1
|
Jin X, Lai CT, Perrella SL, McEachran JL, Gridneva Z, Geddes DT. Maternal Breast Growth and Body Mass Index Are Associated with Low Milk Production in Women. Nutrients 2024; 16:2854. [PMID: 39275171 PMCID: PMC11397153 DOI: 10.3390/nu16172854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Maternal breast volume is determined by the quantity of glandular and adipose tissue, and it undergoes significant changes during pregnancy. These changes are intricately linked to the development of glandular tissue, which most likely reflects lactation capacity. Evidence indicates that women with overweight or obesity exhibit larger breast volume compared to those with a normal body mass index (BMI), emphasizing the close relationship between breast volume and maternal adiposity. Hence, we aim to investigate breast volume growth and maternal BMI as potential risk factors for low milk production. METHODS Lactating women (n = 609) from the Perth metropolitan area in Western Australia between 2011 and 2023 were included in the analysis. Twenty-four-hour milk production measurements were conducted using the test weighing method, and milk removal frequencies were recorded. Mothers completed questionnaires regarding demographic, obstetric and infant details. Linear and logistic regression models were used to determine maternal and infant factors associated with milk production. RESULTS Here we show that increasing maternal age and BMI are associated with low milk production. Moreover, larger pre-pregnancy breast volume and breast growth are associated with both higher BMI and milk production. CONCLUSIONS Women who are older, have an obese BMI and who have minimal pre-pregnancy breast volume and breast growth should be provided with antenatal screening and breastfeeding support as they are more likely to experience low milk production.
Collapse
Affiliation(s)
- Xuehua Jin
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
- ABREAST Network, Perth, WA 6000, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
- ABREAST Network, Perth, WA 6000, Australia
| | - Sharon L Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
- ABREAST Network, Perth, WA 6000, Australia
| | - Jacki L McEachran
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
- ABREAST Network, Perth, WA 6000, Australia
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
- ABREAST Network, Perth, WA 6000, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- UWA Centre for Human Lactation Research and Translation, Crawley, WA 6009, Australia
- ABREAST Network, Perth, WA 6000, Australia
| |
Collapse
|
2
|
Kelleher SL, Burkinshaw S, Kuyooro SE. Polyphenols and Lactation: Molecular Evidence to Support the Use of Botanical Galactagogues. Mol Nutr Food Res 2024; 68:e2300703. [PMID: 38676329 DOI: 10.1002/mnfr.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκβ) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Serena Burkinshaw
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Seun Elizabeth Kuyooro
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
3
|
Maranesi M, Palmioli E, Dall'Aglio C, Marini D, Anipchenko P, De Felice E, Scocco P, Mercati F. Resistin in endocrine pancreas of sheep: Presence and expression related to different diets. Gen Comp Endocrinol 2024; 348:114452. [PMID: 38246291 DOI: 10.1016/j.ygcen.2024.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Resistin (RETN), a recently discovered adipokine, is a cysteine-rich and secretory protein produced by adipocytes. RETN has been detected in several tissues, including human and laboratory animals' pancreas, wherein impairs glucose tolerance and insulin (INS) action and causes INS resistance. This study aims to evaluate the presence and expression of RETN in the pancreas of 15 adult female sheep reared on Apennine pastures, which show a decrease in their nutritional value due to the drought stress linked to the increasing summer aridity. The sheep were divided into 3 groups according to the diet they were subjected to: maximum pasture flowering (MxF) group, maximum pasture dryness (MxD) group, and experimental (Exp) group which received a feed supplementation in addition to the MxD group feeding. Immunohistochemistry and immunofluorescence were performed on formalin-fixed and paraffin-embedded sections of the pancreas to detect the RETN presence and to evaluate the co-localization of RETN with both glucagon (GCG)- and INS-producing cells. In addition, the expression of the three molecules was evaluated also in relation to different diets. RETN was observed only in the endocrine pancreas, showing a wide distribution throughout the pancreatic islets with few negative cells and the RETN producing cells colocalized with both α cells and ß cells. No differences in distribution and immunostaining intensity of RETN, GCG and INS were observed among the three groups. Quantitative PCR showed the expression of RETN, GCG and INS in all tested samples. No significant differences were observed for RETN and GCG among all three groups of sheep. Instead, a high statistically significant expression of INS was detected in the MxF group with respect to the Exp and MxD groups. These results highlight the localization of RETN in GCG- and INS-secreting cells involved in glucose homeostasis suggesting a modulatory role for RETN. Furthermore, the RETN expression is not influenced by food supplementation and thus is not affected by diet.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elisa Palmioli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Philosophy, Social Sciences, and Education, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, IT, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| |
Collapse
|
4
|
Sokou R, Parastatidou S, Iliodromiti Z, Lampropoulou K, Vrachnis D, Boutsikou T, Konstantinidi A, Iacovidou N. Knowledge Gaps and Current Evidence Regarding Breastfeeding Issues in Mothers with Chronic Diseases. Nutrients 2023; 15:2822. [PMID: 37447149 DOI: 10.3390/nu15132822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The prevalence of chronic maternal disease is rising in the last decades in the developed world. Recent evidence indicated that the incidence of chronic maternal disease ranges from 10 to 30% of pregnancies worldwide. Several epidemiological studies in mothers with chronic diseases have mainly focused on the risk for adverse obstetric outcomes. Evidence from these studies supports a correlation between maternal chronic conditions and adverse perinatal outcomes, including increased risk for preeclampsia, cesarean section, preterm birth, and admission in the Neonatal Intensive Care Unit (NICU). However, there is a knowledge gap pertaining to the management of these women during lactation. This review aimed at summarizing the available research literature regarding breastfeeding in mothers with chronic diseases. Adjusted and evidence-based support may be required to promote breastfeeding in women with chronic diseases; however, our comprehension of breastfeeding in this subpopulation is still unclear. The literature related to breastfeeding extends in various scientific areas and multidisciplinary effort is necessary to compile an overview of current evidence and knowledge regarding breastfeeding issues in mothers with chronic diseases.
Collapse
Affiliation(s)
- Rozeta Sokou
- Neonatal Intensive Care Unit, "Agios Panteleimon" General Hospital of Nikea, 3 D.Mantouvalou Str., Nikea, 18454 Piraeus, Greece
- Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece
| | - Stavroula Parastatidou
- Neonatal Intensive Care Unit, "Elena Venizelou" Maternity Hospital, 11521 Athens, Greece
| | - Zoi Iliodromiti
- Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece
| | - Katerina Lampropoulou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Dionysios Vrachnis
- Endocrinology Unit, 2nd Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece
| | - Theodora Boutsikou
- Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece
| | - Aikaterini Konstantinidi
- Neonatal Intensive Care Unit, "Agios Panteleimon" General Hospital of Nikea, 3 D.Mantouvalou Str., Nikea, 18454 Piraeus, Greece
| | - Nicoletta Iacovidou
- Neonatal Department, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece
| |
Collapse
|
5
|
Tomberlin JK, Miranda C, Flint C, Harris E, Wu G. Lactation in the human. Anim Front 2023; 13:64-70. [PMID: 37324212 PMCID: PMC10425138 DOI: 10.1093/af/vfad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
| | - Chelsea Miranda
- Department of Entomology, Texas A&M University, College Station, TX
| | - Casey Flint
- Department of Entomology, Texas A&M University, College Station, TX
| | - Erin Harris
- Department of Entomology, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
6
|
Xuan R, Wang J, Li Q, Wang Y, Du S, Duan Q, Guo Y, He P, Ji Z, Chao T. Identification and Characterization of circRNAs in Non-Lactating Dairy Goat Mammary Glands Reveal Their Regulatory Role in Mammary Cell Involution and Remodeling. Biomolecules 2023; 13:biom13050860. [PMID: 37238729 DOI: 10.3390/biom13050860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
This study conducted transcriptome sequencing of goat-mammary-gland tissue at the late lactation (LL), dry period (DP), and late gestation (LG) stages to reveal the expression characteristics and molecular functions of circRNAs during mammary involution. A total of 11,756 circRNAs were identified in this study, of which 2528 circRNAs were expressed in all three stages. The number of exonic circRNAs was the largest, and the least identified circRNAs were antisense circRNAs. circRNA source gene analysis found that 9282 circRNAs were derived from 3889 genes, and 127 circRNAs' source genes were unknown. Gene Ontology (GO) terms, such as histone modification, regulation of GTPase activity, and establishment or maintenance of cell polarity, were significantly enriched (FDR < 0.05), which indicates the functional diversity of circRNAs' source genes. A total of 218 differentially expressed circRNAs were identified during the non-lactation period. The number of specifically expressed circRNAs was the highest in the DP and the lowest in LL stages. These indicated temporal specificity of circRNA expression in mammary gland tissues at different developmental stages. In addition, this study also constructed circRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory networks related to mammary development, immunity, substance metabolism, and apoptosis. These findings help understand the regulatory role of circRNAs in mammary cell involution and remodeling.
Collapse
Affiliation(s)
- Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Shanfeng Du
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Qingling Duan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| |
Collapse
|
7
|
Neville MC, Demerath EW, Hahn-Holbrook J, Hovey RC, Martin-Carli J, McGuire MA, Newton ER, Rasmussen KM, Rudolph MC, Raiten DJ. Parental factors that impact the ecology of human mammary development, milk secretion, and milk composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 1. Am J Clin Nutr 2023; 117 Suppl 1:S11-S27. [PMID: 37173058 PMCID: PMC10232333 DOI: 10.1016/j.ajcnut.2022.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 05/15/2023] Open
Abstract
The goal of Working Group 1 in the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to outline factors influencing biological processes governing human milk secretion and to evaluate our current knowledge of these processes. Many factors regulate mammary gland development in utero, during puberty, in pregnancy, through secretory activation, and at weaning. These factors include breast anatomy, breast vasculature, diet, and the lactating parent's hormonal milieu including estrogen, progesterone, placental lactogen, cortisol, prolactin, and growth hormone. We examine the effects of time of day and postpartum interval on milk secretion, along with the role and mechanisms of lactating parent-infant interactions on milk secretion and bonding, with particular attention to the actions of oxytocin on the mammary gland and the pleasure systems in the brain. We then consider the potential effects of clinical conditions including infection, pre-eclampsia, preterm birth, cardiovascular health, inflammatory states, mastitis, and particularly, gestational diabetes and obesity. Although we know a great deal about the transporter systems by which zinc and calcium pass from the blood stream into milk, the interactions and cellular localization of transporters that carry substrates such as glucose, amino acids, copper, and the many other trace metals present in human milk across plasma and intracellular membranes require more research. We pose the question of how cultured mammary alveolar cells and animal models can help answer lingering questions about the mechanisms and regulation of human milk secretion. We raise questions about the role of the lactating parent and the infant microbiome and the immune system during breast development, secretion of immune molecules into milk, and protection of the breast from pathogens. Finally, we consider the effect of medications, recreational and illicit drugs, pesticides, and endocrine-disrupting chemicals on milk secretion and composition, emphasizing that this area needs much more research attention.
Collapse
Affiliation(s)
- Margaret C Neville
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO, USA.
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, United States
| | - Jennifer Hahn-Holbrook
- Department of Psychological Sciences, University of California Merced, Merced, CA, United States
| | - Russell C Hovey
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Jayne Martin-Carli
- Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Mark A McGuire
- Idaho Agricultural Experiment Station, University of Idaho, Moscow, ID, United States
| | - Edward R Newton
- Department of Obstetrics and Gynecology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Kathleen M Rasmussen
- Nancy Schlegel Meinig Professor of Maternal and Child Nutrition, Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Michael C Rudolph
- The University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Hannan FM, Elajnaf T, Vandenberg LN, Kennedy SH, Thakker RV. Hormonal regulation of mammary gland development and lactation. Nat Rev Endocrinol 2023; 19:46-61. [PMID: 36192506 DOI: 10.1038/s41574-022-00742-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Lactation is critical to infant short-term and long-term health and protects mothers from breast cancer, ovarian cancer and type 2 diabetes mellitus. The mammary gland is a dynamic organ, regulated by the coordinated actions of reproductive and metabolic hormones. These hormones promote gland development from puberty onwards and induce the formation of a branched, epithelial, milk-secreting organ by the end of pregnancy. Progesterone withdrawal following placental delivery initiates lactation, which is maintained by increased pituitary secretion of prolactin and oxytocin, and stimulated by infant suckling. After weaning, local cytokine production and decreased prolactin secretion trigger large-scale mammary cell loss, leading to gland involution. Here, we review advances in the molecular endocrinology of mammary gland development and milk synthesis. We discuss the hormonal functions of the mammary gland, including parathyroid hormone-related peptide secretion that stimulates maternal calcium mobilization for milk synthesis. We also consider the hormonal composition of human milk and its associated effects on infant health and development. Finally, we highlight endocrine and metabolic diseases that cause lactation insufficiency, for example, monogenic disorders of prolactin and prolactin receptor mutations, maternal obesity and diabetes mellitus, interventions during labour and delivery, and exposure to endocrine-disrupting chemicals such as polyfluoroalkyl substances in consumer products and other oestrogenic compounds.
Collapse
Affiliation(s)
- Fadil M Hannan
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| | - Taha Elajnaf
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Stephen H Kennedy
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Cade WT, Mittendorfer B, Patterson BW, Haire-Joshu D, Cahill AG, Stein RI, Schechtman KB, Tinius RA, Brown K, Klein S. Effect of excessive gestational weight gain on insulin sensitivity and insulin kinetics in women with overweight/obesity. Obesity (Silver Spring) 2022; 30:2014-2022. [PMID: 36150208 PMCID: PMC9512396 DOI: 10.1002/oby.23533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Obesity increases the risk for pregnancy complications and maternal hyperglycemia. The Institute of Medicine developed guidelines for gestational weight gain (GWG) targets for women with overweight/obesity, but it is unclear whether exceeding these targets has adverse effects on maternal glucose metabolism. METHODS Insulin sensitivity (assessed using the Matsuda Insulin Sensitivity Index), β-cell function (assessed as insulin secretion rate in relation to plasma glucose), and plasma insulin clearance rate were evaluated using a frequently sampled oral glucose tolerance test at 15 and 35 weeks of gestation in 184 socioeconomically disadvantaged African American women with overweight/obesity. RESULTS Insulin sensitivity decreased, whereas β-cell function and insulin clearance increased from 15 to 35 weeks of gestation in the entire group. Compared with women who achieved the recommended GWG, excessive GWG was associated with a greater decrease in insulin sensitivity between 15 and 35 weeks. β-cell function and plasma insulin clearance were not affected by excessive GWG. CONCLUSIONS These data demonstrate that gaining more weight during pregnancy than recommended by the Institute of Medicine is associated with functional effects on glucose metabolism.
Collapse
Affiliation(s)
- W. Todd Cade
- Program in Physical Therapy, Washington University, St. Louis, Missouri, USA
| | | | - Bruce W. Patterson
- Center for Human Nutrition, Washington University, St. Louis, Missouri, USA
| | | | - Alison G. Cahill
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri, USA
- Department of Women’s Health, The University of Texas at Austin, Dell Medical School, Austin TX USA
| | - Richard I. Stein
- Center for Human Nutrition, Washington University, St. Louis, Missouri, USA
| | | | - Rachel A. Tinius
- Program in Physical Therapy, Washington University, St. Louis, Missouri, USA
| | - Katherine Brown
- Program in Physical Therapy, Washington University, St. Louis, Missouri, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Rostom H, Meng X, Price H, Fry A, Elajnaf T, Humphrey R, Guha N, James T, Kennedy SH, Hannan FM. Protocol for an observational study investigating hormones triggering the onset of sustained lactation: the INSIGHT study. BMJ Open 2022; 12:e062478. [PMID: 36041762 PMCID: PMC9438014 DOI: 10.1136/bmjopen-2022-062478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Lactation is a hormonally controlled process that promotes infant growth and neurodevelopment and reduces the long-term maternal risk of diabetes, cardiovascular disease and breast cancer. Hormones, such as prolactin and progesterone, mediate mammary development during pregnancy and are critical for initiating copious milk secretion within 24-72 hours post partum. However, the hormone concentrations mediating lactation onset are ill defined. METHODS AND ANALYSIS The primary objective of the investigating hormones triggering the onset of sustained lactation study is to establish reference intervals for the circulating hormone concentrations initiating postpartum milk secretion. The study will also assess how maternal factors such as parity, pregnancy comorbidities and complications during labour and delivery, which are known to delay lactation, may affect hormone concentrations. This single-centre observational study will recruit up to 1068 pregnant women over a 3-year period. A baseline blood sample will be obtained at 36 weeks' gestation. Participants will be monitored during postpartum days 1-4. Lactation onset will be reported using a validated breast fullness scale. Blood samples will be collected before and after a breastfeed on up to two occasions per day during postpartum days 1-4. Colostrum, milk and spot urine samples will be obtained on a single occasion. Serum hormone reference intervals will be calculated as mean±1.96 SD, with 90% CIs determined for the upper and lower reference limits. Differences in hormone values between healthy breastfeeding women and those at risk of delayed onset of lactation will be assessed by repeated measures two-way analysis of variance or a mixed linear model. Correlations between serum hormone concentrations and milk composition and volume will provide insights into the endocrine regulation of milk synthesis. ETHICS AND DISSEMINATION Approval for this study had been granted by the East of England-Cambridgeshire and Hertfordshire Research Ethics Committee (REC No. 20/EE/0172), by the Health Research Authority (HRA), and by the Oxford University Hospitals National Health Service Foundation Trust. The findings will be published in high-ranking journals and presented at national and international conferences. TRIAL REGISTRATION NUMBER ISRCTN12667795.
Collapse
Affiliation(s)
- Hussam Rostom
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Xin Meng
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Helen Price
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Alexandria Fry
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Taha Elajnaf
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Robert Humphrey
- Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nishan Guha
- Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tim James
- Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Stephen H Kennedy
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Fadil M Hannan
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Nommsen-Rivers LA, Wagner EA, Roznowski DM, Riddle SW, Ward LP, Thompson A. Measures of Maternal Metabolic Health as Predictors of Severely Low Milk Production. Breastfeed Med 2022; 17:566-576. [PMID: 35475660 PMCID: PMC9299530 DOI: 10.1089/bfm.2021.0292] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: A comprehensive approach to breastfeeding support requires elucidation of how metabolic health influences milk production. Objective: We compared metabolic health indicators in women with severely low milk output versus those with moderate/normal milk output using a case-control study design, with nested and external control groups. Design: Cases and nested controls were derived from women screened for a low milk supply trial, with cases defined as severely low milk output (<300 mL/24 hours), and nested controls defined as moderate/normal milk output (>300 mL/24 hours). In addition, we included an external control group of exclusively breastfeeding women. All were enrolled at 2-10 weeks postdelivery of a healthy term infant. Milk output and breast emptying frequency were recorded through test-weigh. Metabolic health variables included all components of the metabolic syndrome, homeostatic model assessment of insulin resistance (HOMA-IR), and diagnosis of gestational diabetes mellitus (GDM). Results: Maximum milk output, mL/24 hours, ranged as follows: 30-281 in cases (n = 18), 372-801 in nested controls (n = 12), and 661-915 in external controls (n = 12). Mean breast emptying frequency in cases was not significantly different from nested or external controls. All metabolic syndrome components and HOMA-IR were significantly worse in cases as compared with both nested and external control groups (p < 0.05). There was no significant difference between the nested and external control groups for these variables. GDM prevalence was 39%, 0%, and 8%, across cases, nested control, and external control groups, respectively (chi-square p-value = 0.02). Conclusion: Results from this small case-control study identify class 2+ obesity and poor metabolic health as strong risk factors for severely low milk production. These findings should be further validated in larger prospective cohort studies designed to identify individuals at risk for metabolically driven low milk supply. In addition, clinical and qualitative research studies aimed at improving patient-centered approaches to the management of persistent low milk supply are needed.
Collapse
Affiliation(s)
- Laurie A Nommsen-Rivers
- Department of Rehabilitation, Exercise, and Nutrition, University of Cincinnati College of Allied Health Sciences, Cincinnati, Ohio, USA
| | - Erin A Wagner
- Department of Rehabilitation, Exercise, and Nutrition, University of Cincinnati College of Allied Health Sciences, Cincinnati, Ohio, USA
| | - Dayna M Roznowski
- Department of Rehabilitation, Exercise, and Nutrition, University of Cincinnati College of Allied Health Sciences, Cincinnati, Ohio, USA
| | - Sarah W Riddle
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura P Ward
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Amy Thompson
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Suwaydi MA, Wlodek ME, Lai CT, Prosser SA, Geddes DT, Perrella SL. Delayed secretory activation and low milk production in women with gestational diabetes: a case series. BMC Pregnancy Childbirth 2022; 22:350. [PMID: 35459144 PMCID: PMC9034612 DOI: 10.1186/s12884-022-04685-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/17/2022] [Indexed: 01/20/2023] Open
Abstract
Background Gestational diabetes mellitus (GDM) is major pregnancy complication that is associated with short- and long-term consequences for both mother and infant, including increased risk of diabetes later in life. A longer breastfeeding duration has been associated with a reduced risk of diabetes, however, women with GDM are less likely to exclusively breastfeed and have shorter breastfeeding duration. While the timing of breastfeeding initiation and milk removal frequency affects subsequent breastfeeding outcomes, little is known about early infant feeding practices and milk production in women with GDM. This case series offers detailed prospective breastfeeding initiation data, as well as the first report of objective measures of milk production in women with GDM. Case presentation In this case series, we present the early infant feeding practices of eight women with GDM that gave birth at term gestation. Women recorded the timing of initiation of breastfeeding and secretory activation, as well as their breastfeeding, expression and formula feeding frequencies on postpartum days 1, 7 and 21. Measurement of 24 h milk production volume was performed at 3 weeks postpartum using the test weight method. We observed a delayed first breastfeed (> 1 h) in 6 (75%) cases, formula use in hospital in 5 (63%) cases and delayed secretory activation in 3 (38%) cases. At 3 weeks postpartum, 2 cases had measured milk productions that were insufficient to sustain adequate infant weight gain. Conclusions Our data suggest that despite early and frequent milk removal, women with GDM are at greater risk of delayed secretory activation and low milk supply. Cohort studies that consider co-morbidities such as obesity are needed to determine the lactation outcomes of women with GDM.
Collapse
Affiliation(s)
- Majed A Suwaydi
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.,Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mary E Wlodek
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Stuart A Prosser
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.,One For Women, Mt Lawley, WA, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Sharon L Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia. .,One For Women, Mt Lawley, WA, Australia.
| |
Collapse
|
13
|
Mumtaz PT, Bhat B, Ibeagha-Awemu EM, Taban Q, Wang M, Dar MA, Bhat SA, Shabir N, Shah RA, Ganie NA, Velayutham D, Haq ZU, Ahmad SM. Mammary epithelial cell transcriptome reveals potential roles of lncRNAs in regulating milk synthesis pathways in Jersey and Kashmiri cattle. BMC Genomics 2022; 23:176. [PMID: 35246027 PMCID: PMC8896326 DOI: 10.1186/s12864-022-08406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are now proven as essential regulatory elements, playing diverse roles in many biological processes including mammary gland development. However, little is known about their roles in the bovine lactation process. Results To identify and characterize the roles of lncRNAs in bovine lactation, high throughput RNA sequencing data from Jersey (high milk yield producer), and Kashmiri cattle (low milk yield producer) were utilized. Transcriptome data from three Kashmiri and three Jersey cattle throughout their lactation stages were utilized for differential expression analysis. At each stage (early, mid and late) three samples were taken from each breed. A total of 45 differentially expressed lncRNAs were identified between the three stages of lactation. The differentially expressed lncRNAs were found co-expressed with genes involved in the milk synthesis processes such as GPAM, LPL, and ABCG2 indicating their potential regulatory effects on milk quality genes. KEGG pathways analysis of potential cis and trans target genes of differentially expressed lncRNAs indicated that 27 and 48 pathways were significantly enriched between the three stages of lactation in Kashmiri and Jersey respectively, including mTOR signaling, PI3K-Akt signaling, and RAP1 signaling pathways. These pathways are known to play key roles in lactation biology and mammary gland development. Conclusions Expression profiles of lncRNAs across different lactation stages in Jersey and Kashmiri cattle provide a valuable resource for the study of the regulatory mechanisms involved in the lactation process as well as facilitate understanding of the role of lncRNAs in bovine lactation biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08406-x.
Collapse
Affiliation(s)
- Peerzada Tajamul Mumtaz
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India.,Department of Biochemistry, School of Life Sciences Jaipur National University, Jaipur, India
| | - Basharat Bhat
- Division of Animal Breeding and Genetics, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Shuhama, Jammu, India
| | - Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
| | - Qamar Taban
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
| | - Mashooq Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Shakil Ahmad Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | - Nazir A Ganie
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India
| | | | - Zulfqar Ul Haq
- Division of Livestock Production and Management, SKUAST-K, Srinagar, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, SKUAST-K, Shuhama, Jammu, 190006, India.
| |
Collapse
|
14
|
Eckart EK, Peck JD, Kharbanda EO, Nagel EM, Fields DA, Demerath EW. Infant sex differences in human milk intake and composition from 1- to 3-month post-delivery in a healthy United States cohort. Ann Hum Biol 2022; 48:455-465. [PMID: 35105200 DOI: 10.1080/03014460.2021.1998620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Macronutrient composition of human milk differs by infant sex, but few studies have examined sex differences in other milk components, or their potential modification by maternal body mass index (BMI). AIM We compared milk intake and human milk hormone and cytokine concentrations at 1- and 3-month post-delivery and tested infant sex by maternal BMI (OW/OB vs. NW) interactions. SUBJECTS AND METHOD Data were analysed for 346 mother-infant dyads in the Mothers and Infants Linked for Healthy Growth (MILk) Study at 1- and 3-month post-delivery. Infant milk intake was estimated by the change in infant weight after test feedings. Concentrations of glucose, insulin, leptin, adiponectin, interleukin-6 (IL-6), and C-reactive protein (CRP) were measured using ELISA. Multivariable linear regression and linear mixed models were used to estimate sex main effects and their interaction with maternal BMI. RESULTS Mean glucose concentration at 1 month was 2.62 mg/dl higher for male infants, but no difference at 3 months was observed. Milk intake and concentrations for the other milk components were similar for males and females at both time points. Associations with infant sex did not differ significantly by maternal BMI. CONCLUSIONS Among healthy United States mother-infant dyads, appetite, and growth-regulating factors in human milk did not differ significantly by infant sex.
Collapse
Affiliation(s)
- Erin K Eckart
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer D Peck
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Emily M Nagel
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - David A Fields
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ellen W Demerath
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Nagel EM, Howland MA, Pando C, Stang J, Mason SM, Fields DA, Demerath EW. Maternal Psychological Distress and Lactation and Breastfeeding Outcomes: a Narrative Review. Clin Ther 2022; 44:215-227. [PMID: 34937662 PMCID: PMC8960332 DOI: 10.1016/j.clinthera.2021.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Despite recommendations from the World Health Organization and the American Academy of Pediatrics to exclusively breastfeed infants for their first 6 months of life, 75% of women do not meet exclusive breastfeeding guidelines, and 60% do not meet their own breastfeeding goals. Numerous observational studies have linked maternal psychological distress (eg, perceived stress, anxiety, and depression) with nonoptimal breastfeeding outcomes, such as decreased proportion and duration of exclusive breastfeeding. The physiological mechanisms underlying these associations, however, remain unclear. METHODS For this narrative review, we evaluated the evidence of relationships between maternal psychological distress and lactation and breastfeeding outcomes in pregnancy and post partum and the possible physiological mechanisms that facilitate these relationships. We searched PubMed using the following terms: stress, anxiety, depression, breastfeeding, and lactation. Additional search by hand was conducted to ensure a thorough review of the literature. FINDINGS Among the studies examined, methods used to assess maternal psychological distress were not uniform, with some studies examining perceived distress via a variety of validated tools and others measuring biological measures of distress, such as cortisol. Evidence supports a role for psychological distress in multiple breastfeeding outcomes, including delayed secretory activation and decreased duration of exclusive breastfeeding. One physiological mechanism proposed to explain these relationships is that psychological distress may impair the release of oxytocin, a hormone that plays a critical role in milk ejection during lactation. Continued impairment of milk ejection may lead to decreased milk production because of incomplete emptying of the breast during each feed. Maternal distress may also yield elevated levels of serum cortisol and decreased insulin sensitivity, which are associated with decreased milk production. The relationship between psychological distress and breastfeeding is likely to be bidirectional, however, in that breastfeeding appears to reduce maternal distress, again possibly via effects on the pleasure or reward pathway and calming effects of oxytocin on the mother. This finding suggests that interventions to support lactation and breastfeeding goals in women who score high on measures of psychological distress would be beneficial for both maternal and infant well-being. IMPLICATIONS Evidence to date suggests that maternal psychological distress may impair lactation and breastfeeding outcomes, but stronger study designs and rigorous assessment methods are needed. A better understanding of the physiological mechanisms leading to impaired lactation may assist in the development of early interventions for mothers experiencing distress. In addition, stress-reducing programs and policies should be investigated for their potential to improve breastfeeding outcomes.
Collapse
Affiliation(s)
- Emily M Nagel
- School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota.
| | - Mariann A Howland
- Institute of Child Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Cynthia Pando
- School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Jamie Stang
- School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Susan M Mason
- School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - David A Fields
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| | - Ellen W Demerath
- School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
16
|
Medina Poeliniz C, Hoban R, Schoeny ME, Engstrom JL, Patel AL, Meier P. Prepregnancy Body Mass Index Is Associated with Time-Dependent Changes in Secretory Activation Measures During the First 7 Days Postpartum in Breast Pump-dependent Mothers of Premature Infants. Breastfeed Med 2022; 17:173-181. [PMID: 34919412 DOI: 10.1089/bfm.2021.0167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Little is known about the biology of secretory activation (SA) in overweight and obese (OW/OB) mothers who are breast pump dependent with a premature infant in the neonatal intensive care unit. Objective: To compare time-dependent changes in daily pumped milk volume, maternal milk sodium (Na) concentration, and Na-to-potassium (K) ratios (Na:K) in the first 14 days postpartum in breast pump-dependent mothers with prepregnancy body mass index (BMI) <27 and BMI ≥27 kg/m2. Design/Methods: This secondary analysis for 39 subjects, 44% (n = 17) with prepregnancy BMI <27 and 56% (n = 22) with BMI ≥27, included transformed data of outcome measures, chi-square, t-tests, and growth curve models. Results: For days 1-7, daily pumped milk volume increased significantly more rapidly for mothers with BMI <27 (65.82 mL/d) versus BMI ≥27 (33.08 mL/d), but the daily rate of change in pumped milk volume during days 8-14 was not statistically different. Daily milk Na concentration decreased significantly faster in BMI <27 (-3.93 mM/d) versus BMI ≥27 (-2.00 mM/day) during days 1-7, but was not significantly different for days 8-14. No statistical differences were noted for Na:K ratio for either time period. Conclusion: These data add biologic evidence to previous research, suggesting delayed or impaired SA in OW/OB mothers, and suggest that the window of opportunity for research and clinical interventions is days 1-7 postpartum in this population.
Collapse
Affiliation(s)
| | - Rebecca Hoban
- Division of Neonatology, Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, USA.,Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Michael E Schoeny
- College of Nursing, Rush University Medical Center, Chicago, Illinois, USA
| | - Janet L Engstrom
- Department of Women and Children's Nursing, Rush University Medical Center, Chicago, Illinois, USA
| | - Aloka L Patel
- Division of Neonatology, Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, USA
| | - Paula Meier
- Division of Neonatology, Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
17
|
Casey TM, Plaut K, Boerman J. Circadian clocks and their role in lactation competence. Domest Anim Endocrinol 2022; 78:106680. [PMID: 34607219 DOI: 10.1016/j.domaniend.2021.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Circadian rhythms are 24 h cycles of behavior, physiology and gene expression that function to synchronize processes across the body and coordinate physiology with the external environment. Circadian clocks are central to maintaining homeostasis and regulating coordinated changes in physiology in response to internal and external cues. Orchestrated changes occur in maternal physiology during the periparturient period to support the growth of the fetus and the energetic and nutritional demands of lactation. Discoveries in our lab made over a decade ago led us to hypothesize that the circadian timing system functions to regulate metabolic and mammary specific changes that occur to support a successful lactation. Findings of studies that ensued are summarized, and point to the importance of circadian clocks in the regulation of lactation competence. Disruption of the circadian timing system can negatively affect mammary gland development and differentiation, alter maternal metabolism and impair milk production.
Collapse
Affiliation(s)
- T M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - K Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
Nagel EM, Kummer L, Jacobs DR, Foster L, Duncan K, Johnson K, Harnack L, Haapala J, Kharoud H, Gallagher T, Kharbanda EO, Pierce S, Fields DA, Demerath EW. Human Milk Glucose, Leptin, and Insulin Predict Cessation of Full Breastfeeding and Initiation of Formula Use. Breastfeed Med 2021; 16:978-986. [PMID: 34348043 PMCID: PMC8713450 DOI: 10.1089/bfm.2021.0131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective: We aimed to investigate prospective associations between milk bioactives related to metabolic health (glucose, insulin, leptin, C reactive protein [CRP], and interleukin 6 [IL-6]) and incident formula initiation at 3 and 6 months postpartum. Design: This study included 363 mother-infant dyads who were fully breastfed at 1 month and participated in the prospective Mothers and Infants Linked for Healthy Growth study from pregnancy to 6 months postpartum. Associations between milk glucose, leptin, insulin, CRP, and IL-6 at 1 and 3 months and incident formula feeding (FF) at 3 and 6 months, respectively, were tested using multiple logistic regression, adjusting for numerous potential confounders such as maternal age and prepregnancy body mass index. Results: At 3 months postpartum, 1-month glucose (odds ratio [OR] 0.45 [95% confidence interval (CI): 0.27-0.75], p ≤ 0.01) and smaller decreases in glucose from 1 to 3 months (OR 0.51 [95% CI: 0.28-0.92], p = 0.03) were associated with lower odds of FF, whereas 1-month leptin (OR 2.30 [95% CI: 1.30-4.07], p < 0.01) and larger increase in insulin (OR 1.86 [95% CI: 1.23-2.81], p < 0.01) and leptin (OR 2.17 [95% CI: 1.29-3.68], p < 0.01) from 1 to 3 months were associated with increased odds of FF. At 6 months, insulin increases (OR 2.08 [95% CI: 1.03-4.17], p = 0.04) were associated with higher odds of FF. Conclusions: In a cohort of women with established lactation, 1-month milk glucose, insulin, and leptin predicted initiation of FF at 3 months. Early milk composition may provide a window into mammary gland function, allowing identification of women at risk of not meeting their breastfeeding goals.
Collapse
Affiliation(s)
- Emily M Nagel
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Leslie Kummer
- The Mayo Clinic, Division of Community Pediatric and Adolescent Medicine, Minneapolis, Minnesota, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Laurie Foster
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Katy Duncan
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Kelsey Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Lisa Harnack
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Jacob Haapala
- HealthPartners Institute, Bloomington, Minnesota, USA
| | - Harmeet Kharoud
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Tiffany Gallagher
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | | | - Stephanie Pierce
- Maternal-Fetal Medicine, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - David A Fields
- Department of Pediatrics, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Casey T, Suarez-Trujillo AM, McCabe C, Beckett L, Klopp R, Brito L, Rocha Malacco VM, Hilger S, Donkin SS, Boerman J, Plaut K. Transcriptome analysis reveals disruption of circadian rhythms in late gestation dairy cows may increase risk for fatty liver and reduced mammary remodeling. Physiol Genomics 2021; 53:441-455. [PMID: 34643103 DOI: 10.1152/physiolgenomics.00028.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Circadian disruption increased insulin resistance and decreased mammary development in late gestation, nonlactating (dry) cows. The objective was to measure the effect of circadian disruption on transcriptomes of the liver and mammary gland. At 35 days before expected calving (BEC), multiparous dry cows were assigned to either control (CON) or phase-shifted treatments (PS). CON was exposed to 16-h light and 8-h dark. PS was exposed to 16-h light to 8-h dark, but phase of the light-dark cycle was shifted 6 h every 3 days. On day 21 BEC, liver and mammary were biopsied. RNA was isolated (n = 6 CON, n = 6 PS per tissue), and libraries were prepared and sequenced using paired-end reads. Reads mapping to bovine genome averaged 27 ± 2 million and aligned to 14,222 protein-coding genes in liver and 15,480 in mammary analysis. In the liver, 834 genes, and in the mammary gland, 862 genes were different (nominal P < 0.05) between PS and CON. In the liver, genes upregulated in PS functioned in cholesterol biosynthesis, endoplasmic reticulum stress, wound healing, and inflammation. Genes downregulated in liver function in cholesterol efflux. In the mammary gland, genes upregulated functioned in mRNA processing and transcription and downregulated genes encoded extracellular matrix proteins and proteases, cathepsins and lysosomal proteases, lipid transporters, and regulated oxidative phosphorylation. Increased cholesterol synthesis and decreased efflux suggest that circadian disruption potentially increases the risk of fatty liver in cows. Decreased remodeling and lipid transport in mammary may decrease milk production capacity during lactation.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | | | - Conor McCabe
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Linda Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Rebecca Klopp
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Luiz Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | | | - Susan Hilger
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Jacquelyn Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
20
|
Conte G, Giordani T, Vangelisti A, Serra A, Pauselli M, Cavallini A, Mele M. Transcriptome Adaptation of the Ovine Mammary Gland to Dietary Supplementation of Extruded Linseed. Animals (Basel) 2021; 11:2707. [PMID: 34573673 PMCID: PMC8465498 DOI: 10.3390/ani11092707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Several dietary strategies were adopted to reduce saturated fatty acids and increase beneficial fatty acids (FA) for human health. Few studies are available about the pathways/genes involved in these processes. Illumina RNA-sequencing was used to investigate changes in the ovine mammary gland transcriptome following supplemental feeding with 20% extruded linseed. Comisana ewes in mid-lactation were fed a control diet for 28 days (control period) followed by supplementation with 20% DM of linseed panel for 28 days (treatment period). Milk production was decreased by 30.46% with linseed supplementation. Moreover, a significant reduction in fat, protein and lactose secretion was also observed. Several unsaturated FAs were increased while short and medium chain saturated FAs were decreased by linseed treatment. Around four thousand (1795 up- and 2133 down-regulated) genes were significantly differentially regulated by linseed supplementation. The main pathways affected by linseed supplementation were those involved in the energy balance of the mammary gland. Principally, the mammary gland of fed linseed sheep showed a reduced abundance of transcripts related to the synthesis of lipids and carbohydrates and oxidative phosphorylation. Our study suggests that the observed decrease in milk saturated FA was correlated to down-regulation of genes in the lipid synthesis and lipid metabolism pathways.
Collapse
Affiliation(s)
- Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
| | - Andrea Serra
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Mariano Pauselli
- Department of Agriculture, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy;
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Marcello Mele
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| |
Collapse
|
21
|
Rassie K, Mousa A, Joham A, Teede HJ. Metabolic Conditions Including Obesity, Diabetes, and Polycystic Ovary Syndrome: Implications for Breastfeeding and Breastmilk Composition. Semin Reprod Med 2021; 39:111-132. [PMID: 34433215 DOI: 10.1055/s-0041-1732365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Breastfeeding is internationally recognized as the recommended standard for infant nutrition, informed by evidence of its multiple benefits for both mother and baby. In the context of common metabolic conditions such as polycystic ovary syndrome, diabetes (type 1, type 2, and gestational), and obesity, breastfeeding may be particularly beneficial for both mother and infant. However, there is evidence of delayed lactogenesis and reduced breastfeeding rates and duration in women with these conditions, and the effects of altered maternal metabolic environments on breastmilk composition (and potentially infant outcomes) are incompletely understood. In this review, we explore the relationships between maternal metabolic conditions, lactogenesis, breastfeeding, and breastmilk composition. We examine relevant potential mechanisms, including the central role of insulin both in lactogenesis and as a milk-borne hormone. We also describe the bioactive and hormonal components of breastmilk and how these may link maternal and infant health.
Collapse
Affiliation(s)
- Kate Rassie
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Victoria, Australia.,Department of Diabetes, Monash Health, Melbourne, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Anju Joham
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Victoria, Australia.,Department of Diabetes, Monash Health, Melbourne, Australia
| | - Helena J Teede
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Victoria, Australia.,Department of Diabetes, Monash Health, Melbourne, Australia
| |
Collapse
|
22
|
Kupsco A, Prada D, Valvi D, Hu L, Petersen MS, Coull B, Grandjean P, Weihe P, Baccarelli AA. Human milk extracellular vesicle miRNA expression and associations with maternal characteristics in a population-based cohort from the Faroe Islands. Sci Rep 2021; 11:5840. [PMID: 33712635 PMCID: PMC7970999 DOI: 10.1038/s41598-021-84809-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Human milk plays a critical role in infant development and health, particularly in cognitive, immune, and cardiometabolic functions. Milk contains extracellular vesicles (EVs) that can transport biologically relevant cargo from mother to infant, including microRNAs (miRNAs). We aimed to characterize milk EV-miRNA profiles in a human population cohort, assess potential pathways and ontology, and investigate associations with maternal characteristics. We conducted the first study to describe the EV miRNA profile of human milk in 364 mothers from a population-based mother-infant cohort in the Faroe Islands using small RNA sequencing. We detected 1523 miRNAs with ≥ one read in 70% of samples. Using hierarchical clustering, we determined five EV-miRNA clusters, the top three consisting of 15, 27 and 67 miRNAs. Correlation coefficients indicated that the expression of many miRNAs within the top three clusters was highly correlated. Top-cluster human milk EV-miRNAs were involved in pathways enriched for the endocrine system, cellular community, neurodevelopment, and cancers. miRNA expression was associated with time to milk collection post-delivery, maternal body mass index, and maternal smoking, but not maternal parity. Future studies investigating determinants of human EV-miRNAs and associated health outcomes are needed to elucidate the role of human milk EV-miRNAs in health and disease.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA.
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerologia, Universidad Nacional Autonoma de Mexico, 14080, Mexico City, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa Hu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine, University of Southern Denmark, Odense C, Denmark
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| |
Collapse
|
23
|
Saben JL, Sims CR, Abraham A, Bode L, Andres A. Human Milk Oligosaccharide Concentrations and Infant Intakes Are Associated with Maternal Overweight and Obesity and Predict Infant Growth. Nutrients 2021; 13:nu13020446. [PMID: 33572881 PMCID: PMC7911788 DOI: 10.3390/nu13020446] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are bioactive molecules playing a critical role in infant health. We aimed to quantify the composition of HMOs of women with normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), or obesity (30.0–60.0 kg/m2) and determine the effect of HMO intake on infant growth. Human milk (HM) samples collected at 2 months (2 M; n = 194) postpartum were analyzed for HMO concentrations via high-performance liquid chromatography. Infant HM intake, anthropometrics and body composition were assessed at 2 M and 6 M postpartum. Linear regressions and linear mixed-effects models were conducted examining the relationships between maternal BMI and HMO composition and HMO intake and infant growth over the first 6 M, respectively. Maternal obesity was associated with lower concentrations of several fucosylated and sialylated HMOs and infants born to women with obesity had lower intakes of these HMOs. Maternal BMI was positively associated with lacto-N-neotetraose, 3-fucosyllactose, 3-sialyllactose and 6-sialyllactose and negatively associated with disialyllacto-N-tetraose, disialyllacto-N-hexaose, fucodisialyllacto-N-hexaose and total acidic HMOs concentrations at 2 M. Infant intakes of 3-fucosyllactose, 3-sialyllactose, 6-sialyllactose, disialyllacto-N-tetraose, disialyllacto-N-hexaose, and total acidic HMOs were positively associated with infant growth over the first 6 M of life. Maternal obesity is associated with changes in HMO concentrations that are associated with infant adiposity.
Collapse
Affiliation(s)
- Jessica L. Saben
- J.L.S. Scientific Consulting, L.L.C., Thornton, CO 80229, USA;
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Clark R. Sims
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ann Abraham
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-364-3301
| |
Collapse
|
24
|
Watt AP, Lefevre C, Wong CS, Nicholas KR, Sharp JA. Insulin regulates human mammosphere development and function. Cell Tissue Res 2021; 384:333-352. [PMID: 33439347 DOI: 10.1007/s00441-020-03360-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Assessing the role of lactogenic hormones in human mammary gland development is limited due to issues accessing tissue samples and so development of a human in vitro three-dimensional mammosphere model with functions similar to secretory alveoli in the mammary gland can aid to overcome this shortfall. In this study, a mammosphere model has been characterised using human mammary epithelial cells grown on either mouse extracellular matrix or agarose and showed insulin is essential for formation of mammospheres. Insulin was shown to up-regulate extracellular matrix genes. Microarray analysis of these mammospheres revealed an up-regulation of differentiation, cell-cell junctions, and cytoskeleton organisation functions, suggesting mammosphere formation may be regulated through ILK signalling. Comparison of insulin and IGF-1 effects on mammosphere signalling showed that although IGF-1 could induce spherical structures, the cells did not polarise correctly as shown by the absence of up-regulation of polarisation genes and did not induce the expression of milk protein genes. This study demonstrated a major role for insulin in mammary acinar development for secretory differentiation and function indicating the potential for reduced lactational efficiency in women with obesity and gestational diabetes.
Collapse
Affiliation(s)
- Ashalyn P Watt
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia.
| | - Christophe Lefevre
- Division of Bioinformatics, Walter and Eliza Hall Medical Research Institute, 3000, Melbourne, Australia.,Peter MacCallum Cancer Research Institute, East Melbourne, 3002, Australia
| | - Cynthia S Wong
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| | - Kevin R Nicholas
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| |
Collapse
|
25
|
Quinn EA. Centering human milk composition as normal human biological variation. Am J Hum Biol 2021; 33:e23564. [DOI: 10.1002/ajhb.23564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/25/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Elizabeth A. Quinn
- Department of Anthropology Washington University in St. Louis Saint Louis Missouri USA
| |
Collapse
|
26
|
Saben JL, Abraham A, Bode L, Sims CR, Andres A. Third-Trimester Glucose Homeostasis in Healthy Women Is Differentially Associated with Human Milk Oligosaccharide Composition at 2 Months Postpartum by Secretor Phenotype. Nutrients 2020; 12:nu12082209. [PMID: 32722157 PMCID: PMC7468763 DOI: 10.3390/nu12082209] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Human milk oligosaccharides (HMOs) are bioactive molecules in human milk that play a critical role in infant health. Obesity and associated metabolic aberrations can negatively impact lactation and alter milk composition. Here, the relationship between maternal glucose homeostasis and HMO composition from 136 healthy women was examined. Maternal glucose homeostasis (fasting plasma glucose and insulin, homeostatic model assessment for insulin resistance, and insulin sensitivity index) was evaluated at 30 weeks of gestation in healthy women (body mass index = 18.5–35 kg/m2). Human milk samples were collected at two months postpartum. HMO concentrations were measured via high performance liquid chromatography. Women were categorized into “secretor” and “non-secretor” groups based on 2′-Fucosyllactose concentrations (<100 nmol/mL, non-secretor). Pearson’s correlation analysis and linear models were used to assess the relationships between maternal glucose homeostasis and HMO concentrations. In non-secretors, third trimester fasting plasma glucose and insulin were negatively associated with total HMO-bound sialic acid and concentrations of the sialylated HMOs 3′-sialyllactose and disialylacto-N-tetraose. In secretors, difucosyllactose and lacto-N-fucopentaose-II concentrations increased and sialyllacto-N-tetraose c and sialyllacto-N-tetraose b decreased as insulin sensitivity increased. This study is the first to demonstrate a relationship between obesity-associated maternal factors and HMO composition in both secretor and non-secretor populations.
Collapse
Affiliation(s)
- Jessica L. Saben
- J.L.S. Scientific Consulting, L.L.C., Thornton, CO 80229, USA;
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Ann Abraham
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California San Diego, La Jolla, CA 92093, USA; (A.A.); (L.B.)
| | - Clark R. Sims
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Aline Andres
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-364-3301
| |
Collapse
|
27
|
George AD, Gay MCL, Wlodek ME, Geddes DT. Breastfeeding a small for gestational age infant, complicated by maternal gestational diabetes: a case report. BMC Pregnancy Childbirth 2019; 19:210. [PMID: 31226953 PMCID: PMC6588903 DOI: 10.1186/s12884-019-2366-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Small for gestational age (SGA) infants are those born small for their gestational age, with weight below the 10th percentile. Not only do SGA infants suffer growth issues after birth, they have elevated risk for the development of metabolic and cardiovascular diseases later in life. Current research has suggested that in cases of SGA infants, maternal milk and breastfeeding are not affected. The mother of an SGA infant was diagnosed with placental insufficiency and Gestational Diabetes Mellitus (GDM) during her pregnancy. The infant was born term, at 38 weeks 3 days, and SGA. The mother had a low milk supply and her milk composition differed from reference values such that the daily infant intake provided less than 50% of the required energy intake at 3 months. CONCLUSION In cases of SGA and/or GDM, maternal milk quality and quantity may be compromised. This requires follow-up in order to reduce the disease risk for SGA infants and the corresponding public health implications.
Collapse
Affiliation(s)
- Alexandra D George
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth, Western Australia, 6009, Australia.
| | - Melvin C L Gay
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth, Western Australia, 6009, Australia
| | - Mary E Wlodek
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth, Western Australia, 6009, Australia
| |
Collapse
|
28
|
Chetwynd EM, Stuebe AM, Rosenberg L, Troester MA, Palmer JR. Prepregnancy Diabetes and Breastfeeding Cessation Among Black Women in the United States. Breastfeed Med 2019; 14:249-255. [PMID: 30839228 PMCID: PMC6532327 DOI: 10.1089/bfm.2018.0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: The incidence of diabetes is rising, and with it, the number of pregnancies affected by diabetes. U.S. black women have a disproportionately high prevalence of diabetes and lower rates of breastfeeding. Objective: The objective of this study was to quantify the relationship between diabetes before pregnancy and breastfeeding duration among black women in the United States. Materials and Methods: We analyzed women from the Black Women's Health Study (N = 59,000) to assess the relationship between prepregnancy diabetes and time to breastfeeding cessation occurring up to 24 months postdelivery using Kaplan-Meier survival curves, log rank tests, and Cox proportional hazards models. The study population included primiparous women with births between 1995 and 2009 (N = 3,404). Obesity, hypertension before pregnancy, and family history of diabetes were examined for effect modification. Results: Survival curves demonstrated a markedly reduced duration of breastfeeding in women who had been diagnosed with prepregnancy diabetes (p < 0.01). The hazard ratio for breastfeeding cessation for women with prepregnancy diabetes was 1.5 (95% confidence interval 1.1-2.0) compared with women without prepregnancy diabetes after control for age, body mass index (BMI) at age 18, prepregnancy BMI, other metabolic factors, demographics, and health behaviors. Conclusions: Our results suggest that prepregnancy diabetes is a strong predictor of curtailed breastfeeding duration, even after control for BMI. This underscores the need for targeted lactation support for diabetic women.
Collapse
Affiliation(s)
- Ellen M. Chetwynd
- Department of Maternal and Child Health, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
| | - Alison M. Stuebe
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina
- Department of Maternal, Fetal Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Lynn Rosenberg
- Slone Epidemiology Center, Boston University, Boston, Massachusetts
| | - Melissa A. Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Julie R. Palmer
- Slone Epidemiology Center, Boston University, Boston, Massachusetts
| |
Collapse
|
29
|
Nommsen-Rivers L, Thompson A, Riddle S, Ward L, Wagner E, King E. Feasibility and Acceptability of Metformin to Augment Low Milk Supply: A Pilot Randomized Controlled Trial. J Hum Lact 2019; 35:261-271. [PMID: 30629889 PMCID: PMC8992687 DOI: 10.1177/0890334418819465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Metformin improves insulin action, but feasibility in treating low milk supply is unknown. RESEARCH AIM To determine the feasibility of a metformin- versus-placebo definitive randomized clinical trial in women with low milk production and signs of insulin resistance. METHODS Pilot trial criteria included: Mother 1-8 weeks postpartum (ideally 1-2 weeks), low milk production, and ≥1 insulin resistance sign; and singleton, healthy, term infant. Eligible mothers were randomly assigned 2:1 (metformin:placebo) and instructed in frequent milk removal for 28 days with option to stop at 14 days. RESULTS From 02/2015 through 06/2016, we screened 114 women, completed baseline assessments on 46, and trialed 15 (median, 36 days postpartum). Comparing metformin-assigned ( n = 10) to placebo ( n = 5), 70% versus 80% continued to day 28; peak median change in milk output was +8 versus -58 mL/24 hr ( p = .31) and 80% peaked at Day 14 for both groups; 0% versus 20% desired to continue assigned drug after study completion; 44% versus 0% reported nausea/vomiting. Post-hoc, median peak change in milk output was +22 (metformin completers, n = 8) versus -58 mL/24 hr (placebo + non-completers, n = 7, p = .07). At baseline assessment, median milk production was significantly lower in those with ( n = 31), versus those without ( n = 15) signs of insulin resistance ( p = .002). CONCLUSIONS Although results trend toward hypothesized direction, trial feasibility concerns include late enrollment and only 20% of metformin-assigned participants sustaining improved milk output to Day 28, with none perceiving metformin worthwhile. Better tools are needed to identify and treat metabolically-driven low milk production. Registered at ClinicalTrials.gov (NCT02179788) on 02/JUL/2014.
Collapse
Affiliation(s)
| | | | - Sarah Riddle
- 1 University of Cincinnati, Cincinnati, OH, USA.,2 Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laura Ward
- 1 University of Cincinnati, Cincinnati, OH, USA.,2 Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Erin Wagner
- 1 University of Cincinnati, Cincinnati, OH, USA
| | - Eileen King
- 1 University of Cincinnati, Cincinnati, OH, USA.,2 Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
30
|
Jiangfeng F, Yuzhu L, Sijiu Y, Yan C, Gengquan X, Libin W, Yangyang P, Honghong H. Transcriptional profiling of two different physiological states of the yak mammary gland using RNA sequencing. PLoS One 2018; 13:e0201628. [PMID: 30059556 PMCID: PMC6066247 DOI: 10.1371/journal.pone.0201628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
Yak milk is superior to common cow milk in nutrients including protein, fat and calories. However, the milk yield of the yak is very much lower compared with other dairy bovines. To understand the molecular mechanisms of lactogenesis, lactation and mammary gland development, mammary tissue samples were taken from five yaks during a dry period (DP, n = 3) and lactation period (LP, n = 2). Two types of cDNA sequence libraries that reflected the different physiological states of the mammary gland were constructed using RNA sequencing technology. After removing reads containing adapters, reads containing poly-N and low-quality reads from the raw data, 45,423,478 to 53,274,976 clean reads were obtained from these libraries. A total of 74.72% to 80.65% of the high-quality sequence reads were uniquely aligned to the BosGru v2.0 yak reference genome. Using the DESeq R package, 360 differentially expressed genes were detected between the two groups when the adjusted P value (padj < 0.05) was used as the cutoff value; this included 192 upregulated and 168 downregulated genes in the yak mammary gland tissue of the DP compared to the LP. A gene ontology analysis revealed that the most enriched GO terms were protein binding, multi-organism process, immune system and others. KEGG pathway analysis indicated that the differentially expressed genes were mostly enriched in Hippo signaling, insulin signaling, steroid biosynthesis and others. The analysis of the up- and downregulated genes provides important insights into the molecular events involved in lactogenesis, lactation and mammary gland development and will guide further research to enhance milk yield and optimize the constituents of yak milk.
Collapse
Affiliation(s)
- Fan Jiangfeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
- * E-mail:
| | - Luo Yuzhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Yu Sijiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Cui Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Xu Gengquan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Wang Libin
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, P. R. China
| | - Pan Yangyang
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, P. R. China
| | - He Honghong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
31
|
Pinheiro TV, Goldani MZ. Maternal pre-pregnancy overweight/obesity and gestational diabetes interaction on delayed breastfeeding initiation. PLoS One 2018; 13:e0194879. [PMID: 29912885 PMCID: PMC6005508 DOI: 10.1371/journal.pone.0194879] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background Cumulative evidence indicates an association between maternal overweight and gestational diabetes with delayed breastfeeding initiation; however, the presence of both conditions simultaneously has been little explored. This study aims to investigate the interaction between maternal overweight/obesity and gestational diabetes on breastfeeding initiation. Methods This study comprises data from the IVAPSA Birth Cohort, a prospective follow-up of mothers and their newborns. Two of the five groups from IVAPSA were evaluated, considering women with and without gestational diabetes. These women were further categorized according to their pre-pregnancy body mass index as normal weight or overweight/obese. Results 219 women were evaluated, 53.4% of them had pre-pregnancy overweight/obesity and 32% had gestational diabetes. Most women were able to initiate breastfeeding within 12 hours from delivery (92.7%) and only eight (3.7%) women had not breastfed in the first 24 hours postpartum. Of these, seven were overweight/obese (77.8%) and five had gestational diabetes (66.7%), with four of them having overweight/obesity and gestational diabetes concomitantly. Women with both adverse conditions had an adjusted relative risk of delayed breastfeeding initiation of 1.072 (95% CI 1.006; 1.141), p = 0.032. Conclusions The results indicate an additive interaction between maternal pre-pregnancy overweight/obesity and gestational diabetes on delayed breastfeeding initiation.
Collapse
Affiliation(s)
- Tanara Vogel Pinheiro
- Department of pediatrics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Marcelo Zubaran Goldani
- Department of pediatrics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of pediatrics, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - IVAPSA group
- Department of pediatrics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of pediatrics, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
32
|
Fowler M, Champagne C, Crocker D. Adiposity and fat metabolism during combined fasting and lactation in elephant seals. J Exp Biol 2018. [DOI: 10.1242/jeb.161554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ABSTRACT
Animals that fast depend on mobilizing lipid stores to power metabolism. Northern elephant seals (Mirounga angustirostris) incorporate extended fasting into several life-history stages: development, molting, breeding and lactation. The physiological processes enabling fasting and lactation are important in the context of the ecology and life history of elephant seals. The rare combination of fasting and lactation depends on the efficient mobilization of lipid from adipose stores and its direction into milk production. The mother elephant seal must ration her finite body stores to power maintenance metabolism, as well as to produce large quantities of lipid and protein-rich milk. Lipid from body stores must first be mobilized; the action of lipolytic enzymes and hormones stimulate the release of fatty acids into the bloodstream. Biochemical processes affect the release of specific fatty acids in a predictable manner, and the pattern of release from lipid stores is closely reflected in the fatty acid content of the milk lipid. The content of the milk may have substantial developmental, thermoregulatory and metabolic consequences for the pup. The lactation and developmental patterns found in elephant seals are similar in some respects to those of other mammals; however, even within the limited number of mammals that simultaneously fast and lactate, there are important differences in the mechanisms that regulate lipid mobilization and milk lipid content. Although ungulates and humans do not fast during lactation, there are interesting comparisons to these groups regarding lipid mobilization and milk lipid content patterns.
Collapse
|
33
|
Th-POK regulates mammary gland lactation through mTOR-SREBP pathway. PLoS Genet 2018; 14:e1007211. [PMID: 29420538 PMCID: PMC5821406 DOI: 10.1371/journal.pgen.1007211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/21/2018] [Accepted: 01/21/2018] [Indexed: 12/22/2022] Open
Abstract
The Th-inducing POK (Th-POK, also known as ZBTB7B or cKrox) transcription factor is a key regulator of lineage commitment of immature T cell precursors. It is yet unclear the physiological functions of Th-POK besides helper T cell differentiation. Here we show that Th-POK is restrictedly expressed in the luminal epithelial cells in the mammary glands that is upregulated at late pregnancy and lactation. Lineage restrictedly expressed Th-POK exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Th-POK is not required for mammary epithelial cell fate determination. Mammary gland morphogenesis in puberty and alveologenesis in pregnancy are phenotypically normal in the Th-POK-deficient mice. However, Th-POK-deficient mice are defective in triggering the onset of lactation upon parturition with large cellular lipid droplets retained within alveolar epithelial cells. As a result, Th-POK knockout mice are unable to efficiently secret milk lipid and to nurse the offspring. Such defect is mainly attributed to the malfunctioned mammary epithelial cells, but not the tissue microenvironment in the Th-POK deficient mice. Th-POK directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling. Th-POK deficiency compromises IRS-1 expression and Akt-mTOR-SREBP signaling in the lactating mammary glands. Conversely, insulin induces Th-POK expression. Thus, Th-POK functions as an important feed-forward regulator of insulin signaling in mammary gland lactation.
Collapse
|
34
|
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R. Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocr Rev 2017; 38:379-431. [PMID: 28973479 PMCID: PMC5629070 DOI: 10.1210/er.2017-00073] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
The insulin receptor (IR) gene undergoes differential splicing that generates two IR isoforms, IR-A and IR-B. The physiological roles of IR isoforms are incompletely understood and appear to be determined by their different binding affinities for insulin-like growth factors (IGFs), particularly for IGF-2. Predominant roles of IR-A in prenatal growth and development and of IR-B in metabolic regulation are well established. However, emerging evidence indicates that the differential expression of IR isoforms may also help explain the diversification of insulin and IGF signaling and actions in various organs and tissues by involving not only different ligand-binding affinities but also different membrane partitioning and trafficking and possibly different abilities to interact with a variety of molecular partners. Of note, dysregulation of the IR-A/IR-B ratio is associated with insulin resistance, aging, and increased proliferative activity of normal and neoplastic tissues and appears to sustain detrimental effects. This review discusses novel information that has generated remarkable progress in our understanding of the physiology of IR isoforms and their role in disease. We also focus on novel IR ligands and modulators that should now be considered as an important strategy for better and safer treatment of diabetes and cancer and possibly other IR-related diseases.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Veronica Vella
- School of Human and Social Sciences, University Kore of Enna, via della Cooperazione, 94100 Enna, Italy
| | - Michael C. Lawrence
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laura Sciacca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesco Frasca
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Andrea Morrione
- Department of Urology and Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Riccardo Vigneri
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| |
Collapse
|
35
|
Meier PP, Johnson TJ, Patel AL, Rossman B. Evidence-Based Methods That Promote Human Milk Feeding of Preterm Infants: An Expert Review. Clin Perinatol 2017; 44:1-22. [PMID: 28159199 PMCID: PMC5328421 DOI: 10.1016/j.clp.2016.11.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Best practices translating the evidence for high-dose human milk (HM) feeding for preterm infants during neonatal intensive care unit (NICU) hospitalization have been described, but their implementation has been compromised. Although the rates of any HM feeding have increased over the last decade, efforts to help mothers maintain HM provision through to NICU discharge have remained problematic. Special emphasis should be placed on prioritizing the early lactation period of coming to volume so that mothers have sufficient HM volume to achieve their personal HM feeding goals. Donor HM does not provide the same risk reduction as own mother's HM.
Collapse
Affiliation(s)
- Paula P Meier
- Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA.
| | - Tricia J Johnson
- Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA
| | - Aloka L Patel
- Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA
| | - Beverly Rossman
- Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA
| |
Collapse
|
36
|
Enjapoori AK, Lefèvre CM, Nicholas KR, Sharp JA. Hormonal regulation of platypus Beta-lactoglobulin and monotreme lactation protein genes. Gen Comp Endocrinol 2017; 242:38-48. [PMID: 26673872 DOI: 10.1016/j.ygcen.2015.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/27/2015] [Accepted: 12/04/2015] [Indexed: 12/16/2022]
Abstract
Endocrine regulation of milk protein gene expression in marsupials and eutherians is well studied. However, the evolution of this complex regulation that began with monotremes is unknown. Monotremes represent the oldest lineage of extant mammals and the endocrine regulation of lactation in these mammals has not been investigated. Here we characterised the proximal promoter and hormonal regulation of two platypus milk protein genes, Beta-lactoglobulin (BLG), a whey protein and monotreme lactation protein (MLP), a monotreme specific milk protein, using in vitro reporter assays and a bovine mammary epithelial cell line (BME-UV1). Insulin and dexamethasone alone provided partial induction of MLP, while the combination of insulin, dexamethasone and prolactin was required for maximal induction. Partial induction of BLG was achieved by insulin, dexamethasone and prolactin alone, with maximal induction using all three hormones. Platypus MLP and BLG core promoter regions comprised transcription factor binding sites (e.g. STAT5, NF-1 and C/EBPα) that were conserved in marsupial and eutherian lineages that regulate caseins and whey protein gene expression. Our analysis suggests that insulin, dexamethasone and/or prolactin alone can regulate the platypus MLP and BLG gene expression, unlike those of therian lineage. The induction of platypus milk protein genes by lactogenic hormones suggests they originated before the divergence of marsupial and eutherians.
Collapse
Affiliation(s)
- Ashwantha Kumar Enjapoori
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, Victoria 3216, Australia.
| | - Christophe M Lefèvre
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, Victoria 3216, Australia.
| | - Kevin R Nicholas
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, Victoria 3216, Australia; Department of Anatomy and Cell Biology, Monash University, Clayton, Victoria 3800, Australia.
| | - Julie A Sharp
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, Victoria 3216, Australia; Department of Anatomy and Cell Biology, Monash University, Clayton, Victoria 3800, Australia; Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, Victoria 3216, Australia.
| |
Collapse
|
37
|
LPA receptor activity is basal specific and coincident with early pregnancy and involution during mammary gland postnatal development. Sci Rep 2016; 6:35810. [PMID: 27808166 PMCID: PMC5093903 DOI: 10.1038/srep35810] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/06/2016] [Indexed: 01/08/2023] Open
Abstract
During pregnancy, luminal and basal epithelial cells of the adult mammary gland proliferate and differentiate resulting in remodeling of the adult gland. While pathways that control this process have been characterized in the gland as a whole, the contribution of specific cell subtypes, in particular the basal compartment, remains largely unknown. Basal cells provide structural and contractile support, however they also orchestrate the communication between the stroma and the luminal compartment at all developmental stages. Using RNA-seq, we show that basal cells are extraordinarily transcriptionally dynamic throughout pregnancy when compared to luminal cells. We identified gene expression changes that define specific basal functions acquired during development that led to the identification of novel markers. Enrichment analysis of gene sets from 24 mouse models for breast cancer pinpoint to a potential new function for insulin-like growth factor 1 (Igf1r) in the basal epithelium during lactogenesis. We establish that β-catenin signaling is activated in basal cells during early pregnancy, and demonstrate that this activity is mediated by lysophosphatidic acid receptor 3 (Lpar3). These findings identify novel pathways active during functional maturation of the adult mammary gland.
Collapse
|
38
|
Villa-Osaba A, Gahete MD, Cordoba-Chacon J, de Lecea L, Castaño JP, Luque RM. Fasting modulates GH/IGF-I axis and its regulatory systems in the mammary gland of female mice: Influence of endogenous cortistatin. Mol Cell Endocrinol 2016; 434:14-24. [PMID: 27291340 DOI: 10.1016/j.mce.2016.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are essential factors in mammary-gland (MG) development and are altered during fasting. However, no studies have investigated the alterations in the expression of GH/IGF-I and its regulatory systems (somatostatin/cortistatin and ghrelin) in MG during fasting. Therefore, this study was aimed at characterizing the regulation of GH/IGF-I/somatostatin/cortistatin/ghrelin-systems expression in MG of fasted female-mice (compared to fed-controls) and the influence of endogenous-cortistatin (using cortistatin-knockouts). Fasting decreased IGF-I while increased IGF-I/Insulin-receptors expression in MGs. Fasting provoked an increase in GH expression that might be associated to enhanced ghrelin-variants/ghrelin-O-acyl-transferase enzyme expression, while an upregulation of somatostatin-receptors was observed. However, cortistatin-knockouts mice showed a decrease in GH and somatostatin receptor-subtypes expression. Altogether, we demonstrate that GH/IGF-I, somatostatin/cortistatin and ghrelin systems expression is altered in MG during fasting, suggesting a relevant role in coordinating its response to metabolic stress, wherein endogenous cortistatin might be essential for an appropriate response.
Collapse
Affiliation(s)
- Alicia Villa-Osaba
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - José Cordoba-Chacon
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain.
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Hospital Universitario Reina Sofía (HURS), Spain; CIBERobn, Córdoba, Spain; ceiA3, Córdoba, Spain.
| |
Collapse
|
39
|
Cohick WS. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Effects of insulin on mammary gland differentiation during pregnancy and lactation1. J Anim Sci 2016; 94:1812-20. [DOI: 10.2527/jas.2015-0085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
40
|
Nommsen-Rivers LA. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature. Adv Nutr 2016; 7:407-14. [PMID: 26980825 PMCID: PMC4785481 DOI: 10.3945/an.115.011007] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is well established that obese women are at increased risk of delayed lactogenesis and short breastfeeding duration, but the underlying causal contributors remain unclear. This review summarizes the literature examining the role of insulin in lactation outcomes. Maternal obesity is a strong risk factor for insulin resistance and prediabetes, but until recently a direct role for insulin in milk production had not been elucidated. Over the past 6 y, studies in both animal models and humans have shown insulin-sensitive gene expression to be dramatically upregulated specifically during the lactation cycle. Insulin is now considered to play a direct role in lactation, including essential roles in secretory differentiation, secretory activation, and mature milk production. At the same time, emerging clinical research suggests an important association between suboptimal glucose tolerance and lactation difficulty. To develop effective interventions to support lactation success in obese women further research is needed to identify how, when, and for whom maternal insulin secretion and sensitivity affect lactation ability.
Collapse
Affiliation(s)
- Laurie A Nommsen-Rivers
- Division of Neonatology/Center for Interdisciplinary Research in Human Milk and Lactation, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
41
|
Davis KR, Giesy SL, Long Q, Krumm CS, Harvatine KJ, Boisclair YR. XBP1 Regulates the Biosynthetic Capacity of the Mammary Gland During Lactation by Controlling Epithelial Expansion and Endoplasmic Reticulum Formation. Endocrinology 2016; 157:417-28. [PMID: 26562262 DOI: 10.1210/en.2015-1676] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cells composing the mammary secretory compartment have evolved a high capacity to secrete not only proteins but also triglycerides and carbohydrates. This feature is illustrated by the mouse, which can secrete nearly twice its own weight in milk proteins, triglycerides and lactose over a short 20-day lactation. The coordination of synthesis and export of products in other secretory cells is orchestrated in part by the transcription factor X-box binding protein 1 (XBP1). To assess the role of XBP1 in mammary epithelial cells (MEC), we studied floxed XBP1 female mice lacking (wild type; WT) or expressing the Cre recombinase under the control of the ovine β-lactoglobulin promoter (ΔXBP1(MEC)). Pregnant ΔXBP1(MEC) females had morphologically normal mammary development and gave birth to the same number of pups as WT mice. Their litters, however, suffered a weight gain deficit by lactation day 3 (L3)3 that grew to 80% by L14. ΔXBP1(MEC) dams had only modest changes in milk composition (-21% protein, +24% triglyceride) and in the expression of associated genes in isolated MEC. By L5, WT glands were fully occupied by dilated alveoli, whereas ΔXBP1(MEC) glands contained fewer, mostly unfilled alveoli and retained a prominent adipocyte population. The smaller epithelial compartment in ΔXBP1(MEC) glands was explained by lower MEC proliferation and increased apoptosis. Finally, endoplasmic reticulum ribbons were less abundant in ΔXBP1(MEC) at pregnancy day 18 and failed to increase in abundance by L5. Collectively, these results show that XBP1 is required for MEC population expansion during lactation and its ability to develop an elaborate endoplasmic reticulum compartment.
Collapse
Affiliation(s)
- Kristen R Davis
- Department of Animal Science (K.R.D., S.L.G., C.S.K., Y.R.B.), Cornell University, Ithaca, New York 14853; Cam-Su Genome Resources and Laboratory Animal Research Center (Q.L.), Suzhou University, Suzhou 215123, Peoples Republic of China; and Department of Animal Science (K.J.H.), Penn State University, University Park, Pennsylvania 16802
| | - Sarah L Giesy
- Department of Animal Science (K.R.D., S.L.G., C.S.K., Y.R.B.), Cornell University, Ithaca, New York 14853; Cam-Su Genome Resources and Laboratory Animal Research Center (Q.L.), Suzhou University, Suzhou 215123, Peoples Republic of China; and Department of Animal Science (K.J.H.), Penn State University, University Park, Pennsylvania 16802
| | - Qiaoming Long
- Department of Animal Science (K.R.D., S.L.G., C.S.K., Y.R.B.), Cornell University, Ithaca, New York 14853; Cam-Su Genome Resources and Laboratory Animal Research Center (Q.L.), Suzhou University, Suzhou 215123, Peoples Republic of China; and Department of Animal Science (K.J.H.), Penn State University, University Park, Pennsylvania 16802
| | - Christopher S Krumm
- Department of Animal Science (K.R.D., S.L.G., C.S.K., Y.R.B.), Cornell University, Ithaca, New York 14853; Cam-Su Genome Resources and Laboratory Animal Research Center (Q.L.), Suzhou University, Suzhou 215123, Peoples Republic of China; and Department of Animal Science (K.J.H.), Penn State University, University Park, Pennsylvania 16802
| | - Kevin J Harvatine
- Department of Animal Science (K.R.D., S.L.G., C.S.K., Y.R.B.), Cornell University, Ithaca, New York 14853; Cam-Su Genome Resources and Laboratory Animal Research Center (Q.L.), Suzhou University, Suzhou 215123, Peoples Republic of China; and Department of Animal Science (K.J.H.), Penn State University, University Park, Pennsylvania 16802
| | - Yves R Boisclair
- Department of Animal Science (K.R.D., S.L.G., C.S.K., Y.R.B.), Cornell University, Ithaca, New York 14853; Cam-Su Genome Resources and Laboratory Animal Research Center (Q.L.), Suzhou University, Suzhou 215123, Peoples Republic of China; and Department of Animal Science (K.J.H.), Penn State University, University Park, Pennsylvania 16802
| |
Collapse
|
42
|
Marasco LA. Unsolved Mysteries of the Human Mammary Gland: Defining and Redefining the Critical Questions from the Lactation Consultant's Perspective. J Mammary Gland Biol Neoplasia 2014; 19:271-88. [PMID: 26084427 DOI: 10.1007/s10911-015-9330-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023] Open
Abstract
Despite advances in knowledge about human lactation, clinicians face many problems when advising mothers who are experiencing breastfeeding difficulties that do not respond to normal management strategies. Primary insufficient milk production is now being acknowledged, but incidence rates have not been well studied. Many women have known histories of infertility, polycystic ovary syndrome, obesity, hypertension, insulin resistance, thyroid dysfunction, hyperandrogenism or other hormonal imbalances, while others have no obvious risk factors. Some present with obviously abnormal breasts that are pubescent, tuberous/tubular or asymmetric in shape, raising the question of insufficient mammary gland tissue. Other women have breasts that appear within normal limits yet do not lactate normally. Endocrine disruptors may underlie some of these cases but their impact on human milk production has not been well explored. Similarly, any problem with prolactin such as a deficiency in serum prolactin or receptor number, receptor resistance, or poor bioavailability or bioactivity could underlie some cases of insufficient lactation, yet these possibilities are rarely investigated. A weak or suppressed milk ejection reflex, often assumed to be psychosomatic, could be related to thyroid dysfunction or caused by downstream post-receptor pathway problems. In the absence of sufficient data regarding these situations, desperate mothers may turn to non-evidence-based remedies, sometimes at considerable cost and unknown risk. Research targeted to these clinical dilemmas is critical in order to develop evidence-based strategies and increase breastfeeding duration and success rates.
Collapse
|
43
|
Hassiotou F, Hartmann PE. At the dawn of a new discovery: the potential of breast milk stem cells. Adv Nutr 2014; 5:770-8. [PMID: 25398739 PMCID: PMC4224213 DOI: 10.3945/an.114.006924] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Breast milk contains bioactive molecules that provide a multitude of immunologic, developmental and nutritional benefits to the infant. Less attention has been placed on the cellular nature of breast milk, which contains thousands to millions of maternal cells in every milliliter that the infant ingests. What are the properties and roles of these cells? Most studies have examined breast milk cells from an immunologic perspective, focusing specifically on the leukocytes, mainly in the early postpartum period. In the past decade, research has taken a multidimensional approach to investigating the cells of human milk. Technologic advances in single cell analysis and imaging have aided this work, which has resulted in the breakthrough discovery of stem cells in breast milk with multilineage potential that are transferred to the offspring during breastfeeding. This has generated numerous implications for both infant and maternal health and regenerative medicine. This review summarizes the latest knowledge on breast milk stem cells, and discusses their known in vitro and in vivo attributes as well as potential functions and applications.
Collapse
Affiliation(s)
- Foteini Hassiotou
- School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, Crawley, Australia
| | | |
Collapse
|