1
|
de Vasconcelos DAA, Nachbar RT, Pinheiro CH, do Amaral CL, Crisma AR, Vitzel KF, Abreu P, Alonso-Vale MI, Lopes AB, Bento-Santos A, Falcão-Tebas F, de Santana DF, do Nascimento E, Curi R, Pithon-Curi TC, Hirabara SM, Leandro CG. Maternal low-protein diet reduces skeletal muscle protein synthesis and mass via Akt-mTOR pathway in adult rats. Front Nutr 2022; 9:947458. [PMID: 36110404 PMCID: PMC9468266 DOI: 10.3389/fnut.2022.947458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Several studies have demonstrated that a maternal low-protein diet induces long-term metabolic disorders, but the involved mechanisms are unclear. This study investigated the molecular effects of a low-protein diet during pregnancy and lactation on glucose and protein metabolism in soleus muscle isolated from adult male rats. Female rats were fed either a normal protein diet or low-protein diet during gestation and lactation. After weaning, all pups were fed a normal protein diet until the 210th day postpartum. In the 7th month of life, mass, contractile function, protein and glucose metabolism, and the Akt-mTOR pathway were measured in the soleus muscles of male pups. Dry weight and contractile function of soleus muscle in the low-protein diet group rats were found to be lower compared to the control group. Lipid synthesis was evaluated by measuring palmitate incorporation in white adipose tissue. Palmitate incorporation was higher in the white adipose tissue of the low-protein diet group. When incubated soleus muscles were stimulated with insulin, protein synthesis, total amino acid incorporation and free amino acid content, glucose incorporation and uptake, and glycogen synthesis were found to be reduced in low-protein diet group rats. Fasting glycemia was higher in the low-protein diet group. These metabolic changes were associated with a decrease in Akt and GSK-3β signaling responses to insulin and a reduction in RPS6 in the absence of the hormone. There was also notably lower expression of Akt in the isolated soleus muscle of low-protein diet group rats. This study is the first to demonstrate how maternal diet restriction can reduce skeletal muscle protein and mass by downregulating the Akt-mTOR pathway in adulthood.
Collapse
Affiliation(s)
- Diogo Antonio Alves de Vasconcelos
- Department of Nutrition, Center of Health Sciences, Federal University of Pernambuco, Recife, Brazil
- Post-graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Vitória de Santo Antão, Vitória de Santo Antão, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Diogo Antonio Alves de Vasconcelos,
| | - Renato Tadeu Nachbar
- Quebec Heart and Lung Institute Research Center, Laval University, Quebec City, QC, Canada
| | - Carlos Hermano Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cátia Lira do Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Amanda Rabello Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kaio Fernando Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| | - Phablo Abreu
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Isabel Alonso-Vale
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andressa Bolsoni Lopes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriano Bento-Santos
- Post-graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Vitória de Santo Antão, Vitória de Santo Antão, Brazil
| | - Filippe Falcão-Tebas
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - David Filipe de Santana
- Post-graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Vitória de Santo Antão, Vitória de Santo Antão, Brazil
| | - Elizabeth do Nascimento
- Department of Nutrition, Center of Health Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Carol Góis Leandro
- Post-graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Vitória de Santo Antão, Vitória de Santo Antão, Brazil
| |
Collapse
|
2
|
Effect of Postnatal Nutritional Environment Due to Maternal Diabetes on Beta Cell Mass Programming and Glucose Intolerance Risk in Male and Female Offspring. Biomolecules 2021; 11:biom11020179. [PMID: 33525575 PMCID: PMC7911592 DOI: 10.3390/biom11020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
Besides the fetal period, the suckling period is a critical time window in determining long-term metabolic health. We undertook the present study to elucidate the impact of a diabetic suckling environment alone or associated with an in utero diabetic environment on beta cell mass development and the risk of diabetes in the offspring in the long term. To that end, we have compared two experimental settings. In setting 1, we used Wistar (W) rat newborns resulting from W ovocytes (oW) transferred into diabetic GK rat mothers (pGK). These oW/pGK neonates were then suckled by diabetic GK foster mothers (oW/pGK/sGK model) and compared to oW/pW neonates suckled by normal W foster mothers (oW/pW/sW model). In setting 2, normal W rat newborns were suckled by diabetic GK rat foster mothers (nW/sGK model) or normal W foster mothers (nW/sW model). Our data revealed that the extent of metabolic disorders in term of glucose intolerance and beta cell mass are similar between rats which have been exposed to maternal diabetes both pre- and postnatally (oW/pGK/sGK model) and those which have been exposed only during postnatal life (nW/sW model). In other words, being nurtured by diabetic GK mothers from birth to weaning was sufficient to significantly alter the beta cell mass, glucose-induced insulin secretion and glucose homeostasis of offspring. No synergistic deleterious effects of pre-and postnatal exposure was observed in our setting.
Collapse
|
3
|
Fang P, Yu M, Shi M, Bo P, Gu X, Zhang Z. Baicalin and its aglycone: a novel approach for treatment of metabolic disorders. Pharmacol Rep 2020; 72:13-23. [PMID: 32016847 DOI: 10.1007/s43440-019-00024-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/27/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The current strategies for prevention and treatment of insulin resistance and type 2 diabetes are not fully effective and frequently accompanied by many negative effects. Therefore, novel ways to prevent insulin resistance and type 2 diabetes are urgently needed. The roots of Scutellaria radix are commonly used in traditional Chinese medicines for prevention and treatment of type 2 diabetes, atherosclerosis, hypertension, hyperlipidemia, dysentery, and other respiratory disorders. Baicalin and baicalein are the major and active ingredient extracts from Scutellaria baicalensis. METHODS A comprehensive and systematic review of literature on baicalin and baicalein was carried out. RESULTS Emerging evidence indicated that baicalin and baicalein possessed hepatoprotective, anti-oxidative, anti-dyslipidemic, anti-lipogenic, anti-obese, anti-inflammatory, and anti-diabetic effects, being effective for treating obesity, insulin resistance, non-alcoholic fatty liver, and dyslipidemia. Besides, baicalin and baicalein are almost non-toxic to epithelial, peripheral, and myeloid cells. CONCLUSION The purpose of this study is to focus on the therapeutic applications and accompanying molecular mechanisms of baicalin and baicalein against hyperglycemia, insulin resistance, type 2 diabetes, hyperlipidemia, obesity, and non-alcoholic fatty liver, and trying to establish a novel anti-obese and anti-diabetic strategy.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mei Yu
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, Jiangsu, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Xuewen Gu
- Department of Pathology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
4
|
Calkins KL, Thamotharan S, Dai Y, Shin BC, Kalhan SC, Devaskar SU. Early dietary restriction in rats alters skeletal muscle tuberous sclerosis complex, ribosomal s6 and mitogen-activated protein kinase. Nutr Res 2018; 54:93-104. [PMID: 29685622 DOI: 10.1016/j.nutres.2018.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/23/2018] [Accepted: 03/19/2018] [Indexed: 01/18/2023]
Abstract
Intrauterine growth restriction is linked to decreased lean body mass and insulin resistance. The mammalian target of rapamycin (mTOR) regulates muscle mass and glucose metabolism; however, little is known about maternal dietary restriction and skeletal muscle mTOR in offspring. We hypothesized that early dietary restriction would decrease skeletal muscle mass and mTOR in the suckling rat. To test this hypothesis, ab libitum access to food or dietary restriction during gestation followed by postnatal cross-fostering to a dietary-restricted or ad libitum-fed rat dam during lactation generated 4 groups: control (CON), intrauterine dietary restricted (IUDR), postnatal dietary restricted (PNDR), and IUDR+PNDR (IPDR). At day 21, when compared to CON, the IUDR group demonstrated "catchup" growth, but no changes were observed in the mTOR pathway. Despite having less muscle mass than CON and IUDR (P < .001), in IPDR and PNDR rats mTOR remained unchanged. IPDR and PNDR (p)-tuberous sclerosis complex 2 was less than the IUDR group (P < .05). Downstream, IPDR's and PNDR's phosphorylated (p)-ribosomal s6 (rs6)/rs6 was less than that of CON (P < .05). However, male IPDR's and PNDR's p-mitogen activated protein kinase MAPK/MAPK was greater than CON (P < .05) without a change in p90 ribosomal s6 kinase (p90RSK). In contrast, in females, MAPK was unchanged, but IPDR p-p90RSK/p90RSK was less than CON (P = .01). In conclusion, IPDR and PNDR reduced skeletal muscle mass but did not decrease mTOR. In IPDR and PNDR, a reduction in tuberous sclerosis complex 2 may explain why mTOR was unchanged, whereas, in males, an increase in MAPK with a decrease in rs6 may suggest a block in MAPK signaling.
Collapse
Affiliation(s)
- Kara L Calkins
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752.
| | - Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752.
| | - Yun Dai
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752.
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752.
| | - Satish C Kalhan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9620 Carnegie Ave, Cleveland, OH 44106.
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752.
| |
Collapse
|
5
|
Fang P, Yu M, Min W, Wan D, Han S, Shan Y, Wang R, Shi M, Zhang Z, Bo P. Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats. Life Sci 2018; 196:156-161. [PMID: 29459024 DOI: 10.1016/j.lfs.2018.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/07/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
AIMS Although baicalin could attenuate obesity-induced insulin resistance, the detailed mechanism of baicalin on glucose uptake has not been sufficiently explored as yet. The aim of this study was to survey if baicalin might facilitate glucose uptake and to explore its signal mechanisms in L6 myotubes. MATERIALS AND METHODS L6 myotubes were treated with 100, 200, 400 μM baicalin for 6 h, 12 h and 24 h in this study. Then 2-NBDG and insulin signal protein levels in myotubes of L6 cells were examined. KEY FINDINGS We discovered that administration of baicalin enhanced GLUT4, PGC-1α, pP38MAPK, pAKT and pAS160 contents, as well as GLUT4 mRNA and PGC-1α mRNA levels in L6 myotubes. The beneficial metabolic changes elicited by baicalin were abrogated in myotubes of L6 by P38MAPK or AKT inhibitors. SIGNIFICANCE These results suggest that baicalin promoted glucose uptake in myotubes by differential regulation on P38MAPK and AKT activity. In conclusion, these data provide insight that baicalin is a powerful and promising agent for the treament of hyperglycemia via AKT/AS160/GLUT4 and P38MAPK/PGC1α/GLUT4 pathway.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Wen Min
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Dan Wan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Shiyu Han
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Yizhi Shan
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Rui Wang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Mingyi Shi
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu 225300, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
6
|
Fang P, Zhang L, Yu M, Sheng Z, Shi M, Zhu Y, Zhang Z, Bo P. Activiated galanin receptor 2 attenuates insulin resistance in skeletal muscle of obese mice. Peptides 2018; 99:92-98. [PMID: 29183756 DOI: 10.1016/j.peptides.2017.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 01/28/2023]
Abstract
The results of our and other's studies showed that activation of galanin receptor 1 could mitigate insulin resistance via promoting glucose transporter 4 (GLUT4) expression and translocation in the skeletal muscle of rats. But no literature are available regarding the effect of galanin receptor 2 (GALR2) on insulin resistance in skeletal muscle of type 2 diabetes. Herein, in this study we intended to survey the effect of GALR2 and its signal mechanisms in the mice with high fat diet-induced obese. The mice were intraperitoneally injected with vehicle, GALR2 agonist M1145 and antagonist M871 respectively once a day for continuous 21 days. The skeletal muscles were processed for determination of glucose uptake, and GLUT4 mRNA and protein expression levels. The PGC-1α, AKT, p38MAPK, AS160, pAKT, pP38MAPK and pAS160 expression levels were quantitatively assessed too. We found that pharmacological activation of GALR2 enhanced energy expenditure, and increased GLUT4 expression and translocation in skeletal muscle of mice during high-fat diet regimens. Activation of GALR2 alleviated insulin resistance through P38MAPK/PGC-1α/GLUT4 and AKT/AS160/GLUT4 pathway in the skeletal muscle of mice. Overall, these results identify that GALR2 is a regulator of insulin resistance and activation of GALR2 represents a promising strategy against obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Zhongqi Sheng
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
7
|
Fang P, Yu M, Zhang L, Wan D, Shi M, Zhu Y, Bo P, Zhang Z. Baicalin against obesity and insulin resistance through activation of AKT/AS160/GLUT4 pathway. Mol Cell Endocrinol 2017; 448:77-86. [PMID: 28359800 DOI: 10.1016/j.mce.2017.03.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/04/2017] [Accepted: 03/26/2017] [Indexed: 01/24/2023]
Abstract
Obesity may cause several metabolic complications, including insulin resistance and type 2 diabetes mellitus. Despite great advances in medicine, people still keep exploring novel and effective drugs for treatment of obesity and insulin resistance. The aim of this study was to survey if baicalin might ameliorate obesity-induced insulin resistance and to explore its signal mechanisms in skeletal muscles of mice. Diet-induced obese (DIO) mice were given 50 mg/kg baicalin intraperitoneally (i.p.) once a day for 21 days, and C2C12 myotubes were treated with 100, 200, 400 μM baicalin for 12 h in this study. Then insulin resistance indexes and insulin signal protein levels in skeletal muscles were examined. We discovered that administration of baicalin decreased food intake, body weight, HOMA-IR and NT-PGC-1α levels, but enhanced GLUT4, PGC-1α, pP38MAPK, pAKT and pAS160 contents, as well as GLUT4 mRNA, PGC-1α mRNA, PPARγ mRNA, GLUT1 mRNA expression in skeletal muscles of obese mice and myotubes of C2C12 cells, and reversed high fat diet-induced glucose and insulin intolerance, hyperglycemia and insulin resistance in the mice. These results suggest that baicalin is a powerful and promising agent for treatment of obesity and insulin resistance via Akt/AS160/GLUT4 and P38MAPK/PGC1α/GLUT4 pathway.
Collapse
Affiliation(s)
- Penghua Fang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Mei Yu
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, Jiangsu, 225300, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Dan Wan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Ping Bo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| |
Collapse
|
8
|
Abstract
Intrauterine growth restriction (IUGR) has been defined in several ways, but in general describes a condition in which the fetus exhibits poor growth in utero. This complication of pregnancy poses a significant public health burden as well as increased morbidity and mortality for the offspring. In human IUGR, alteration in fetal glucose and insulin homeostasis occurs in an effort to conserve energy and survive at the expense of fetal growth in an environment of inadequate nutrient provision. Several animal models of IUGR have been utilized to study the effects of IUGR on fetal glucose handling, as well as the postnatal reprogramming of energy metabolite handling, which may be unmasked in adulthood as a maladaptive propensity for cardiometabolic disease. This developmental programming may be mediated in part by epigenetic modification of essential regulators of glucose homeostasis. Several pharmacological therapies and nonpharmacological lifestyle modifications have shown early promise in mitigating the risk for or severity of adult metabolic phenotypes but still require further study of unanticipated and/or untoward side effects.
Collapse
Affiliation(s)
- Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alison Chu
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
9
|
Fang P, Yu M, He B, Guo L, Huang X, Kong G, Shi M, Zhu Y, Bo P, Zhang Z. Central injection of GALR1 agonist M617 attenuates diabetic rat skeletal muscle insulin resistance through the Akt/AS160/GLUT4 pathway. Mech Ageing Dev 2017; 162:122-128. [PMID: 27041232 DOI: 10.1016/j.mad.2016.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/17/2016] [Accepted: 03/31/2016] [Indexed: 12/27/2022]
|
10
|
Wang J, Cao M, Yang M, Lin Y, Che L, Fang Z, Xu S, Feng B, Li J, Wu D. Intra-uterine undernutrition amplifies age-associated glucose intolerance in pigs via altered DNA methylation at muscle GLUT4 promoter. Br J Nutr 2016; 116:390-401. [PMID: 27265204 DOI: 10.1017/s0007114516002166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study aimed to investigate the effect of maternal malnutrition on offspring glucose tolerance and the epigenetic mechanisms involved. In total, twelve primiparous Landrace×Yorkshire gilts were fed rations providing either 100 % (control (CON)) or 75 % (undernutrition (UN)) nutritional requirements according to the National Research Council recommendations, throughout gestation. Muscle samples of offspring were collected at birth (dpn1), weaning (dpn28) and adulthood (dpn189). Compared with CON pigs, UN pigs showed lower serum glucose concentrations at birth, but showed higher serum glucose and insulin concentrations as well as increased area under the blood glucose curve during intravenous glucose tolerance test at dpn189 (P<0·05). Compared with CON pigs, GLUT-4 gene and protein expressions were decreased at dpn1 and dpn189 in the muscle of UN pigs, which was accompanied by increased methylation at the GLUT4 promoter (P<0·05). These alterations in methylation concurred with increased mRNA levels of DNA methyltransferase (DNMT) 1 at dpn1 and dpn28, DNMT3a at dpn189 and DNMT3b at dpn1 in UN pigs compared with CON pigs (P<0·05). Interestingly, although the average methylation levels at the muscle GLUT4 promoter were decreased at dpn189 compared with dpn1 in pigs exposed to a poor maternal diet (P<0·05), the methylation differences in individual CpG sites were more pronounced with age. Our results indicate that in utero undernutrition persists to silence muscle GLUT4 likely through DNA methylation during the ageing process, which may lead to the amplification of age-associated glucose intolerance.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Meng Cao
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Mei Yang
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Yan Lin
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Lianqiang Che
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Zhengfeng Fang
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Shengyu Xu
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Bin Feng
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - Jian Li
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| | - De Wu
- Institute of Animal Nutrition,Sichuan Agricultural University,No. 211,Huimin Road,Wenjiang District,Chengdu,Sichuan 611130,People's Republic of China
| |
Collapse
|
11
|
Freije WA, Thamotharan S, Lee R, Shin BC, Devaskar SU. The hepatic transcriptome of young suckling and aging intrauterine growth restricted male rats. J Cell Biochem 2016; 116:566-79. [PMID: 25371150 DOI: 10.1002/jcb.25008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/30/2014] [Indexed: 01/20/2023]
Abstract
Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non-alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray-based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin-like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non-transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation.
Collapse
Affiliation(s)
- William A Freije
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, California
| | | | | | | | | |
Collapse
|
12
|
Zhang Z, Fang P, Shi M, Zhu Y, Bo P. Elevated galanin may predict the risk of type 2 diabetes mellitus for development of Alzheimer's disease. Mech Ageing Dev 2015; 150:20-6. [PMID: 26253934 DOI: 10.1016/j.mad.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/23/2015] [Accepted: 08/02/2015] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological and clinical studies demonstrated that type 2 diabetes mellitus is an important risk factor for the development of Alzheimer's disease, i.e., the patients with type 2 diabetes mellitus are frequently companied with Alzheimer's disease symptoms. Despite many studies recently probed into the comorbid state of both diseases, so far the precise mechanism for this association is poorly understood. Emerging evidences suggest that defects in galanin play a central role on type 2 diabetes mellitus and is considered to be a risk factor for Alzheimer's disease development. This review provides a new insight into the multivariate relationship among galanin, type 2 diabetes mellitus and Alzheimer's disease, highlighting the effect of galanin system on the cross-talk between both diseases in human and rodent models. The current data support that activating central GalR2 attenuates insulin resistance and Alzheimer's disease feature in animal models. These may help us better understanding the pathogenesis of both diseases and provide useful hints for the development of novel therapeutic approaches to treat type 2 diabetes mellitus and Alzheimer's disease.
Collapse
Affiliation(s)
- Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Yan Zhu
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
13
|
Dunlop K, Cedrone M, Staples JF, Regnault TRH. Altered fetal skeletal muscle nutrient metabolism following an adverse in utero environment and the modulation of later life insulin sensitivity. Nutrients 2015; 7:1202-16. [PMID: 25685986 PMCID: PMC4344584 DOI: 10.3390/nu7021202] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR) associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW) is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.
Collapse
Affiliation(s)
- Kristyn Dunlop
- Department of Physiology and Pharmacology, Western University, London, ON N6A-5C1, Canada.
| | - Megan Cedrone
- Department of Biology, Western University, London, ON N6A 5B7, Canada.
| | - James F Staples
- Department of Biology, Western University, London, ON N6A 5B7, Canada.
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Western University, London, ON N6A-5C1, Canada.
- Department of Obstetrics and Gynecology, Western University, London, ON N6H-5W9, Canada.
- Lawson Health Research Institute, London, ON N6C-2R5, Canada.
- Children's Health Research Institute, London, ON N6C-2V5, Canada.
| |
Collapse
|
14
|
Fang P, Min W, Sun Y, Guo L, Shi M, Bo P, Zhang Z. The potential antidepressant and antidiabetic effects of galanin system. Pharmacol Biochem Behav 2014; 120:82-87. [PMID: 24582894 DOI: 10.1016/j.pbb.2014.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/17/2014] [Accepted: 02/22/2014] [Indexed: 11/17/2022]
Abstract
Epidemiological and clinical studies demonstrated that type 2 diabetes mellitus and depression are interconnected. Depression is an important risk factor for the development of type 2 diabetes mellitus, while patients with type 2 diabetes mellitus frequently have depressive symptoms. Despite many studies recently probed into the comorbid state of both diseases, so far the precise mechanism for this association is poorly understood. Experiments have demonstrated that neuropeptide galanin is involved in the pathogenesis of depression and type 2 diabetes mellitus. This review provides a new insight into the multivariate relationship among galanin, depression and type 2 diabetes mellitus, highlighting the effect of galanin system on the cross-talk between both diseases in human and rodent models. The current data support that activating central GalR2 attenuates insulin resistance and depressive feature in animal models. These may help us better understand the pathogenesis of both diseases and provide useful hints for the development of novel therapeutic approaches, i.e. to coadministrate GalR2 agonist with traditional antidepressive and antidiabetic medicines to treat depression and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Penghua Fang
- Institute of Combined Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China.
| | - Wen Min
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Yong Sun
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou 225300, China
| | - Lili Guo
- Institute of Combined Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mingyi Shi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Institute of Combined Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Ping Bo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Institute of Combined Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Institute of Combined Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
15
|
Grabiec K, Gajewska M, Milewska M, Błaszczyk M, Grzelkowska-Kowalczyk K. The influence of high glucose and high insulin on mechanisms controlling cell cycle progression and arrest in mouse C2C12 myoblasts: the comparison with IGF-I effect. J Endocrinol Invest 2014; 37:233-45. [PMID: 24615360 PMCID: PMC3949044 DOI: 10.1007/s40618-013-0007-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 11/17/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Myogenesis is susceptible to the availability of nutrients and humoral factors and suboptimal fetal environments affect the number of myofibers and muscle mass. AIM We examined the mechanisms regulating cell cycle progression and arrest in skeletal myoblasts. MATERIALS AND METHODS Mouse C2C12 myoblasts were subjected to proliferation or induction of differentiation in the presence of high glucose and high insulin (HGHI glucose 15 mmol/l, insulin 50 nmol/l), and these effects were compared with the influence of anabolic factor for skeletal muscle, insulin-like growth factor-I (IGF-I 30 nmol/l). RESULTS High glucose and high insulin, similarly to IGF-I, increased the intracellular level of cyclin A, cyclin B1 and cyclin D1 during myoblast proliferation. In HGHI-treated myoblasts, these cyclins were localized mostly in the nuclei, and the level of cdk4-bound cyclin D1 was augmented. HGHI significantly stimulated the expression of cyclin D3, total level of p21 and cdk-bound fraction of p21 in differentiating cells. The cellular level of MyoD was augmented by HGHI both in proliferating and differentiating myogenic cells. CONCLUSIONS High glucose and insulin modify the mechanisms controlling cell cycle progression and the onset of myogenesis by: (1) increase of cyclin A, cyclin B1 and cyclin D1 in myoblast nuclei, and stimulation of cyclin D1-cdk4 binding; (2) increase in cyclin D3 and MyoD levels, and the p21-cdk4 complexes after induction of differentiation. Hyperglycemia/hyperinsulinemia during fetal or postnatal life could exert effects similar to IGF-I and can be, therefore, favourable for skeletal muscle growth and regeneration.
Collapse
Affiliation(s)
- K. Grabiec
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - M. Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - M. Milewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - M. Błaszczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - K. Grzelkowska-Kowalczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
16
|
Fang P, Sun J, Wang X, Zhang Z, Bo P, Shi M. Galanin participates in the functional regulation of the diabetic heart. Life Sci 2013; 92:628-632. [PMID: 23376774 DOI: 10.1016/j.lfs.2013.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 01/13/2013] [Accepted: 01/17/2013] [Indexed: 11/23/2022]
Abstract
The diabetic heart is characterized by its impaired ability to utilize glucose. Therapeutic interventions focusing on reducing insulin resistance and enhancing glucose uptake may improve prevention and treatment of the diabetic heart. Recent studies provided some compelling clues that neuropeptide galanin is closely associated with insulin sensitivity in the heart. Galanin may directly affect glucose homeostasis and carbohydrate metabolism in cardiac and skeletal muscles as well as increase glucose transporter 4 (GLUT4) expression and translocation in insulin-sensitive cells to reduce insulin resistance. These findings suggest that endogenous galanin has a beneficial effect on the diabetic heart. This paper highlights the effect of galanin on regulating heart rate, blood pressure, insulin sensitivity and glucose homeostasis to protect the diabetic heart. Our findings, therefore, deepen our understanding of the pathology of the diabetic heart and help evaluate the therapeutic potential of galanin-receptor ligands for cardiomyopathy.
Collapse
Affiliation(s)
- Penghua Fang
- Research Institute of Combined Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | | | | | | | | | | |
Collapse
|
17
|
Garg M, Thamotharan M, Dai Y, Lagishetty V, Matveyenko AV, Lee WNP, Devaskar SU. Glucose intolerance and lipid metabolic adaptations in response to intrauterine and postnatal calorie restriction in male adult rats. Endocrinology 2013; 154. [PMID: 23183174 PMCID: PMC3529385 DOI: 10.1210/en.2012-1640] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Enhanced de novo lipogenesis (DNL), an adult hepatic adaption, is seen with high carbohydrate or low-fat diets. We hypothesized that ad libitum intake after prenatal calorie restriction will result in adult-onset glucose intolerance and enhanced DNL with modified lipid metabolic gene expression profile. Stable isotopes were used in 15-month-old adult male rat offspring exposed to prenatal (IUGR), pre- and postnatal (IPGR), or postnatal (PNGR) caloric restriction vs. controls (CON). IUGR vs. CON were heavier with hepatomegaly but unchanged visceral white adipose tissue (WAT), glucose intolerant with reduced glucose-stimulated insulin secretion (GSIS), pancreatic β-cell mass, and total glucose clearance rate but unsuppressed hepatic glucose production. Liver glucose transporter (Glut) 1 and DNL increased with decreased hepatic acetyl-CoA carboxylase (ACC) and fatty acid synthase but increased WAT fatty acid transport protein-1 and peroxisomal proliferator-activated receptor-γ, resistin, and visfatin gene expression. In contrast, PNGR and IPGR were lighter, had reduced visceral WAT, and were glucose tolerant with unchanged hepatic glucose production but with increased GSIS, β-cell mass, glucose clearance rate, and WAT insulin receptor. Hepatic Glut1 and DNL were also increased in lean IPGR and PNGR with increased hepatic ACC, phosphorylated ACC, and pAMPK and reduced WAT fatty acid transport protein-1, peroxisomal proliferator-activated receptor-γ, and ACCα. We conclude the following: 1) the heavy, glucose-intolerant and insulin-resistant IUGR adult phenotype is ameliorated by postnatal caloric restriction; 2) increased DNL paralleling hepatic Glut1 is a biomarker of exposure to early caloric restriction rather than the adult metabolic status; 3) hepatic lipid enzyme expression reflects GSIS rather than DNL; and 4) WAT gene expression reflects an obesogenic vs. lean phenotype.
Collapse
Affiliation(s)
- Meena Garg
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, University of California- Los Angeles, Los Angeles, CA 90095-1752, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Tomi M, Zhao Y, Thamotharan S, Shin BC, Devaskar SU. Early life nutrient restriction impairs blood-brain metabolic profile and neurobehavior predisposing to Alzheimer's disease with aging. Brain Res 2012; 1495:61-75. [PMID: 23228723 DOI: 10.1016/j.brainres.2012.11.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 11/05/2012] [Accepted: 11/29/2012] [Indexed: 12/26/2022]
Abstract
Prenatal nutrient restriction (NR) culminating in intra-uterine growth restriction (IUGR) with postnatal catch up growth leads to diabesity. In contrast, postnatal NR with growth restriction (PNGR) superimposed on IUGR (IPGR) protects young and aging adults from this phenotype. We hypothesized that PNGR/IPGR will compromise the blood-brain metabolic profile impairing neurobehavior and predisposing to Alzheimer's disease (AD). NR (50%) in late gestation followed by cross-fostering of rat pups to either ad lib fed (CON) or NR (50%) lactating mothers generated CON, IUGR, PNGR and IPGR male (M) and female (F) offspring that were examined through the life span. In PNGR/IPGR plasma/CSF glucose and lactate decreased while ketones increased in (M) and (F) (PN21, PN50). In addition increased brain glucose transporters, Glut1 & Glut3, greater brain derived neurotrophic factor (BDNF), reduced Glut4, with unchanged serotonin transporter concentrations were noted in (F) (PN50-60). While (F) displayed more hyperactivity, both (F) and (M) exhibited anxiety although socially and cognitively unimpaired (PN25-28&50). Aging (15-17 m) (F) not (M), expressed low plasma insulin, reduced brain IRS-2, pAkt, and pGSK-3β(Ser9), unchanged pPDK1, pTau or lipoprotein receptor related protein 1 (LRP1), higher glial fibrillary acidic protein (GFAP) and spinophilin but a 10-fold increased amyloid-β42. We conclude that therapeutically superimposing PNGR on IUGR (IPGR) should be carefully weighed in light of unintended consequences related to perturbed neurobehavior and potential predilection for AD.
Collapse
Affiliation(s)
- Masatoshi Tomi
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752, USA
| | | | | | | | | |
Collapse
|
19
|
Liu X, Qi Y, Gao H, Jiao Y, Gu H, Miao J, Yuan Z. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats. J Clin Biochem Nutr 2012; 52:43-8. [PMID: 23341697 PMCID: PMC3541418 DOI: 10.3164/jcbn.12-28] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022] Open
Abstract
It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.
Collapse
Affiliation(s)
- Xiaomei Liu
- Key Laboratory of Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Fang P, Yu M, Shi M, Zhang Z, Sui Y, Guo L, Bo P. Galanin peptide family as a modulating target for contribution to metabolic syndrome. Gen Comp Endocrinol 2012; 179:115-20. [PMID: 22909974 DOI: 10.1016/j.ygcen.2012.07.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome (MetS) is defined as abdominal central obesity, atherogenic dyslipidemia, insulin resistance, glucose intolerance and hypertension. The rapid increasing prevalence of MetS and the consequent diseases, such as type 2 diabetes mellitus and cardiovascular disorder, are becoming a global epidemic health problem. Despite considerable research into the etiology of this complex disease, the precise mechanism underlying MetS and the association of this complex disease with the development of type 2 diabetes mellitus and increased cardiovascular disease remains elusive. Therefore, researchers continue to actively search for new MetS treatments. Recent animal studies have indicated that the galanin peptide family of peptides may increase food intake, glucose intolerance, fat preference and the risk for obesity and dyslipidemia while decreasing insulin resistance and blood pressure, which diminishes the probability of type 2 diabetes mellitus and hypertension. To date, however, few papers have summarized the role of the galanin peptide family in modulating MetS. Through a summary of available papers and our recent studies, this study reviews the updated evidences of the effect that the galanin peptide family has on the clustering of MetS components, including obesity, dyslipidemia, insulin resistance and hypertension. This line of research will further deepen our understanding of the relationship between the galanin peptide family and the mechanisms underlying MetS, which will help develop new therapeutic strategies for this complex disease.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Dai Y, Thamotharan S, Garg M, Shin BC, Devaskar SU. Superimposition of postnatal calorie restriction protects the aging male intrauterine growth- restricted offspring from metabolic maladaptations. Endocrinology 2012; 153:4216-26. [PMID: 22807491 PMCID: PMC3423608 DOI: 10.1210/en.2012-1206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrauterine growth restriction (IUGR) results in dysregulated glucose homeostasis and adiposity in the adult. We hypothesized that with aging, these perturbations will wane, and superimposition of postnatal growth restriction (PNGR) on IUGR [intrauterine and postnatal growth restriction (IPGR)] will reverse the residual IUGR phenotype. We therefore undertook hyperinsulinemic-euglycemic clamp, energy balance, and physical activity studies during fed, fasted, and refed states, in light and dark cycles, on postweaned chow diet-fed more than 17-month aging male IUGR, PNGR, and IPGR vs. control (CON) rat offspring. Hyperinsulinemic-euglycemic clamp revealed similar whole-body insulin sensitivity and physical activity in the nonobese IUGR vs. CON, despite reduced heat production and energy expenditure. Compared with CON and IUGR, IPGR mimicking PNGR was lean and growth restricted with increased physical activity, O(2) consumption (VO(2)), energy intake, and expenditure. Although insulin sensitivity was no different in IPGR and PNGR, skeletal muscle insulin-induced glucose uptake was enhanced. This presentation proved protective against the chronologically earlier (5.5 months) development of obesity and dysregulated energy homeostasis after 19 wk on a postweaned high-fat diet. This protective role of PNGR on the metabolic IUGR phenotype needs future fine tuning aimed at minimizing unintended consequences.
Collapse
Affiliation(s)
- Yun Dai
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine University of California, Los Angeles, California 90095-1752, USA
| | | | | | | | | |
Collapse
|
22
|
Abbasi A, Thamotharan M, Shin BC, Jordan MC, Roos KP, Stahl A, Devaskar SU. Myocardial macronutrient transporter adaptations in the adult pregestational female intrauterine and postnatal growth-restricted offspring. Am J Physiol Endocrinol Metab 2012; 302:E1352-62. [PMID: 22338075 PMCID: PMC3378069 DOI: 10.1152/ajpendo.00539.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Associations between exponential childhood growth superimposed on low birth weight and adult onset cardiovascular disease with glucose intolerance/type 2 diabetes mellitus exist in epidemiological investigations. To determine the metabolic adaptations that guard against myocardial failure on subsequent exposure to hypoxia, we compared with controls (CON), the effect of intrauterine (IUGR), postnatal (PNGR), and intrauterine and postnatal (IPGR) calorie and growth restriction (n = 6/group) on myocardial macronutrient transporter (fatty acid and glucose) -mediated uptake in pregestational young female adult rat offspring. A higher myocardial FAT/CD36 protein expression in IUGR, PNGR, and IPGR, with higher FATP1 in IUGR, FATP6 in PNGR, FABP-c in PNGR and IPGR, and no change in GLUT4 of all groups was observed. These adaptive macronutrient transporter protein changes were associated with no change in myocardial [(3)H]bromopalmitate accumulation but a diminution in 2-deoxy-[(14)C]glucose uptake. Examination of the sarcolemmal subfraction revealed higher basal concentrations of FAT/CD36 in PNGR and FATP1 and GLUT4 in IUGR, PNGR, and IPGR vs. CON. Exogenous insulin uniformly further enhanced sarcolemmal association of these macronutrient transporter proteins above that of basal, with the exception of insulin resistance of FATP1 and GLUT4 in IUGR and FAT/CD36 in PNGR. The basal sarcolemmal macronutrient transporter adaptations proved protective against subsequent chronic hypoxic exposure (7 days) only in IUGR and PNGR, with notable deterioration in IPGR and CON of the echocardiographic ejection fraction. We conclude that the IUGR and PNGR pregestational adult female offspring displayed a resistance to insulin-induced translocation of FATP1, GLUT4, or FAT/CD36 to the myocardial sarcolemma due to preexistent higher basal concentrations. This basal adaptation of myocardial macronutrient transporters ensured adequate fatty acid uptake, thereby proving protective against chronic hypoxia-induced myocardial compromise.
Collapse
Affiliation(s)
- Afshan Abbasi
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine, University of California at Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Garg M, Thamotharan M, Dai Y, Thamotharan S, Shin BC, Stout D, Devaskar SU. Early postnatal caloric restriction protects adult male intrauterine growth-restricted offspring from obesity. Diabetes 2012; 61:1391-8. [PMID: 22461568 PMCID: PMC3357266 DOI: 10.2337/db11-1347] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Postnatal ad libitum caloric intake superimposed on intrauterine growth restriction (IUGR) is associated with adult-onset obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). We hypothesized that this paradigm of prenatal nutrient deprivation-induced programming can be reversed with the introduction of early postnatal calorie restriction. Ten-month-old male rats exposed to either prenatal nutrient restriction with ad libitum postnatal intake (IUGR), pre- and postnatal nutrient restriction (IPGR), or postnatal nutrient restriction limited to the suckling phase (50% from postnatal [PN]1 to PN21) (PNGR) were compared with age-matched controls (CON). Visceral adiposity, metabolic profile, and insulin sensitivity by hyperinsulinemic-euglycemic clamps were examined. The 10-month-old male IUGR group had a 1.5- to 2.0-fold increase in subcutaneous and visceral fat (P < 0.0002) while remaining euglycemic, insulin sensitive, inactive, and exhibiting metabolic inflexibility (Vo(2)) versus CON. The IPGR group remained lean, euglycemic, insulin sensitive, and active while maintaining metabolic flexibility. The PNGR group was insulin sensitive, similar to IPGR, but less active while maintaining metabolic flexibility. We conclude that IUGR resulted in obesity without insulin resistance and energy metabolic perturbations prior to development of glucose intolerance and T2DM. Postnatal nutrient restriction superimposed on IUGR was protective, restoring metabolic normalcy to a lean and active phenotype.
Collapse
Affiliation(s)
- Meena Garg
- Division of Neonatology and Developmental Biology, Department of Pediatrics, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Manikkavasagar Thamotharan
- Division of Neonatology and Developmental Biology, Department of Pediatrics, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Yun Dai
- Division of Neonatology and Developmental Biology, Department of Pediatrics, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Shanthie Thamotharan
- Division of Neonatology and Developmental Biology, Department of Pediatrics, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Bo-Chul Shin
- Division of Neonatology and Developmental Biology, Department of Pediatrics, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - David Stout
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Sherin U. Devaskar
- Division of Neonatology and Developmental Biology, Department of Pediatrics, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
- Corresponding author: Sherin U. Devaskar,
| |
Collapse
|
24
|
Raychaudhuri S. MicroRNAs overexpressed in growth-restricted rat skeletal muscles regulate the glucose transport in cell culture targeting central TGF-β factor SMAD4. PLoS One 2012; 7:e34596. [PMID: 22506032 PMCID: PMC3323545 DOI: 10.1371/journal.pone.0034596] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/07/2012] [Indexed: 12/27/2022] Open
Abstract
The micro-array profiling of micro-RNA has been performed in rat skeletal muscle tissues, isolated from male adult offspring of intrauterine plus postnatal growth restricted model (IPGR). Apparently, the GLUT4 mRNA expression in male sk. muscle was found to be unaltered in contrast to females. The over-expression of miR-29a and miR-23a in the experimental group of SMSP (Starved Mother Starved Pups) have been found to regulate the glucose transport activity with respect to their control counterparts CMCP (Control Mother Control Pups) as confirmed in rat L6 myoblast-myocyte cell culture system. The ex-vivo experimentation demonstrates an aberration in insulin signaling pathway in male sk. muscle that leads to the localization of the membrane-bound Glut4 protein. We have identified through a series of experiments one important protein factor SMAD4, a co-SMAD critical to the TGF-beta signaling pathway. This factor is targeted by miR-29a, as identified in an in vitro reporter-assay system in cell-culture experiment. The other micro-RNA, miR-23a, targets SMAD4 indirectly that seems to be critical in regulating insulin-dependent glucose transport activity. MicroRNA mimics, inhibitors and siRNA studies indicate the role of SMAD4 as inhibitory for glucose transport activities in normal physiological condition. The data demonstrate for the first time a critical function of microRNAs in fine-tuning the regulation of glucose transport in skeletal muscle. Chronic starved conditions (IPGR) in sk. muscle up-regulates microRNA changing the target protein expression patterns, such as SMAD4, to alter the glucose transport pathways for the survival. The innovative outcome of this paper identifies a critical pathway (TGF-beta) that may act negatively for the mammalian glucose transport machinery.
Collapse
Affiliation(s)
- Santanu Raychaudhuri
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| |
Collapse
|
25
|
Nistala R, Hayden MR, DeMarco VG, Henriksen EJ, Lackland DT, Sowers JR. Prenatal Programming and Epigenetics in the Genesis of the Cardiorenal Syndrome. Cardiorenal Med 2011; 1:243-254. [PMID: 22096456 PMCID: PMC3214897 DOI: 10.1159/000332756] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The presence of a group of interacting maladaptive factors, including hypertension, insulin resistance, metabolic dyslipidemia, obesity, and microalbuminuria and/or reduced renal function, collectively constitutes the cardiorenal metabolic syndrome (CRS). Nutritional and other environmental cues during fetal development can permanently affect the composition, homeostatic systems, and functions of multiple organs and systems; this process has been referred to as 'programming'. Since the original formulation of the notion that low birth weight is a proxy for 'prenatal programming' of adult hypertension and cardiovascular disease, evidence has also emerged for programming of kidney disease, insulin resistance, obesity, metabolic dyslipidemia, and other chronic diseases. The programming concept was initially predicated on the notion that in utero growth restriction due to famine was responsible for increased hypertension, and cardiovascular and renal diseases. On the other hand, we are now more commonly exposed to increasing rates of maternal obesity. The current review will discuss the overarching role of maternal overnutrition, as well as fetal undernutrition, in epigenetic programming in relation to the pathogenesis of the CRS in children and adults.
Collapse
Affiliation(s)
- Ravi Nistala
- University of Missouri Diabetes Cardiovascular Center, Columbia, Mo., USA
| | - Melvin R. Hayden
- University of Missouri Diabetes Cardiovascular Center, Columbia, Mo., USA
| | - Vincent G. DeMarco
- University of Missouri Diabetes Cardiovascular Center, Columbia, Mo., USA
- Department of Physiology and Pharmacology, Columbia, Mo., USA
| | - Erik J. Henriksen
- Department of Physiology, University of Arizona College of Medicine, Tucson, Ariz., USA
| | - Daniel T. Lackland
- Department of Neurosciences, Medical University of South Carolina, Charleston, S.C., USA
| | - James R. Sowers
- University of Missouri Diabetes Cardiovascular Center, Columbia, Mo., USA
- Department of Physiology and Pharmacology, Columbia, Mo., USA
- Harry S. Truman VA Medical Center, Columbia, Mo., USA
| |
Collapse
|
26
|
Abstract
Dr. David Barker first popularized the concept of fetal origins of adult disease (FOAD). Since its inception, FOAD has received considerable attention. The FOAD hypothesis holds that events during early development have a profound impact on one's risk for development of future adult disease. Low birth weight, a surrogate marker of poor fetal growth and nutrition, is linked to coronary artery disease, hypertension, obesity, and insulin resistance. Clues originally arose from large 20th century, European birth registries. Today, large, diverse human cohorts and various animal models have extensively replicated these original observations. This review focuses on the pathogenesis related to FOAD and examines Dr. David Barker's landmark studies, along with additional human and animal model data. Implications of the FOAD extend beyond the low birth weight population and include babies exposed to stress, both nutritional and nonnutritional, during different critical periods of development, which ultimately result in a disease state. By understanding FOAD, health care professionals and policy makers will make this issue a high health care priority and implement preventive measures and treatment for those at higher risk for chronic diseases.
Collapse
|
27
|
Matveyenko AV, Singh I, Shin BC, Georgia S, Devaskar SU. Differential effects of prenatal and postnatal nutritional environment on ß-cell mass development and turnover in male and female rats. Endocrinology 2010; 151:5647-56. [PMID: 21047942 PMCID: PMC2999501 DOI: 10.1210/en.2010-0978] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fetal nutrient and growth restriction is associated with development of type 2 diabetes. Although the exact mechanisms responsible for this association remain debated, intrauterine and/or postnatal maldevelopment of β-cell mass has been proposed as a potential mechanism. To address this hypothesis, β-cell mass development and turnover was assessed in rats exposed to either intrauterine and/or postnatal caloric/growth restriction. In total, four groups of male and female Sprague Dawley rats (n = 69) were developed and studied: 1) control rats, i.e. control mothers rearing control pups; 2) intrauterine calorically and growth-restricted rats, i.e. 50% prenatal calorically restricted pups cross-fostered to control mothers; 3) postnatal calorically and growth-restricted rats, i.e. 50% calorically restricted mothers rearing pups born to control mothers; and 4) prenatal and postnatal calorically and growth restricted rats, i.e. 50% calorically restricted mothers rearing intrauterine 50% calorically restricted pups. Intrauterine growth restriction resulted in approximately 45% reduction of postnatal β-cell fractional area and mass characterized by reduced rate of β-cell replication and decreased evidence of neogenesis. In contrast, β-cell fractional area and weight-adjusted β-cell mass in postnatal growth restriction was approximately 30% higher than in control rats. Rats exposed to both intrauterine and postnatal caloric and growth restriction demonstrated approximately 80% decrease in β-cell mass, reduction in β-cell replication, and decreased evidence of neogenesis compared with control. Neither intrauterine nor postnatal caloric restriction significantly affected the rate of β-cell apoptosis. These data support the hypothesis that intrauterine maldevelopment of β-cell mass may predict the increased risk of type 2 diabetes in adult life.
Collapse
Affiliation(s)
- Aleksey V Matveyenko
- Larry L. Hillblom Islet Research Center, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
There are many instances in life when the environment plays a critical role in the health outcomes of an individual, yet none more so than those experienced in fetal and neonatal life. One of the most detrimental environmental problems encountered during this critical growth period are changes in nutrition to the growing fetus and newborn. Disturbances in the supply of nutrients and oxygen to the fetus can not only lead to adverse fetal growth patterns, but they have also been associated with the development of features of metabolic syndrome in adult life. This fetal response has been termed developmental programming or the developmental origins of health and disease. The present review focuses on the epidemiological studies that identified this association and the importance that animal models have played in studying this concept. We also address the potential mechanisms that may underpin the developmental programming of future disease. It also highlights (i) how developmental plasticity, although beneficial for short-term survival, can subsequently programme glucose intolerance and insulin resistance in adult life by eliciting changes in key organ structures and the epigenome, and (ii) how aberrant mitochondrial function can potentially lead to the development of Type 2 diabetes and other features of metabolic syndrome.
Collapse
Affiliation(s)
- Matthew J Warner
- Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | | |
Collapse
|
29
|
Oak S, Tran C, Castillo MO, Thamotharan S, Thamotharan M, Devaskar SU. Peroxisome proliferator-activated receptor-gamma agonist improves skeletal muscle insulin signaling in the pregestational intrauterine growth-restricted rat offspring. Am J Physiol Endocrinol Metab 2009; 297:E514-24. [PMID: 19491300 PMCID: PMC2724105 DOI: 10.1152/ajpendo.00008.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effect of early intervention with a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist on skeletal muscle GLUT4 translocation and insulin signaling was examined in intrauterine (IUGR) and postnatal (PNGR) growth-restricted pregestational female rat offspring. Rosiglitazone [11 mumol/day provided from postnatal day (PN)21 to PN60] improved skeletal muscle insulin sensitivity and GLUT4 translocation in prenatal nutrient restriction [50% calories from embryonic day (e)11 to e21; IUGR] with (IUGR+PNGR) and without (IUGR) postnatal nutrient restriction (50% calories from PN1 to PN21; PNGR) similar to that of control (ad libitum feeds throughout; Con) (n = 6 each). This was accomplished by diminished basal and improved insulin-responsive GLUT4 association with the plasma membrane in IUGR, IUGR+PNGR, and PNGR mimicking that in Con (P < 0.005). While no change in p85-phosphatidylinositol 3-kinase (PI3-K) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was observed, a decrease in protein tyrosine phosphatase 1B (PTP1B; P < 0.0002) and SH2-containing protein tyrosine phosphatase 2 (SHP2; P < 0.05) contributing to the rosiglitazone-induced insulin sensitivity was seen only in IUGR+PNGR. In contrast, an increase in phosphorylated 5'-adenosine monophosphate kinase (pAMPK; P < 0.04) and insulin responsiveness of phosphorylated phosphoinositide-dependent protein kinase-1 (pPDK1; P < 0.05), pAkt (P < 0.01), and particularly pPKCzeta (P < 0.0001) and its corresponding enzyme activity (P < 0.005) were observed in all four experimental groups. We conclude that early introduction of PPARgamma agonist improved skeletal muscle activation of AMPK and insulin signaling, resulting in insulin-independent AMPK and insulin-responsive GLUT4 association with plasma membranes in IUGR, IUGR+PNGR, and PNGR adult offspring, similar to that of Con. These findings support a role for insulin sensitizers in preventing the subsequent development of gestational or type 2 diabetes mellitus in intrauterine and postnatal growth-restricted offspring.
Collapse
Affiliation(s)
- Shilpa Oak
- Department of Pediatrics, Division of Neonatology, Neonatal Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
30
|
Garg M, Thamotharan M, Oak SA, Pan G, Maclaren DC, Lee PWN, Devaskar SU. Early exercise regimen improves insulin sensitivity in the intrauterine growth-restricted adult female rat offspring. Am J Physiol Endocrinol Metab 2009; 296:E272-81. [PMID: 19001551 PMCID: PMC2645014 DOI: 10.1152/ajpendo.90473.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We examined the effect of early exercise training (Ex) on glucose kinetics, basal, and insulin-stimulated skeletal muscle (SKM) plasma membrane (PM) GLUT4 in pre- and/or postnatal nutrient-restricted adult rat offspring compared with sedentary (Sed) state. Pregestational control female (Ex CON vs. Sed CON) and offspring exposed to prenatal (Ex IUGR vs. Sed IUGR), postnatal (Ex PNGR vs. Sed PNGR), or pre- and postnatal (Ex IUGR + PNGR vs. Sed IUGR + PNGR) nutrient restriction were studied. The combined effect of exercise and pre/postnatal nutrition in the Ex IUGR demonstrated positive effects on basal and glucose-stimulated plasma insulin response (GSIR) with suppression of endogenous hepatic glucose production (HGP) compared with sedentary state. Ex PNGR was hyperglycemic after glucose challenge with no change in glucose-stimulated insulin production or HGP compared with sedentary state. Ex IUGR + PNGR remained glucose tolerant with unchanged glucose-stimulated insulin production but increased endogenous HGP compared with sedentary state. Basal SKM PM-associated GLUT4 was unchanged by exercise in all four groups. Whereas Ex PNGR and Ex IUGR + PNGR insulin responsiveness was similar to that of Ex CON, Ex IUGR remained nonresponsive to insulin. Early introduction of regular Ex in the pregestational female offspring had a positive effect on hepatic adaptation to GSIR and HGP in IUGR and IUGR + PNGR, with no effect in PNGR. Change in insulin responsiveness of SKM GLUT4 translocation was observed in exercised IUGR + PNGR and PNGR but not in exercised IUGR.
Collapse
Affiliation(s)
- Meena Garg
- Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1752, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Jensen CB, Martin-Gronert MS, Storgaard H, Madsbad S, Vaag A, Ozanne SE. Altered PI3-kinase/Akt signalling in skeletal muscle of young men with low birth weight. PLoS One 2008; 3:e3738. [PMID: 19011679 PMCID: PMC2580025 DOI: 10.1371/journal.pone.0003738] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 10/24/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Low birth weight (LBW) is associated with increased future risk of insulin resistance and type 2 diabetes mellitus. The underlying molecular mechanisms remain poorly understood. We have previously shown that young LBW men have reduced skeletal muscle expression of PI3K p85alpha regulatory subunit and p110beta catalytic subunit, PKCzeta and GLUT4 in the fasting state. The aim of this study was to determine whether insulin activation of the PI3K/Akt and MAPK signalling pathways is altered in skeletal muscle of young adult men with LBW. METHODS Vastus lateralis muscle biopsies were obtained from 20 healthy 19-yr old men with BW< or = 10th percentile for gestational age (LBW) and 20 normal birth weight controls (NBW), matched for physical fitness and whole-body glucose disposal, prior to (fasting state) and following a 4-hr hyperinsulinemic euglycemic clamp (insulin stimulated state). Expression and phosphorylation of selected proteins was determined by Western blotting. PRINCIPAL FINDINGS Insulin stimulated expression of aPKCzeta (p<0.001) and Akt1 (p<0.001) was decreased in muscle of LBW men when compared to insulin stimulated controls. LBW was associated with increased insulin stimulated levels of IRS1 (p<0.05), PI3K p85alpha (p<0.001) and p110beta (p<0.05) subunits, while there was no significant change in these proteins in insulin stimulated control muscle. In addition LBW had reduced insulin stimulated phospho-Akt (Ser 473) (p<0.01), indicative of reduced Akt signalling. Insulin stimulated expression/phosphorylation of all the MAPK proteins studied [p38 MAPK, phospho-p38 MAPK (Thr180/Tyr182), phospho-ERK (Thr 202/Tyr204), JNK1, JNK2 and phospho-JNK (Thr 183/Tyr185)] was not different between groups. CONCLUSIONS We conclude that altered insulin activation of the PI3K/Akt but not the MAPK pathway precedes and may contribute to development of whole-body insulin resistance and type 2 diabetes in men with LBW.
Collapse
Affiliation(s)
| | - Malgorzata S. Martin-Gronert
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
| | | | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Allan Vaag
- Steno Diabetes Center, Gentofte, Denmark
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
| |
Collapse
|
32
|
Germani D, Puglianiello A, Cianfarani S. Uteroplacental insufficiency down regulates insulin receptor and affects expression of key enzymes of long-chain fatty acid (LCFA) metabolism in skeletal muscle at birth. Cardiovasc Diabetol 2008; 7:14. [PMID: 18485240 PMCID: PMC2396605 DOI: 10.1186/1475-2840-7-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 05/18/2008] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Epidemiological studies have revealed a relationship between early growth restriction and the subsequent development of insulin resistance and type 2 diabetes. Ligation of the uterine arteries in rats mimics uteroplacental insufficiency and serves as a model of intrauterine growth restriction (IUGR) and subsequent developmental programming of impaired glucose tolerance, hyperinsulinemia and adiposity in the offspring. The objective of this study was to investigate the effects of uterine artery ligation on the skeletal muscle expression of insulin receptor and key enzymes of LCFA metabolism. METHODS Bilateral uterine artery ligation was performed on day 19 of gestation in Sprague-Dawley pregnant rats. Muscle of the posterior limb was dissected at birth and processed by real-time RT-PCR to analyze the expression of insulin receptor, ACCalpha, ACCbeta (acetyl-CoA carboxylase alpha and beta subunits), ACS (acyl-CoA synthase), AMPK (AMP-activated protein kinase, alpha2 catalytic subunit), CPT1B (carnitine palmitoyltransferase-1 beta subunit), MCD (malonyl-CoA decarboxylase) in 14 sham and 8 IUGR pups. Muscle tissue was treated with lysis buffer and Western immunoblotting was performed to assay the protein content of insulin receptor and ACC. RESULTS A significant down regulation of insulin receptor protein (p < 0.05) and reduced expression of ACS and ACCalpha mRNA (p < 0.05) were observed in skeletal muscle of IUGR newborns. Immunoblotting showed no significant change in ACCalpha content. CONCLUSION Our data suggest that uteroplacental insufficiency may affect skeletal muscle metabolism down regulating insulin receptor and reducing the expression of key enzymes involved in LCFA formation and oxidation.
Collapse
Affiliation(s)
- Daniela Germani
- Department of Public Health and Cell Biology, Tor Vergata University, 00133 Rome, Italy.
| | | | | |
Collapse
|
33
|
Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem 2008; 283:13611-26. [PMID: 18326493 PMCID: PMC2376250 DOI: 10.1074/jbc.m800128200] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/21/2008] [Indexed: 12/14/2022] Open
Abstract
We examined transcriptional and epigenetic mechanism(s) behind diminished skeletal muscle GLUT4 mRNA in intrauterine growth-restricted (IUGR) female rat offspring. An increase in MEF2D (inhibitor) with a decline in MEF2A (activator) and MyoD (co-activator) binding to the glut4 promoter in IUGR versus control was observed. The functional role of MEF2/MyoD-binding sites and neighboring three CpG clusters in glut4 gene transcription was confirmed in C2C12 muscle cells. No differential methylation of these three and other CpG clusters in the glut4 promoter occurred. DNA methyltransferase 1 (DNMT1) in postnatal, DNMT3a, and DNMT3b in adult was differentially recruited with increased MeCP2 (methyl CpG-binding protein) concentrations to bind the IUGR glut4 gene. Covalent modifications of the histone (H) code consisted of H3.K14 de-acetylation by recruitment of histone deacetylase (HDAC) 1 and enhanced association of HDAC4 enzymes. This set the stage for Suv39H1 methylase-mediated di-methylation of H3.K9 and increased recruitment of heterochromatin protein 1alpha, which partially inactivates postnatal and adult IUGR glut4 gene transcription. Further increased interactions in the adult IUGR between DNMT3a/DNMT3b and HDAC1 and MEF2D and HDAC1/HDAC4 and decreased association between MyoD and MEF2A existed. We conclude that epigenetic mechanisms consisting of histone code modifications repress skeletal muscle glut4 transcription in the postnatal period and persist in the adult female IUGR offspring.
Collapse
Affiliation(s)
- Nupur Raychaudhuri
- Division of Neonatology and Developmental Biology and the Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1752, USA
| | | | | | | |
Collapse
|
34
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Abstract
This review focuses on different animal models of nutrient perturbations, inclusive of restrictive and excessive states mimicking human situations during pregnancy and lactation that cause aberrations in the offspring. These aberrations consist of diminished insulin sensitivity in the presence of defective insulin production. These phenotypic changes are due to altered peripheral tissue post-insulin receptor signaling mechanisms and pancreatic beta-islet insulin synthesis and secretion defects. While these changes during in utero or postnatal life serve as essential adaptations to overcome adverse conditions, they become maladaptive subsequently and set the stage for type 2 diabetes mellitus. Pregnancy leads to gestational diabetes with trans-generational propagation of the insulin resistant phenotype. This is in response to the metabolically aberrant maternal in utero environment, and tissue specific epigenetic perturbations that permanently alter expression of critical genes transmitted to future generations. These heritable aberrations consisting of altered DNA methylation and histone modifications remodel chromatin and affect transcription of key genes. Along with an altered in utero environment, these chromatin modifications contribute to the world-wide epidemic of type 2 diabetes mellitus, with nutrient excess dominating in developed and nutrient restriction in developing countries.
Collapse
Affiliation(s)
- Sherin U Devaskar
- Division of Neonatology & Developmental Biology and the Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752, USA.
| | | |
Collapse
|
36
|
Thamotharan M, Garg M, Oak S, Rogers LM, Pan G, Sangiorgi F, Lee PWN, Devaskar SU. Transgenerational inheritance of the insulin-resistant phenotype in embryo-transferred intrauterine growth-restricted adult female rat offspring. Am J Physiol Endocrinol Metab 2007; 292:E1270-9. [PMID: 17213472 DOI: 10.1152/ajpendo.00462.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine mechanisms underlying the transgenerational presence of metabolic perturbations in the intrauterine growth-restricted second-generation adult females (F2 IUGR) despite normalizing the in utero metabolic environment, we examined in vivo glucose kinetics and in vitro skeletal muscle postinsulin receptor signaling after embryo transfer of first generation (F1 IUGR) to control maternal environment. Female F2 rats, procreated by F1 pre- and postnatally nutrient- and growth-restricted (IUGR) mothers but embryo transferred to gestate in control mothers, were compared with similarly gestating age- and sex-matched control (CON) F2 progeny. Although there were no differences in birth weight or postnatal growth patterns, the F2 IUGR had increased hepatic weight, fasting hyperglycemia, hyperinsulinemia, and unsuppressed hepatic glucose production, with no change in glucose futile cycling or clearance, compared with F2 CON. These hormonal and metabolic aberrations were associated with increased skeletal muscle total GLUT4 and pAkt concentrations but decreased plasma membrane-associated GLUT4, total pPKCzeta, and PKCzeta enzyme activity, with no change in total SHP2 and PTP1B concentrations in IUGR F2 compared with F2 CON. We conclude that transgenerational presence of aberrant glucose/insulin metabolism and skeletal muscle insulin signaling of the adult F2 IUGR female offspring is independent of the immediate intrauterine environment, supporting nutritionally induced heritable mechanisms contributing to the epidemic of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Manikkavasagar Thamotharan
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles
| | | | | | | | | | | | | | | |
Collapse
|