1
|
Santana-Cordón L, Afonso-Oramas D, Lemus-Mesa A, González-Gómez M, Barroso-Chinea P. Morphological study of neuropeptide Y expression in human and mouse anterior insular cortex: Overexpression in the insular cortex and nucleus accumbens in obese mice on a long-term obesogenic diet. Ann Anat 2023; 250:152127. [PMID: 37355144 DOI: 10.1016/j.aanat.2023.152127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND The anterior lobe of the insular cortex (aINS) is a cortical region that has reciprocal connections with limbic centers such as the anterior cingulate cortex, prefrontal cortex, amygdala and nucleus accumbens (NAc). In fact, the aINS has been involved in the integration of autonomic information for emotional and motivational functions. The compulsive consumption of drugs or high-fat foods induces alterations at both behavioural and brain levels. Brain reward circuits are altered in response to continued intake, in particular the dopaminergic projections from the ventral tegmental area (VTA) to the NAc. The aINS has multiple connections with the components of this system. In recent years, efforts have been made to better understand the fundamental role of the aINS in addiction, making it one of the key centres of interest for research into new treatments for addiction. OBJECTIVES The present work focuses on studying 1.- whether the human aINS expresses orexigenic peptides such as neuropeptide Y (NPY), a peptide known to induce hyperphagia, and which has been implicated in the onset and development of obesity, 2.- the long-term effect of an obesogenic diet on NPY expression in the aINS and NAc of C57BL/6 mice. METHODS A total of 17 female C57BL/6 J mice were used in this study. Female mice were fed ad libitum with water and, either a standard diet (SD) or a high-fat diet (HFD) to induce obesity. There were seven female mice on the SD and ten on the HFD. The duration of the experiment was 180 days. We also studied 3 human adult brains (1 male and 2 females, mean age 55.7 ± 5.2 years). The morphological study was performed using immunohistochemistry and double immunofluorescence techniques to study the neurochemical profile of NPY neurons of the aINS and NAc of humans and mice. RESULTS Our morphological analysis demonstrates for the first time the basal expression of NPY in different layers of the human cortex (II, III, IV, V/VI), in a pattern similar to previous studies in other species. Furthermore, we observed an increase in the number of NPY-positive cells and their intracytoplasmic signal in the aINS and NAc of the obese mice subjected to a long-term obesogenic diet. CONCLUSIONS To our knowledge, this is the first study to show the distribution and expression of NPY in the human INS and how its expression is altered after prolonged treatment with an obesogenic diet in obese mice. Our findings may contribute to the understanding of the pathophysiological mechanisms underlying obesity in regions related to the reward system and associated with uncontrolled intake of high-fat foods, thus facilitating the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Laura Santana-Cordón
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain.
| | - Alejandro Lemus-Mesa
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Miriam González-Gómez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain
| | - Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
2
|
Afonso-Oramas D, Santana-Cordón L, Lemus-Mesa A, Teixidó-Trujillo S, Rodríguez-Rodríguez AE, Cruz-Muros I, González-Gómez M, Barroso-Chinea P. Drastic decline in vasoactive intestinal peptide expression in the suprachiasmatic nucleus in obese mice on a long-term high-fat diet. Brain Res Bull 2023; 202:110756. [PMID: 37678442 DOI: 10.1016/j.brainresbull.2023.110756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The suprachiasmatic nucleus (SCN) is the main region for the regulation of circadian rhythms. Although the SCN contains a heterogeneous neurochemical phenotype with a wide variety of neuropeptides, a key role has been suggested for the vasoactive intestinal neuropeptide (VIP) as a modulator circadian, reproductive, and seasonal rhythms. VIP is a 28-amino acid polypeptide hormone that belongs to the secretin-glucagon peptide superfamily and shares 68 % homology with the pituitary adenylate cyclase-activating polypeptide (PACAP). VIP acts as an endogenous appetite inhibitor in the central nervous system, where it participates in the control of appetite and energy homeostasis. In recent years, significant efforts have been made to better understand the role of VIP in the regulation of appetite/satiety and energy balance. This study aimed to elucidate the long-term effect of an obesogenic diet on the distribution and expression pattern of VIP in the SCN and nucleus accumbens (NAc) of C57BL/6 mice. A total of 15 female C57BL/6J mice were used in this study. Female mice were fed ad libitum with water and, either a standard diet (SD) or a high-fat diet (HFD) to induce obesity. There were 7 female mice on the SD and 8 on the HFD. The duration of the experiment was 365 days. The morphological study was performed using immunohistochemistry and double immunofluorescence techniques to study the neurochemical profile of VIP neurons of the SCN of C57BL/6 mice. Our data show that HFD-fed mice gained weight and showed reduced VIP expression in neurons of the SCN and also in fibres located in the NAc. Moreover, we observed a loss of neuropeptide Y (NPY) expression in fibres surrounding the SCN. Our findings on VIP may contribute to the understanding of the pathophysiological mechanisms underlying obesity in regions associated with uncontrolled intake of high-fat foods and the reward system, thus facilitating the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain.
| | - Laura Santana-Cordón
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Alejandro Lemus-Mesa
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Silvia Teixidó-Trujillo
- Departamento de Medicina Interna, Dermatología y Psiquiatría. Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | | | - Ignacio Cruz-Muros
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Miriam González-Gómez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain
| | - Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
3
|
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab 2021; 50:101238. [PMID: 33892169 PMCID: PMC8324684 DOI: 10.1016/j.molmet.2021.101238] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease, or as recently proposed 'metabolic-associated fatty liver disease' (MAFLD), is characterized by pathological accumulation of triglycerides and other lipids in hepatocytes. This common disease can progress from simple steatosis to steatohepatitis, and eventually end-stage liver diseases. MAFLD is closely related to disturbances in systemic energy metabolism, including insulin resistance and atherogenic dyslipidemia. SCOPE OF REVIEW The liver is the central organ in lipid metabolism by secreting very low density lipoproteins (VLDL) and, on the other hand, by internalizing fatty acids and lipoproteins. This review article discusses recent research addressing hepatic lipid synthesis, VLDL production, and lipoprotein internalization as well as the lipid exchange between adipose tissue and the liver in the context of MAFLD. MAJOR CONCLUSIONS Liver steatosis in MAFLD is triggered by excessive hepatic triglyceride synthesis utilizing fatty acids derived from white adipose tissue (WAT), de novo lipogenesis (DNL) and endocytosed remnants of triglyceride-rich lipoproteins. In consequence of high hepatic lipid content, VLDL secretion is enhanced, which is the primary cause of complex dyslipidemia typical for subjects with MAFLD. Interventions reducing VLDL secretory capacity attenuate dyslipidemia while they exacerbate MAFLD, indicating that the balance of lipid storage versus secretion in hepatocytes is a critical parameter determining disease outcome. Proof of concept studies have shown that promoting lipid storage and energy combustion in adipose tissues reduces hepatic lipid load and thus ameliorates MAFLD. Moreover, hepatocellular triglyceride synthesis from DNL and WAT-derived fatty acids can be targeted to treat MAFLD. However, more research is needed to understand how individual transporters, enzymes, and their isoforms affect steatosis and dyslipidemia in vivo, and whether these two aspects of MAFLD can be selectively treated. Processing of cholesterol-enriched lipoproteins appears less important for steatosis. It may, however, modulate inflammation and consequently MAFLD progression.
Collapse
Affiliation(s)
- Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Zheng YL, Wang WD, Li MM, Lin S, Lin HL. Updated Role of Neuropeptide Y in Nicotine-Induced Endothelial Dysfunction and Atherosclerosis. Front Cardiovasc Med 2021; 8:630968. [PMID: 33708805 PMCID: PMC7940677 DOI: 10.3389/fcvm.2021.630968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Endothelial dysfunction of the arterial vasculature plays a pivotal role in cardiovascular pathogenesis. Nicotine-induced endothelial dysfunction substantially contributes to the development of arteriosclerotic cardiovascular disease. Nicotine promotes oxidative inflammation, thrombosis, pathological angiogenesis, and vasoconstriction, and induces insulin resistance. However, the exact mechanism through which nicotine induces endothelial dysfunction remains unclear. Neuropeptide Y (NPY) is widely distributed in the central nervous system and peripheral tissues, and it participates in the pathogenesis of atherosclerosis by regulating vasoconstriction, energy metabolism, local plaque inflammatory response, activation and aggregation of platelets, and stress and anxiety-related emotion. Nicotine can increase the expression of NPY, suggesting that NPY is involved in nicotine-induced endothelial dysfunction. Herein, we present an updated review of the possible mechanisms of nicotine-induced atherosclerosis, with a focus on endothelial cell dysfunction associated with nicotine and NPY.
Collapse
Affiliation(s)
- Yan-Li Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-da Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mei-Mei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
5
|
Higher Serum Neuropeptide Y Levels Are Associated with Metabolically Unhealthy Obesity in Obese Chinese Adults: A Cross-Sectional Study. Mediators Inflamm 2020; 2020:7903140. [PMID: 32831640 PMCID: PMC7424399 DOI: 10.1155/2020/7903140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
Objective Neuropeptide Y (NPY), an orexigenic peptide known to cause hyperphagia, has been involved in the occurrence and development of obesity. However, differences in the distribution of serum NPY levels in obese phenotypes (including metabolically unhealthy obesity (MUO) phenotype and metabolically healthy obesity (MHO) phenotype) and the association of NPY with MUO phenotype have not been unequivocally established. We therefore determined associations of serum NPY levels with MUO phenotype in obese Chinese adults. Methods A cross-sectional study was conducted from 400 obese adults in Hunan province, who underwent a health examination in the Second Xiangya Hospital, and 164 participants were finally enrolled in the study and divided into MHO and MUO groups. Serum NPY levels were examined; univariate and multivariate analyses as well as smooth curve fitting analyses were conducted to measure the association of NPY serum levels with the MUO phenotype. Results Serum NPY levels were significantly elevated in the MUO group compared with the MHO group ((667.69 ± 292.90) pg/mL vs. (478.89 ± 145.53) pg/mL, p < 0.001). A threshold and nonlinear association between serum NPY levels and MUO was found (p = 0.001). When serum NPY levels exceeded the turning point (471.5 pg/mL), each 10 pg/mL increment in the NPY serum level was significantly associated with an 18% increased odds ratio of MUO phenotype (OR: 1.18, 95% CI: 1.07–1.29, p = 0.0007) after adjusted for confounders. Conclusions Higher NPY serum levels were positively correlated with MUO phenotype in obese Chinese adults.
Collapse
|
6
|
Brenachot X, Gautier T, Nédélec E, Deckert V, Laderrière A, Nuzzaci D, Rigault C, Lemoine A, Pénicaud L, Lagrost L, Benani A. Brain Control of Plasma Cholesterol Involves Polysialic Acid Molecules in the Hypothalamus. Front Neurosci 2017; 11:245. [PMID: 28515677 PMCID: PMC5414510 DOI: 10.3389/fnins.2017.00245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
The polysialic acid (PSA) is a large glycan that is added to cell-surface proteins during their post-translational maturation. In the brain, PSA modulates distances between cells and controls the plasticity of the nervous system. In the hypothalamus, PSA is involved in many aspects of energy balance including food intake, osmoregulation, circadian rhythm, and sleep. In this work, we investigated the role of hypothalamic PSA in the regulation of plasma cholesterol levels and distribution. We report that HFD consumption in mice rapidly increased plasma cholesterol, including VLDL, LDL, and HDL-cholesterol. Although plasma VLDL-cholesterol was normalized within the first week, LDL and HDL were still elevated after 2 weeks upon HFD. Importantly, we found that hypothalamic PSA removal aggravated LDL elevation and reduced HDL levels upon HFD. These results indicate that hypothalamic PSA controls plasma lipoprotein profile by circumventing the rise of LDL-to-HDL cholesterol ratio in plasma during overfeeding. Although mechanisms by which hypothalamic PSA controls plasma cholesterol homeostasis remains to be elucidated, these findings also suggest that low level of hypothalamic PSA might be a risk factor for dyslipidemia and cardiovascular diseases.
Collapse
Affiliation(s)
- Xavier Brenachot
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Thomas Gautier
- Institut National de la Santé et de la Recherche Médicale LNC, U1231, Université Bourgogne-Franche Comté, LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche ComtéDijon, France
| | - Emmanuelle Nédélec
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Valérie Deckert
- Institut National de la Santé et de la Recherche Médicale LNC, U1231, Université Bourgogne-Franche Comté, LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche ComtéDijon, France
| | - Amélie Laderrière
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Danaé Nuzzaci
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Caroline Rigault
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Aleth Lemoine
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Luc Pénicaud
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| | - Laurent Lagrost
- Institut National de la Santé et de la Recherche Médicale LNC, U1231, Université Bourgogne-Franche Comté, LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche ComtéDijon, France
| | - Alexandre Benani
- AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne-Franche ComtéDijon, France
| |
Collapse
|
7
|
Thorsell A, Mathé AA. Neuropeptide Y in Alcohol Addiction and Affective Disorders. Front Endocrinol (Lausanne) 2017; 8:178. [PMID: 28824541 PMCID: PMC5534438 DOI: 10.3389/fendo.2017.00178] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 07/07/2017] [Indexed: 12/31/2022] Open
Abstract
Neuropeptide Y (NPY), a neuropeptide highly conserved throughout evolution, is present at high levels in the central nervous system (CNS), as well as in peripheral tissues such as the gut and cardiovascular system. The peptide exerts its effects via multiple receptor subtypes, all belonging to the G-protein-coupled receptor superfamily. Of these subtypes, the Y1 and the Y2 are the most thoroughly characterized, followed by the Y5 subtype. NPY and its receptors have been shown to be of importance in central regulation of events underlying, for example, affective disorders, drug/alcohol use disorders, and energy homeostasis. Furthermore, within the CNS, NPY also affects sleep regulation and circadian rhythm, memory function, tissue growth, and plasticity. The potential roles of NPY in the etiology and pathophysiology of mood and anxiety disorders, as well as alcohol use disorders, have been extensively studied. This focus was prompted by early indications for an involvement of NPY in acute responses to stress, and, later, also data pointing to a role in alterations within the CNS during chronic, or repeated, exposure to adverse events. These functions of NPY, in addition to the peptide's regulation of disease states, suggest that modulation of the activity of the NPY system via receptor agonists/antagonists may be a putative treatment mechanism in affective disorders as well as alcohol use disorders. In this review, we present an overview of findings with regard to the NPY system in relation to anxiety and stress, acute as well as chronic; furthermore we discuss post-traumatic stress disorder and, in part depression. In addition, we summarize findings on alcohol use disorders and related behaviors. Finally, we briefly touch upon genetic as well as epigenetic mechanisms that may be of importance for NPY function and regulation. In conclusion, we suggest that modulation of NPY-ergic activity within the CNS, via ligands aimed at different receptor subtypes, may be attractive targets for treatment development for affective disorders, as well as for alcohol use disorders.
Collapse
Affiliation(s)
- Annika Thorsell
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- *Correspondence: Annika Thorsell,
| | - Aleksander A. Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Rojas JM, Bruinstroop E, Printz RL, Alijagic-Boers A, Foppen E, Turney MK, George L, Beck-Sickinger AG, Kalsbeek A, Niswender KD. Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation. Mol Metab 2015; 4:210-21. [PMID: 25737956 PMCID: PMC4338317 DOI: 10.1016/j.molmet.2015.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 12/29/2014] [Accepted: 01/09/2015] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Elevated very low-density lipoprotein (VLDL)-triglyceride (TG) secretion from the liver contributes to an atherogenic dyslipidemia that is associated with obesity, diabetes and the metabolic syndrome. Numerous models of obesity and diabetes are characterized by increased central nervous system (CNS) neuropeptide Y (NPY); in fact, a single intracerebroventricular (icv) administration of NPY in lean fasted rats elevates hepatic VLDL-TG secretion and does so, in large part, via signaling through the CNS NPY Y1 receptor. Thus, our overarching hypothesis is that elevated CNS NPY action contributes to dyslipidemia by activating central circuits that modulate liver lipid metabolism. METHODS Chow-fed Zucker fatty (ZF) rats were pair-fed by matching their caloric intake to that of lean controls and effects on body weight, plasma TG, and liver content of TG and phospholipid (PL) were compared to ad-libitum (ad-lib) fed ZF rats. Additionally, lean 4-h fasted rats with intact or disrupted hepatic sympathetic innervation were treated with icv NPY or NPY Y1 receptor agonist to identify novel hepatic mechanisms by which NPY promotes VLDL particle maturation and secretion. RESULTS Manipulation of plasma TG levels in obese ZF rats, through pair-feeding had no effect on liver TG content; however, hepatic PL content was substantially reduced and was tightly correlated with plasma TG levels. Treatment with icv NPY or a selective NPY Y1 receptor agonist in lean fasted rats robustly activated key hepatic regulatory proteins, stearoyl-CoA desaturase-1 (SCD-1), ADP-ribosylation factor-1 (ARF-1), and lipin-1, known to be involved in remodeling liver PL into TG for VLDL maturation and secretion. Lastly, we show that the effects of CNS NPY on key liporegulatory proteins are attenuated by hepatic sympathetic denervation. CONCLUSIONS These data support a model in which CNS NPY modulates mediators of hepatic PL remodeling and VLDL maturation to stimulate VLDL-TG secretion that is dependent on the Y1 receptor and sympathetic signaling to the liver.
Collapse
Key Words
- AGPAT, 1-acyl-glycerol-3-phosphate acyltransferase
- ARF-1, ADP-ribosylation factor-1
- ApoB, apolipoprotein B
- CNS, central nervous system
- Cyto, cytoplasmic
- DAG, diacylglycerol
- DGAT, diacylglycerol acyltransferase
- ER, endoplasmic reticulum
- FFA(s), free fatty acid(s)
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- HDAC-1, histone deacetylase-1
- Lipin-1
- NE, norepinephrine
- NPY Y1 receptor
- NPY, neuropeptide Y
- Nuc, nuclear
- PA, phosphatidic acid
- PAP-1, phosphatidic acid phosphatase-1
- PF, pair-fed
- PL, phospholipid
- PLD, phospholipase D
- POMC, proopiomelanocortin
- Phospholipid
- RPL13A, ribosomal protein L13a
- RT-PCR, real-time PCR
- SCD-1, stearoyl-CoA desaturase-1
- SNS, sympathetic nervous system
- Sham, sham-denervation
- Sx, sympathetic denervation
- Sympathetic denervation
- TG, triglyceride
- Triglyceride
- VLDL
- VLDL, very low-density lipoprotein
- Veh, vehicle
- ZF, Zucker fatty
- ad-lib, ad-libitum
- icv, intracerebroventricular
Collapse
Affiliation(s)
- Jennifer M. Rojas
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Aldijana Alijagic-Boers
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maxine K. Turney
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Leena George
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Bioscience, Pharmacy and Psychology, Leipzig University, Leipzig, Germany
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
| | - Kevin D. Niswender
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
9
|
Bisschop PH, Fliers E, Kalsbeek A. Autonomic Regulation of Hepatic Glucose Production. Compr Physiol 2014; 5:147-65. [DOI: 10.1002/cphy.c140009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Bruinstroop E, Fliers E, Kalsbeek A. Hypothalamic control of hepatic lipid metabolism via the autonomic nervous system. Best Pract Res Clin Endocrinol Metab 2014; 28:673-84. [PMID: 25256763 DOI: 10.1016/j.beem.2014.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our body is well designed to store energy in times of nutrient excess, and release energy in times of food deprivation. This adaptation to the external environment is achieved by humoral factors and the autonomic nervous system. Claude Bernard, in the 19th century, showed the importance of the autonomic nervous system in the control of glucose metabolism. In the 20th century, the discovery of insulin and the development of techniques to measure hormone concentrations shifted the focus from the neural control of metabolism to the secretion of hormones, thus functionally "decapitating" the body. Just before the end of the 20th century, starting with the discovery of leptin in 1994, the control of energy metabolism went back to our heads. Since the start of 21st century, numerous studies have reported the involvement of hypothalamic pathways in the control of hepatic insulin sensitivity and glucose production. The autonomic nervous system is, therefore, acknowledged to be one of the important determinants of liver metabolism and a possible treatment target. In this chapter, we review research to date on the hypothalamic control of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Park S, Fujishita C, Komatsu T, Kim SE, Chiba T, Mori R, Shimokawa I. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism. FASEB J 2014; 28:5337-48. [PMID: 25205743 DOI: 10.1096/fj.14-258384] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Chika Fujishita
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Toshimitsu Komatsu
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Sang Eun Kim
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Takuya Chiba
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Ryoichi Mori
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Isao Shimokawa
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| |
Collapse
|
12
|
Kocalis HE, Hagan SL, George L, Turney MK, Siuta MA, Laryea GN, Morris LC, Muglia LJ, Printz RL, Stanwood GD, Niswender KD. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis. Mol Metab 2014; 3:394-407. [PMID: 24944899 PMCID: PMC4060224 DOI: 10.1016/j.molmet.2014.01.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 01/15/2023] Open
Abstract
Insulin signaling in the central nervous system (CNS) regulates energy balance and peripheral glucose homeostasis. Rictor is a key regulatory/structural subunit of the mTORC2 complex and is required for hydrophobic motif site phosphorylation of Akt at serine 473. To examine the contribution of neuronal Rictor/mTORC2 signaling to CNS regulation of energy and glucose homeostasis, we utilized Cre-LoxP technology to generate mice lacking Rictor in all neurons, or in either POMC or AgRP expressing neurons. Rictor deletion in all neurons led to increased fat mass and adiposity, glucose intolerance and behavioral leptin resistance. Disrupting Rictor in POMC neurons also caused obesity and hyperphagia, fasting hyperglycemia and pronounced glucose intolerance. AgRP neuron specific deletion did not impact energy balance but led to mild glucose intolerance. Collectively, we show that Rictor/mTORC2 signaling, especially in POMC-expressing neurons, is important for central regulation of energy and glucose homeostasis.
Collapse
Affiliation(s)
- Heidi E. Kocalis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Scott L. Hagan
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Leena George
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Maxine K. Turney
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Michael A. Siuta
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Gloria N. Laryea
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, United States
| | - Lindsey C. Morris
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Louis J. Muglia
- Center for Prevention of Preterm Birth, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Gregg D. Stanwood
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kevin D. Niswender
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
- Corresponding author. 7435G MRB IV, Vanderbilt Medical Center, Nashville, TN 37232, United States. Tel.: +1 615 936 0500.
| |
Collapse
|
13
|
Na HN, Kim H, Nam JH. Prophylactic and therapeutic vaccines for obesity. Clin Exp Vaccine Res 2013; 3:37-41. [PMID: 24427761 PMCID: PMC3890448 DOI: 10.7774/cevr.2014.3.1.37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/07/2013] [Accepted: 10/25/2013] [Indexed: 01/14/2023] Open
Abstract
Chronic diseases such as obesity and diabetes are major causes of death and disability throughout the world. Many causes are known to trigger these chronic diseases, and infectious agents such as viruses are also pathological factors. In particular, it is considered that adenovirus 36 infections may be associated with obesity. If this is the case, a vaccine against adenovirus 36 may be a form of prophylaxis to combat obesity. Other types of therapeutic vaccines to combat obesity are also being developed. Recently, hormones such as glucagon-like peptide-1, ghrelin, and peptide YY have been studied as treatments to prevent obesity. This review describes the ongoing development of therapeutic vaccines to treat obesity, and the possibility of using inactivated adenovirus 36 as a vaccine and an anti-obesity agent.
Collapse
Affiliation(s)
- Ha-Na Na
- Department of Infection and Obesity, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Hun Kim
- SK Chemicals, Seongnam, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
14
|
Olza J, Gil-Campos M, Leis R, Rupérez AI, Tojo R, Cañete R, Gil A, Aguilera CM. Influence of variants in the NPY gene on obesity and metabolic syndrome features in Spanish children. Peptides 2013; 45:22-7. [PMID: 23624317 DOI: 10.1016/j.peptides.2013.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 12/15/2022]
Abstract
Variants in the neuropeptide Y (NPY) gene have been associated with obesity and its traits. The objective of the present study was to evaluate the association of single nucleotide polymorphisms (SNPs) in the NPY gene with obesity, metabolic syndrome features, and inflammatory and cardiovascular disease (CVD) risk biomarkers in Spanish children. We recruited 292 obese children and 242 normal-body mass index (BMI) children. Height, weight, BMI, waist circumference, clinical and metabolic markers, adipokines, and inflammatory (PCR, IL-6, IL-8 and TNF-α) and CVD risk biomarkers (MPO, MMP-9, sE-selectin, sVCAM, sICAM, and PAI-1) were analyzed. Seven SNPs in the NPY gene were genotyped. The results of our study indicate that anthropometric measurements, clinical and metabolic markers, adipokines (leptin and resistin), and inflammatory and CVD risk biomarkers were generally elevated in the obese group. The exceptions to this finding included cholesterol, HDL-c, and adiponectin, which were lower in the obese group, and glucose, LDL-c, and MMP-9, which did not differ between the groups. Both rs16147 and rs16131 were associated with the risk of obesity, and the latter was also associated with insulin resistance, triacylglycerols, leptin, and HDL-c. Thus, we confirm the association of rs16147 with obesity, and we demonstrate for the first time the association of rs16131 with obesity and its possible impact on the early onset of metabolic syndrome features, mainly triacylglycerols, in children.
Collapse
Affiliation(s)
- Josune Olza
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, University of Granada, Center of Biomedical Research, Laboratory 123, Avenida del Conocimiento s/n, 18016 Armilla, Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|