1
|
Yang K, Yang Y, Xie Y, Mao Y, Li X, Guo Q. Impact of macronutrient composition in nutrition shakes on postprandial glycemic response, appetite, and food intake. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
2
|
Barchetta I, Cimini FA, Dule S, Cavallo MG. Dipeptidyl Peptidase 4 (DPP4) as A Novel Adipokine: Role in Metabolism and Fat Homeostasis. Biomedicines 2022; 10:biomedicines10092306. [PMID: 36140405 PMCID: PMC9496088 DOI: 10.3390/biomedicines10092306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) is a molecule implicated in the regulation of metabolic homeostasis and inflammatory processes, and it exerts its main action through its enzymatic activity. DPP4 represents the enzyme most involved in the catabolism of incretin hormones; thus, its activity impacts appetite, energy balance, and the fine regulation of glucose homeostasis. Indeed, DPP4 inhibitors represent a class of antidiabetic agents widely used for the treatment of Type 2 diabetes mellitus (T2DM). DPP4 also acts as an adipokine and is mainly secreted by the adipose tissue, mostly from mature adipocytes of the visceral compartment, where it exerts autocrine and paracrine activities. DPP4 can disrupt insulin signaling within the adipocyte and in other target cells and tissues, where it also favors the development of a proinflammatory environment. This is likely at the basis of the presence of elevated circulating DPP4 levels in several metabolic diseases. In this review, we summarize the most recent evidence of the role of the DPP4 as an adipokine-regulating glucose/insulin metabolism and fat homeostasis, with a particular focus on clinical outcomes associated with its increased secretion in the presence of adipose tissue accumulation and dysfunction.
Collapse
|
3
|
Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun 2021; 12:903. [PMID: 33568676 PMCID: PMC7876101 DOI: 10.1038/s41467-021-21235-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract maintains energy and glucose homeostasis, in part through nutrient-sensing and subsequent signaling to the brain and other tissues. In this review, we highlight the role of small intestinal nutrient-sensing in metabolic homeostasis, and link high-fat feeding, obesity, and diabetes with perturbations in these gut-brain signaling pathways. We identify how lipids, carbohydrates, and proteins, initiate gut peptide release from the enteroendocrine cells through small intestinal sensing pathways, and how these peptides regulate food intake, glucose tolerance, and hepatic glucose production. Lastly, we highlight how the gut microbiota impact small intestinal nutrient-sensing in normal physiology, and in disease, pharmacological and surgical settings. Emerging evidence indicates that the molecular mechanisms of small intestinal nutrient sensing in metabolic homeostasis have physiological and pathological impact as well as therapeutic potential in obesity and diabetes. The gastrointestinal tract participates in maintaining metabolic homeostasis in part through nutrient-sensing and subsequent gut-brain signalling. Here the authors review the role of small intestinal nutrient-sensing in regulation of energy intake and systemic glucose metabolism, and link high-fat diet, obesity and diabetes with perturbations in these pathways.
Collapse
Affiliation(s)
- Frank A Duca
- BIO5 Institute, University of Arizona, Tucson, AZ, USA. .,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA.
| | - T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Willem T Peppler
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, Canada. .,Department of Physiology, University of Toronto, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Enteroendocrine Hormone Secretion and Metabolic Control: Importance of the Region of the Gut Stimulation. Pharmaceutics 2020; 12:pharmaceutics12090790. [PMID: 32825608 PMCID: PMC7559385 DOI: 10.3390/pharmaceutics12090790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is now widely appreciated that gastrointestinal function is central to the regulation of metabolic homeostasis. Following meal ingestion, the delivery of nutrients from the stomach into the small intestine (i.e., gastric emptying) is tightly controlled to optimise their subsequent digestion and absorption. The complex interaction of intraluminal nutrients (and other bioactive compounds, such as bile acids) with the small and large intestine induces the release of an array of gastrointestinal hormones from specialised enteroendocrine cells (EECs) distributed in various regions of the gut, which in turn to regulate gastric emptying, appetite and postprandial glucose metabolism. Stimulation of gastrointestinal hormone secretion, therefore, represents a promising strategy for the management of metabolic disorders, particularly obesity and type 2 diabetes mellitus (T2DM). That EECs are distributed distinctively between the proximal and distal gut suggests that the region of the gut exposed to intraluminal stimuli is of major relevance to the secretion profile of gastrointestinal hormones and associated metabolic responses. This review discusses the process of intestinal digestion and absorption and their impacts on the release of gastrointestinal hormones and the regulation of postprandial metabolism, with an emphasis on the differences between the proximal and distal gut, and implications for the management of obesity and T2DM.
Collapse
|
5
|
Xie C, Wang X, Jones KL, Horowitz M, Sun Z, Little TJ, Rayner CK, Wu T. Role of endogenous glucagon-like peptide-1 enhanced by vildagliptin in the glycaemic and energy expenditure responses to intraduodenal fat infusion in type 2 diabetes. Diabetes Obes Metab 2020; 22:383-392. [PMID: 31693275 DOI: 10.1111/dom.13906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023]
Abstract
AIM To evaluate the effects of the dipeptidyl peptidase-4 (DPP-4) inhibitor vildagliptin on glycaemic and energy expenditure responses during intraduodenal fat infusion, as well as the contribution of endogenous glucagon-like peptide-1 (GLP-1) signalling, in people with type 2 diabetes (T2DM). METHODS A total of 15 people with T2DM managed by diet and/or metformin (glycated haemoglobin 49.3 ± 2.1 mmol/mol) were studied on three occasions (two with vildagliptin and one with placebo) in a double-blind, randomized, crossover fashion. On each day, vildagliptin 50 mg or placebo was given orally, followed by intravenous exendin (9-39) 600 pmol/kg/min, on one of the two vildagliptin treatment days, or 0.9% saline over 180 minutes. At between 0 and 120 minutes, a fat emulsion was infused intraduodenally at 2 kcal/min. Energy expenditure, plasma glucose and glucose-regulatory hormones were evaluated. RESULTS Intraduodenal fat increased plasma GLP-1 and glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon, and energy expenditure, and decreased plasma glucose (all P < 0.05). On the two intravenous saline days, plasma glucose and glucagon were lower, plasma intact GLP-1 was higher (all P < 0.05), and energy expenditure tended to be lower after vildagliptin (P = 0.08) than placebo. On the two vildagliptin days, plasma glucose, glucagon and GLP-1 (both total and intact), and energy expenditure were higher during intravenous exendin (9-39) than saline (all P < 0.05). CONCLUSIONS In well-controlled T2DM during intraduodenal fat infusion, vildagliptin lowered plasma glucose and glucagon, and tended to decrease energy expenditure, effects that were mediated by endogenous GLP-1.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Xuyi Wang
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Tanya J Little
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher K Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Wilson JR, Kerman SJ, Hubers SA, Yu C, Nian H, Grouzmann E, Eugster PJ, Mayfield DS, Brown NJ. Dipeptidyl Peptidase 4 Inhibition Increases Postprandial Norepinephrine via Substance P (NK1 Receptor) During RAAS Inhibition. J Endocr Soc 2019; 3:1784-1798. [PMID: 31528826 PMCID: PMC6734191 DOI: 10.1210/js.2019-00185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022] Open
Abstract
CONTEXT Dipeptidyl peptidase 4 (DPP4) inhibitors may increase the risk of heart failure. Decreased degradation of vasoactive peptides like substance P [also degraded by angiotensin-converting enzyme (ACE)] and Y1 agonists peptide YY (PYY 1-36) and neuropeptide Y (NPY 1-36) could contribute. OBJECTIVE This study tested the hypothesis that there is an interactive effect of DPP4 inhibition and ACE inhibition (vs antihypertensive control subjects) on vasoactive peptides after a mixed meal. PARTICIPANTS AND DESIGN Fifty-three patients with type 2 diabetes and hypertension were randomized to double-blind treatment with ramipril, valsartan, or amlodipine for 15 weeks in parallel groups. During the 5th, 10th, and 15th weeks, participants also received placebo + placebo, sitagliptin 100 mg/d + placebo, and sitagliptin + aprepitant 80 mg/d in random order. On the last day of each crossover treatment, participants underwent a mixed-meal study. RESULTS Sitagliptin increased postprandial glucagon-like peptide-1 and decreased glucose in all antihypertensive groups. Sitagliptin increased NPY 1-36 and decreased Y2 agonists NPY 3-36 and PYY 3-36 in all groups. During ramipril or valsartan, but not amlodipine, sitagliptin increased postprandial norepinephrine; substance P receptor blockade with aprepitant prevented this effect. Despite increased norepinephrine, sitagliptin decreased postprandial blood pressure during ACE inhibition. CONCLUSION DPP4 inhibition increases postprandial concentrations of the Y1 agonist NPY 1-36. During treatment with an ACE inhibitor or angiotensin receptor blocker, DPP4 inhibition increased postprandial norepinephrine through a substance P receptor-dependent mechanism. Increased NPY 1-36 and norepinephrine could increase risk of heart failure but did not result in higher postprandial blood pressure.
Collapse
Affiliation(s)
- Jessica R Wilson
- Division of Clinical Pharmacology, Vanderbilt Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Endocrinology, Diabetes, and Metabolism, Vanderbilt Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Endocrinology, Diabetes and Metabolism, University of Pennsylvania Department of Medicine, Philadelphia, Pennsylvania
| | - Scott Jafarian Kerman
- Division of Clinical Pharmacology, Vanderbilt Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Scott A Hubers
- Division of Clinical Pharmacology, Vanderbilt Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric Grouzmann
- Service de Pharmacologie Clinique, Laboratoire des Catecholamines et Peptides, University Hospital of Lausanne, Lausanne, Switzerland
| | - Philippe J Eugster
- Service de Pharmacologie Clinique, Laboratoire des Catecholamines et Peptides, University Hospital of Lausanne, Lausanne, Switzerland
| | - Dustin S Mayfield
- Division of Clinical Pharmacology, Vanderbilt Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nancy J Brown
- Division of Clinical Pharmacology, Vanderbilt Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
7
|
Camilleri M. Editorial: effects of vildagliptin on GLP-1 levels, gastric motor function and food intake. Aliment Pharmacol Ther 2019; 49:1362-1363. [PMID: 31016769 DOI: 10.1111/apt.15206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
8
|
Larraufie P, Roberts GP, McGavigan AK, Kay RG, Li J, Leiter A, Melvin A, Biggs EK, Ravn P, Davy K, Hornigold DC, Yeo GSH, Hardwick RH, Reimann F, Gribble FM. Important Role of the GLP-1 Axis for Glucose Homeostasis after Bariatric Surgery. Cell Rep 2019; 26:1399-1408.e6. [PMID: 30726726 PMCID: PMC6367566 DOI: 10.1016/j.celrep.2019.01.047] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/14/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Bariatric surgery is widely used to treat obesity and improves type 2 diabetes beyond expectations from the degree of weight loss. Elevated post-prandial concentrations of glucagon-like peptide 1 (GLP-1), peptide YY (PYY), and insulin are widely reported, but the importance of GLP-1 in post-bariatric physiology remains debated. Here, we show that GLP-1 is a major driver of insulin secretion after bariatric surgery, as demonstrated by blocking GLP-1 receptors (GLP1Rs) post-gastrectomy in lean humans using Exendin-9 or in mice using an anti-GLP1R antibody. Transcriptomics and peptidomics analyses revealed that human and mouse enteroendocrine cells were unaltered post-surgery; instead, we found that elevated plasma GLP-1 and PYY correlated with increased nutrient delivery to the distal gut in mice. We conclude that increased GLP-1 secretion after bariatric surgery arises from rapid nutrient delivery to the distal gut and is a key driver of enhanced insulin secretion.
Collapse
Affiliation(s)
- Pierre Larraufie
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Geoffrey P Roberts
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Anne K McGavigan
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Richard G Kay
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Joyce Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew Leiter
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Audrey Melvin
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Emma K Biggs
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Peter Ravn
- Department of Antibody Discovery and Protein Engineering, MedImmune, Granta Park, Cambridge CB21 6GH, UK
| | - Kathleen Davy
- Department of Cardiovascular and Metabolic Disease, MedImmune, Granta Park, Cambridge, UK
| | - David C Hornigold
- Department of Cardiovascular and Metabolic Disease, MedImmune, Granta Park, Cambridge, UK
| | - Giles S H Yeo
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Richard H Hardwick
- Cambridge Oesophago-gastric Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
9
|
Takeda K, Sawazaki H, Takahashi H, Yeh YS, Jheng HF, Nomura W, Ara T, Takahashi N, Seno S, Osato N, Matsuda H, Kawada T, Goto T. The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin enhances brown adipose tissue function, thereby preventing obesity in mice. FEBS Open Bio 2018; 8:1782-1793. [PMID: 30410858 PMCID: PMC6212644 DOI: 10.1002/2211-5463.12498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
To clarify the effects of a dipeptidyl peptidase-4 (DPP-4) inhibitor on whole-body energy metabolism, we treated mice fed a high-fat diet (HFD) with teneligliptin, a clinically available DPP-4 inhibitor. Teneligliptin significantly prevented HFD-induced obesity and obesity-associated metabolic disorders. It also increased oxygen consumption rate and upregulated uncoupling protein 1 (UCP1) expression in both brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT), suggesting that it enhances BAT function. Soluble DPP-4 inhibited β-adrenoreceptor-stimulated UCP1 expression in primary adipocytes, and this inhibition was prevented in the presence of teneligliptin, or an extracellular signal-related kinase inhibitor. These results indicate that soluble DPP-4 inhibits β-adrenoreceptor-stimulated UCP1 induction and that chronic DPP-4 inhibitor treatment may prevent obesity through the activation of BAT function.
Collapse
Affiliation(s)
- Kenichiro Takeda
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Uji Japan
| | - Honami Sawazaki
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Uji Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Uji Japan
| | - Yu-Sheng Yeh
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Uji Japan
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Uji Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Uji Japan.,Research Unit for Physiological Chemistry The Center for the Promotion of Interdisciplinary Education and Research Kyoto University Kyoto Japan
| | - Takeshi Ara
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Uji Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Uji Japan.,Research Unit for Physiological Chemistry The Center for the Promotion of Interdisciplinary Education and Research Kyoto University Kyoto Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering Graduate School of Information Science and Technology Osaka University Suita Japan
| | - Naoki Osato
- Department of Bioinformatic Engineering Graduate School of Information Science and Technology Osaka University Suita Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering Graduate School of Information Science and Technology Osaka University Suita Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Uji Japan.,Research Unit for Physiological Chemistry The Center for the Promotion of Interdisciplinary Education and Research Kyoto University Kyoto Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food Division of Food Science and Biotechnology Graduate School of Agriculture Kyoto University Uji Japan.,Research Unit for Physiological Chemistry The Center for the Promotion of Interdisciplinary Education and Research Kyoto University Kyoto Japan
| |
Collapse
|
10
|
Ding C, Chan Z, Chooi YC, Choo J, Sadananthan SA, Chang A, Sasikala S, Michael N, Velan SS, Magkos F. Regulation of glucose metabolism in nondiabetic, metabolically obese normal-weight Asians. Am J Physiol Endocrinol Metab 2018; 314:E494-E502. [PMID: 29351481 DOI: 10.1152/ajpendo.00382.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Type 2 diabetes in Asia occurs largely in the absence of obesity. The metabolically obese normal-weight (MONW) phenotype refers to lean subjects with metabolic dysfunction that is typically observed in people with obesity and is associated with increased risk for diabetes. Previous studies evaluated MONW subjects who had greater body mass index (BMI) or total body fat than respective control groups, making interpretation of the results difficult. We evaluated insulin sensitivity (hyperinsulinemic-euglycemic clamp); insulin secretion (mixed meal with oral minimal modeling); intra-abdominal, muscle, and liver fat contents (magnetic resonance); and fasting and postprandial glucose and insulin concentrations in 18 MONW subjects and 18 metabolically healthy controls matched for age (43 ± 3 and 40 ± 3 yr; P = 0.52), BMI (both 22 ± 1 kg/m2; P = 0.69), total body fat (17 ± 1 and 16 ± 1 kg; P = 0.33), and sex (9 men and 9 women in each group). Compared with controls, MONW subjects had an approximately twofold greater visceral adipose tissue volume and an approximately fourfold greater intrahepatic fat content (but similar muscle fat), 20-30% lower glucose disposal rates and insulin sensitivity, and 30-40% greater insulin secretion rates (all P < 0.05). The disposition index, fasting glucose, and HbA1c concentrations were not different between groups, whereas postprandial glucose and insulin concentrations were ~15% and ~65% greater, respectively, in MONW than control subjects (both P < 0.05). We conclude that the MONW phenotype is associated with accumulation of fat in the intra-abdominal area and the liver, profound insulin resistance, but also a robust β-cell insulin secretion response that compensates for insulin resistance and helps maintain glucose homeostasis.
Collapse
Affiliation(s)
- Cherlyn Ding
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, and National University Health System , Singapore
| | - Zhiling Chan
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, and National University Health System , Singapore
| | - Yu Chung Chooi
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, and National University Health System , Singapore
| | - John Choo
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, and National University Health System , Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Amanda Chang
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, and National University Health System , Singapore
| | - S Sasikala
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, and National University Health System , Singapore
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology, and Research, Singapore
| | - Faidon Magkos
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, and National University Health System , Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
11
|
Maciejewski BS, Manion TB, Steppan CM. Pharmacological inhibition of diacylglycerol acyltransferase-1 and insights into postprandial gut peptide secretion. World J Gastrointest Pathophysiol 2017; 8:161-175. [PMID: 29184702 PMCID: PMC5696614 DOI: 10.4291/wjgp.v8.i4.161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 07/25/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) plays in postprandial gut peptide secretion and signaling.
METHODS The standard experimental paradigm utilized to evaluate the incretin response was a lipid challenge. Following a lipid challenge, plasma was collected via cardiac puncture at each time point from a cohort of 5-8 mice per group from baseline at time zero to 10 h. Incretin hormones [glucagon like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY) and glucose dependent insulinotropic polypeptide (GIP)] were then quantitated. The impact of pharmacological inhibition of DGAT1 on the incretin effect was evaluated in WT mice. Additionally, a comparison of loss of DGAT1 function either by genetic ablation or pharmacological inhibition. To further elucidate the pathways and mechanisms involved in the incretin response to DGAT1 inhibition, other interventions [inhibitors of dipeptidyl peptidase-IV (sitagliptin), pancreatic lipase (Orlistat), GPR119 knockout mice] were evaluated.
RESULTS DGAT1 deficient mice and wildtype C57/BL6J mice were lipid challenged and levels of both active and total GLP-1 in the plasma were increased. This response was further augmented with DGAT1 inhibitor PF-04620110 treated wildtype mice. Furthermore, PF-04620110 was able to dose responsively increase GLP-1 and PYY, but blunt GIP at all doses of PF-04620110 during lipid challenge. Combination treatment of PF-04620110 and Sitagliptin in wildtype mice during a lipid challenge synergistically enhanced postprandial levels of active GLP-1. In contrast, in a combination study with Orlistat, the ability of PF-04620110 to elicit an enhanced incretin response was abrogated. To further explore this observation, GPR119 knockout mice were evaluated. In response to a lipid challenge, GPR119 knockout mice exhibited no increase in active or total GLP-1 and PYY. However, PF-04620110 was able to increase total GLP-1 and PYY in GPR119 knockout mice as compared to vehicle treated wildtype mice.
CONCLUSION Collectively, these data provide some insight into the mechanism by which inhibition of DGAT1 enhances intestinal hormone release.
Collapse
Affiliation(s)
- Benjamin S Maciejewski
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA 02139, United States
| | - Tara B Manion
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA 02139, United States
| | - Claire M Steppan
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA 02139, United States
- Pfizer Inc., Groton, CT 06340, United States
| |
Collapse
|
12
|
Wu T, Rayner CK, Watson LE, Jones KL, Horowitz M, Little TJ. Comparative effects of intraduodenal fat and glucose on the gut-incretin axis in healthy males. Peptides 2017; 95:124-127. [PMID: 28800948 DOI: 10.1016/j.peptides.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The interaction of nutrients with the small intestine stimulates the secretion of numerous enteroendocrine hormones that regulate postprandial metabolism. However, differences in gastrointestinal hormonal responses between the macronutrients are incompletely understood. In the present study, we compared blood glucose and plasma hormone concentrations in response to standardised intraduodenal (ID) fat and glucose infusions in healthy humans. METHODS In a parallel study design, 16 healthy males who received an intraduodenal fat infusion were compared with 12 healthy males who received intraduodenal glucose, both at a rate of 2kcal/min over 120min. Venous blood was sampled at frequent intervals for measurements of blood glucose, and plasma total and active glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon. RESULTS Plasma concentrations of the incretin hormones (both total and active GLP-1 and GIP) and glucagon were higher, and plasma insulin and blood glucose concentrations lower, during intraduodenal fat, when compared with intraduodenal glucose, infusion (treatment by time interaction: P<0.001 for each). CONCLUSIONS Compared with glucose, intraduodenal fat elicits substantially greater GLP-1, GIP and glucagon secretion, with minimal effects on blood glucose or plasma insulin in healthy humans. These observations are consistent with the concept that fat is a more potent stimulus of the 'gut-incretin' axis than carbohydrate.
Collapse
Affiliation(s)
- Tongzhi Wu
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia.
| | - Christopher K Rayner
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Linda E Watson
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Tanya J Little
- Discipline of Medicine and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
13
|
Lutz TA. Gut hormones such as amylin and GLP-1 in the control of eating and energy expenditure. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2016; 6:S15-S21. [PMID: 28685025 DOI: 10.1038/ijosup.2016.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The control of meal size is the best studied aspect of the control of energy balance, and manipulation of this system constitutes a promising target to treat obesity. A major part of this control system is based on gastrointestinal hormones such as glucagon-like peptide-1 (GLP-1) or amylin, which are released in response to a meal and which limit the size of an ongoing meal. Both amylin and GLP-1 have also been shown to increase energy expenditure in experimental rodents, but mechanistically we know much less how this effect may be mediated, which brain sites may be involved, and what the physiological relevance of these findings may be. Most studies indicate that the effect of peripheral amylin is centrally mediated via the area postrema, but other brain areas, such as the ventral tegmental area, may also be involved. GLP-1's effect on eating seems to be mainly mediated by vagal afferents projecting to the caudal hindbrain. Chronic exposure to amylin, GLP-1 or their analogs decrease food intake and body weight gain. Next to the induction of satiation, amylin may also constitute an adiposity signal and in fact interact with the adiposity signal leptin. Amylin analogs are under clinical consideration for their effect to reduce food intake and body weight in humans, and similar to rodents, amylin analogs seem to be particularly active when combined with leptin analogs.
Collapse
Affiliation(s)
- T A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.,Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Sameshima A, Wada T, Ito T, Kashimura A, Sawakawa K, Yonezawa R, Tsuneki H, Ishii Y, Sasahara M, Saito S, Sasaoka T. Teneligliptin improves metabolic abnormalities in a mouse model of postmenopausal obesity. J Endocrinol 2015; 227:25-36. [PMID: 26264980 DOI: 10.1530/joe-15-0239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 01/05/2023]
Abstract
A decrease in serum estrogen levels in menopause is closely associated with the development of visceral obesity and the onset of type 2 diabetes in women. In the present study, we demonstrated the therapeutic effects of the novel DPP4 inhibitor, teneligliptin, on the features of postmenopausal obesity in mice. In the control group, female C57BL/6 mice were sham-operated and maintained on a standard diet. In the postmenopausal obese group, ovariectomized (OVX) mice were maintained on a high-fat diet, and were referred to as OVX-HF. In the treated group, teneligliptin at 60 mg/kg per day was administrated to OVX-HF, and were referred to as Tene. After a 12-week food challenge, the metabolic phenotypes of these mice were analyzed. Body weight, fat accumulation, and glucose intolerance were greater in OVX-HF than in control, while these abnormalities were markedly improved without alterations in calorie intake in Tene. Teneligliptin effectively ameliorated the characteristics of metabolic abnormalities associated with postmenopausal obesity. Regarding chronic inflammation in visceral adipose tissue, the numbers of F4/80(+)CD11c(+)CD206(-) M1-macrophages in flow cytometry, crown-like structure formation in immunohistochemistry, and proinflammatory cytokine expression were significantly attenuated in Tene. Hepatic steatosis was also markedly improved. Furthermore, decreased energy consumption in the dark and light phases, reduced locomotor activity in the dark phase, and lowered core body temperature in OVX-HF were ameliorated in Tene. Since obesity and reduced energy metabolism are a common physiology of menopause, teneligliptin appears to be beneficial as a treatment for type 2 diabetes in postmenopausal obesity.
Collapse
MESH Headings
- Aging
- Animals
- Behavior, Animal/drug effects
- Body Temperature Regulation/drug effects
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Dipeptidyl-Peptidase IV Inhibitors/therapeutic use
- Disease Models, Animal
- Energy Metabolism/drug effects
- Female
- Intra-Abdominal Fat/drug effects
- Intra-Abdominal Fat/immunology
- Intra-Abdominal Fat/metabolism
- Liver/drug effects
- Liver/immunology
- Liver/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice, Inbred C57BL
- Motor Activity/drug effects
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/prevention & control
- Obesity, Abdominal/complications
- Obesity, Abdominal/etiology
- Obesity, Abdominal/physiopathology
- Ovariectomy
- Panniculitis/etiology
- Panniculitis/prevention & control
- Pyrazoles/therapeutic use
- Thiazolidines/therapeutic use
Collapse
Affiliation(s)
- Azusa Sameshima
- Departments of Obstetrics and GynecologyClinical PharmacologyPathologyUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsutomu Wada
- Departments of Obstetrics and GynecologyClinical PharmacologyPathologyUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tetsuo Ito
- Departments of Obstetrics and GynecologyClinical PharmacologyPathologyUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ayaka Kashimura
- Departments of Obstetrics and GynecologyClinical PharmacologyPathologyUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kanae Sawakawa
- Departments of Obstetrics and GynecologyClinical PharmacologyPathologyUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Rika Yonezawa
- Departments of Obstetrics and GynecologyClinical PharmacologyPathologyUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroshi Tsuneki
- Departments of Obstetrics and GynecologyClinical PharmacologyPathologyUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoko Ishii
- Departments of Obstetrics and GynecologyClinical PharmacologyPathologyUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Masakiyo Sasahara
- Departments of Obstetrics and GynecologyClinical PharmacologyPathologyUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shigeru Saito
- Departments of Obstetrics and GynecologyClinical PharmacologyPathologyUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshiyasu Sasaoka
- Departments of Obstetrics and GynecologyClinical PharmacologyPathologyUniversity of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|