1
|
Zhou H, Feng S, Cai J, Shao X, Zhu S, Zhou H, Cao Y, Wang R, Lin X, Wang J. Oestrogen suppresses the adipogenesis of fibro/adipogenic progenitors through reactivating the METTL3-ESR1-mediated loop in post-menopausal females. Clin Transl Med 2025; 15:e70206. [PMID: 39875775 PMCID: PMC11774659 DOI: 10.1002/ctm2.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/12/2025] [Accepted: 01/19/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Post-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration. This study aimed to investigate the detailed mechanism underlying the excessive muscular fatty infiltration in postmenopausal females. METHODS Supraspinatus muscle samples were collected from female patients with or without menopause, and from mice with or without ovariectomy (OVX), to evaluate muscular fatty infiltration and isolated FAPs. The expressions of (estrogen receptor 1) ESR1, methyltransferase-like 3 (METTL3), and adipogenesis ability in FAPs from post-menopausal women and OVX mice were investigated. RNA sequencing (RNA-Seq) was performed to explore the gene expression profiles and potential mechanisms in FAPs from Pdgfrα-CreERT2; Esr1 knockout (Esr1 KO) mice and Esr1 flox/flox (Esr1 f/f) mice. The interplay of the METTL3-ESR1 mediated loop and its role in regulating adipogenesis in FAPs were investigated using dual luciferase reporter assays, chromatin immunoprecipitation (ChIP), and protein and RNA stability assays. The effects of estrogen supplementation on muscular fatty infiltration and locomotor function in OVX mice were evaluated by immunofluorescent staining and functional analysis. RESULTS Decreased expression of ESR1/METTL3 and increased adipogenesis ability in FAPs was found in post-menopausal female. METTL3-mediated m6A methylation promoted ESR1 mRNA stability at the post-transcriptional level in FAPs. METTL3-mediated m6A modification promoted ESR1 expression by stabilizing ESR1 mRNA, while ESR1 acted as a transcription factor that enhanced METTL3 transcription in turn. ESR1 also suppressed the transcription of the adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARγ), thereby inhibiting adipogenesis in FAPs. Reactivation of the METTL3-ESR1 mediated loop by estrogen alleviated excessive adipogenesis in FAPs from post-menopausal women, and it also reduced muscular fatty infiltration, and improved locomotor function in OVX mice. CONCLUSION Excessive muscular fatty infiltration in post-menopausal women arose from the disruption of the METTL3-ESR1 mediated loop of FAPs due to estrogen deficiency. Reactivation of the METTL3-ESR1 mediated loop by estrogen may serve as a novel intervention to inhibit excessive adipogenesis of post-menopausal female FAPs, thereby ameliorating muscular fatty infiltration and improving locomotor function in post-menopausal females. KEY POINTS Oestrogen insufficiency disrupted the METTL3ESR1 loop in post-menopausal FAPs, causing excessive muscular fatty infiltration. METTL3-mediated m6A modification stabilized ESR1 mRNA and enhanced ESR1 expression, while increased ESR1 further promoted METTL3 transcription. ESR1 inhibited the transcription of adipogenic factor PPARγ, ameliorating adipogenesis in FAPs. Reactivating the METTL3ESR1 loop via oestrogen in FAPs reduced muscular fatty infiltration and improved locomotor function.
Collapse
Affiliation(s)
- Hao Zhou
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Shujing Feng
- School of Exercise and HealthShanghai University of SportShanghaiChina
| | - Jinkui Cai
- Wuhan Third HospitalTongren Hospital of Wuhan UniversityWuhanChina
| | - Xiexiang Shao
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Siyuan Zhu
- Department of Hand SurgeryHuashan HospitalFudan UniversityShanghaiChina
| | - Han Zhou
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Yongmin Cao
- School of Exercise and HealthShanghai University of SportShanghaiChina
| | - Ru Wang
- School of Exercise and HealthShanghai University of SportShanghaiChina
| | | | - Jianhua Wang
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Oviedo JM, Cortes-Selva D, Marchetti M, Gordon L, Gibbs L, Maschek JA, Cox J, Frietze S, Amiel E, Fairfax KC. Schistosoma mansoni antigen induced innate immune memory features mitochondrial biogenesis and can be inhibited by ovarian produced hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632838. [PMID: 39868249 PMCID: PMC11761400 DOI: 10.1101/2025.01.14.632838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
We have previously identified that S. mansoni infection induces a unique form of myeloid training that protects male but not female mice from high fat diet induced disease. Here we demonstrate that ovarian derived hormones account for this sex specific difference. Ovariectomy of females prior to infection permits metabolic reprogramming of the myeloid lineage, with BMDM exhibiting carbon source flexibility for cellular respiration, and mice protected from systemic metabolic disease. The innate training phenotype of infection can be replicated by in vivo injection of SEA, and by exposure of bone marrow to SEA in culture prior to macrophage differentiation (Day 0). This protective phenotype is linked to increased chromatin accessibility of lipid and mitochondrial pathways in BMDM including Nrf1 and Tfam, as well as mitochondrial biogenesis. This work provides evidence that S. mansoni antigens induce a unique form of innate training inhibited by ovarian-derived hormones in females.
Collapse
Affiliation(s)
- Juan Marcos Oviedo
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| | - Diana Cortes-Selva
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| | - Marco Marchetti
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Lisa Gibbs
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| | - J. Alan Maschek
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, UT, 84112
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City UT, 84112
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, UT, 84112
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405
| | - Keke C. Fairfax
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| |
Collapse
|
3
|
Alves ES, Santos JDM, Cruz AG, Camargo FN, Talarico CHZ, Santos ARM, Silva CAA, Morgan HJN, Matos SL, Araujo LCC, Camporez JP. Hepatic Estrogen Receptor Alpha Overexpression Protects Against Hepatic Insulin Resistance and MASLD. PATHOPHYSIOLOGY 2025; 32:1. [PMID: 39846638 PMCID: PMC11755535 DOI: 10.3390/pathophysiology32010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/15/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with cardiometabolic risk. Although studies have shown that estradiol positively contributes to energy metabolism via estrogen receptor alpha (ERα), its role specifically in the liver is not defined. Therefore, this study aimed to evaluate the effects of ERα overexpression, specifically in the liver in mice fed a high-fat diet (HFD). Methods: Male C57BL/6J mice were divided into four groups, vehicle fed with regular chow (RC) (RC-Vehicle); vehicle fed an HFD (HFD-Vehicle); AAV-treated fed with RC (RC-AAV); and AAV-treated fed an HFD (HFD-AAV), for 6 weeks (8-10 mice per group). AAV was administered intravenously to induce ERα overexpression. Results: We demonstrate that overexpression of ERα in RC-fed mice reduces body fat (28%). These mice show increased oxygen consumption in cultured primary hepatocytes, both in basal (19%) and maximal respiration (34%). In HFD-fed mice, we showed a decrease in hepatic TAG content (43%) associated with improved hepatic insulin sensitivity (145%). Conclusions: From this perspective, our results prove that hepatic ERα signaling is responsible for some of the metabolic protective effects of estrogen in mice. Overexpression of ERα improves hepatocyte mitochondrial function, consequently reducing hepatic lipid accumulation and protecting animals from hepatic steatosis and hepatic insulin resistance. Further investigations will be needed to determine the exact molecular mechanism by which ERα improves hepatic metabolic health.
Collapse
Affiliation(s)
- Ester S. Alves
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Jessica D. M. Santos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Alessandra G. Cruz
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Felipe N. Camargo
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Carlos H. Z. Talarico
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Anne R. M. Santos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Carlos A. A. Silva
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Henrique J. N. Morgan
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Sandro L. Matos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| | - Layanne C. C. Araujo
- Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza 60714-903, Brazil;
| | - João Paulo Camporez
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (E.S.A.); (J.D.M.S.); (A.G.C.); (F.N.C.); (C.H.Z.T.); (A.R.M.S.); (C.A.A.S.); (H.J.N.M.); (S.L.M.)
| |
Collapse
|
4
|
Li K, Qi Z, Xie Z, Li W, Yang X, Zhai Y, Zhou X, Xie X, Song W. TDMPP activation of estrogen receptor 2a regulates smc2 and p53 signaling to interfere with liver development in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135379. [PMID: 39096633 DOI: 10.1016/j.jhazmat.2024.135379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Tris (2,6-dimethylphenyl) phosphate (TDMPP), a novel organic phosphorus flame retardant (OPFR), has been found to have estrogenic activity. Estrogens are critical in regulating various biological responses during liver development. However, the effects of TDMPP on zebrafish liver development remain largely unexplored. Here, we utilized a chemical genetic screening approach to assess the estrogenic effects of TDMPP on liver development and to elucidate the underlying molecular mechanism. Our findings revealed that zebrafish larvae exposed to environmentally relevant concentrations of TDMPP (0.05 and 0.5 μM) exhibited concentration-dependent liver impairments, including reduced liver size, histopathological changes, and hepatocyte apoptosis. In addition, E2 caused similar adverse effects to TDMPP, but the pharmacological blockade of estrogen synthesis alleviated the effects on liver development. Chemical inhibitors and morpholino knockdown assays indicated that the reduction of esr2a blocked TDMPP-induced liver impairments, which was further confirmed in the esr2a-/- mutant line. Subsequently, transcriptomic analysis showed that the estrogen receptor activated by TDMPP inhibited the expression of smc2, which was linked to the suppression of liver development through p53 activation. Consistently, overexpression of smc2 and inhibition of p53 evidently rescued hepatic damages induced by TDMPP. Taken together, the above findings identified esr2a, downstream smc2, and p53 as important regulators for the estrogenic effects of TDMPP on liver development. Our work fills crucial gaps in the current knowledge of TDMPP's hepatotoxicity, providing new insights into the adverse effects of TDMPP and the molecular mechanisms of action. These findings underscore the need for further ecological risk assessment and regulatory considerations.
Collapse
Affiliation(s)
- Keying Li
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zhipeng Qi
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zhuoyi Xie
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Wei Li
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xinxin Yang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yue Zhai
- School of Nursing, Jilin University, Changchun, China
| | - Xiaomai Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xunwei Xie
- China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Zhao Y, Zhang X, Zhang Z, Huang W, Tang M, Du G, Qin Y. Hepatic toxicity prediction of bisphenol analogs by machine learning strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173420. [PMID: 38777049 DOI: 10.1016/j.scitotenv.2024.173420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Toxicological studies have demonstrated the hepatic toxicity of several bisphenol analogs (BPs), a prevalent type of endocrine disruptor. The development of Adverse Outcome Pathway (AOP) has substantially contributed to the rapid risk assessment for human health. However, the lack of in vitro and in vivo data for the emerging BPs has limited the hazard assessment of these synthetic chemicals. Here, we aimed to develop a new strategy to rapidly predict BPs' hepatotoxicity using network analysis coupled with machine learning models. Considering the structural and functional similarities shared by BPs with Bisphenol A (BPA), we first integrated hepatic disease related genes from multiple databases into BPA-Gene-Phenotype-hepatic toxicity network and subjected it to the computational AOP (cAOP). Through cAOP network and conventional machine learning approaches, we scored the hepatotoxicity of 20 emerging BPs and provided new insights into how BPs' structure features contributed to biologic functions with limited experimental data. Additionally, we assessed the interactions between emerging BPs and ESR1 using molecular docking and proposed an AOP framework wherein ESR1 was a molecular initiating event. Overall, our study provides a computational approach to predict the hepatotoxicity of emerging BPs.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xueer Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhendong Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenbo Huang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Tang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guizhen Du
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yufeng Qin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
He W, Zhang S, Qi Z, Liu W. Unveiling the potential of estrogen: Exploring its role in neuropsychiatric disorders and exercise intervention. Pharmacol Res 2024; 204:107201. [PMID: 38704108 DOI: 10.1016/j.phrs.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like β-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.
Collapse
Affiliation(s)
- Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| |
Collapse
|
7
|
Meng Y, Toledo-Rodriguez M, Fedorenko O, Smith PA. Sex and age affect depot expression of Ca2+ channels in rat white fat adipocytes. J Mol Endocrinol 2024; 72:e230108. [PMID: 38299791 PMCID: PMC10959010 DOI: 10.1530/jme-23-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
White adipose tissue (WAT) requires extracellular Ca2+ influx for lipolysis, differentiation, and expansion. This partly occurs via plasma membrane Ca2+ voltage-dependent channels (CaVs). However, WFA exists in different depots whose function varies with age, sex, and location. To explore whether their CaV expression profiles also differ we used RNAseq and qPCR on gonadal, mesenteric, retroperitoneal, and inguinal subcutaneous fat depots from rats of different ages and sex. CaV expression was found dependent on age, sex, and WFA location. In the gonadal depots of both sexes a significantly lower expression of CaV1.2 and CaV1.3 was seen for adults compared to pre-pubescent juveniles. A lower level of expression was also seen for CaV3.1 in adult male but not female gonadal WFA, the latter of whose expression remained unchanged with age. Relatively little expression of CaV3.2 and 3.2 was observed. In post-pubescent inguinal subcutaneous fat, where the third and fourth mammary glands are located, CaV3.1 was decreased in males but increased in females - thus suggesting that this channel is associated with mammogenesis; however, no difference in intracellular Ca2+ levels or adipocyte size were noted. For all adult depots, CaV3.1 expression was larger in females than males - a difference not seen in pre-pubescent rats. These observations are consistent with the changes of CaV3.1 expression seen in 3T3-L1 cell differentiation and the ability of selective CaV3.1 antagonists to inhibit adipogensis. Our results show that changes in CaV expression patterns occur in fat depots related to sexual dimorphism: reproductive tracts and mammogenesis.
Collapse
Affiliation(s)
- Yan Meng
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Maria Toledo-Rodriguez
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Olena Fedorenko
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Paul A Smith
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| |
Collapse
|
8
|
Gao S, Wei L, Qin Y, Zhang P, Quan T, Liang F, Huang G. Network pharmacological analysis on the mechanism of Linggui Zhugan decoction for nonalcoholic fatty liver disease. Medicine (Baltimore) 2024; 103:e37281. [PMID: 38457573 PMCID: PMC10919485 DOI: 10.1097/md.0000000000037281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), represents a chronic progressive disease that imposes a significant burden on patients and the healthcare system. Linggui Zhugan decoction (LGZGD) plays a substantial role in treating NAFLD, but its exact molecular mechanism is unknown. Using network pharmacology, this study aimed to investigate the mechanism of action of LGZGD in treating NAFLD. Active ingredients and targets were identified through the integration of data from the TCMSP, GEO, GeneCards, and OMIM databases. Cytoscape 3.9.1 software, in conjunction with the STRING platform, was employed to construct network diagrams and screen core targets. The enrichment analysis of gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathways were conducted by using the R. Molecular docking of the active ingredients and core targets was performed with AutoDock Vina software. We obtained 93 and 112 active ingredients and potential targets using the bioinformatic analysis of LGZGD in treating NAFLD. The primary ingredients of LGZGD included quercetin, kaempferol, and naringenin. The core targets were identified AKT1, MYC, HSP90AA1, HIF1A, ESR1, TP53, and STAT3. Gene ontology function enrichment analysis revealed associations with responses to nutrient and oxygen levels, nuclear receptor activity, and ligand-activated transcription factor activity. Kyoto Encyclopedia of Genes and Genomes signaling pathway analysis implicated the involvement of the PI3K-Akt, IL-17, TNF, Th17 cell differentiation, HIF-1, and TLR signaling pathways. Molecular docking studies indicated strong binding affinities between active ingredients and targets. LGZGD intervenes in NAFLD through a multi-ingredient, multi-target, and multi-pathway approach. Treatment with LGZGD can improve insulin resistance, oxidative stress, inflammation, and lipid metabolism associated with NAFLD.
Collapse
Affiliation(s)
- Songlin Gao
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liuting Wei
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yan Qin
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Peng Zhang
- Department of Nephrology, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou, Guangxi, China
| | - Tingwei Quan
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fei Liang
- Graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Guihua Huang
- Department of Spleen and Stomach Liver Diseases, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
9
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
10
|
Barrón-Cabrera E, Soria-Rodríguez R, Amador-Lara F, Martínez-López E. Physical Activity Protocols in Non-Alcoholic Fatty Liver Disease Management: A Systematic Review of Randomized Clinical Trials and Animal Models. Healthcare (Basel) 2023; 11:1992. [PMID: 37510432 PMCID: PMC10379178 DOI: 10.3390/healthcare11141992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with other metabolic disease and cardiovascular disease. Regular exercise reduces hepatic fat content and could be the first-line treatment in the management of NAFLD. This review aims to summarize the current evidence of the beneficial effects of exercise training and identify the molecular pathways involved in the response to exercise to define their role in the resolution of NAFLD both in animal and human studies. According to the inclusion criteria, 43 animal studies and 14 RCTs were included in this systematic review. Several exercise modalities were demonstrated to have a positive effect on liver function. Physical activity showed a strong association with improvement in inflammation, and reduction in steatohepatitis and fibrosis in experimental models. Furthermore, both aerobic and resistance exercise in human studies were demonstrated to reduce liver fat, and to improve insulin resistance and blood lipids, regardless of weight loss, although aerobic exercises may be more effective. Resistance exercise is more feasible for patients with NAFLD with poor cardiorespiratory fitness. More effort and awareness should be dedicated to encouraging NAFLD patients to adopt an active lifestyle and benefit from it its effects in order to reduce this growing public health problem.
Collapse
Affiliation(s)
- Elisa Barrón-Cabrera
- Faculty of Nutrition and Gastronomy Sciences, Autonomous University of Sinaloa, Culiacan 80010, Mexico
| | - Raúl Soria-Rodríguez
- Program in Physical Activity and Lifestyle, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Fernando Amador-Lara
- Department of Medical Clinics, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| | - Erika Martínez-López
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular and Genomic Biology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44100, Mexico
| |
Collapse
|
11
|
Kessel JC, Weiskirchen R, Schröder SK. Expression Analysis of Lipocalin 2 (LCN2) in Reproductive and Non-Reproductive Tissues of Esr1-Deficient Mice. Int J Mol Sci 2023; 24:ijms24119280. [PMID: 37298232 DOI: 10.3390/ijms24119280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Estrogen receptor alpha (ERα) is widely expressed in reproductive organs, but also in non-reproductive tissues of females and males. There is evidence that lipocalin 2 (LCN2), which has diverse immunological and metabolic functions, is regulated by ERα in adipose tissue. However, in many other tissues, the impact of ERα on LCN2 expression has not been studied yet. Therefore, we used an Esr1-deficient mouse strain and analyzed LCN2 expression in reproductive (ovary, testes) and non-reproductive tissues (kidney, spleen, liver, lung) of both sexes. Tissues collected from adult wild-type (WT) and Esr1-deficient animals were analyzed by immunohistochemistry, Western blot analysis, and RT-qPCR for Lcn2 expression. In non-reproductive tissues, only minor genotype- or sex-specific differences in LCN2 expression were detected. In contrast, significant differences in LCN2 expression were observed in reproductive tissues. Particularly, there was a strong increase in LCN2 in Esr1-deficient ovaries when compared to WTs. In summary, we found an inverse correlation between the presence of ERα and the expression of LCN2 in testes and ovaries. Our results provide an important basis to better understand LCN2 regulation in the context of hormones and in health and disease.
Collapse
Affiliation(s)
- Jan C Kessel
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Sarah K Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
12
|
Tao Z, Cheng Z. Hormonal regulation of metabolism-recent lessons learned from insulin and estrogen. Clin Sci (Lond) 2023; 137:415-434. [PMID: 36942499 PMCID: PMC10031253 DOI: 10.1042/cs20210519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Hormonal signaling plays key roles in tissue and metabolic homeostasis. Accumulated evidence has revealed a great deal of insulin and estrogen signaling pathways and their interplays in the regulation of mitochondrial, cellular remodeling, and macronutrient metabolism. Insulin signaling regulates nutrient and mitochondrial metabolism by targeting the IRS-PI3K-Akt-FoxOs signaling cascade and PGC1α. Estrogen signaling fine-tunes protein turnover and mitochondrial metabolism through its receptors (ERα, ERβ, and GPER). Insulin and estrogen signaling converge on Sirt1, mTOR, and PI3K in the joint regulation of autophagy and mitochondrial metabolism. Dysregulated insulin and estrogen signaling lead to metabolic diseases. This article reviews the up-to-date evidence that depicts the pathways of insulin signaling and estrogen-ER signaling in the regulation of metabolism. In addition, we discuss the cross-talk between estrogen signaling and insulin signaling via Sirt1, mTOR, and PI3K, as well as new therapeutic options such as agonists of GLP1 receptor, GIP receptor, and β3-AR. Mapping the molecular pathways of insulin signaling, estrogen signaling, and their interplays advances our understanding of metabolism and discovery of new therapeutic options for metabolic disorders.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, U.S.A
| | - Zhiyong Cheng
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, U.S.A
| |
Collapse
|
13
|
Stevanović-Silva J, Beleza J, Coxito P, Oliveira PJ, Ascensão A, Magalhães J. Gestational Exercise Antagonises the Impact of Maternal High-Fat High-Sucrose Diet on Liver Mitochondrial Alterations and Quality Control Signalling in Male Offspring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1388. [PMID: 36674144 PMCID: PMC9858977 DOI: 10.3390/ijerph20021388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Maternal high-caloric nutrition and related gestational diabetes mellitus (GDM) are relevant modulators of the intrauterine environment, increasing the risk of liver metabolic alterations in mothers and offspring. In contrast, as a non-pharmacological approach against metabolic disorders, exercise is highly recommended in GDM treatment. We analysed whether gestational exercise (GE) protects mothers from diet-induced GDM metabolic consequences and mitigates liver mitochondrial deleterious alterations in their 6-week-old male offspring. Female Sprague Dawley rats were fed with control or high-fat high-sucrose (HFHS) diet and kept sedentary or submitted to GE. Male offspring were sedentary and fed with control diet. Sedentary HFHS mothers and their offspring showed impaired hepatic mitochondrial biogenesis and morphological evidence of mitochondrial remodelling. In contrast, GE-related beneficial effects were demonstrated by upregulation of mitochondrial biogenesis signalling markers and mitochondrial fusion proteins and downregulation of mitochondrial fission protein. Alterations in miR-34a, miR-130b, and miR-494, associated with epigenetic regulation of mitochondrial biogenesis, suggested that GE is a more critical modulator of intergenerational changes in miRs expression than the maternal diet. Our data showed that GE positively modulated the altered hepatic mitochondrial biogenesis and dynamics markers and quality control signalling associated with maternal HFHS-diet-related GDM in mothers and offspring.
Collapse
Affiliation(s)
- Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
14
|
Vieira-Potter VJ. Effects of Sex Hormones and Exercise on Adipose Tissue. SEX HORMONES, EXERCISE AND WOMEN 2023:55-85. [DOI: 10.1007/978-3-031-21881-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
16
|
Winn NC, Cottam MA, Bhanot M, Caslin HL, Garcia JN, Arrojo e Drigo R, Hasty AH. Weight Cycling Impairs Pancreatic Insulin Secretion but Does Not Perturb Whole-Body Insulin Action in Mice With Diet-Induced Obesity. Diabetes 2022; 71:2313-2330. [PMID: 35802127 PMCID: PMC9630085 DOI: 10.2337/db22-0161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/03/2022] [Indexed: 01/23/2023]
Abstract
In the setting of obesity and insulin resistance, glycemia is controlled in part by β-cell compensation and subsequent hyperinsulinemia. Weight loss improves glycemia and decreases hyperinsulinemia, whereas weight cycling worsens glycemic control. The mechanisms responsible for weight cycling-induced deterioration in glucose homeostasis are poorly understood. Thus, we aimed to pinpoint the main regulatory junctions at which weight cycling alters glucose homeostasis in mice. Using in vivo and ex vivo procedures we show that despite having worsened glucose tolerance, weight-cycled mice do not manifest impaired whole-body insulin action. Instead, weight cycling reduces insulin secretory capacity in vivo during clamped hyperglycemia and ex vivo in perifused islets. Islets from weight-cycled mice have reduced expression of factors essential for β-cell function (Mafa, Pdx1, Nkx6.1, Ucn3) and lower islet insulin content, compared with those from obese mice, suggesting inadequate transcriptional and posttranscriptional response to repeated nutrient overload. Collectively, these data support a model in which pancreatic plasticity is challenged in the face of large fluctuations in body weight resulting in a mismatch between glycemia and insulin secretion in mice.
Collapse
Affiliation(s)
- Nathan C. Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Matthew A. Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Monica Bhanot
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Heather L. Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Jamie N. Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Rafael Arrojo e Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| |
Collapse
|
17
|
Queathem ED, Fitzgerald M, Welly R, Rowles CC, Schaller K, Bukhary S, Baines CP, Rector RS, Padilla J, Manrique-Acevedo C, Lubahn DB, Vieira-Potter VJ. Suppression of estrogen receptor beta classical genomic activity enhances systemic and adipose-specific response to chronic beta-3 adrenergic receptor (β3AR) stimulation. Front Physiol 2022; 13:920675. [PMID: 36213237 PMCID: PMC9534559 DOI: 10.3389/fphys.2022.920675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
White adipose tissue (WAT) dysfunction independently predicts cardiometabolic disease, yet there is a lack of effective adipocyte-targeting therapeutics. B3AR agonists enhance adipocyte mitochondrial function and hold potential in this regard. Based on enhanced sensitivity to B3AR-mediated browning in estrogen receptor (ER)alpha-null mice, we hypothesized that ERβ may enhance the WAT response to the B3AR ligand, CL316,243 (CL). Methods: Male and female wild-type (WT) and ERβ DNA binding domain knock-out (ERβDBDKO) mice fed high-fat diet (HFD) to induce obesity were administered CL (1 mg/kg) daily for 2 weeks. Systemic physiological assessments of body composition (EchoMRI), bioenergetics (metabolic chambers), adipocyte mitochondrial respiration (oroboros) and glucose tolerance were performed, alongside perigonadal (PGAT), subcutaneous (SQAT) and brown adipose tissue (BAT) protein expression assessment (Western blot). Mechanisms were tested in vitro using primary adipocytes isolated from WT mice, and from Esr2-floxed mice in which ERβ was knocked down. Statistical analyses were performed using 2 × 2 analysis of variance (ANOVA) for main effects of genotype (G) and treatment (T), as well as GxT interactions; t-tests were used to determine differences between in vitro treatment conditions (SPSS V24). Results: There were no genotype differences in HFD-induced obesity or systemic rescue effects of CL, yet ERβDBDKO females were more sensitive to CL-induced increases in energy expenditure and WAT UCP1 induction (GxT, p < 0.05), which coincided with greater WAT B3AR protein content among the KO (G, p < 0.05). Among males, who were more insulin resistant to begin with (no genotype differences before treatment), tended to be more sensitive to CL-mediated reduction in insulin resistance. With sexes combined, basal WAT mitochondrial respiration trended toward being lower in the ERβDBDKO mice, but this was completely rescued by CL (p < 0.05). Confirming prior work, CL increased adipose tissue ERβ protein (T, p < 0.05, all), an effect that was enhanced in WAT and BAT the female KO (GxT, p < 0.01). In vitro experiments indicated that an inhibitor of ERβ genomic function (PHTPP) synergized with CL to further increase UCP1 mRNA (p = 0.043), whereas full ERβ protein was required for UCP1 expression (p = 0.042). Conclusion: Full ERβ activity appears requisite and stimulatory for UCP1 expression via a mechanism involving non-classical ERβ signaling. This novel discovery about the role of ERβ in adipocyte metabolism may have important clinical applications.
Collapse
Affiliation(s)
- Eric D. Queathem
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Maggie Fitzgerald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Rebecca Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Candace C. Rowles
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Kylie Schaller
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Shahad Bukhary
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Christopher P. Baines
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Internal Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
- Research Service, Truman VA Memorial Hospital, Columbia, MO, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, MO, United States
| | - Dennis B. Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Victoria J. Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
White Adipose Tissue Depots Respond to Chronic Beta-3 Adrenergic Receptor Activation in a Sexually Dimorphic and Depot Divergent Manner. Cells 2021; 10:cells10123453. [PMID: 34943961 PMCID: PMC8700379 DOI: 10.3390/cells10123453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Beta-3 adrenergic receptor activation via exercise or CL316,243 (CL) induces white adipose tissue (WAT) browning, improves glucose tolerance, and reduces visceral adiposity. Our aim was to determine if sex or adipose tissue depot differences exist in response to CL. Daily CL injections were administered to diet-induced obese male and female mice for two weeks, creating four groups: male control, male CL, female control, and female CL. These groups were compared to determine the main and interaction effects of sex (S), CL treatment (T), and WAT depot (D). Glucose tolerance, body composition, and energy intake and expenditure were assessed, along with perigonadal (PGAT) and subcutaneous (SQAT) WAT gene and protein expression. CL consistently improved glucose tolerance and body composition. Female PGAT had greater protein expression of the mitochondrial uncoupling protein 1 (UCP1), while SQAT (S, p < 0.001) was more responsive to CL in increasing UCP1 (S×T, p = 0.011) and the mitochondrial biogenesis induction protein, PPARγ coactivator 1α (PGC1α) (S×T, p = 0.026). Females also displayed greater mitochondrial OXPHOS (S, p < 0.05) and adiponectin protein content (S, p < 0.05). On the other hand, male SQAT was more responsive to CL in increasing protein levels of PGC1α (S×T, p = 0.046) and adiponectin (S, p < 0.05). In both depots and in both sexes, CL significantly increased estrogen receptor beta (ERβ) and glucose-related protein 75 (GRP75) protein content (T, p < 0.05). Thus, CL improves systemic and adipose tissue-specific metabolism in both sexes; however, sex differences exist in the WAT-specific effects of CL. Furthermore, across sexes and depots, CL affects estrogen signaling by upregulating ERβ.
Collapse
|
19
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
20
|
Lopes ACR, Zavan B, Corrêa YJC, Vieira TM, Severs LJ, Oliveira LM, Soncini R. Impact of obesity and ovariectomy on respiratory function in female mice. Respir Physiol Neurobiol 2021; 294:103775. [PMID: 34416380 DOI: 10.1016/j.resp.2021.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Obesity and the corresponding variations in female sex hormones are associated with severe lung disease. We determined the potential effects of obesity and sex hormones in female mice by investigating changes in lung structure and respiratory function in an obesity model induced by postnatal overnutrition. Obese female mice exhibited pronounced weight gain, abdominal fat accumulation and collagen type I deposition in the airways. However, neither elastic tissue nor estrogen receptors-α/-β were affected in obese female mice after ovariectomy or sham-operated mice. Bronchoconstriction in response to methacholine challenge in obese sham-operated mice was higher than in the obese group after ovariectomy. Our results suggest that the coexistence of obesity and ovariectomy impacted on respiratory system and airway resistance (attenuates bronchoconstriction after methacholine), on collagen I deposition and on airway estrogen β-receptors of mice.
Collapse
Affiliation(s)
- Ana C R Lopes
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Bruno Zavan
- Integrative Animal Biology Laboratory, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Yuri J C Corrêa
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Tânia M Vieira
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Liza J Severs
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA
| | - Roseli Soncini
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
21
|
Ye L, Huang W, Liu S, Cai S, Hong L, Xiao W, Thiele K, Zeng Y, Song M, Diao L. Impacts of Immunometabolism on Male Reproduction. Front Immunol 2021; 12:658432. [PMID: 34367130 PMCID: PMC8334851 DOI: 10.3389/fimmu.2021.658432] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The physiological process of male reproduction relies on the orchestration of neuroendocrine, immune, and energy metabolism. Spermatogenesis is controlled by the hypothalamic-pituitary-testicular (HPT) axis, which modulates the production of gonadal steroid hormones in the testes. The immune cells and cytokines in testes provide a protective microenvironment for the development and maturation of germ cells. The metabolic cellular responses and processes in testes provide energy production and biosynthetic precursors to regulate germ cell development and control testicular immunity and inflammation. The metabolism of immune cells is crucial for both inflammatory and anti-inflammatory responses, which supposes to affect the spermatogenesis in testes. In this review, the role of immunometabolism in male reproduction will be highlighted. Obesity, metabolic dysfunction, such as type 2 diabetes mellitus, are well documented to impact male fertility; thus, their impacts on the immune cells distributed in testes will also be discussed. Finally, the potential significance of the medicine targeting the specific metabolic intermediates or immune metabolism checkpoints to improve male reproduction will also be reassessed.
Collapse
Affiliation(s)
- Lijun Ye
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wensi Huang
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Ling Hong
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Weiqiang Xiao
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Mingzhe Song
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
22
|
Clart LM, Welly RJ, Queathem ED, Rector RS, Padilla J, Baines CP, Kanaley JA, Lubahn DB, Vieira-Potter VJ. Role of ERβ in adipocyte metabolic response to wheel running following ovariectomy. J Endocrinol 2021; 249:223-237. [PMID: 33877054 PMCID: PMC8713017 DOI: 10.1530/joe-21-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022]
Abstract
Estrogen receptor β (ERb), one of the two major estrogen receptors, acts via genomic and non-genomic signaling pathways to affect many metabolic functions, including mitochondrial biogenesis and respiration. This study assessed the effect of ERb classical genomic activity on adipocyte-specific and -systemic metabolic responses to wheel running exercise in a rodent model of menopause. Female mice lacking the ERb DNA-binding domain (ERbDBDKO, n = 20) and WT (n = 21) littermate controls were fed a high-fat diet (HFD), ovariectomized (OVX), and randomized to control (no running wheel) and exercise (running wheel access) groups and were followed for 8 weeks. Wheel running did not confer protection against metabolic dysfunction associated with HFD+OVX in either ERbDBDKO or WT mice, despite increased energy expenditure. Unexpectedly, in the ERbDBDKO group, wheel running increased fasting insulin and surrogate measures of insulin resistance, and modestly increased adipose tissue inflammatory gene expression (P ≤ 0.05). These changes were not accompanied by significant changes in adipocyte mitochondrial respiration. It was demonstrated for the first time that female WT OVX mice do experience exercise-induced browning of white adipose tissue, indicated by a robust increase in uncoupling protein 1 (UCP1) (P ≤ 0.05). However, KO mice were completely resistant to this effect, indicating that full ERb genomic activity is required for exercise-induced browning. The inability to upregulate UCP1 with exercise following OVX may have resulted in the increased insulin resistance observed in KO mice, a hypothesis requiring further investigation.
Collapse
Affiliation(s)
- Laura M Clart
- Department of Nutrition and Exercise Physiology, University of Missouri System, Columbia, Missouri, USA
| | - Rebecca J Welly
- Department of Nutrition and Exercise Physiology, University of Missouri System, Columbia, Missouri, USA
| | - Eric D Queathem
- Department of Nutrition and Exercise Physiology, University of Missouri System, Columbia, Missouri, USA
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri System, Columbia, Missouri, USA
- Internal Medicine-Division of Gastroenterology and Hepatology, University of Missouri System, Columbia, Missouri, USA
- Research Service, Truman VA Memorial Hospital, Columbia, Missouri, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri System, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri System System, Columbia, Missouri, USA
| | - Christopher P Baines
- Department of Biomedical Sciences, University of Missouri System, Columbia, Missouri, USA
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri System, Columbia, Missouri, USA
| | - Dennis B Lubahn
- Department of Biochemistry, University of Missouri System, Columbia, Missouri, USA
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri System, Columbia, Missouri, USA
| |
Collapse
|
23
|
Manrique-Acevedo C, Padilla J, Naz H, Woodford ML, Ghiarone T, Aroor AR, Hulse JL, Cabral-Amador FJ, Martinez-Diaz V, Hans CP, Whaley-Connell A, Martinez-Lemus LA, Lastra G. Mineralocorticoid Receptor in Myeloid Cells Mediates Angiotensin II-Induced Vascular Dysfunction in Female Mice. Front Physiol 2021; 12:588358. [PMID: 33854438 PMCID: PMC8039313 DOI: 10.3389/fphys.2021.588358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
Enhanced mineralocorticoid receptor (MR) signaling is critical to the development of endothelial dysfunction and arterial stiffening. However, there is a lack of knowledge about the role of MR-induced adipose tissue inflammation in the genesis of vascular dysfunction in women. In this study, we hypothesize that MR activation in myeloid cells contributes to angiotensin II (Ang II)-induced aortic stiffening and endothelial dysfunction in females via increased pro-inflammatory (M1) macrophage polarization. Female mice lacking MR in myeloid cells (MyMRKO) were infused with Ang II (500 ng/kg/min) for 4 weeks. This was followed by determinations of aortic stiffness and vasomotor responses, as well as measurements of markers of inflammation and macrophage infiltration/polarization in different adipose tissue compartments. MyMRKO mice were protected against Ang II-induced aortic endothelial stiffening, as assessed via atomic force microscopy in aortic explants, and vasorelaxation dysfunction, as measured by aortic wire myography. In alignment, MyMRKO mice were protected against Ang II-induced macrophage infiltration and M1 polarization in visceral adipose tissue (VAT) and thoracic perivascular adipose tissue (tPVAT). Collectively, this study demonstrates a critical role of MR activation in myeloid cells in the pathogenesis of vascular dysfunction in females associated with pro-inflammatory macrophage polarization in VAT and tPVAT. Our data have potential clinical implications for the prevention and management of cardiovascular disease in women, who are disproportionally at higher risk for poor outcomes.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Huma Naz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, United States.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| | - Makenzie L Woodford
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Annayya R Aroor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Jack L Hulse
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, United States
| | | | - Vanesa Martinez-Diaz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Chetan P Hans
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Adam Whaley-Connell
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, United States.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States.,Division of Nephrology and Hypertension, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, United States.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Guido Lastra
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, United States.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States
| |
Collapse
|
24
|
Voluntary Wheel Running Partially Compensates for the Effects of Global Estrogen Receptor-α Knockout on Cortical Bone in Young Male Mice. Int J Mol Sci 2021; 22:ijms22041734. [PMID: 33572215 PMCID: PMC7915374 DOI: 10.3390/ijms22041734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/09/2023] Open
Abstract
Estrogen receptor-α knockout (ERKO) in female, but not male, mice results in an impaired osteogenic response to exercise, but the mechanisms behind this ability in males are unknown. We explored the main and interactive effects of ERKO and exercise on cortical geometry, trabecular microarchitecture, biomechanical strength, and sclerostin expression in male mice. At 12 weeks of age, male C57BL/6J ERKO and WT animals were randomized into two groups: exercise treatment (EX) and sedentary (SED) controls, until 22 weeks of age. Cortical geometry and trabecular microarchitecture were measured via μCT; biomechanical strength was assessed via three-point bending; sclerostin expression was measured via immunohistochemistry. Two-way ANOVA was used to assess sclerostin expression and trabecular microarchitecture; two-way ANCOVA with body weight was used to assess cortical geometry and biomechanical strength. ERKO positively impacted trabecular microarchitecture, and exercise had little effect on these outcomes. ERKO significantly impaired cortical geometry, but exercise was able to partially reverse these negative alterations. EX increased cortical thickness regardless of genotype. There were no effects of genotype or exercise on sclerostin expression. In conclusion, male ERKO mice retain the ability to build bone in response to exercise, but altering sclerostin expression is not one of the mechanisms involved.
Collapse
|
25
|
Della Torre S. Non-alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne) 2020; 11:572490. [PMID: 33071979 PMCID: PMC7531579 DOI: 10.3389/fendo.2020.572490] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive evidence supporting the interplay between metabolism and immune response, that have evolved in close relationship, sharing regulatory molecules and signaling systems, to support biological functions. Nowadays, the disruption of this interaction in the context of obesity and overnutrition underlies the increasing incidence of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During evolution, the interplay between metabolism and reproduction has reached a degree of complexity particularly high in female mammals, likely to ensure reproduction only under favorable conditions. Several factors may account for differences in the incidence and progression of inflammatory-based metabolic diseases between females and males, thus contributing to age-related disease development and difference in life expectancy between the two sexes. Among these factors, estrogens, acting mainly through Estrogen Receptors (ERs), have been reported to regulate several metabolic pathways and inflammatory processes particularly in the liver, the metabolic organ showing the highest degree of sexual dimorphism. This review aims to investigate on the interaction between metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling in counteracting the development and progression of non-alcoholic fatty liver disease (NAFLD), a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation of hepatic metabolism and inflammation may provide the basis for the development of sex-specific therapeutic strategies for the management of such an inflammatory-based metabolic disease and its cardio-metabolic consequences.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
26
|
Porter JW, Barnas JL, Welly R, Spencer N, Pitt J, Vieira-Potter VJ, Kanaley JA. Age, Sex, and Depot-Specific Differences in Adipose-Tissue Estrogen Receptors in Individuals with Obesity. Obesity (Silver Spring) 2020; 28:1698-1707. [PMID: 32734695 PMCID: PMC7483923 DOI: 10.1002/oby.22888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of this study was to examine the effects of sex and menopausal status on depot-specific estrogen signaling in white adipose tissue (AT) in age-matched men and women with morbid obesity. METHODS A total of 28 premenopausal women, 16 postmenopausal women, and 27 age-matched men undergoing bariatric surgery were compared for omental (OM) AT (OMAT) and abdominal subcutaneous (SQ) AT (SQAT) genes and proteins. RESULTS With the exception of fasting nonesterified fatty acids being higher in women (P < 0.01), no differences were found in other indicators of glucose and lipid metabolism. In OMAT, estrogen receptor (ER) beta (ERβ) levels were higher in older women than in younger women and older men (sex-age interaction, P < 0.01), and aromatase expression was higher in older men than in older women (P < 0.05). In SQAT, women had lower expression of ERβ than men (P < 0.05). Protein content of ER alpha and ERβ was highly correlated with the mitochondrial protein uncoupling protein 1 across sexes and ages (P < 0.001). Age increased SQ inflammatory gene expression in both sexes. CONCLUSIONS In morbid obesity, sex and age affect AT ERs, lipid metabolism, mitochondrial uncoupling protein 1, and inflammatory expression in an AT depot-dependent manner. The SQAT immunometabolic profile is heavily influenced by age and menopause status, more so than OMAT.
Collapse
Affiliation(s)
- Jay W Porter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Jillian L Barnas
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Rebecca Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Nicole Spencer
- General Surgery, Columbia Surgical Associates, Columbia, Missouri, USA
| | - James Pitt
- General Surgery, Columbia Surgical Associates, Columbia, Missouri, USA
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
27
|
Grunewald ZI, Ramirez-Perez FI, Woodford ML, Morales-Quinones M, Mejia S, Manrique-Acevedo C, Siebenlist U, Martinez-Lemus LA, Chandrasekar B, Padilla J. TRAF3IP2 (TRAF3 Interacting Protein 2) Mediates Obesity-Associated Vascular Insulin Resistance and Dysfunction in Male Mice. Hypertension 2020; 76:1319-1329. [PMID: 32829657 DOI: 10.1161/hypertensionaha.120.15262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin resistance in the vasculature is a characteristic feature of obesity and contributes to the pathogenesis of vascular dysfunction and disease. However, the molecular mechanisms underlying obesity-associated vascular insulin resistance and dysfunction remain poorly understood. We hypothesized that TRAF3IP2 (TRAF3 interacting protein 2), a proinflammatory adaptor molecule known to activate pathological stress pathways and implicated in cardiovascular diseases, plays a causal role in obesity-associated vascular insulin resistance and dysfunction. We tested this hypothesis by employing genetic-manipulation in endothelial cells in vitro, in isolated arteries ex vivo, and diet-induced obesity in a mouse model of TRAF3IP2 ablation in vivo. We show that ectopic expression of TRAF3IP2 blunts insulin signaling in endothelial cells and diminishes endothelium-dependent vasorelaxation in isolated aortic rings. Further, 16 weeks of high fat/high sucrose feeding impaired glucose tolerance, aortic insulin-induced vasorelaxation, and hindlimb postocclusive reactive hyperemia, while increasing blood pressure and arterial stiffness in wild-type male mice. Notably, TRAF3IP2 ablation protected mice from such high fat/high sucrose feeding-induced metabolic and vascular defects. Interestingly, wild-type female mice expressed markedly reduced levels of TRAF3IP2 mRNA independent of diet and were protected against high fat/high sucrose diet-induced vascular dysfunction. These data indicate that TRAF3IP2 plays a causal role in vascular insulin resistance and dysfunction. Specifically, the present findings highlight a sexual dimorphic role of TRAF3IP2 in vascular control and identify it as a promising therapeutic target in vasculometabolic derangements associated with obesity, particularly in males.
Collapse
Affiliation(s)
- Zachary I Grunewald
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia
| | - Makenzie L Woodford
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Mariana Morales-Quinones
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Salvador Mejia
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Division of Endocrinology and Metabolism, Department of Medicine (C.M.-A.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (C.M.-A., B.C.)
| | | | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia.,Department of Medical Pharmacology and Physiology (L.A.M.-L., B.C.), University of Missouri, Columbia
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Division of Cardiovascular Medicine, Department of Medicine (B.C.), University of Missouri, Columbia.,Department of Medical Pharmacology and Physiology (L.A.M.-L., B.C.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (C.M.-A., B.C.)
| | - Jaume Padilla
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| |
Collapse
|
28
|
Zidon TM, Padilla J, Fritsche KL, Welly RJ, McCabe LT, Stricklin OE, Frank A, Park Y, Clegg DJ, Lubahn DB, Kanaley JA, Vieira-Potter VJ. Effects of ERβ and ERα on OVX-induced changes in adiposity and insulin resistance. J Endocrinol 2020; 245:165-178. [PMID: 32053493 PMCID: PMC7391131 DOI: 10.1530/joe-19-0321] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
Loss of ovarian hormones leads to increased adiposity and insulin resistance (IR), increasing the risk for cardiovascular and metabolic diseases. The purpose of this study was to investigate whether the molecular mechanism behind the adverse systemic and adipose tissue-specific metabolic effects of ovariectomy requires loss of signaling through estrogen receptor alpha (ERα) or estrogen receptor β (ERβ). We examined ovariectomized (OVX) and ovary-intactwild-type (WT), ERα-null (αKO), and ERβ-null (βKO) female mice (age ~49 weeks; n = 7-12/group). All mice were fed a phytoestrogen-free diet (<15 mg/kg) and either remained ovary-intact (INT) or were OVX and followed for 12 weeks. Body composition, energy expenditure, glucose tolerance, and adipose tissue gene and protein expression were analyzed. INT αKO were ~25% fatter with reduced energy expenditure compared to age-matched INT WT controls and βKO mice (all P < 0.001). Following OVX, αKO mice did not increase adiposity or experience a further increase in IR, unlike WT and βKO, suggesting that loss of signaling through ERα mediates OVX-induced metabolic dysfunction. In fact, OVX in αKO mice (i.e., signaling through ERβ in the absence of ERα) resulted in reduced adiposity, adipocyte size, and IR (P < 0.05 for all). βKO mice responded adversely to OVX in terms of increased adiposity and development of IR. Together, these findings challenge the paradigm that ERα mediates metabolic protection over ERβ in all settings. These findings lead us to suggest that, following ovarian hormone loss, ERβ may mediate protective metabolic benefits.
Collapse
Affiliation(s)
- Terese M. Zidon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia MO 65211
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia MO 65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia MO
| | - Kevin L. Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia MO 65211
| | - Rebecca J. Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia MO 65211
| | - Leighton T. McCabe
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia MO 65211
| | - Olivia E. Stricklin
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia MO 65211
| | - Aaron Frank
- Department of Biomedical Sciences, Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Youngmin Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia MO 65211
- Department of Exercise and Health Science, Incheon National University, South Korea
| | - Deborah J. Clegg
- College of Nursing and Health Professions, Drexel University, Philadelphia, PA
| | | | - Jill A. Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia MO 65211
| | | |
Collapse
|
29
|
Zhao L, Gimple RC, Yang Z, Wei Y, Gustafsson JÅ, Zhou S. Immunoregulatory Functions of Nuclear Receptors: Mechanisms and Therapeutic Implications. Trends Endocrinol Metab 2020; 31:93-106. [PMID: 31706690 DOI: 10.1016/j.tem.2019.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
Members of the nuclear receptor superfamily serve as master regulators in signaling by either positively or negatively regulating gene expression. Accumulating evidence has suggested that nuclear receptors are actively involved in immune responses, with specific roles in different immune cell compartments that contribute to both normal function and to disease development. The druggable properties of nuclear receptors have made them ideal modulatory therapeutic targets. Here, we revisit nuclear receptor biology, summarize recent advances in our understanding of the immunological functions of nuclear receptors, describe cell-type-specific roles and specific nuclear receptors in disease pathogenesis, and explore their potential as novel therapeutic targets. These nuclear receptor-dependent alterations in the immune system are amenable to pharmacological manipulation and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Center for Medical Innovation, Department of Biosciences and Nutrition at Novum, Karolinska Institute, Stockholm, Sweden.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| |
Collapse
|
30
|
Dirkes RK, Winn NC, Jurrissen TJ, Lubahn DB, Vieira-Potter VJ, Padilla J, Hinton PS. Global estrogen receptor-α knockout has differential effects on cortical and cancellous bone in aged male mice. Facets (Ott) 2020. [DOI: 10.1139/facets-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Estrogen receptor-α knockout (ERKO) in female rodents results in bone loss associated with increased osteocyte sclerostin expression; whether this also occurs in males is unknown. Here, we examined the effects of ERKO on femoral cortical geometry, trabecular microarchitecture, and osteocyte sclerostin expression of the femur and lumbar vertebrae. At 14 months of age, male ERKO and wild-type (WT) littermates ( n = 6 per group) were sacrificed, and femora and vertebra were collected. Cortical geometry and trabecular microarchitecture were assessed via micro-computed tomography; osteocyte sclerostin expression was assessed via immunohistochemistry. ANCOVA with body weight was used to compare ERKO and WT for cortical geometry; t-tests were used for all other outcomes. Regardless of skeletal site, ERKO mice had greater trabecular bone volume and trabecular number and decreased trabecular separation compared with WT. In the femoral diaphysis, ERKO had lower total area, cortical area, and cortical thickness compared with WT. The percentage of sclerostin+ osteocytes was increased in ERKO animals in cortical bone but not in cancellous bone of the femur or the lumbar vertebrae. In conclusion, ERKO improved trabecular microarchitecture in aged male mice, but negatively altered femoral cortical geometry associated with a trend towards increased cortical sclerostin expression.
Collapse
Affiliation(s)
- Rebecca K. Dirkes
- Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO 65211, USA
| | - Nathan C. Winn
- Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO 65211, USA
| | - Thomas J. Jurrissen
- Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO 65211, USA
| | - Dennis B. Lubahn
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
- Child Health, University of Missouri, 400 N. Keene Street, Suite 010, Columbia, MO 65211, USA
| | | | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO 65211, USA
- Child Health, University of Missouri, 400 N. Keene Street, Suite 010, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA
| | - Pamela S. Hinton
- Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, MO 65211, USA
| |
Collapse
|
31
|
Bracht JR, Vieira‐Potter VJ, De Souza Santos R, Öz OK, Palmer BF, Clegg DJ. The role of estrogens in the adipose tissue milieu. Ann N Y Acad Sci 2019; 1461:127-143. [DOI: 10.1111/nyas.14281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Orhan K. Öz
- Department of RadiologyUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Biff F. Palmer
- Department of MedicineUniversity of Texas Southwestern Medical Center Dallas Texas
| | - Deborah J. Clegg
- College of Nursing and Health ProfessionsDrexel University Philadelphia Pennsylvania
| |
Collapse
|
32
|
Jurrissen TJ, Grunewald ZI, Woodford ML, Winn NC, Ball JR, Smith TN, Wheeler AA, Rawlings AL, Staveley-O'Carroll KF, Ji Y, Fay WP, Paradis P, Schiffrin EL, Vieira-Potter VJ, Fadel PJ, Martinez-Lemus LA, Padilla J. Overproduction of endothelin-1 impairs glucose tolerance but does not promote visceral adipose tissue inflammation or limit metabolic adaptations to exercise. Am J Physiol Endocrinol Metab 2019; 317:E548-E558. [PMID: 31310581 PMCID: PMC6766607 DOI: 10.1152/ajpendo.00178.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor and proinflammatory peptide that is upregulated in obesity. Herein, we tested the hypothesis that ET-1 signaling promotes visceral adipose tissue (AT) inflammation and disrupts glucose homeostasis. We also tested if reduced ET-1 is a required mechanism by which exercise ameliorates AT inflammation and improves glycemic control in obesity. We found that 1) diet-induced obesity, AT inflammation, and glycemic dysregulation were not accompanied by significantly increased levels of ET-1 in AT or circulation in wild-type mice and that endothelial overexpression of ET-1 and consequently increased ET-1 levels did not cause AT inflammation yet impaired glucose tolerance; 2) reduced AT inflammation and improved glucose tolerance with voluntary wheel running was not associated with decreased levels of ET-1 in AT or circulation in obese mice nor did endothelial overexpression of ET-1 impede such exercise-induced metabolic adaptations; 3) chronic pharmacological blockade of ET-1 receptors did not suppress AT inflammation in obese mice but improved glucose tolerance; and 4) in a cohort of human subjects with a wide range of body mass indexes, ET-1 levels in AT, or circulation were not correlated with markers of inflammation in AT. In aggregate, we conclude that ET-1 signaling is not implicated in the development of visceral AT inflammation but promotes glucose intolerance, thus representing an important therapeutic target for glycemic dysregulation in conditions characterized by hyperendothelinemia. Furthermore, we show that the salutary effects of exercise on AT and systemic metabolic function are not contingent on the suppression of ET-1 signaling.
Collapse
Affiliation(s)
- Thomas J Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Nathan C Winn
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - James R Ball
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Thomas N Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Andrew A Wheeler
- Department of Surgery, University of Missouri, Columbia, Missouri
| | | | | | - Yan Ji
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
| | - William P Fay
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
- Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Pierre Paradis
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | | | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
33
|
McCoin CS, Von Schulze A, Allen J, Fuller KNZ, Xia Q, Koestler DC, Houchen CJ, Maurer A, Dorn GW, Shankar K, Morris EM, Thyfault JP. Sex modulates hepatic mitochondrial adaptations to high-fat diet and physical activity. Am J Physiol Endocrinol Metab 2019; 317:E298-E311. [PMID: 31039007 PMCID: PMC6732468 DOI: 10.1152/ajpendo.00098.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
The impact of sexual dimorphism and mitophagy on hepatic mitochondrial adaptations during the treatment of steatosis with physical activity are largely unknown. Here, we tested if deficiencies in liver-specific peroxisome proliferative activated-receptor-γ coactivator-1α (PGC-1α), a transcriptional coactivator of biogenesis, and BCL-2/ADENOVIRUS EIB 19-kDa interacting protein (BNIP3), a mitophagy regulator, would impact hepatic mitochondrial adaptations (respiratory capacity, H2O2 production, mitophagy) to a high-fat diet (HFD) and HFD plus physical activity via voluntary wheel running (VWR) in both sexes. Male and female wild-type (WT), liver-specific PGC-1α heterozygote (LPGC-1α), and BNIP3 null mice were thermoneutral housed (29-31°C) and divided into three groups: sedentary-low-fat diet (LFD), 16 wk of (HFD), or 16 wk of HFD with VWR for the final 8 wk (HFD + VWR) (n = 5-7/sex/group). HFD did not impair mitochondrial respiratory capacity or coupling in any group; however, HFD + VWR significantly increased maximal respiratory capacity only in WT and PGC-1α females. Males required VWR to elicit mitochondrial adaptations that were inherently present in sedentary females including greater mitochondrial coupling control and reduced H2O2 production. Females had overall reduced markers of mitophagy, steatosis, and liver damage. Steatosis and markers of liver injury were present in sedentary male mice on the HFD and were effectively reduced with VWR despite no resolution of steatosis. Overall, reductions in PGC-1α and loss of BNIP3 only modestly impacted mitochondrial adaptations to HFD and HFD + VWR with the biggest effect seen in BNIP3 females. In conclusion, hepatic mitochondrial adaptations to HFD and treatment of HFD-induced steatosis with VWR are more dependent on sex than PGC-1α or BNIP3.
Collapse
Affiliation(s)
- Colin S McCoin
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Kansas City Veterans Affairs Medical Center , Kansas City, Kansas
| | - Alex Von Schulze
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Kansas City Veterans Affairs Medical Center , Kansas City, Kansas
| | - Julie Allen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Kansas City Veterans Affairs Medical Center , Kansas City, Kansas
| | - Kelly N Z Fuller
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Qing Xia
- Department of Biostatistics, University of Kansas Medical Center , Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center , Kansas City, Kansas
| | - Claire J Houchen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Adrianna Maurer
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Kartik Shankar
- Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, Arizona
| | - E Matthew Morris
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Kansas City Veterans Affairs Medical Center , Kansas City, Kansas
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center , Kansas City, Kansas
- Kansas City Veterans Affairs Medical Center , Kansas City, Kansas
| |
Collapse
|
34
|
Khristi V, Ratri A, Ghosh S, Pathak D, Borosha S, Dai E, Roy R, Chakravarthi VP, Wolfe MW, Karim Rumi MA. Disruption of ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats. Mol Cell Endocrinol 2019; 490:47-56. [PMID: 30974146 DOI: 10.1016/j.mce.2019.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023]
Abstract
The liver helps maintain energy homeostasis by synthesizing and storing glucose and lipids. Gonadal steroids, particularly estrogens, play an important role in regulating metabolism. As estrogens are considered female hormones, metabolic disorders related to the disruption of estrogen signaling have mostly been studied in females. Estrogen receptor alpha (ESR1) is the predominant receptor in both the male and female liver, and it mediates the hepatic response to estrogens. Loss of ESR1 increases weight gain and obesity in female rats, while reducing the normal growth in males. Although Esr1-/- male rats have a reduced body weight, they exhibit increased adipose deposition and impaired glucose tolerance. We further investigated whether these metabolic disorders in Esr1-/- male rats were linked with the loss of transcriptional regulation by ESR1 in the liver. To identify the ESR-regulated genes, RNA-sequencing was performed on liver mRNAs from wildtype and Esr1-/- male rats. Based on an absolute fold change of ≥2 with a p-value ≤ 0.05, a total of 706 differentially expressed genes were identified in the Esr1-/- male liver: 478 downregulated, and 228 upregulated. Pathway analyses demonstrate that the differentially expressed genes include transcriptional regulators (Cry1, Nr1d1, Nr0b2), transporters (Slc1a2), and regulators of biosynthesis (Cyp7b1, Cyp8b1), and hormone metabolism (Hsd17b2, Sult1e1). Many of these genes are also integral parts of the lipid and carbohydrate metabolism pathways in the liver. Interestingly, certain critical regulators of the metabolic pathways displayed a sexual dimorphism in expression, which may explain the divergent weight gain in Esr1-/- male and female rats despite common metabolic dysfunctions.
Collapse
Affiliation(s)
- Vincentaben Khristi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Devansh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shaon Borosha
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Eddie Dai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Richita Roy
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - V Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Michael W Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|