1
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
2
|
Sonobe T, Tsuchimochi H, Maeda H, Pearson JT. Increased contribution of KCa channels to muscle contraction induced vascular and blood flow responses in sedentary and exercise trained ZFDM rats. J Physiol 2022; 600:2919-2938. [PMID: 35551673 DOI: 10.1113/jp282981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Microvascular dysfunction in type 2 diabetes impairs blood flow redistribution during exercise and limits the performance of skeletal muscle and may cause early fatigability. Endothelium-dependent hyperpolarization (EDH), which mediates vasodilation in resistance arteries is known to be depressed in animals with diabetes. Here we report that low-intensity exercise training in ZFDM rats increased KCa channel-derived component in the vasodilator responses to muscle contraction than in sedentary rats, partly due to the increase in KCNN3 expression. These results suggest that low-intensity exercise training improves blood flow redistribution in contracting skeletal muscle in metabolic disease with diabetes via upregulation of EDH. ABSTRACT In resistance arteries, endothelium-dependent hyperpolarization (EDH) mediated vasodilation is depressed in diabetes. We hypothesized that downregulation of KCa channel derived EDH reduces exercise-induced vasodilation and blood flow redistribution in diabetes. To test this hypothesis, we evaluated vascular function in response to hindlimb muscle contraction, and the contribution of KCa channels in anaesthetised ZFDM, metabolic disease rats with type 2 diabetes. We also tested whether exercise training ameliorated the vascular response. Using in vivo microangiography, the hindlimb vasculature was visualized before and after rhythmic muscle contraction (0.5 s tetanus every 3 sec, 20 times) evoked by sciatic nerve stimulation (40 Hz). Femoral blood flow of the contracting hindlimb was simultaneously measured by an ultrasonic flowmeter. The contribution of KCa channels was investigated in the presence and absence of apamin and charybdotoxin. We found that vascular and blood flow responses to muscle contraction were significantly impaired at the level of small artery segments in ZFDM fa/fa rats compared to its lean control fa/+ rats. The contribution of KCa channels was also smaller in fa/fa than in fa/+ rats. Low-intensity exercise training for 12 weeks in fa/fa rats demonstrated minor changes in the vascular and blood flow response to muscle contraction. However, KCa-derived component in the response to muscle contraction was much greater in exercise trained than in sedentary fa/fa rats. These data suggest that exercise training increases the contribution of KCa channels among endothelium-dependent vasodilatory mechanisms to maintain vascular and blood flow responses to muscle contraction in this metabolic disease rat model. Abstract figure legend Low-intensity exercise training in ZFDM, metabolic disease rats with type 2 diabetes increases KCa channel-derived component of endothelium-dependent hyperpolarization in the vascular and blood flow responses to skeletal muscle contraction than the responses in sedentary rats, partly due to upregulation of KCNN3 protein expression. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Takashi Sonobe
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Hisashi Maeda
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Victoria Heart Institute and Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Natali A, Nesti L. Vascular effects of insulin. Metabolism 2021; 124:154891. [PMID: 34563557 DOI: 10.1016/j.metabol.2021.154891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Andrea Natali
- Metabolism, Nutrition and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Lorenzo Nesti
- Metabolism, Nutrition and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
4
|
Luther JM, Ray J, Wei D, Koethe JR, Hannah L, DeMatteo A, Manning R, Terker AS, Peng D, Nian H, Yu C, Mashayekhi M, Gamboa J, Brown NJ. GSK2256294 Decreases sEH (Soluble Epoxide Hydrolase) Activity in Plasma, Muscle, and Adipose and Reduces F2-Isoprostanes but Does Not Alter Insulin Sensitivity in Humans. Hypertension 2021; 78:1092-1102. [PMID: 34455816 DOI: 10.1161/hypertensionaha.121.17659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- James M Luther
- Department of Medicine, Division of Clinical Pharmacology (J.M.L., D.W., A.D., R.M., D.P., J.G., N.J.B.), Vanderbilt University Medical Center
| | - Justina Ray
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY (J.R.)
| | - Dawei Wei
- Department of Medicine, Division of Clinical Pharmacology (J.M.L., D.W., A.D., R.M., D.P., J.G., N.J.B.), Vanderbilt University Medical Center
| | - John R Koethe
- Department of Medicine, Division of Infectious Diseases (J.R.K., L.H.), Vanderbilt University Medical Center
| | - Latoya Hannah
- Department of Medicine, Division of Infectious Diseases (J.R.K., L.H.), Vanderbilt University Medical Center
| | - Anthony DeMatteo
- Department of Medicine, Division of Clinical Pharmacology (J.M.L., D.W., A.D., R.M., D.P., J.G., N.J.B.), Vanderbilt University Medical Center
| | - Robert Manning
- Department of Medicine, Division of Clinical Pharmacology (J.M.L., D.W., A.D., R.M., D.P., J.G., N.J.B.), Vanderbilt University Medical Center
| | - Andrew S Terker
- Department of Medicine, Division of Nephrology and Hypertension (A.S.T.), Vanderbilt University Medical Center
| | - Dungeng Peng
- Department of Medicine, Division of Clinical Pharmacology (J.M.L., D.W., A.D., R.M., D.P., J.G., N.J.B.), Vanderbilt University Medical Center
| | - Hui Nian
- Department of Biostatistics (H.N., C.Y.), Vanderbilt University Medical Center
| | - Chang Yu
- Department of Biostatistics (H.N., C.Y.), Vanderbilt University Medical Center
| | - Mona Mashayekhi
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (M.M.), Vanderbilt University Medical Center
| | - Jorge Gamboa
- Department of Medicine, Division of Clinical Pharmacology (J.M.L., D.W., A.D., R.M., D.P., J.G., N.J.B.), Vanderbilt University Medical Center
| | - Nancy J Brown
- Department of Medicine, Division of Clinical Pharmacology (J.M.L., D.W., A.D., R.M., D.P., J.G., N.J.B.), Vanderbilt University Medical Center.,Yale School of Medicine (N.J.B.)
| |
Collapse
|
5
|
Meneses AL, Nam MCY, Bailey TG, Anstey C, Golledge J, Keske MA, Greaves K, Askew CD. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age. Physiol Rep 2021; 8:e14580. [PMID: 33038050 PMCID: PMC7547535 DOI: 10.14814/phy2.14580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
Impairments in skeletal muscle microvascular function are frequently reported in patients with various cardiometabolic conditions for which older age is a risk factor. Whether aging per se predisposes the skeletal muscle to microvascular dysfunction is unclear. We used contrast‐enhanced ultrasound (CEU) to compare skeletal muscle microvascular perfusion responses to cuff occlusion and leg exercise between healthy young (n = 12, 26 ± 3 years) and older (n = 12, 68 ± 7 years) adults. Test–retest reliability of CEU perfusion parameters was also assessed. Microvascular perfusion (microvascular volume × flow velocity) of the medial gastrocnemius muscle was measured before and immediately after: (a) 5‐min of thigh‐cuff occlusion, and (b) 5‐min of submaximal intermittent isometric plantar‐flexion exercise (400 N) using CEU. Whole‐leg blood flow was measured using strain‐gauge plethysmography. Repeated measures were obtained with a 15‐min interval, and averaged responses were used for comparisons between age groups. There were no differences in post‐occlusion whole‐leg blood flow and muscle microvascular perfusion between young and older participants (p > .05). Similarly, total whole‐leg blood flow during exercise and post‐exercise peak muscle microvascular perfusion did not differ between groups (p > .05). The overall level of agreement between the test–retest measures of calf muscle perfusion was excellent for measurements taken at rest (intraclass correlation coefficient [ICC] 0.85), and in response to cuff occlusion (ICC 0.89) and exercise (ICC 0.95). Our findings suggest that healthy aging does not affect muscle perfusion responses to cuff‐occlusion and submaximal leg exercise. CEU muscle perfusion parameters measured in response to these provocation tests are highly reproducible in both young and older adults.
Collapse
Affiliation(s)
- Annelise L Meneses
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Michael C Y Nam
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Tom G Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Anstey
- Department of Intensive Care, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, Australia
| | - Michelle A Keske
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Kim Greaves
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| |
Collapse
|
6
|
Luther JM, Wei DS, Ghoshal K, Peng D, Adler GK, Turcu AF, Nian H, Yu C, Solorzano CC, Pozzi A, Brown NJ. Treatment of Primary Aldosteronism Increases Plasma Epoxyeicosatrienoic Acids. Hypertension 2021; 77:1323-1331. [PMID: 33583202 PMCID: PMC8320355 DOI: 10.1161/hypertensionaha.120.14808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 01/17/2021] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- James M. Luther
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - Dawei S. Wei
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - Kakali Ghoshal
- Vanderbilt University Medical Center Department of Medicine, Division of Nephrology and Hypertension
| | - Dungeng Peng
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
| | - Gail K. Adler
- Brigham and Women’s Hospital, Division of Endocrinology and Hypertension, Department of Medicine, Harvard Medical School
| | - Adina F. Turcu
- University of Michigan, Division of Endocrinology, Department of Medicine
| | - Hui Nian
- Vanderbilt University Department of Biostatistics
| | - Chang Yu
- Vanderbilt University Department of Biostatistics
| | | | - Ambra Pozzi
- Vanderbilt University Medical Center Department of Medicine, Division of Nephrology and Hypertension
- Department of Veterans Affairs, Nashville, TN
| | - Nancy J. Brown
- Vanderbilt University Medical Center Department of Medicine, Division of Clinical Pharmacology
- Yale School of Medicine
| |
Collapse
|
7
|
Shochat C, Wang Z, Mo C, Nelson S, Donaka R, Huang J, Karasik D, Brotto M. Deletion of SREBF1, a Functional Bone-Muscle Pleiotropic Gene, Alters Bone Density and Lipid Signaling in Zebrafish. Endocrinology 2021; 162:5929645. [PMID: 33068391 PMCID: PMC7745669 DOI: 10.1210/endocr/bqaa189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Through a genome-wide analysis of bone mineral density (BMD) and muscle mass, identification of a signaling pattern on 17p11.2 recognized the presence of sterol regulatory element-binding factor 1 (SREBF1), a gene responsible for the regulation of lipid homeostasis. In conjunction with lipid-based metabolic functions, SREBF1 also codes for the protein, SREBP-1, a transcription factor known for its role in adipocyte differentiation. We conducted a quantitative correlational study. We established a zebrafish (ZF) SREBF1 knockout (KO) model and used a targeted customized lipidomics approach to analyze the extent of SREBF1 capabilities. For lipidomics profiling, we isolated the dorsal muscles of wild type (WT) and KO fishes, and we performed liquid chromatography-tandem mass spectrometry screening assays of these samples. In our analysis, we profiled 48 lipid mediators (LMs) derived from various essential polyunsaturated fatty acids to determine potential targets regulated by SREBF1, and we found that the levels of 11,12 epoxyeicosatrienoic acid (11,12-EET) were negatively associated with the number of SREBF1 alleles (P = 0.006 for a linear model). We also compared gene expression between KO and WT ZF by genome-wide RNA-sequencing. Significantly enriched pathways included fatty acid elongation, linoleic acid metabolism, arachidonic acid metabolism, adipocytokine signaling, and DNA replication. We discovered trends indicating that BMD in adult fish was significantly lower in the KO than in the WT population (P < 0.03). These studies reinforce the importance of lipidomics investigation by detailing how the KO of SREBF1 affects both BMD and lipid-signaling mediators, thus confirming the importance of SREBF1 for musculoskeletal homeostasis.
Collapse
Affiliation(s)
- Chen Shochat
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - Chenglin Mo
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - Sarah Nelson
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | | | - Jian Huang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Correspondence: David Karasik, Azrieli Faculty of Medicine, Bar-Ilan university, Safed, 1311502, Israel. E-mail:
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington-UTA, Arlington, Texas
| |
Collapse
|
8
|
Zhang W, Bai Y, Chen Z, Li X, Fu S, Huang L, Lin S, Du H. Comprehensive analysis of long non-coding RNAs and mRNAs in skeletal muscle of diabetic Goto-Kakizaki rats during the early stage of type 2 diabetes. PeerJ 2020; 8:e8548. [PMID: 32095365 PMCID: PMC7023842 DOI: 10.7717/peerj.8548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/12/2020] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle long non-coding RNAs (lncRNAs) were reported to be involved in the development of type 2 diabetes (T2D). However, little is known about the mechanism of skeletal muscle lncRNAs on hyperglycemia of diabetic Goto-Kakizaki (GK) rats at the age of 3 and 4 weeks. To elucidate this, we used RNA-sequencing to profile the skeletal muscle transcriptomes including lncRNAs and mRNAs, in diabetic GK and control Wistar rats at the age of 3 and 4 weeks. In total, there were 438 differentially expressed mRNAs (DEGs) and 401 differentially expressed lncRNAs (DELs) in skeletal muscle of 3-week-old GK rats compared with age-matched Wistar rats, and 1000 DEGs and 726 DELs between GK rats and Wistar rats at 4 weeks of age. The protein–protein interaction analysis of overlapping DEGs between 3 and 4 weeks, the correlation analysis of DELs and DEGs, as well as the prediction of target DEGs of DELs showed that these DEGs (Pdk4, Stc2, Il15, Fbxw7 and Ucp3) might play key roles in hyperglycemia, glucose intolerance, and increased fatty acid oxidation. Considering the corresponding co-expressed DELs with high correlation coefficients or targeted DELs of these DEGs, our study indicated that these dysregulated lncRNA-mRNA pairs (NONRATG017315.2-Pdk4, NONRATG003318.2-Stc2, NONRATG011882.2-Il15, NONRATG013497.2-Fbxw7, MSTRG.1662-Ucp3) might be related to above biological processes in GK rats at the age of 3 and 4 weeks. Our study could provide more comprehensive knowledge of mRNAs and lncRNAs in skeletal muscle of GK rats at 3 and 4 weeks of age. And our study may provide deeper understanding of the underlying mechanism in T2D of GK rats at the age of 3 and 4 weeks.
Collapse
Affiliation(s)
- Wenlu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yunmeng Bai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xingsong Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shudai Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
9
|
Roberts-Thomson KM, Betik AC, Premilovac D, Rattigan S, Richards SM, Ross RM, Russell RD, Kaur G, Parker L, Keske MA. Postprandial microvascular blood flow in skeletal muscle: Similarities and disparities to the hyperinsulinaemic-euglycaemic clamp. Clin Exp Pharmacol Physiol 2019; 47:725-737. [PMID: 31868941 DOI: 10.1111/1440-1681.13237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
Skeletal muscle contributes to ~40% of total body mass and has numerous important mechanical and metabolic roles in the body. Skeletal muscle is a major site for glucose disposal following a meal. Consequently, skeletal muscle plays an important role in postprandial blood glucose homeostasis. Over the past number of decades, research has demonstrated that insulin has an important role in vasodilating the vasculature in skeletal muscle in response to an insulin infusion (hyperinsulinaemic-euglycaemic clamp) or following the ingestion of a meal. This vascular action of insulin is pivotal for glucose disposal in skeletal muscle, as insulin-stimulated vasodilation increases the delivery of both glucose and insulin to the myocyte. Notably, in insulin-resistant states such as obesity and type 2 diabetes, this vascular response of insulin in skeletal muscle is significantly impaired. Whereas the majority of work in this field has focussed on the action of insulin alone on skeletal muscle microvascular blood flow and myocyte glucose metabolism, there is less understanding of how the consumption of a meal may affect skeletal muscle blood flow. This is in part due to complex variations in glucose and insulin dynamics that occurs postprandially-with changes in humoral concentrations of glucose, insulin, amino acids, gut and pancreatic peptides-compared to the hyperinsulinaemic-euglycaemic clamp. This review will address the emerging body of evidence to suggest that postprandial blood flow responses in skeletal muscle may be a function of the nutritional composition of a meal.
Collapse
Affiliation(s)
- Katherine M Roberts-Thomson
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Dino Premilovac
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Stephen Rattigan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Renee M Ross
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Ryan D Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Gunveen Kaur
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Michelle A Keske
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
10
|
Nabavizadeh N, Qi Y, Kaempf A, Chen Y, Tanyi JA, Lindner JR, Wu MD. Contrast-Enhanced Ultrasound to Detect Early Microvascular Changes in Skeletal Muscle after High-Dose Radiation Treatment. Radiat Res 2019; 193:155-160. [PMID: 31841082 DOI: 10.1667/rr15471.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The biological response of normal tissue to high-dose radiation treatment remains poorly understood. Alterations to the microenvironment, specifically the microvasculature, have been implicated as a significant contributor to tumoral cytotoxicity. We used contrast-enhanced ultrasound (CEU) perfusion imaging, which is uniquely suited to assess functional status of the microcirculation, to measure microvascular blood flow after high-dose irradiation to normal skeletal muscle tissue in a murine model. Proximal hindlimbs of wild-type C57Bl/6 mice were irradiated with a single fraction using 6 MV photons, 1 cm bolus and a dynamic wedge. Quantitative perfusion CEU imaging of the skeletal muscle was performed at days 1 and 8 postirradiation in three different regions of interest (ROIs): 1. 15 Gy external-beam irradiated leg; 2. 12 Gy irradiated 5 mm proximal area; 3. single ROI in the nonirradiated contralateral (CL) hindlimb. Perfusion imaging was also performed in the hindlimb of nonirradiated mice. CEU time-intensity data were analyzed to measure microvascular blood flow (MBF, also referred to as perfusion), and its parametric components of microvascular flux rate and functional microvascular blood volume (MBV). Plasma measurements of two potent vasoconstrictors, endothelin-1 and angiotensin II, were also performed to assess systemic response. CEU perfusion imaging values for the 12 and 15 Gy irradiated limb regions were pooled. At day 1, MBF in the irradiated limb was significantly lower than in the CL limb (P = 0.016) but quite similar to the nonirradiated mice. At day 8, both limbs of irradiated mice exhibited a trend towards lower MBF than the limbs of nonirradiated mice (28% decrease in mean MBF, P = 0.149 for CL; 39% decrease, P = 0.065 for irradiated limb). Compared to nonirradiated animals, the reduction in perfusion in irradiated limbs at day 8 may have been more influenced by the microvascular flux rate (25% decrease in the mean, P = 0.079) than the MBV (12% decrease in the mean, P = 0.328). Examination of vasoactive compounds revealed that the average plasma concentration for endothelin-1 at day 8 postirradiation was significantly higher in 14 irradiated animals than in 4 nonirradiated animals (3.07 pg/ ml vs. 2.51 pg/ml; P = 0.011). Up to day 8 after high-dose irradiation, flow deficits in irradiated muscle appear to be a consequence of increased vascular resistance more so than loss or functional de-recruitment of microvascular units.
Collapse
Affiliation(s)
| | - Yue Qi
- Department of Knight Cardiovascular Institute
| | - Andy Kaempf
- Department of Biostatistics Shared Resource, Knight Cancer Institute
| | - Yiyi Chen
- Department of Biostatistics Shared Resource, Knight Cancer Institute
| | | | - Jonathan R Lindner
- Department of Knight Cardiovascular Institute.,Department of Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Melinda D Wu
- Department of Knight Cardiovascular Institute.,Department of Papé Family Pediatric Research Institute, Department of Pediatrics
| |
Collapse
|
11
|
Nguyen T, Davidson BP. Contrast Enhanced Ultrasound Perfusion Imaging in Skeletal Muscle. J Cardiovasc Imaging 2019; 27:163-177. [PMID: 31161755 PMCID: PMC6669180 DOI: 10.4250/jcvi.2019.27.e31] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
The ability to accurately evaluate skeletal muscle microvascular blood flow has broad clinical applications for understanding the regulation of skeletal muscle perfusion in health and disease states. Contrast-enhanced ultrasound (CEU) perfusion imaging, a technique originally developed to evaluate myocardial perfusion, is one of many techniques that have been applied to evaluate skeletal muscle perfusion. Among the advantages of CEU perfusion imaging of skeletal muscle is that it is rapid, safe and performed with equipment already present in most vascular medicine laboratories. The aim of this review is to discuss the use of CEU perfusion imaging in skeletal muscle. This article provides details of the protocols for CEU imaging in skeletal muscle, including two predominant methods for bolus and continuous infusion destruction-replenishment techniques. The importance of stress perfusion imaging will be highlighted, including a discussion of the methods used to produce hyperemic skeletal muscle blood flow. A broad overview of the disease states that have been studied in humans using CEU perfusion imaging of skeletal muscle will be presented including: (1) peripheral arterial disease; (2) sickle cell disease; (3) diabetes; and (4) heart failure. Finally, future applications of CEU imaging in skeletal muscle including therapeutic CEU imaging will be discussed along with technological developments needed to advance the field.
Collapse
Affiliation(s)
- TheAnh Nguyen
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.,Veterans Affairs Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
12
|
Gangadhariah MH, Dieckmann BW, Lantier L, Kang L, Wasserman DH, Chiusa M, Caskey CF, Dickerson J, Luo P, Gamboa JL, Capdevila JH, Imig JD, Yu C, Pozzi A, Luther JM. Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to insulin sensitivity in mice and in humans. Diabetologia 2017; 60:1066-1075. [PMID: 28352940 PMCID: PMC5921930 DOI: 10.1007/s00125-017-4260-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Insulin resistance is frequently associated with hypertension and type 2 diabetes. The cytochrome P450 (CYP) arachidonic acid epoxygenases (CYP2C, CYP2J) and their epoxyeicosatrienoic acid (EET) products lower blood pressure and may also improve glucose homeostasis. However, the direct contribution of endogenous EET production on insulin sensitivity has not been previously investigated. In this study, we tested the hypothesis that endogenous CYP2C-derived EETs alter insulin sensitivity by analysing mice lacking CYP2C44, a major EET producing enzyme, and by testing the association of plasma EETs with insulin sensitivity in humans. METHODS We assessed insulin sensitivity in wild-type (WT) and Cyp2c44 -/- mice using hyperinsulinaemic-euglycaemic clamps and isolated skeletal muscle. Insulin secretory function was assessed using hyperglycaemic clamps and isolated islets. Vascular function was tested in isolated perfused mesenteric vessels. Insulin sensitivity and secretion were assessed in humans using frequently sampled intravenous glucose tolerance tests and plasma EETs were measured by mass spectrometry. RESULTS Cyp2c44 -/- mice showed decreased glucose tolerance (639 ± 39.5 vs 808 ± 37.7 mmol/l × min for glucose tolerance tests, p = 0.004) and insulin sensitivity compared with WT controls (hyperinsulinaemic clamp glucose infusion rate average during terminal 30 min 0.22 ± 0.02 vs 0.33 ± 0.01 mmol kg-1 min-1 in WT and Cyp2c44 -/- mice respectively, p = 0.003). Although glucose uptake was diminished in Cyp2c44 -/- mice in vivo (gastrocnemius Rg 16.4 ± 2.0 vs 6.2 ± 1.7 μmol 100 g-1 min-1, p < 0.01) insulin-stimulated glucose uptake was unchanged ex vivo in isolated skeletal muscle. Capillary density was similar but vascular KATP-induced relaxation was impaired in isolated Cyp2c44 -/- vessels (maximal response 39.3 ± 6.5% of control, p < 0.001), suggesting that impaired vascular reactivity produces impaired insulin sensitivity in vivo. Similarly, plasma EETs positively correlated with insulin sensitivity in human participants. CONCLUSIONS/INTERPRETATION CYP2C-derived EETs contribute to insulin sensitivity in mice and in humans. Interventions to increase circulating EETs in humans could provide a novel approach to improve insulin sensitivity and treat hypertension.
Collapse
Affiliation(s)
- Mahesha H Gangadhariah
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - Blake W Dieckmann
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Li Kang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - Charles F Caskey
- Department of Radiologic Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jaime Dickerson
- Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, USA
| | - Pengcheng Luo
- Huangshi Central Hospital, Hubei Province, People's Republic of China
| | - Jorge L Gamboa
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jorge H Capdevila
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA
| | - John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA.
- Department of Veterans Affairs, Nashville, TN, USA.
| | - James M Luther
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Medical Center North B3109, Nashville, TN, 37232-6602, USA.
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
13
|
Shim CY. Progeria of the Heart in Type 1 Diabetic Children? J Cardiovasc Ultrasound 2017; 25:1-2. [PMID: 28400928 PMCID: PMC5385311 DOI: 10.4250/jcu.2017.25.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Chi Young Shim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Hanif A, Edin ML, Zeldin DC, Morisseau C, Falck JR, Nayeem MA. Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice. PLoS One 2017; 12:e0174137. [PMID: 28328948 PMCID: PMC5362206 DOI: 10.1371/journal.pone.0174137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/03/2017] [Indexed: 01/22/2023] Open
Abstract
Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP) P450 epoxygenases, and to ω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstrictive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids (EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyperemia (CRH), protects against potential damage to the heart muscle caused by ischemia. The relationship among CRH response to ischemia, in mice with altered levels of CYP2J epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothelial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmacologic inhibition of CYP-epoxygenases and inhibition of ω-hydroxylases on CRH. We hypothesized that CRH would be enhanced in isolated mouse hearts with vascular endothelial overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had enhanced CRH, including repayment volume, repayment duration, and repayment/debt ratio (P < 0.05). Similarly, inhibition of ω-hydroxylases increased repayment volume and repayment duration, in Tie2-CYP2J2 Tr compared to WT mice (P < 0.05). Endothelial overexpression of CYP2J2 significantly changed oxylipin profiles, including increased EETs (P < 0.05), increased EpOMEs (P < 0.05), and decreased 8-iso-PGF2α (P < 0.05). Inhibition of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a decrease in mid-chain HETEs (5-, 11-, 12-, 15-HETEs P < 0.05) and HODEs (P < 0.05). These data demonstrate that vascular endothelial overexpression of CYP2J2, through changing the oxylipin profiles, enhances CRH. Inhibition of CYP epoxygenases decreases CRH, whereas inhibition of ω-hydroxylases enhances CRH.
Collapse
Affiliation(s)
- Ahmad Hanif
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research. West Virginia University, Morgantown, West Virginia, United States of America
| | - Matthew L. Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, United States of America
| | - Darryl C. Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, North Carolina, United States of America
| | | | - John R. Falck
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mohammed A. Nayeem
- Basic Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research. West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
15
|
Validation of Interstitial Fractional Volume Quantification by Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Porcine Skeletal Muscles. Invest Radiol 2017; 52:66-73. [DOI: 10.1097/rli.0000000000000309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Keske MA, Dwyer RM, Russell RD, Blackwood SJ, Brown AA, Hu D, Premilovac D, Richards SM, Rattigan S. Regulation of microvascular flow and metabolism: An overview. Clin Exp Pharmacol Physiol 2016; 44:143-149. [DOI: 10.1111/1440-1681.12688] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/07/2016] [Accepted: 10/21/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Michelle A Keske
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Renee M Dwyer
- School of Medicine University of Tasmania Hobart Tas. Australia
| | - Ryan D Russell
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Sarah J Blackwood
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Aascha A Brown
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Donghua Hu
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| | - Dino Premilovac
- School of Medicine University of Tasmania Hobart Tas. Australia
| | | | - Stephen Rattigan
- Menzies Institute for Medical Research University of Tasmania Hobart Tas. Australia
| |
Collapse
|
17
|
Effect of Soluble Epoxide Hydrolase on the Modulation of Coronary Reactive Hyperemia: Role of Oxylipins and PPARγ. PLoS One 2016; 11:e0162147. [PMID: 27583776 PMCID: PMC5008628 DOI: 10.1371/journal.pone.0162147] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/17/2016] [Indexed: 11/19/2022] Open
Abstract
Coronary reactive hyperemia (CRH) is a physiological response to ischemic insult that prevents the potential harm associated with an interruption of blood supply. The relationship between the pharmacologic inhibition of soluble epoxide hydrolase (sEH) and CRH response to a brief ischemia is not known. sEH is involved in the main catabolic pathway of epoxyeicosatrienoic acids (EETs), which are converted into dihydroxyeicosatrienoic acids (DHETs). EETs protect against ischemia/reperfusion injury and have numerous beneficial physiological effects. We hypothesized that inhibition of sEH by t-AUCB enhances CRH in isolated mouse hearts through changing the oxylipin profiles, including an increase in EETs/DHETs ratio. Compared to controls, t-AUCB-treated mice had increased CRH, including repayment volume (RV), repayment duration, and repayment/debt ratio (p < 0.05). Treatment with t-AUCB significantly changed oxylipin profiles, including an increase in EET/DHET ratio, increase in EpOME/DiHOME ratio, increase in the levels of HODEs, decrease in the levels of mid-chain HETEs, and decrease in prostanoids (p < 0.05). Treatment with MS-PPOH (CYP epoxygenase inhibitor) reduced CRH, including RV (p < 0.05). Involvement of PPARγ in the modulation of CRH was demonstrated using a PPARγ-antagonist (T0070907) and a PPARγ-agonist (rosiglitazone). T0070907 reduced CRH (p < 0.05), whereas rosiglitazone enhanced CRH (p < 0.05) in isolated mouse hearts compared to the non-treated. These data demonstrate that sEH inhibition enhances, whereas CYP epoxygenases-inhibition attenuates CRH, PPARγ mediate CRH downstream of the CYP epoxygenases-EET pathway, and the changes in oxylipin profiles associated with sEH-inhibition collectively contributed to the enhanced CRH.
Collapse
|
18
|
Chadderdon SM, Belcik JT, Bader L, Peters DM, Kievit P, Alkayed NJ, Kaul S, Grove KL, Lindner JR. Temporal Changes in Skeletal Muscle Capillary Responses and Endothelial-Derived Vasodilators in Obesity-Related Insulin Resistance. Diabetes 2016; 65:2249-57. [PMID: 27207517 PMCID: PMC4955987 DOI: 10.2337/db15-1574] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/05/2016] [Indexed: 12/18/2022]
Abstract
The inability of insulin to increase skeletal muscle capillary blood volume (CBV) reduces glucose uptake in insulin resistance (IR). We hypothesized that abnormalities in endothelial-derived vasodilator pathways are temporally associated with the development of IR and an impaired ability to increase skeletal muscle CBV. A comprehensive metabolic and vascular screening assessment was performed on 10 adult rhesus macaques at baseline and every 4-6 months for 2 years after starting a high-fat diet supplemented with fructose. Diet changes resulted in an 80% increase in truncal fat by 4 months. Hyperinsulinemia and decreased glucose utilization were observed from 4 to 18 months. At 24 months, pancreatic secretory function and the glucose utilization rate declined. CBV at rest and during an intravenous glucose tolerance test demonstrated a sustained increase from 4 to 18 months and then abruptly fell at 24 months. Nitric oxide bioavailability progressively decreased over 2 years. Conversely, endothelial-derived vasodilators progressively increased over 18 months and then abruptly decreased at 24 months in concert with the CBV. The increase in basal and glucose-mediated CBV early in IR may represent a compensatory response through endothelial-derived vasodilator pathways. The inability to sustain a vascular compensatory response limits glucose-mediated increases in CBV, which correlates with the severity of IR.
Collapse
Affiliation(s)
- Scott M Chadderdon
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Lindsay Bader
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Dawn M Peters
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Paul Kievit
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Nabil J Alkayed
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Kevin L Grove
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
19
|
Epoxyeicosatrienoic acids and glucose homeostasis in mice and men. Prostaglandins Other Lipid Mediat 2016; 125:2-7. [PMID: 27448715 DOI: 10.1016/j.prostaglandins.2016.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 11/20/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are formed from arachidonic acid by the action of P450 epoxygenases (CYP2C and CYP2J). Effects of EETs are limited by hydrolysis by soluble epoxide hydrolase to less active dihydroxyeicosatrienoic acids. Studies in rodent models provide compelling evidence that epoxyeicosatrienoic acids exert favorable effects on glucose homeostasis, either by enhancing pancreatic islet cell function or by increasing insulin sensitivity in peripheral tissues. Specifically, the tissue expression of soluble epoxide hydrolase appears to be increased in rodent models of obesity and diabetes. Pharmacological inhibition of epoxide hydrolase or deletion of the gene encoding soluble epoxide hydrolase (Ephx2) preserves islet cells in rodent models of type 1 diabetes and enhances insulin sensitivity in models of type 2 diabetes, as does administration of epoxyeicosatrienoic acids or their stable analogues. In humans, circulating concentrations of epoxyeicosatrienoic acids correlate with insulin sensitivity, and a loss-of-function genetic polymorphism in EPHX2 is associated with insulin sensitivity.
Collapse
|
20
|
Vasoconstrictor eicosanoids and impaired microvascular function in inactive and insulin-resistant primates. Int J Obes (Lond) 2016; 40:1600-1603. [PMID: 27357159 PMCID: PMC5050090 DOI: 10.1038/ijo.2016.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 06/12/2016] [Indexed: 12/28/2022]
Abstract
The inability to augment capillary blood volume (CBV) in response to insulin or glucose is thought to contribute to insulin resistance (IR) by limiting glucose uptake in key storage sites. Understanding the mechanisms that contribute to impaired CBV augmentation early in the onset of IR may lead to new future therapies. We hypothesized that inactivity alters the balance of vasoactive eicosanoids and contributes to microvascular IR. In ten activity-restricted (AR) and six normal-activity (NA) adult male rhesus macaques, contrast-enhanced ultrasound of skeletal muscle blood flow and CBV was performed at baseline and during intravenous glucose tolerance test (IVGTT). Plasma was analyzed for vasoconstrictor hydroxyeicosatetraenoic acids (HETEs) and the ratio of vasodilatory epoxyeicosatrienoic acids (EETs) to their less biologically active dihydroxyeicosatrienoic acids (DHETs) as an indirect measure of soluble epoxide-hydrolase (sEH) activity. AR primates were IR during IVGTT and had a 45% lower glucose-stimulated CBV response. Vasoconstrictor 18-HETE and 19-HETE and the DHET/EET ratio were markedly elevated in the AR group and correlated inversely with the CBV response. Additionally, levels of 18-HETE and 19-HETE correlated directly with microvascular IR. We conclude that a shift towards increased eicosanoid vasoconstrictor tone correlates with abnormal skeletal muscle vascular recruitment and may contribute to IR.
Collapse
|
21
|
Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma. EBioMedicine 2015; 3:26-42. [PMID: 26870815 PMCID: PMC4739422 DOI: 10.1016/j.ebiom.2015.12.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022] Open
Abstract
Obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D) are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD)-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D), multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV), a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors.
Collapse
Key Words
- ADMA, Asymmetric dimethylarginine
- BDNF, Brain-derived neurotrophic factor
- BW, Body weight
- Br Fat, Brown adipose tissue
- Brain
- C-X-C motif, Chemokine
- CBV, Cerebral blood volume
- CH, Cholesterol
- Cerebrovascular
- Cognitive
- Cxcl1, Ligand 1
- DG, Diacylglycerol
- Diabetes
- FFA, Free fatty acids
- GL, Glycerolipid
- GLP-1, Glucagon-like peptide 1
- GPL, Glycerophospholipid
- GlcCer, Glucosylceramide
- HFD, High fat diet
- IFNγ, Interferon-γ
- IL-10, Interleukin-10
- IL-12p70, Interleukin-12p70
- IL-6, Interleukin-6
- IR, Insulin resistance
- ITT, Insulin tolerance test
- Il-1b, Interleukin-1β
- KB, Total ketone bodies
- LFD, Low fat diet
- LPA, Lysophosphatidic acid
- MetS, Metabolic syndrome
- Metabolic syndrome
- OGTT, Oral glucose tolerance test
- Obesity
- PC, Phosphatidylcholine
- PE, Phosphatidylethanolamine
- PG, Phosphatidylglycerol
- PGP, Phosphatidylglycerolphosphate
- PI, Phosphatidylinositol
- PS, Phosphatidylserine
- Plasma
- SC Fat, Subcutaneous adipose tissue
- T1D, Type 1 Diabetes
- T2D, Type 2 Diabetes
- TG, Triglycerides
- TNFα, Tumor necrosis factor-α
- V Fat, Visceral adipose tissue
Collapse
|
22
|
Wu MD, Belcik JT, Qi Y, Zhao Y, Benner C, Pei H, Linden J, Lindner JR. Abnormal Regulation of Microvascular Tone in a Murine Model of Sickle Cell Disease Assessed by Contrast Ultrasound. J Am Soc Echocardiogr 2015; 28:1122-8. [PMID: 26123012 PMCID: PMC4567487 DOI: 10.1016/j.echo.2015.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Microvascular dysregulation, abnormal rheology, and vaso-occlusive events play a role in the pathophysiology of sickle cell disease (SCD). The aim of this study was to test the hypothesis that abnormalities in skeletal muscle perfusion in a murine model of SCD could be parametrically assessed by quantitative contrast-enhanced ultrasound perfusion imaging. METHODS A murine model of moderate SCD without anemia produced by homozygous β-globin deletion replaced by human βs-globin transgene (NY1DD-/-; n = 18), heterozygous transgene replacement (NY1DD+/-; n = 19), and C57Bl/6 control mice (n = 14) was studied. Quantitative contrast-enhanced ultrasound of the proximal hindlimb skeletal muscle was performed at rest and during contractile exercise (2 Hz). Time-intensity data were analyzed to measure microvascular blood volume (MBV), microvascular blood transit rate (β), and microvascular blood flow. Erythrocyte deformability was measured by elongation at various rotational shears. RESULTS At rest, muscle MBV was similar between strains, whereas β was significantly (P = .0015, analysis of variance) reduced to a similar degree in NY1DD-/- and NY1DD+/- compared with wild-type mice (0.24 ± 0.10, 0.16 ± 0.07, and 0.34 ± 0.14 sec(-1), respectively), resulting in a reduction in microvascular blood flow. During contractile exercise, there were no groupwise differences in β (1.43 ± 0.67, 1.09 ± 0.42, and 1.36 ± 0.49 sec(-1) for NY1DD-/-, NY1DD+/-, and wild-type mice, respectively) or in microvascular blood flow or MBV. Erythrocyte deformability at high shear stress (≥5 Pa) was mildly reduced in both transgenic groups, although it was not correlated with blood flow or β. CONCLUSIONS Contrast-enhanced ultrasound in skeletal muscle revealed a lower microvascular blood transit rate in the NY1DD model of SCD and sickle trait but no alterations in MBV. The abnormality in microvascular blood transit rate was likely due to vasomotor dysfunction, because it was abrogated by contractile exercise and at rest was only weakly related to erythrocyte deformability.
Collapse
Affiliation(s)
- Melinda D Wu
- Division of Pediatric Hematology and Oncology, Oregon Health & Science University, Portland, Oregon
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Yue Qi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Yan Zhao
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Cameron Benner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Hong Pei
- La Jolla Immunology and Allergy Institute, La Jolla, California
| | - Joel Linden
- La Jolla Immunology and Allergy Institute, La Jolla, California
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|