Philippe J. The Role of Sexual Hormones on the Enteroinsular Axis. Endocr Rev 2019; 40:1152-1162. [PMID: 31074764 DOI: 10.1210/er.2019-00004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Sex steroid estrogens, androgens, and progesterone, produced by the gonads, which have long been considered as endocrine glands, are implicated in sexual differentiation, puberty, and reproduction. However, the impact of sex hormones goes beyond these effects through their role on energy metabolism. Indeed, sex hormones are important physiological regulators of glucose homeostasis and, in particular, of the enteroinsular axis. In this review, we describe the roles of estrogens, androgens, and progesterone on glucose homeostasis through their effects on pancreatic α- and β-cells, as well as on enteroendocrine L-cells, and their implications in hormonal biosynthesis and secretion. The analysis of their mechanisms of action with the dissection of the receptors implicated in the several protective effects could provide some new aspects of the fine-tuning of hormonal secretion under the influence of the sex. This knowledge paves the way to the understanding of transgender physiology and new potential therapeutics in the field of type 2 diabetes.
Collapse
Affiliation(s)
- Sandra Handgraaf
- Laboratory of Molecular Diabetes, Division of Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| | - Jacques Philippe
- Laboratory of Molecular Diabetes, Division of Endocrinology, Diabetes, Hypertension, and Nutrition, University Hospital/Diabetes Center/University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
37
|
Khristi V, Ratri A, Ghosh S, Pathak D, Borosha S, Dai E, Roy R, Chakravarthi VP, Wolfe MW, Karim Rumi MA. Disruption of ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats. Mol Cell Endocrinol 2019; 490:47-56. [PMID: 30974146 DOI: 10.1016/j.mce.2019.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023]
Abstract
The liver helps maintain energy homeostasis by synthesizing and storing glucose and lipids. Gonadal steroids, particularly estrogens, play an important role in regulating metabolism. As estrogens are considered female hormones, metabolic disorders related to the disruption of estrogen signaling have mostly been studied in females. Estrogen receptor alpha (ESR1) is the predominant receptor in both the male and female liver, and it mediates the hepatic response to estrogens. Loss of ESR1 increases weight gain and obesity in female rats, while reducing the normal growth in males. Although Esr1-/- male rats have a reduced body weight, they exhibit increased adipose deposition and impaired glucose tolerance. We further investigated whether these metabolic disorders in Esr1-/- male rats were linked with the loss of transcriptional regulation by ESR1 in the liver. To identify the ESR-regulated genes, RNA-sequencing was performed on liver mRNAs from wildtype and Esr1-/- male rats. Based on an absolute fold change of ≥2 with a p-value ≤ 0.05, a total of 706 differentially expressed genes were identified in the Esr1-/- male liver: 478 downregulated, and 228 upregulated. Pathway analyses demonstrate that the differentially expressed genes include transcriptional regulators (Cry1, Nr1d1, Nr0b2), transporters (Slc1a2), and regulators of biosynthesis (Cyp7b1, Cyp8b1), and hormone metabolism (Hsd17b2, Sult1e1). Many of these genes are also integral parts of the lipid and carbohydrate metabolism pathways in the liver. Interestingly, certain critical regulators of the metabolic pathways displayed a sexual dimorphism in expression, which may explain the divergent weight gain in Esr1-/- male and female rats despite common metabolic dysfunctions.
Collapse
Affiliation(s)
- Vincentaben Khristi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Devansh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shaon Borosha
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Eddie Dai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Richita Roy
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - V Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Michael W Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
38
|
Hodonu A, Escobar M, Beach L, Hunt J, Rose J. Glycogen metabolism in mink uterine epithelial cells and its regulation by estradiol, progesterone and insulin. Theriogenology 2019; 130:62-70. [PMID: 30870708 DOI: 10.1016/j.theriogenology.2019.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Glycogen content in mink uterine glandular and luminal epithelia (GE and LE) is maximal during estrus and is depleted before implantation while embryos are in diapause. Uterine glycogen synthesis in vivo is stimulated by estradiol (E2) while its mobilization is induced by progesterone (P4). Nevertheless, treatment of an immortalized mink uterine epithelial cell line (GMMe) with E2 did not affect glycogen production. Interestingly, insulin alone significantly increased synthesis of the nutrient and glycogen content in response to insulin + E2 was greater than for insulin alone. Our objectives were to determine: 1) If insulin receptor protein (INSR) is expressed by mink uterine GE and LE in vivo and if the amount differs between estrus, diapause and pregnancy; 2) if E2, P4 or insulin regulate insulin receptor gene (Insr) expression by GMMe cells, and 3) if E2 and P4 act independently to regulate glycogen metabolism by GMMe cells and/or if their effects are mediated in part through the actions of insulin. The mean (±S.E.) percent INSR content of uterine epithelia was greatest during diapause (GE: 15.65 ± 0.06, LE:16.56 ± 1.25), much less during pregnancy (GE: 2.53 ± 0.60, LE:2.25 ± 0.32) and barely detectable in estrus (GE: 0.03 ± 0.01, LE:0.02 ± 0.01). Glycogen concentrations in GMMe cells increased 10-fold in response to insulin and 20-fold with insulin + E2 when compared to controls. Expression of Insr was increased 2-fold by insulin and insulin + E2 when compared to controls and there was no difference between the two hormone treatments, indicating that E2 does not increase Insr expression in insulin-treated cells. To simulate E2-priming, cells were treated with Insulin + E2 for 24 h, followed by the same hormones + P4 for the second 24 h (Insulin + E2 → P4) which resulted in Insr and glycogen levels not different from controls. Similarly, cells treated with Insulin + P4 resulted in glycogen concentrations not different from controls. We conclude that the glycogenic actions of E2 on GMMe cells are due to increased responsiveness of the cells to insulin, but not as a result of up-regulation of the insulin receptor. Glycogen mobilization in response to P4 was the result of decreased glycogenesis and increased glycogenolysis occurring concomitantly with reduced Insr expression. Mink uterine glycogen metabolism appears to be regulated in a reproductive cycle-dependent manner in part as a result of the actions of E2 and P4 on cellular responsiveness to insulin.
Collapse
Affiliation(s)
- Ayokunle Hodonu
- Department of Biological Sciences, College of Science and Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Mario Escobar
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, 83440, USA
| | - Logan Beach
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, 83440, USA
| | - Jason Hunt
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, 83440, USA
| | - Jack Rose
- Department of Biological Sciences, College of Science and Engineering, Idaho State University, Pocatello, ID, 83209, USA.
| |
Collapse
|
39
|
Martin AC, Heazlewood IT, Kitic CM, Lys I, Johnson L. Possible Hormone Predictors of Physical Performance in Adolescent Team Sport Athletes. J Strength Cond Res 2019; 33:417-425. [DOI: 10.1519/jsc.0000000000002014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Dresseno LP, Lehnen AM, Teló G, Silveira A, Markoski MM, Machado UF, Schaan BD. Impact of flaxseed and soy nuts as dietary supplements on lipid profile, insulin sensitivity, and GLUT4 expression in ovariectomized rats. Appl Physiol Nutr Metab 2018; 43:1282-1287. [PMID: 29806984 DOI: 10.1139/apnm-2018-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We assessed the effects of a diet with flaxseed or soy nuts versus estradiol on the lipid profile, insulin sensitivity, and glucose transporter type 4 (GLUT4) expression in ovariectomized female rats. Forty-four female Wistar rats (90 days old) underwent ovariectomy and were divided into 4 groups: C (standard diet), E (standard diet + subcutaneous 17β-estradiol pellets), L (standard diet + flaxseed + subcutaneous placebo pellets), and S (standard diet + soy nuts + subcutaneous placebo pellets). Customized diets and the insertion of pellets were started 21 days after ovariectomy and were continued for another 21 days. We measured body mass, insulin tolerance, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, and GLUT4 (in cardiac and adipose tissues). We found a lower body mass and a lower Lee index in group E and a trend toward improved insulin sensitivity in group S (p = 0.066). Groups L and S showed a better lipid profile when compared with group C. Microsomal GLUT4 increased in group L (in cardiac and adipose tissues), and plasma membrane GLUT4 increased in groups E, L, and S (in both tissues). We conclude that flaxseed and soy nuts as dietary supplements improve lipid profile and increase GLUT4 expression.
Collapse
Affiliation(s)
- Luciana P Dresseno
- a Endocrine Division, Hospital de Clínicas de Porto Alegre/Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350. CEP 90035-003 - Porto Alegre, RS, Brazil
- b Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, Brazil
| | - Alexandre M Lehnen
- b Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, Brazil
| | - Gabriela Teló
- d Endocrine Division, Hospital de Clínicas de Porto Alegre/Universidade Federal do Rio Grande do Sul, Porto Alegre 90620-001, Brazil
| | - Ariel Silveira
- b Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, Brazil
| | - Melissa M Markoski
- b Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre 90620-001, Brazil
| | - Ubiratan F Machado
- c Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Beatriz D Schaan
- d Endocrine Division, Hospital de Clínicas de Porto Alegre/Universidade Federal do Rio Grande do Sul, Porto Alegre 90620-001, Brazil
| |
Collapse
|
41
|
High Estradiol Differentially Affects the Expression of the Glucose Transporter Type 4 in Pelvic Floor Muscles of Rats. Int Neurourol J 2018; 22:161-168. [PMID: 30286578 PMCID: PMC6177727 DOI: 10.5213/inj.1836116.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To characterize the relationship between serum estradiol levels and the expression of glucose transporter type 4 (Glut4) in the pubococcygeus and iliococcygeus muscles in female rats. METHODS The muscles were excised from virgin rats during the metestrus and proestrus stages of the estrous cycle, and from sham and ovariectomized rats implanted with empty or estradiol benzoate-filled capsules. The expression of estrogen receptors (ERs) was inspected in the muscles at metestrus and proestrus. Relative Glut4 expression, glycogen content, and serum glucose levels were measured. Appropriate statistical tests were done to identify significant differences (P≤0.05). RESULTS The pubococcygeus and iliococcygeus muscles expressed ERα and ERβ. Glut4 expression and glycogen content in the pubococcygeus muscle were higher at proestrus than at metestrus. No significant changes were observed in the iliococcygeus muscle. In ovariectomized rats, the administration of estradiol benzoate increased Glut4 expression and glycogen content in the pubococcygeus muscle alone. CONCLUSION High serum estradiol levels increased Glut4 expression and glycogen content in the pubococcygeus muscle, but not in the iliococcygeus muscle.
Collapse
|
42
|
Sims ST, Heather AK. Myths and Methodologies: Reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp Physiol 2018; 103:1309-1317. [DOI: 10.1113/ep086797] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/20/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Stacy T. Sims
- Adams Centre for High Performance; Faculty of Health; Sport and Human Performance; University of Waikato; Mount Maunganui New Zealand
| | - Alison K. Heather
- Department of Physiology; School of Biomedical Sciences; University of Otago; Dunedin New Zealand
| |
Collapse
|
43
|
Hevener AL, Zhou Z, Moore TM, Drew BG, Ribas V. The impact of ERα action on muscle metabolism and insulin sensitivity - Strong enough for a man, made for a woman. Mol Metab 2018; 15:20-34. [PMID: 30005878 PMCID: PMC6066787 DOI: 10.1016/j.molmet.2018.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/25/2022] Open
Abstract
Background The incidence of chronic disease is elevated in women after menopause. Natural variation in muscle expression of the estrogen receptor (ER)α is inversely associated with plasma insulin and adiposity. Moreover, reduced muscle ERα expression levels are observed in women and animals presenting clinical features of the metabolic syndrome (MetSyn). Considering that metabolic dysfunction impacts nearly a quarter of the U.S. adult population and elevates chronic disease risk including type 2 diabetes, heart disease, and certain cancers, treatment strategies to combat metabolic dysfunction and associated pathologies are desperately needed. Scope of the review This review will provide evidence supporting a critical and protective role for skeletal muscle ERα in the regulation of metabolic homeostasis and insulin sensitivity, and propose novel ERα targets involved in the maintenance of metabolic health. Major conclusions Studies identifying ERα-regulated pathways essential for disease prevention will lay the important foundation for the rational design of novel therapeutics to improve the metabolic health of women while limiting secondary complications that have plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Zhenqi Zhou
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Timothy M Moore
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Brian G Drew
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Vicent Ribas
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
44
|
Kelsey MM, Braffett BH, Geffner ME, Levitsky LL, Caprio S, McKay SV, Shah R, Sprague JE, Arslanian SA. Menstrual Dysfunction in Girls From the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) Study. J Clin Endocrinol Metab 2018; 103:2309-2318. [PMID: 29697830 PMCID: PMC6276678 DOI: 10.1210/jc.2018-00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022]
Abstract
CONTEXT Little is known about reproductive function in girls with youth-onset type 2 diabetes. OBJECTIVES To characterize girls with irregular menses and effects of glycemic treatments on menses and sex steroids in the Treatment Options for Type 2 Diabetes in Youth (TODAY) study. DESIGN Differences in demographic, metabolic, and hormonal characteristics between regular- vs irregular-menses groups were tested; treatment group (metformin with or without rosiglitazone, metformin plus lifestyle) effect on menses and sex steroids over time in the study was assessed. This is a secondary analysis of TODAY data. SETTING Multicenter study in an academic setting. PATIENTS TODAY girls not receiving hormonal contraception and those at least 1-year postmenarche were included. Irregular menses was defined as three or fewer periods in the prior 6 months. RESULTS Of eligible participants with serum measurement of sex steroids (n = 190; mean age, 14 years), 21% had irregular menses. Those with irregular vs regular menses had higher body mass index (BMI) (P = 0.001), aspartate aminotransferase (AST) (P = 0.001), free androgen index (P = 0.0003), and total testosterone (P = 0.01) and lower sex hormone-binding globulin (SHBG) (P = 0.004) and estradiol (P = 0.01). Differences remained after adjustment for BMI. There was no treatment group effect on menses or sex steroids at 12 or 24 months, and no association of sex steroids was seen with measures of insulin sensitivity or secretion. CONCLUSIONS Menstrual dysfunction is common in girls with recently diagnosed type 2 diabetes and associated with alterations in sex steroids, SHBG, and AST but not with alteration in insulin sensitivity or β-cell function and did not improve with 2 years of antihyperglycemic treatment.
Collapse
Affiliation(s)
- Megan M Kelsey
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Barbara H Braffett
- Biostatistics Center, George Washington University, Washington, DC
- Correspondence and Reprint Requests: Barbara H. Braffett, PhD, 6110 Executive Boulevard Suite 750, Rockville, Maryland 20852. E-mail:
| | - Mitchell E Geffner
- The Saban Research Center, Children’s Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Lynne L Levitsky
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sonia Caprio
- Department of Pediatric Endocrinology, Yale School of Medicine, New Haven, Connecticut
| | - Siripoom V McKay
- Division of Pediatric Endocrinology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Rachana Shah
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Silva A Arslanian
- University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | | |
Collapse
|
45
|
Park YM, Pereira RI, Erickson CB, Swibas TA, Kang C, Van Pelt RE. Time since menopause and skeletal muscle estrogen receptors, PGC-1α, and AMPK. Menopause 2018; 24:815-823. [PMID: 28195989 PMCID: PMC5484730 DOI: 10.1097/gme.0000000000000829] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: Short-term administration of estradiol (E2) improves insulin-stimulated glucose disposal rate in early postmenopausal (EPM) women compared with a reduction in late postmenopausal (LPM) women. The underlying mechanisms by which E2 action on glucose disposal rate reversed from beneficial early to harmful late in menopause is unknown, but might include adverse changes in estrogen receptors (ERs) or other biomarkers of cellular energy metabolism with age or duration of estrogen deficiency. Methods: We retrospectively analyzed skeletal muscle samples from 27 postmenopausal women who were 6 years or less past menopause (EPM; n = 13) or at least 10 years past menopause (LPM; n = 14). Fasted skeletal muscle (vastus lateralis) samples were collected after 1 week administration of transdermal E2 or placebo, in random cross-over design. Results: Compared with EPM, LPM had reduced skeletal muscle ERα and ERβ nuclear protein. Short-term E2 treatment did not change nuclear ERα or ERβ, but decreased cytosolic ERα, so the proportion of ERα in the nucleus compared with the cytosol tended to increase. There was a group-by-treatment interaction (P < 0.05) for nuclear proliferator-activated receptor γ co-activator 1-α and phosphorylated adenosine monophosphate-activated protein kinase, such that E2 increased these proteins in EPM, but decreased these proteins in LPM. Conclusions: These preliminary studies of skeletal muscle from early and late postmenopausal women treated with E2 suggest there may be declines in skeletal muscle ER and changes in the E2-mediated regulation of cellular energy homeostasis with increasing time since menopause.
Collapse
Affiliation(s)
- Young-Min Park
- 1Division of Geriatric Medicine 2Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 3VA Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center (GRECC), Denver, CO 4Denver Health and Hospital Authority, Denver, CO 5School of Kinesiology, University of Minnesota, Minneapolis, MN
| | | | | | | | | | | |
Collapse
|
46
|
Bansal S, Chopra K. Selective ER-α agonist alleviates vascular endothelial dysfunction in ovariectomized type 2 diabetic rats. Mol Cell Endocrinol 2018; 460:152-161. [PMID: 28736253 DOI: 10.1016/j.mce.2017.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/24/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022]
Abstract
Postmenopausal diabetic women represent a specific risk group with a greater incidence of vascular deficits as compared with age-matched men or non-diabetic women. 17β-estradiol is the mainstay therapy for menopause and associated complications; however, its vasculoprotective effect is lost in women with diabetes. Although, exact mechanism of dichotomous effect of estrogen has not been delineated but it may be due to, differential activation of ER-α and β during disease conditions such as diabetes. Thus main objective of our study was to characterize the specific estrogen receptor which could be selectively targeted to achieve vasculoprotection in postmenopausal diabetic situation. A significant impairment in glycemic and lipid profile, decreased ACh-induced endothelium dependent relaxation, impaired endothelial integrity, and rise in inflammatory and oxidative stress markers were observed in ovariectomized type 2 diabetic rats as compared to sham rats. These markers were further correlated with aortic eNOS levels. Treatment with selective ER-α receptor agonist markedly while 17β-estradiol partially ameliorated these alterations along with enhanced aortic eNOS levels. However, ER-β agonist did not show any effect. Our data suggests that selective ER-α activation could be an important pharmacological target, to mimic the beneficial effect of estradiol in cardiovascular disorders, especially in postmenopausal diabetic state.
Collapse
Affiliation(s)
- Seema Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
47
|
Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue. Sci Rep 2017; 7:16716. [PMID: 29196658 PMCID: PMC5711936 DOI: 10.1038/s41598-017-16686-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) is a key factor in the regulation of angiogenesis in adipose tissue. Poor vascularization during adipose tissue proliferation causes fibrosis and local inflammation, and is associated with insulin resistance. It is known that 17-beta estradiol (E2) regulates adipose tissue function and VEGFA expression in other tissues; however, the ability of E2 to regulate VEGFA in adipose tissue is currently unknown. In this study, we showed that, in 3T3-L1 cells, E2 and the estrogen receptor 1 (ESR1) agonist PPT induced VEGFA expression, while ESR1 antagonist (MPP), and selective knockdown of ESR1 using siRNA decreased VEGFA and prevented the ability of E2 to modulate its expression. Additionally, we found that E2 and PPT induced the binding of hypoxia inducible factor 1 alpha subunit (HIF1A) in the VEGFA gene promoter. We further found that VEGFA expression was lower in inguinal and gonadal white adipose tissues of ESR1 total body knockout female mice compared to wild type mice. In conclusion, our data provide evidence of an important role for E2/ESR1 in modulating adipose tissue VEGFA, which is potentially important to enhance angiogenesis, reduce inflammation and improve adipose tissue function.
Collapse
|
48
|
Wang L, Fan J, Yan CY, Ling R, Yun J. Activation of hypoxia-inducible factor-1α by prolonged in vivo hyperinsulinemia treatment potentiates cancerous progression in estrogen receptor-positive breast cancer cells. Biochem Biophys Res Commun 2017; 491:545-551. [DOI: 10.1016/j.bbrc.2017.03.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023]
|
49
|
Siqueira R, Colombo R, Conzatti A, de Castro AL, Carraro CC, Tavares AMV, Fernandes TRG, Araujo ASDR, Belló-Klein A. Effects of ovariectomy on antioxidant defence systems in the right ventricle of female rats with pulmonary arterial hypertension induced by monocrotaline. Can J Physiol Pharmacol 2017; 96:295-303. [PMID: 28854338 DOI: 10.1139/cjpp-2016-0445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate the impact of ovariectomy on oxidative stress in the right ventricle (RV) of female rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Rats were divided into 4 groups (n = 6 per group): sham (S), sham + MCT (SM), ovariectomized (O), and ovariectomized + MCT (OM). MCT (60 mg·kg-1 i.p.) was injected 1 week after ovariectomy or sham surgery. Three weeks later, echocardiographic analysis and RV catheterisation were performed. RV morphometric, biochemical, and protein expression analysis through Western blotting were done. MCT promoted a slight increase in pulmonary artery pressure, without differences between the SM and OM groups, but did not induce RV hypertrophy. RV hydrogen peroxide increased in the MCT groups, but SOD, CAT, and GPx activities were also enhanced. Non-classical antioxidant defenses diminished in ovariectomized groups, probably due to a decrease in the nuclear factor Nrf2. Hemoxygenase-1 and thioredoxin-1 protein expression was increased in the OM group compared with SM, being accompanied by an elevation in the estrogen receptor β (ER-β). Hemoxygenase-1 and thioredoxin-1 may be involved in the modulation of oxidative stress in the OM group, and this could be responsible for attenuation of PAH and RV remodeling.
Collapse
Affiliation(s)
- Rafaela Siqueira
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Colombo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adriana Conzatti
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alexandre Luz de Castro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristina Campos Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angela Maria Vicente Tavares
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tânia Regina Gattelli Fernandes
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Science (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
50
|
Price TB, Sanders K. Muscle and liver glycogen utilization during prolonged lift and carry exercise: male and female responses. Physiol Rep 2017; 5:e13113. [PMID: 28242815 PMCID: PMC5328765 DOI: 10.14814/phy2.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 11/24/2022] Open
Abstract
This study examined the use of carbohydrates by men and women during lift/carry exercise. Effects of menstrual cycle variation were examined in women. Twenty-five subjects (15 M, 10 F) were studied; age 25 ± 2y M, 26 ± 3y F, weight 85 ± 3 kg* M, 63 ± 3 kg F, and height 181 ± 2 cm* M, 161 ± 2 cm F (* P < 0.0001). During exercise subjects squatted to floor level and lifted a 30 kg box, carried it 3 m, and placed it on a shelf 132 cm high 3X/min over a 3-hour period (540 lifts) or until they could not continue. Males were studied in a single session, females were studied on separate occasions (during the luteal (L) and follicular (F) menstrual phases). The protocol was identical for both sexes and on both occasions in the female group. Glycogen utilization was tracked with natural abundance C-13 NMR of quadriceps femoris and biceps brachialis muscles, and in the liver at rest and throughout the exercise period. Males completed more of the 180 min protocol than females [166 ± 9 min M, 112 ± 16 min* F (L), 88 ± 16 min** F (F) (*P = 0.0036, **P < 0.0001)]. Quadriceps glycogen depletion was similar between sexes and within females in L/F phases [4.7 ± 0.8 mmol/L-h M, 4.5 ± 2.4 mmol/L-h F (L), 10.3 ± 3.5 mmol/L-h F (F)]. Biceps glycogen depletion was greater in females [2.7 ± 0.9 mmol/L-h M, 10.3 ± 1.3 mmol/L-h* F (L), 16.8 ± 4.8 mmol/L-h** F (F) (* P = 0.0004, ** P = 0.0122)]. Resting glycogen levels were higher in females during the follicular phase (P = 0.0077). Liver glycogen depletion increased during exercise, but was not significant. We conclude that with non-normalized lift/carry exercise: (1) Based on their smaller size, women are less capable of completing and work their upper body harder than men. (2) Women and men work their lower body at similar levels. (3) Women store more quadriceps carbohydrate during the follicular phase. (4) The liver is not significantly challenged by this protocol.
Collapse
Affiliation(s)
- Thomas B Price
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
- School of Arts and Sciences, University of Bridgeport, Bridgeport, Connecticut
| | - Kimberly Sanders
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
- School of Naturopathic Medicine, University of Bridgeport, Bridgeport, Connecticut
| |
Collapse
|