1
|
Chen X, Chen K, Hu J, Dong Y, Zheng M, Hu Q, Zhang W. Multiomics analysis reveals the potential of LPCAT1-PC axis as a therapeutic target for human intervertebral disc degeneration. Int J Biol Macromol 2024; 276:133779. [PMID: 38992527 DOI: 10.1016/j.ijbiomac.2024.133779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder that is associated with considerable morbidity. However, there is currently no drug available that has a definitive therapeutic effect on IDD. In this study, we aimed to identify the molecular features and potential therapeutic targets of IDD through a comprehensive multiomics profiling approach. By integrating transcriptomics, proteomics, and ultrastructural analyses, we discovered dysfunctions in various organelles, including mitochondria, the endoplasmic reticulum, the Golgi apparatus, and lysosomes. Metabolomics analysis revealed a reduction in total phosphatidylcholine (PC) content in IDD. Through integration of multiple omics techniques with disease phenotypes, a pivotal pathway regulated by the lysophosphatidylcholine acyltransferase 1 (LPCAT1)-PC axis was identified. LPCAT1 exhibited low expression levels and exhibited a positive correlation with PC content in IDD. Suppression of LPCAT1 resulted in inhibition of PC synthesis in nucleus pulposus cells, leading to a notable increase in nucleus pulposus cell senescence and damage to cellular organelles. Consequently, PC exhibits potential as a therapeutic agent, as it facilitates the repair of the biomembrane system and alleviates senescence in nucleus pulposus cells via reversal of downregulation of the LPCAT1-PC axis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jun Hu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yijun Dong
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Menglong Zheng
- Department of medical imaging, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qingsong Hu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Wenzhi Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
2
|
Gao H, Zhu J, Wu T, Long Q, Guan X, Chen Q, Yi W. Comprehensive pancancer analysis reveals that LPCAT1 is a novel predictive biomarker for prognosis and immunotherapy response. Apoptosis 2024:10.1007/s10495-024-02010-y. [PMID: 39097858 DOI: 10.1007/s10495-024-02010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is a crucial enzyme involved in phospholipid metabolism and is essential for maintaining the structure and functionality of biofilms. However, a comprehensive examination of the role of LPCAT1 across various cancer types is lacking. Multiple public databases have been utilized to examine LPCAT1 expression, genetic alterations, methylation, prognosis, biological function, and its relationship with antitumor immunity in different cancer types. The function of LPCAT1 in glioma, breast cancer and liver cancer cells was further verified using in vitro experiments. Our research indicated that LPCAT1 is upregulated in various cancers and is accompanied by a wide range of amplification mutations. Higher LPCAT1 expression was associated with poorer prognosis across multiple cancers. Further in vitro experiments demonstrated that interfering with LPCAT1 expression increased apoptosis in glioma, breast cancer and liver cancer cells and concurrently suppressed their proliferation and migration. Functional enrichment analysis revealed that LPCAT1-associated genes were primarily enriched in immune and cancer progression pathways, such as the JAK/STAT, MYC, and EMT, etc. Moreover, LPCAT1 expression was closely associated with immune cell infiltration and immune checkpoint-related gene expression. Interestingly, LPCAT1 expression levels were generally higher in patients in the immunotherapy response group. The combination of LPCAT1 and PDL1 serves as an effective predictor of immunotherapy response. In conclusion, LPCAT1 is involved in immune regulation and tumor progression and holds promise as a biomarker for predicting patient outcomes and immunotherapy efficacy.
Collapse
Affiliation(s)
- Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Tong Wu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Xinyu Guan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
3
|
Wang Y, Huang Y, Wang Y, Zhang W, Wang N, Bai R, Luo R, Tuo H, Zheng Y. LPCAT1 promotes melanoma cell proliferation via Akt signaling. Oncol Rep 2024; 51:67. [PMID: 38551165 PMCID: PMC10995661 DOI: 10.3892/or.2024.8726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 04/02/2024] Open
Abstract
Melanoma is the most lethal type of skin cancer with an increasing cutaneous cancer‑related mortality rate worldwide. Despite therapeutic advances in targeted therapy and immunotherapy, the overall survival of patients with melanoma remains unsatisfactory. Thus, a further understanding of the pathogenesis of melanoma may aid towards the development of therapeutic strategies. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is a key enzyme that converts lysophosphatidylcholine into phosphatidylcholine in lipid remodeling. In the present study, LPCAT1 was found to play a pro‑proliferative role in melanoma. Firstly, the expression of LPCAT1 was found to be upregulated in tissues from patients with melanoma compared with that in benign nevi. Subsequently, LPCAT1 knockdown was performed, utilizing short hairpin RNA, which induced melanoma cell cycle arrest at the G1/S transition and promoted cell death. Moreover, LPCAT1 facilitated melanoma cell growth in an Akt‑dependent manner. In summary, the results of the present study indicate that targeting LPCAT1 may impede cell proliferation by inhibiting Akt signaling, thus providing a promising therapeutic strategy for melanoma in clinical practice.
Collapse
Affiliation(s)
- Yuqian Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yingjian Huang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yan Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University School of Life Science and Technology, Xi'an, Shaanxi 710004, P.R. China
| | - Wen Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ruiting Luo
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huihui Tuo
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
4
|
Golubnitschaja O, Polivka J, Potuznik P, Pesta M, Stetkarova I, Mazurakova A, Lackova L, Kubatka P, Kropp M, Thumann G, Erb C, Fröhlich H, Wang W, Baban B, Kapalla M, Shapira N, Richter K, Karabatsiakis A, Smokovski I, Schmeel LC, Gkika E, Paul F, Parini P, Polivka J. The paradigm change from reactive medical services to 3PM in ischemic stroke: a holistic approach utilising tear fluid multi-omics, mitochondria as a vital biosensor and AI-based multi-professional data interpretation. EPMA J 2024; 15:1-23. [PMID: 38463624 PMCID: PMC10923756 DOI: 10.1007/s13167-024-00356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Worldwide stroke is the second leading cause of death and the third leading cause of death and disability combined. The estimated global economic burden by stroke is over US$891 billion per year. Within three decades (1990-2019), the incidence increased by 70%, deaths by 43%, prevalence by 102%, and DALYs by 143%. Of over 100 million people affected by stroke, about 76% are ischemic stroke (IS) patients recorded worldwide. Contextually, ischemic stroke moves into particular focus of multi-professional groups including researchers, healthcare industry, economists, and policy-makers. Risk factors of ischemic stroke demonstrate sufficient space for cost-effective prevention interventions in primary (suboptimal health) and secondary (clinically manifested collateral disorders contributing to stroke risks) care. These risks are interrelated. For example, sedentary lifestyle and toxic environment both cause mitochondrial stress, systemic low-grade inflammation and accelerated ageing; inflammageing is a low-grade inflammation associated with accelerated ageing and poor stroke outcomes. Stress overload, decreased mitochondrial bioenergetics and hypomagnesaemia are associated with systemic vasospasm and ischemic lesions in heart and brain of all age groups including teenagers. Imbalanced dietary patterns poor in folate but rich in red and processed meat, refined grains, and sugary beverages are associated with hyperhomocysteinaemia, systemic inflammation, small vessel disease, and increased IS risks. Ongoing 3PM research towards vulnerable groups in the population promoted by the European Association for Predictive, Preventive and Personalised Medicine (EPMA) demonstrates promising results for the holistic patient-friendly non-invasive approach utilising tear fluid-based health risk assessment, mitochondria as a vital biosensor and AI-based multi-professional data interpretation as reported here by the EPMA expert group. Collected data demonstrate that IS-relevant risks and corresponding molecular pathways are interrelated. For examples, there is an evident overlap between molecular patterns involved in IS and diabetic retinopathy as an early indicator of IS risk in diabetic patients. Just to exemplify some of them such as the 5-aminolevulinic acid/pathway, which are also characteristic for an altered mitophagy patterns, insomnia, stress regulation and modulation of microbiota-gut-brain crosstalk. Further, ceramides are considered mediators of oxidative stress and inflammation in cardiometabolic disease, negatively affecting mitochondrial respiratory chain function and fission/fusion activity, altered sleep-wake behaviour, vascular stiffness and remodelling. Xanthine/pathway regulation is involved in mitochondrial homeostasis and stress-driven anxiety-like behaviour as well as molecular mechanisms of arterial stiffness. In order to assess individual health risks, an application of machine learning (AI tool) is essential for an accurate data interpretation performed by the multiparametric analysis. Aspects presented in the paper include the needs of young populations and elderly, personalised risk assessment in primary and secondary care, cost-efficacy, application of innovative technologies and screening programmes, advanced education measures for professionals and general population-all are essential pillars for the paradigm change from reactive medical services to 3PM in the overall IS management promoted by the EPMA.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Jiri Polivka
- Department of Histology and Embryology, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Pavel Potuznik
- Department of Neurology, University Hospital Plzen and Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Ivana Stetkarova
- Department of Neurology, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Lackova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Carl Erb
- Private Institute of Applied Ophthalmology, Berlin, Germany
| | - Holger Fröhlich
- Artificial Intelligence & Data Science Group, Fraunhofer SCAI, Sankt Augustin, Germany
- Bonn-Aachen International Center for IT (B-It), University of Bonn, 53115 Bonn, Germany
| | - Wei Wang
- Edith Cowan University, Perth, Australia
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Babak Baban
- The Dental College of Georgia, Departments of Neurology and Surgery, The Medical College of Georgia, Augusta University, Augusta, USA
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Niva Shapira
- Department of Nutrition, School of Health Sciences, Ashkelon Academic College, Ashkelon, Israel
| | - Kneginja Richter
- CuraMed Tagesklinik Nürnberg GmbH, Nuremberg, Germany
- Technische Hochschule Nürnberg GSO, Nuremberg, Germany
- University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Alexander Karabatsiakis
- Department of Psychology, Clinical Psychology II, University of Innsbruck, Innsbruck, Austria
| | - Ivica Smokovski
- University Clinic of Endocrinology, Diabetes and Metabolic Disorders Skopje, University Goce Delcev, Faculty of Medical Sciences, Stip, North Macedonia
| | - Leonard Christopher Schmeel
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | | | - Paolo Parini
- Cardio Metabolic Unit, Department of Medicine Huddinge, and Department of Laboratory Medicine, Karolinska Institutet, and Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Polivka
- Department of Neurology, University Hospital Plzen and Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Gao J, Tao L, Jiang Z. Alleviate oxidative stress in diabetic retinopathy: antioxidant therapeutic strategies. Redox Rep 2023; 28:2272386. [PMID: 38041593 PMCID: PMC11001280 DOI: 10.1080/13510002.2023.2272386] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES This review outlines the function of oxidative stress in DR and discusses therapeutic strategies to treat DR with antioxidants. METHODS Published papers on oxidative stress in DR and therapeutic strategies to treat DR with antioxidants were collected and reviewed via database searching on PubMed. RESULTS The abnormal development of DR is a complicated process. The pathogenesis of DR has been reported to involve oxidative stress, despite the fact that the mechanisms underlying this are still not fully understood. Excessive reactive oxygen species (ROS) accumulation can damage retina, eventually leading to DR. Increasing evidence have demonstrated that antioxidant therapy can alleviate the degeneration of retinal capillaries in DR. CONCLUSION Oxidative stress can play an important contributor in the pathogenesis of DR. Furthermore, animal experiments have shown that antioxidants are a beneficial therapy for treating DR, but more clinical trial data is needed.
Collapse
Affiliation(s)
- Jie Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
6
|
Fang J, Wang H, Niu T, Shi X, Xing X, Qu Y, Liu Y, Liu X, Xiao Y, Dou T, Shen Y, Liu K. Integration of Vitreous Lipidomics and Metabolomics for Comprehensive Understanding of the Pathogenesis of Proliferative Diabetic Retinopathy. J Proteome Res 2023. [PMID: 37329324 DOI: 10.1021/acs.jproteome.3c00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
As a vision-threatening complication of diabetes mellitus (DM), proliferative diabetic retinopathy (PDR) is associated with sustained metabolic disorders. Herein, we collected the vitreous cavity fluid of 49 patients with PDR and 23 control subjects without DM for metabolomics and lipidomics analyses. Multivariate statistical methods were performed to explore relationships between samples. For each group of metabolites, gene set variation analysis scores were generated, and we constructed a lipid network by using weighted gene co-expression network analysis. The association between lipid co-expression modules and metabolite set scores was investigated using the two-way orthogonal partial least squares (O2PLS) model. A total of 390 lipids and 314 metabolites were identified. Multivariate statistical analysis revealed significant vitreous metabolic and lipid differences between PDR and controls. Pathway analysis showed that 8 metabolic processes might be associated with the development of PDR, and 14 lipid species were found to be altered in PDR patients. Combining metabolomics and lipidomics, we identified fatty acid desaturase 2 (FADS2) as an important potential contributor to the pathogenesis of PDR. Collectively, this study integrates vitreous metabolomics and lipidomics to comprehensively unravel metabolic dysregulation and identifies genetic variants associated with altered lipid species in the mechanistic pathways for PDR.
Collapse
Affiliation(s)
- Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yuan Qu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yujuan Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xinyi Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yu Xiao
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Tianyu Dou
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yinchen Shen
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| |
Collapse
|
7
|
Chen ZX, Liang L, Huang HQ, Li JD, He RQ, Huang ZG, Song R, Chen G, Li JJ, Cai ZW, Huang JA. LPCAT1 enhances the invasion and migration in gastric cancer: Based on computational biology methods and in vitro experiments. Cancer Med 2023. [PMID: 37184260 DOI: 10.1002/cam4.5991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND AND AIM The biological functions and clinical implications of lysophosphatidylcholine acyltransferase 1 (LPCAT1) remain unclarified in gastric cancer (GC). The aim of the current study was to explore the possible clinicopathological significance of LPCAT1 and its perspective mechanism in GC tissues. MATERIALS AND METHODS The protein expression and mRNA levels of LPCAT1 were detected from in-house immunohistochemistry and public high-throughput RNA arrays and RNA sequencing. To have a comprehensive understanding of the clinical value of LPCAT1 in GC, all enrolled data were integrated to calculate the expression difference and standard mean difference (SMD). The biological mechanism of LPCAT1 in GC was confirmed by computational biology and in vitro experiments. Migration and invasion assays were also conducted to confirm the effect of LPCAT1 in GC. RESULTS Both protein and mRNA expression levels of LPCAT1 in GC were remarkably higher than those in noncancerous controls. Comprehensively, the SMD of LPCAT1 mRNA was 1.11 (95% CI = 0.86-1.36) in GC, and the summarized AUC was 0.85 based on 15 datasets containing 1727 cases of GC and 940 cases of non-GC controls. Moreover, LPCAT1 could accelerate the invasion and migration of GC by boosting the neutrophil degranulation pathway and disturbing the immune microenvironment. CONCLUSION An increased level of LPCAT1 may promote the progression of GC.
Collapse
Affiliation(s)
- Zu-Xuan Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - He-Qing Huang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Rui Song
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jian-Jun Li
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zheng-Wen Cai
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jie-An Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
8
|
Kropp M, De Clerck E, Vo TTKS, Thumann G, Costigliola V, Golubnitschaja O. Short communication: unique metabolic signature of proliferative retinopathy in the tear fluid of diabetic patients with comorbidities - preliminary data for PPPM validation. EPMA J 2023; 14:43-51. [PMID: 36845280 PMCID: PMC9944425 DOI: 10.1007/s13167-023-00318-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Type 2 diabetes (T2DM) defined as the adult-onset type that is primarily not insulin-dependent, comprises over 95% of all diabetes mellitus (DM) cases. According to global records, 537 million adults aged 20-79 years are affected by DM that means at least 1 out of 15 persons. This number is projected to grow by 51% by the year 2045. One of the most common complications of T2DM is diabetic retinopathy (DR) with an overall prevalence over 30%. The total number of the DR-related visual impairments is on the rise, due to the growing T2DM population. Proliferative diabetic retinopathy (PDR) is the progressing DR and leading cause of preventable blindness in working-age adults. Moreover, PDR with characteristic systemic attributes including mitochondrial impairment, increased cell death and chronic inflammation, is an independent predictor of the cascading DM-complications such as ischemic stroke. Therefore, early DR is a reliable predictor appearing upstream of this "domino effect". Global screening, leading to timely identification of DM-related complications, is insufficiently implemented by currently applied reactive medicine. A personalised predictive approach and cost-effective targeted prevention shortly - predictive, preventive and personalised medicine (PPPM / 3PM) could make a good use of the accumulated knowledge, preventing blindness and other severe DM complications. In order to reach this goal, reliable stage- and disease-specific biomarker panels are needed characterised by an easy way of the sample collection, high sensitivity and specificity of analyses. In the current study, we tested the hypothesis that non-invasively collected tear fluid is a robust source for the analysis of ocular and systemic (DM-related complications) biomarker patterns suitable for differential diagnosis of stable DR versus PDR. Here, we report the first results of the comprehensive ongoing study, in which we correlate individualised patient profiles (healthy controls versus patients with stable D as well as patients with PDR with and without co-morbidities) with their metabolic profiles in the tear fluid. Comparative mass spectrometric analysis performed has identified following metabolic clusters which are differentially expressed in the groups of comparison: acylcarnitines, amino acid & related compounds, bile acids, ceramides, lysophosphatidyl-choline, nucleobases & related compounds, phosphatidyl-cholines, triglycerides, cholesterol esters, and fatty acids. Our preliminary data strongly support potential clinical utility of metabolic patterns in the tear fluid indicating a unique metabolic signature characteristic for the DR stages and PDR progression. This pilot study creates a platform for validating the tear fluid biomarker patterns to stratify T2DM-patients predisposed to the PDR. Moreover, since PDR is an independent predictor of severe T2DM-related complications such as ischemic stroke, our international project aims to create an analytical prototype for the "diagnostic tree" (yes/no) applicable to healthrisk assessment in diabetes care.
Collapse
Affiliation(s)
- Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Eline De Clerck
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Trong-Tin Kevin Steve Vo
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | | | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
9
|
Sharif NA. PAF-induced inflammatory and immuno-allergic ophthalmic diseases and their mitigation with PAF receptor antagonists: Cell and nuclear effects. Biofactors 2022; 48:1226-1249. [PMID: 35594054 PMCID: PMC10084252 DOI: 10.1002/biof.1848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023]
Abstract
Ocular allergies are becoming more prevalent as more airborne pollutants, irritants and microbes pervade our environment. Inflammatory and allergic mediators released by dendritic and mast cells within the conjunctiva cause allergic conjunctivitis (AC), a prevalent ocular surface disorder that affects >40% of the world's human population on a seasonal or perennial basis. Even though histamine is a major culprit, platelet-activating factor (PAF) also contributes to AC, acting either directly or synergistically with histamine and other mediators. PAF receptor-meditated inflammatory reactions, via cell-membrane-bound and nuclear-membrane-bound and nuclear PAF receptors, are also implicated in the etiology of other eye diseases such as uveitis, diabetic retinopathy, corneal and choroidal neovascularization, and age-related macular degeneration which cause serious visual impairment and can lead to blindness. This review highlights the various deleterious elements implicated in the pathological aspects of ocular allergic reactions and inflammation and provides concepts and treatment options to mitigate these eye disorders with a special focus on PAF and PAF receptor antagonists.
Collapse
Affiliation(s)
- Najam A Sharif
- Singapore Eye Research Institute (SERI), Singapore, Singapore
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
- Department of Surgery & Cancer, Imperial College of Science and Technology, London, UK
- Duke-National University of Singapore Medical School, SingHealth, Singapore, Singapore
| |
Collapse
|
10
|
Afshinnia F, Reynolds EL, Rajendiran TM, Soni T, Byun J, Savelieff MG, Looker HC, Nelson RG, Michailidis G, Callaghan BC, Pennathur S, Feldman EL. Serum lipidomic determinants of human diabetic neuropathy in type 2 diabetes. Ann Clin Transl Neurol 2022; 9:1392-1404. [PMID: 35923113 PMCID: PMC9463947 DOI: 10.1002/acn3.51639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The serum lipidomic profile associated with neuropathy in type 2 diabetes is not well understood. Obesity and dyslipidemia are known neuropathy risk factors, suggesting lipid profiles early during type 2 diabetes may identify individuals who develop neuropathy later in the disease course. This retrospective cohort study examined lipidomic profiles 10 years prior to type 2 diabetic neuropathy assessment. METHODS Participants comprised members of the Gila River Indian community with type 2 diabetes (n = 69) with available stored serum samples and neuropathy assessment 10 years later using the combined Michigan Neuropathy Screening Instrument (MNSI) examination and questionnaire scores. A combined MNSI index was calculated from examination and questionnaire scores. Serum lipids (435 species from 18 classes) were quantified by mass spectrometry. RESULTS The cohort included 17 males and 52 females with a mean age of 45 years (SD = 9 years). Participants were stratified as with (high MNSI index score > 2.5407) versus without neuropathy (low MNSI index score ≤ 2.5407). Significantly decreased medium-chain acylcarnitines and increased total free fatty acids, independent of chain length and saturation, in serum at baseline associated with incident peripheral neuropathy at follow-up, that is, participants had high MNSI index scores, independent of covariates. Participants with neuropathy also had decreased phosphatidylcholines and increased lysophosphatidylcholines at baseline, independent of chain length and saturation. The abundance of other lipid classes did not differ significantly by neuropathy status. INTERPRETATION Abundance differences in circulating acylcarnitines, free fatty acids, phosphatidylcholines, and lysophosphatidylcholines 10 years prior to neuropathy assessment are associated with neuropathy status in type 2 diabetes.
Collapse
Affiliation(s)
- Farsad Afshinnia
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
| | - Evan L. Reynolds
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA,Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Thekkelnaycke M. Rajendiran
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA,Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tanu Soni
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA
| | - Jaeman Byun
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Helen C. Looker
- Chronic Kidney Disease SectionNational Institute of Diabetes and Digestive and Kidney DiseasesPhoenixArizonaUSA
| | - Robert G. Nelson
- Chronic Kidney Disease SectionNational Institute of Diabetes and Digestive and Kidney DiseasesPhoenixArizonaUSA
| | - George Michailidis
- Department of Statistics and the Informatics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Brian C. Callaghan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA,Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Subramaniam Pennathur
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA,University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA,Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA,Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
11
|
Christiansen C, Tomlinson M, Eliot M, Nilsson E, Costeira R, Xia Y, Villicaña S, Mompeo O, Wells P, Castillo-Fernandez J, Potier L, Vohl MC, Tchernof A, Moustafa JES, Menni C, Steves CJ, Kelsey K, Ling C, Grundberg E, Small KS, Bell JT. Adipose methylome integrative-omic analyses reveal genetic and dietary metabolic health drivers and insulin resistance classifiers. Genome Med 2022; 14:75. [PMID: 35843982 PMCID: PMC9290282 DOI: 10.1186/s13073-022-01077-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND There is considerable evidence for the importance of the DNA methylome in metabolic health, for example, a robust methylation signature has been associated with body mass index (BMI). However, visceral fat (VF) mass accumulation is a greater risk factor for metabolic disease than BMI alone. In this study, we dissect the subcutaneous adipose tissue (SAT) methylome signature relevant to metabolic health by focusing on VF as the major risk factor of metabolic disease. We integrate results with genetic, blood methylation, SAT gene expression, blood metabolomic, dietary intake and metabolic phenotype data to assess and quantify genetic and environmental drivers of the identified signals, as well as their potential functional roles. METHODS Epigenome-wide association analyses were carried out to determine visceral fat mass-associated differentially methylated positions (VF-DMPs) in SAT samples from 538 TwinsUK participants. Validation and replication were performed in 333 individuals from 3 independent cohorts. To assess functional impacts of the VF-DMPs, the association between VF and gene expression was determined at the genes annotated to the VF-DMPs and an association analysis was carried out to determine whether methylation at the VF-DMPs is associated with gene expression. Further epigenetic analyses were carried out to compare methylation levels at the VF-DMPs as the response variables and a range of different metabolic health phenotypes including android:gynoid fat ratio (AGR), lipids, blood metabolomic profiles, insulin resistance, T2D and dietary intake variables. The results from all analyses were integrated to identify signals that exhibit altered SAT function and have strong relevance to metabolic health. RESULTS We identified 1181 CpG positions in 788 genes to be differentially methylated with VF (VF-DMPs) with significant enrichment in the insulin signalling pathway. Follow-up cross-omic analysis of VF-DMPs integrating genetics, gene expression, metabolomics, diet, and metabolic traits highlighted VF-DMPs located in 9 genes with strong relevance to metabolic disease mechanisms, with replication of signals in FASN, SREBF1, TAGLN2, PC and CFAP410. PC methylation showed evidence for mediating effects of diet on VF. FASN DNA methylation exhibited putative causal effects on VF that were also strongly associated with insulin resistance and methylation levels in FASN better classified insulin resistance (AUC=0.91) than BMI or VF alone. CONCLUSIONS Our findings help characterise the adiposity-associated methylation signature of SAT, with insights for metabolic disease risk.
Collapse
Affiliation(s)
- Colette Christiansen
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| | - Max Tomlinson
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Medical & Molecular Genetics, King's College London, London, UK
| | - Melissa Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, R.I., USA
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Yujing Xia
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sergio Villicaña
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Olatz Mompeo
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Philippa Wells
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Louis Potier
- Diabetology Department, Bichat Hospital, AP-HP, Université de Paris, Paris, France
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
| | - Andre Tchernof
- Québec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| | | | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Karl Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, R.I., USA
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
12
|
Lysophosphatidylcholine Offsets the Protective Effects of Bone Marrow Mesenchymal Stem Cells on Inflammatory Response and Oxidative Stress Injury of Retinal Endothelial Cells via TLR4/NF- κB Signaling. J Immunol Res 2021; 2021:2389029. [PMID: 34692851 PMCID: PMC8531799 DOI: 10.1155/2021/2389029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR), as a major cause of blindness worldwide, is one common complication of diabetes mellitus. Inflammatory response and oxidative stress injury of endothelial cells play significant roles in the pathogenesis of DR. The study is aimed at investigating the effects of lysophosphatidylcholine (LPC) on the dysfunction of high glucose- (HG-) treated human retinal microvascular endothelial cells (HRMECs) after being cocultured with bone marrow mesenchymal stem cells (BMSCs) and the underlying regulatory mechanism. Coculture of BMSCs and HRMECs was performed in transwell chambers. The activities of antioxidant-related enzymes and molecules of oxidative stress injury and the contents of inflammatory cytokines were measured by ELISA. Flow cytometry analyzed the apoptosis of treated HRMECs. HRMECs were further treated with 10-50 μg/ml LPC to investigate the effect of LPC on the dysfunction of HRMECs. Western blotting was conducted to evaluate levels of TLR4 and p-NF-κB proteins. We found that BMSCs alleviated HG-induced inflammatory response and oxidative stress injury of HRMECs. Importantly, LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs. Furthermore, LPC upregulated the protein levels of TLR4 and p-NF-κB, activating the TLR4/NF-κB signaling pathway. Overall, our study demonstrated that LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs via TLR4/NF-κB signaling.
Collapse
|
13
|
Tao M, Luo J, Gu T, Yu X, Song Z, Jun Y, Gu H, Han K, Huang X, Yu W, Sun S, Zhang Z, Liu L, Chen X, Zhang L, Luo C, Wang Q. LPCAT1 reprogramming cholesterol metabolism promotes the progression of esophageal squamous cell carcinoma. Cell Death Dis 2021; 12:845. [PMID: 34518524 PMCID: PMC8438019 DOI: 10.1038/s41419-021-04132-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022]
Abstract
Tumor cells require high levels of cholesterol for membrane biogenesis for rapid proliferation during development. Beyond the acquired cholesterol from low-density lipoprotein (LDL) taken up from circulation, tumor cells can also biosynthesize cholesterol. The molecular mechanism underlying cholesterol anabolism in esophageal squamous cell carcinoma (ESCC) and its effect on patient prognosis are unclear. Dysregulation of lipid metabolism is common in cancer. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been implicated in various cancer types; however, its role in esophageal squamous cell carcinoma (ESCC) remains unclear. In this study, we identified that LPCAT1 is highly expressed in ESCC and that LPCAT1 reprograms cholesterol metabolism in ESCC. LPCAT1 expression was negatively correlated with patient prognosis. Cholesterol synthesis in ESCC cells was significantly inhibited following LPCAT1 knockdown; cell proliferation, invasion, and migration were significantly reduced, along with the growth of xenograft subcutaneous tumors. LPCAT1 could regulate the expression of the cholesterol synthesis enzyme, SQLE, by promoting the activation of PI3K, thereby regulating the entry of SP1/SREBPF2 into the nucleus. LPCAT1 also activates EGFR leading to the downregulation of INSIG-1 expression, facilitating the entry of SREBP-1 into the nucleus to promote cholesterol synthesis. Taken together, LPCAT1 reprograms tumor cell cholesterol metabolism in ESCC and can be used as a potential treatment target against ESCC.
Collapse
Affiliation(s)
- Mingyue Tao
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huaian, P.R. China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430000, Wuhan, China
| | - Tong Gu
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huaian, P.R. China
| | - Xiaojuan Yu
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huaian, P.R. China
| | - Zhen Song
- Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Institute of Computer Science, Frankfurt am Main, Germany
| | - Yali Jun
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Hao Gu
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Kairong Han
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Xiujuan Huang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Weiyong Yu
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huaian, P.R. China
| | - Su'an Sun
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Zhengwei Zhang
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Lu Liu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China
| | - Xiaofei Chen
- Department of Clinical Oncology, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huaian, P.R. China
| | - Li Zhang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
- Biological Sample Bank of Esophageal Cancer, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
| | - Chao Luo
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
- Biological Sample Bank of Esophageal Cancer, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
| | - Qilong Wang
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
- Biological Sample Bank of Esophageal Cancer, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, 223300, Huai'an, China.
| |
Collapse
|
14
|
Hammoudeh SM, Hammoudeh AM, Bhamidimarri PM, Al Safar H, Mahboub B, Künstner A, Busch H, Halwani R, Hamid Q, Rahmani M, Hamoudi R. Systems Immunology Analysis Reveals the Contribution of Pulmonary and Extrapulmonary Tissues to the Immunopathogenesis of Severe COVID-19 Patients. Front Immunol 2021; 12:595150. [PMID: 34262555 PMCID: PMC8273737 DOI: 10.3389/fimmu.2021.595150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
As one of the current global health conundrums, COVID-19 pandemic caused a dramatic increase of cases exceeding 79 million and 1.7 million deaths worldwide. Severe presentation of COVID-19 is characterized by cytokine storm and chronic inflammation resulting in multi-organ dysfunction. Currently, it is unclear whether extrapulmonary tissues contribute to the cytokine storm mediated-disease exacerbation. In this study, we applied systems immunology analysis to investigate the immunomodulatory effects of SARS-CoV-2 infection in lung, liver, kidney, and heart tissues and the potential contribution of these tissues to cytokines production. Notably, genes associated with neutrophil-mediated immune response (e.g. CXCL1) were particularly upregulated in lung, whereas genes associated with eosinophil-mediated immune response (e.g. CCL11) were particularly upregulated in heart tissue. In contrast, immune responses mediated by monocytes, dendritic cells, T-cells and B-cells were almost similarly dysregulated in all tissue types. Focused analysis of 14 cytokines classically upregulated in COVID-19 patients revealed that only some of these cytokines are dysregulated in lung tissue, whereas the other cytokines are upregulated in extrapulmonary tissues (e.g. IL6 and IL2RA). Investigations of potential mechanisms by which SARS-CoV-2 modulates the immune response and cytokine production revealed a marked dysregulation of NF-κB signaling particularly CBM complex and the NF-κB inhibitor BCL3. Moreover, overexpression of mucin family genes (e.g. MUC3A, MUC4, MUC5B, MUC16, and MUC17) and HSP90AB1 suggest that the exacerbated inflammation activated pulmonary and extrapulmonary tissues remodeling. In addition, we identified multiple sets of immune response associated genes upregulated in a tissue-specific manner (DCLRE1C, CHI3L1, and PARP14 in lung; APOA4, NFASC, WIPF3, and CD34 in liver; LILRA5, ISG20, S100A12, and HLX in kidney; and ASS1 and PTPN1 in heart). Altogether, these findings suggest that the cytokines storm triggered by SARS-CoV-2 infection is potentially the result of dysregulated cytokine production by inflamed pulmonary and extrapulmonary (e.g. liver, kidney, and heart) tissues.
Collapse
Affiliation(s)
- Sarah Musa Hammoudeh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany
| | - Arabella Musa Hammoudeh
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- General Surgery Department, Tawam Hospital, SEHA, Al Ain, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Bassam Mahboub
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Respiratory Medicine, Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - Axel Künstner
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany
| | - Hauke Busch
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Luebeck, Germany
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Mohamed Rahmani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
15
|
Penrose HM, Iftikhar R, Collins ME, Toraih E, Ruiz E, Ungerleider N, Nakhoul H, Flemington EF, Kandil E, Shah SB, Savkovic SD. Ulcerative colitis immune cell landscapes and differentially expressed gene signatures determine novel regulators and predict clinical response to biologic therapy. Sci Rep 2021; 11:9010. [PMID: 33907256 PMCID: PMC8079702 DOI: 10.1038/s41598-021-88489-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/08/2021] [Indexed: 12/27/2022] Open
Abstract
The heterogeneous pathobiology underlying Ulcerative Colitis (UC) is not fully understood. Using publicly available transcriptomes from adult UC patients, we identified the immune cell landscape, molecular pathways, and differentially expressed genes (DEGs) across patient cohorts and their association with treatment outcomes. The global immune cell landscape of UC tissue included increased neutrophils, T CD4 memory activated cells, active dendritic cells (DC), and M0 macrophages, as well as reduced trends in T CD8, Tregs, B memory, resting DC, and M2 macrophages. Pathway analysis of DEGs across UC cohorts demonstrated activated bacterial, inflammatory, growth, and cellular signaling. We identified a specific transcriptional signature of one hundred DEGs (UC100) that distinctly separated UC inflamed from uninflamed transcriptomes. Several UC100 DEGs, with unidentified roles in UC, were validated in primary tissue. Additionally, non-responders to anti-TNFα and anti-α4β7 therapy displayed distinct profiles of immune cells and pathways pertaining to inflammation, growth, and metabolism. We identified twenty resistant DEGs in UC non-responders to both therapies of which four had significant predictive power to treatment outcome. We demonstrated the global immune landscape and pathways in UC tissue, highlighting a unique UC signature across cohorts and a UC resistant signature with predictive performance to biologic therapy outcome.
Collapse
Affiliation(s)
- Harrison M Penrose
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Rida Iftikhar
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Morgan E Collins
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Eman Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Emmanuelle Ruiz
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Hani Nakhoul
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Erik F Flemington
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, New Orleans, LA, 70112, USA
| | - Shamita B Shah
- Division of Gastroenterology, Ochsner Clinic Foundation, New Orleans, LA, 70121, USA
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University, 1430 Tulane Ave SL-79, New Orleans, LA, 70112, USA.
| |
Collapse
|
16
|
Dalmaso B, da Silva-Junior IA, Fragel-Madeira L, Jancar S, Del Debbio CB. Platelet activating factor in the eye: Physiological roles, diseases and future perspectives. Prostaglandins Other Lipid Mediat 2021; 153:106522. [PMID: 33358892 DOI: 10.1016/j.prostaglandins.2020.106522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 01/09/2023]
Abstract
Platelet Activating Factor (PAF) is a known phospholipid mediator of inflammation. Since its first description in 1972, it has emerged as a key regulator of vital cellular signaling functions, as proliferation, cell adhesion, and apoptosis. Evidence suggests that interactions between PAF and its receptor (PAFR) play a critical role in nervous system tissues, including the retina. The retina is a very important constituent of the visual system, along with the cornea, sclera, choroid, iris, and ciliary body, that acts synergistically to provide vision and to maintain optical homeostasis. There is evidence that PAF may regulate a wide range of physiological functions in the visual system tissues, such as eye development, inflammation, epithelial wound healing, and synapsis. Due to their multiple functions, PAF and PAFR also have important pathological and clinical implications in ocular disorders such as Choroidal Neovascularization (CNV), Age Macular Degeneration, (AMD), Diabetic Retinopathy (DR), transplant responses, and pharmacological interactions. Studies with PAFR antagonists have shown promising results such as inhibition of neovascularization and chloroquine-induced retinopathies, as well as reducing inflammation and retinal cell death. Due to the importance of PAFR signaling in the visual system and ophthalmology research, this review aims to provide a general overview of current and future perspectives about PAF in eye biology.
Collapse
Affiliation(s)
- Barbara Dalmaso
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil
| | | | - Lucianne Fragel-Madeira
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Sonia Jancar
- Department of Immunology, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil
| | - Carolina Beltrame Del Debbio
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
Evans LW, Stratton MS, Ferguson BS. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat Prod Rep 2020; 37:653-676. [PMID: 31993614 PMCID: PMC7577396 DOI: 10.1039/c9np00057g] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020Chronic, low-grade inflammation is linked to aging and has been termed "inflammaging". Inflammaging is considered a key contributor to the development of metabolic dysfunction and a broad spectrum of diseases or disorders including declines in brain and heart function. Genome-wide association studies (GWAS) coupled with epigenome-wide association studies (EWAS) have shown the importance of diet in the development of chronic and age-related diseases. Moreover, dietary interventions e.g. caloric restriction can attenuate inflammation to delay and/or prevent these diseases. Common themes in these studies entail the use of phytochemicals (plant-derived compounds) or the production of short chain fatty acids (SCFAs) as epigenetic modifiers of DNA and histone proteins. Epigenetic modifications are dynamically regulated and as such, serve as potential therapeutic targets for the treatment or prevention of age-related disease. In this review, we will focus on the role for natural products that include phytochemicals and short chain fatty acids (SCFAs) as regulators of these epigenetic adaptations. Specifically, we discuss regulators of methylation, acetylation and acylation, in the protection from chronic inflammation driven metabolic dysfunction and deterioration of neurocognitive and cardiac function.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
18
|
Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 2020; 247:117443. [DOI: 10.1016/j.lfs.2020.117443] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
|
19
|
Valentine WJ, Hashidate-Yoshida T, Yamamoto S, Shindou H. Biosynthetic Enzymes of Membrane Glycerophospholipid Diversity as Therapeutic Targets for Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:5-27. [PMID: 32894505 DOI: 10.1007/978-3-030-50621-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biophysical properties of membranes are dependent on their glycerophospholipid compositions. Lysophospholipid acyltransferases (LPLATs) selectively incorporate fatty chains into lysophospholipids to affect the fatty acid composition of membrane glycerophospholipids. Lysophosphatidic acid acyltransferases (LPAATs) of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family incorporate fatty chains into phosphatidic acid during the de novo glycerophospholipid synthesis in the Kennedy pathway. Other LPLATs of both the AGPAT and the membrane bound O-acyltransferase (MBOAT) families further modify the fatty chain compositions of membrane glycerophospholipids in the remodeling pathway known as the Lands' cycle. The LPLATs functioning in these pathways possess unique characteristics in terms of their biochemical activities, regulation of expressions, and functions in various biological contexts. Essential physiological functions for LPLATs have been revealed in studies using gene-deficient mice, and important roles for several enzymes are also indicated in human diseases where their mutation or dysregulation causes or contributes to the pathological condition. Now several LPLATs are emerging as attractive therapeutic targets, and further understanding of the mechanisms underlying their physiological and pathological roles will aid in the development of novel therapies to treat several diseases that involve altered glycerophospholipid metabolism.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Molecular Therapy, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | - Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
20
|
Lebok P, von Hassel A, Meiners J, Hube-Magg C, Simon R, Höflmayer D, Hinsch A, Dum D, Fraune C, Göbel C, Möller K, Sauter G, Jacobsen F, Büscheck F, Prien K, Krech T, Krech RH, von der Assen A, Wölber L, Witzel I, Schmalfeldt B, Geist S, Paluchoswski P, Wilke C, Heilenkötter U, Terracciano L, Müller V, Wilczak W, Burandt EC. Up-regulation of lysophosphatidylcholine acyltransferase 1 (LPCAT1) is linked to poor prognosis in breast cancer. Aging (Albany NY) 2019; 11:7796-7804. [PMID: 31533087 PMCID: PMC6781992 DOI: 10.18632/aging.102287] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022]
Abstract
Dysregulation of lipid metabolism is common in cancer. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been implicated with various cancer types. Here we analyzed by immunohistochemistry its expression in 2,197 breast cancers. LPCAT1 staining was found in 97.8% of 1,774 interpretable tumors, including 48.1% with weak, 28.7% with moderate, and 14.4% with strong expression. The frequency of LPCAT1 positivity depended on the histological tumor type. Moderate or strong LPCAT1 positivity was more common in cancers of no special type (NST) (46.2%) than in lobular carcinomas (25.9%; p<0.0001). Strong LPCAT1 was associated with BRE grade, tumor cell proliferation and overall survival in all cancers and in the subgroup of NST cancers (p<0.0001, each). In the subset of NST cancers the prognostic effect of LPCAT1 expression was independent of pT, and BRE grade (p<0.0001 each). A comparison with molecular features showed that LPCAT1 was strongly associated with estrogen receptor negativity (p<0.0001), progesterone receptor negativity (p<0,0001), amplification of HER2 (p<0.0001) and MYC (p=0.0066), as well as deletions of PTEN (p<0.0001) and CDKNA2 (p=0.0151). It is concluded that LPCAT1 overexpression is linked to adverse tumor features and poor prognosis in breast cancer. These data also highlight the important role of lipid metabolism in breast cancer biology.
Collapse
Affiliation(s)
- Patrick Lebok
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Aurelia von Hassel
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Jan Meiners
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - David Dum
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Cosima Göbel
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Katharina Möller
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Kristina Prien
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Till Krech
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.,Department of Pathology, Clinical Center Osnabrück, Osnabrück D-49076, Germany
| | - Rainer Horst Krech
- Department of Pathology, Clinical Center Osnabrück, Osnabrück D-49076, Germany
| | - Albert von der Assen
- Breast cancer center, Niels-Stensen Clinic, Franziskus-Hospital Harderberg, Georgsmarienhütte D-49124, Germany
| | - Linn Wölber
- Department of Gynecology and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Isabell Witzel
- Department of Gynecology and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Stefan Geist
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg D-25421, Germany
| | - Peter Paluchoswski
- Department of Gynecology, Regio Clinic Pinneberg, Pinneberg D-25421, Germany
| | - Christian Wilke
- Department of Gynecology, Regio Clinic Elmshorn, Elmshorn D-25337, Germany
| | - Uwe Heilenkötter
- Department of Gynecology, Regio Clinic and Senior Citizen Center Itzehoe, Itzehoe D-25524, Germany
| | - Luigi Terracciano
- Cantonal Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Volkmar Müller
- Department of Gynecology and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Waldemar Wilczak
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Eike Christian Burandt
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| |
Collapse
|
21
|
Chen L, Dong Y, Wang X, Hao G, Huang Y, Gutin B, Zhu H. Epigenome-Wide Association Study of Dietary Fiber Intake in African American Adolescents. Mol Nutr Food Res 2018; 62:e1800155. [PMID: 29644791 DOI: 10.1002/mnfr.201800155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/26/2018] [Indexed: 12/17/2022]
Abstract
SCOPE Low fiber intake is associated with increased risk for cardiovascular disease (CVD) and cancer. However, the underlying mechanisms are not well understood. Two hypotheses are tested: 1) dietary fiber would be associated with DNA methylation levels; 2) those DNA methylation changes would be associated with visceral adiposity and inflammation. Also the possibility that the associations between fiber and DNA methylation levels might be confounded with folic acid intake as sensitivity analysis are explored. METHODS AND RESULTS An epigenome-wide association study is conducted using Illumina 450K Bead-Chip on leukocyte DNA in 284 African American adolescents. Linear regression is performed to identify differentially methylated CpG sites associated with fiber. The methylation levels of 3 CpG sites (cg15200711, cg19462022, and cg07035602) in LPCAT1 and RASA3 genes are associated with fiber (false discovery rate [FDR] < 0.05) after adjustment for covariates including folic acid. The methylation levels of cg07035602 and cg19462022 are also associated with visceral adiposity and inflammation. CONCLUSIONS The data show that DNA methylation levels at LPCAT1 and RASA3 genes are associated with dietary fiber intake as well as with adiposity and inflammation. Future studies are warranted to determine whether epigenetic regulation may underlie the beneficial effects of fiber intake on adiposity and inflammation.
Collapse
Affiliation(s)
- Li Chen
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Yanbin Dong
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Xiaoling Wang
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Guang Hao
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Ying Huang
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Bernard Gutin
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| | - Haidong Zhu
- Georgia Prevention Institute, Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, HS-1640, Augusta, Georgia, USA
| |
Collapse
|
22
|
Natoli R, Fernando N, Dahlenburg T, Jiao H, Aggio-Bruce R, Barnett NL, Chao de la Barca JM, Tcherkez G, Reynier P, Fang J, Chu-Tan JA, Valter K, Provis J, Rutar M. Obesity-induced metabolic disturbance drives oxidative stress and complement activation in the retinal environment. Mol Vis 2018; 24:201-217. [PMID: 29527116 PMCID: PMC5842320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/05/2018] [Indexed: 11/03/2022] Open
Abstract
Purpose Systemic increases in reactive oxygen species, and their association with inflammation, have been proposed as an underlying mechanism linking obesity and age-related macular degeneration (AMD). Studies have found increased levels of oxidative stress biomarkers and inflammatory cytokines in obese individuals; however, the correlation between obesity and retinal inflammation has yet to be assessed. We used the leptin-deficient (ob/ob) mouse to further our understanding of the contribution of obesity to retinal oxidative stress and inflammation. Methods Retinas from ob/ob mice were compared to age-matched wild-type controls for retinal function (electroretinography) and gene expression analysis of retinal stress (Gfap), oxidative stress (Gpx3 and Hmox1), and complement activation (C3, C2, Cfb, and Cfh). Oxidative stress was further quantified using a reactive oxygen species and reactive nitrogen species (ROS and RNS) assay. Retinal microglia and macrophage migration to the outer retina and complement activation were determined using immunohistochemistry for IBA1 and C3, respectively. Retinas and sera were used for metabolomic analysis using QTRAP mass spectrometry. Results Retinal function was reduced in ob/ob mice, which correlated to changes in markers of retinal stress, oxidative stress, and inflammation. An increase in C3-expressing microglia and macrophages was detected in the outer retinas of the ob/ob mice, while gene expression studies showed increases in the complement activators (C2 and Cfb) and a decrease in a complement regulator (Cfh). The expression of several metabolites were altered in the ob/ob mice compared to the controls, with changes in polyunsaturated fatty acids (PUFAs) and branched-chain amino acids (BCAAs) detected. Conclusions The results of this study indicate that oxidative stress, inflammation, complement activation, and lipid metabolites in the retinal environment are linked with obesity in ob/ob animals. Understanding the interplay between these components in the retina in obesity will help inform risk factor analysis for acquired retinal degenerations, including AMD.
Collapse
Affiliation(s)
- Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Tess Dahlenburg
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Haihan Jiao
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Nigel L. Barnett
- Queensland Eye Institute, South Brisbane, Queensland, Australia
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Guillaume Tcherkez
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Pascal Reynier
- PREMMi / Pôle de Recherche et d’Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers, 49933 Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Johnny Fang
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Joshua A. Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- ANU Medical School, The Australian National University, Canberra, Australia
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
23
|
Francis AW, Wanek J, Shahidi M. Assessment of Global and Local Alterations in Retinal Layer Thickness in Ins2 (Akita) Diabetic Mice by Spectral Domain Optical Coherence Tomography. J Ophthalmol 2018; 2018:7253498. [PMID: 29675273 PMCID: PMC5838457 DOI: 10.1155/2018/7253498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/24/2017] [Indexed: 12/27/2022] Open
Abstract
PURPOSE/AIM The Ins2 (Akita) mouse is a spontaneous diabetic mouse model with a heterozygous mutation in the insulin 2 gene that results in sustained hyperglycemia. The purpose of the study was to assess global and local retinal layer thickness alterations in Akita mice by analysis of spectral domain optical coherence tomography (SD-OCT) images. MATERIALS AND METHODS SD-OCT imaging was performed in Akita and wild-type mice at 12 and 24 weeks of age. Inner retinal thickness (IRT), outer retinal thickness (ORT), total retinal thickness (TRT), and photoreceptor outer segment length (OSL) were measured. Mean global thickness values were compared between Akita and wild-type mice. Local thickness variations in Akita mice were assessed based on normative values in wild-type mice. RESULTS Akita mice had higher blood glucose levels and lower body weights (p < 0.001). On average, IRT, ORT, and TRT were approximately 2% lower in Akita mice than in wild-type mice (p ≤ 0.02). In Akita mice, the percent difference between retinal areas with thickness below and above normative values for IRT, ORT, and TRT was 22%, 32%, and 38%, respectively. CONCLUSIONS These findings support the use of the Akita mouse model to study the retinal neurodegenerative effects of hyperglycemia.
Collapse
Affiliation(s)
- Andrew W. Francis
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Justin Wanek
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Sato A, Ebina K. A biotinylated peptide, BP21, as a novel potent anti-anaphylactic agent targeting platelet-activating factor. J Pept Sci 2017. [PMID: 28627122 DOI: 10.1002/psc.3019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Platelet-activating factor (PAF) is an important mediator of anaphylaxis and is therefore an anti-anaphylactic drug target. We recently reported that synthetic N-terminally biotinylated peptides (BP4-BP29) inhibit PAF by directly interacting with PAF and its metabolite/precursor lyso-PAF. In this study, we investigated whether the biotinylated peptides can inhibit anaphylactic reactions in vivo. In mouse models of anaphylaxis, one of the peptides, BP21, markedly and dose-dependently inhibited hypothermia with a maximum dose-response within 30 min after administration, even at doses 20 times lesser than doses of the known PAF antagonist CV-3988. In contrast, the anti-hypothermic effect of BGP21, in which the Tyr-Lys-Asp-Gly sequence in BP21 was modified to a Gly-Gly-Gly-Gly sequence, was less than that of BP21. The alanine scanning and shuffling the amino acid residues of BP4 (Tyr-Lys-Asp-Gly) demonstrated that the Tyr-Lys-Asp-Gly consensus sequence is important for the inhibitory effect of the peptide on hypothermia. BP21 also suppressed vascular permeability during anaphylaxis with a maximum dose-response within 30 min of administration. In a rat model of hind paw oedema, BP21 significantly inhibited the oedema induced by PAF but not that induced by the other pro-inflammatory mediators, such as histamine, serotonin, and bradykinin. Tryptophan fluorescence measurements showed that BP21 interacted with PAF, but not with histamine, serotonin, or bradykinin. In contrast, BGP21 did not interact with PAF. These results suggest that biotinylated peptides, especially BP21, can specifically and markedly inhibit anaphylactic reactions in vivo and that this involves direct interaction of its Tyr-Lys-Asp-Gly region with PAF. Therefore, a biotinylated peptide, BP21, can be used as novel potential anti-anaphylactic drugs targeting PAF. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Keiichi Ebina
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| |
Collapse
|
25
|
Fan SH, Wang YY, Wu ZY, Zhang ZF, Lu J, Li MQ, Shan Q, Wu DM, Sun CH, Hu B, Zheng YL. AGPAT9 suppresses cell growth, invasion and metastasis by counteracting acidic tumor microenvironment through KLF4/LASS2/V-ATPase signaling pathway in breast cancer. Oncotarget 2016; 6:18406-17. [PMID: 26110566 PMCID: PMC4621899 DOI: 10.18632/oncotarget.4074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
Human 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) is the gene identified from adipose tissue in 2007. We found AGPAT9 expression was significantly higher in poorly invasive MCF7 human breast cancer cells than the highly invasive MDA-MB-231 cells. AGPAT9 significantly inhibited the proliferation of breast cancer cells in vitro and in vivo. Live-cell imaging and transwell assays showed that AGPAT9 could significantly inhibit the migration and invasive capacities of breast cancer cells. The inhibitory effect of AGPAT9 on metastasis was also observed in vivo in lung metastasis model. AGPAT9 inhibited breast cancer cell proliferation, migration and invasion through, at least in part, suppressing the V-ATPase activity. In addition, increased AGPAT9 expression in MCF-7/ADR cells could increase the chemosensitivity to doxorubicin (Dox). Our findings suggest that increasing AGPAT9 expression may be a new approach that can be used for breast cancer treatment.
Collapse
Affiliation(s)
- Shao-hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yan-yan Wang
- Department of Function Examination, The First People's Hospital of Xuzhou, Jiangsu, China
| | - Zhi-yong Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zi-feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Meng-qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Dong-mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Chun-hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuan-lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
26
|
Sato A, Yokoyama I, Ebina K. Biotinylated heptapeptides substituted with a D-amino acid as platelet-activating factor inhibitors. Eur J Pharmacol 2015; 764:202-207. [PMID: 26142829 DOI: 10.1016/j.ejphar.2015.06.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Platelet-activating factor (PAF), a potent lipid mediator, is implicated in many inflammatory diseases, and therefore may serve as a direct target for anti-inflammatory drugs. We previously reported that synthetic biotinylated peptides having a Tyr-Lys-Asp-Gly sequence markedly inhibit PAF-induced inflammation by direct binding, and that two synthetic fluorescence-labelled heptapeptides (Lys-Trp-Tyr-Lys-Asp-Gly-Asp and D-Lys-Trp-Tyr-Lys-Asp-Gly-Asp) with high stability in plasma specifically bind to PAF-like lipids (oxidized- and lyso-phosphatidylchoine). In this study, synthetic heptapeptides (Lys-Trp-Tyr-Lys-Asp-Gly-Asp) coupled to a biotin molecule through the N-terminal amino group and ε-amino group of N-terminus Lys, (Btn)KP6 and K(Btn)P6, respectively, and their biotinylated peptides substituted with D-Lys at the N-terminus, (Btn)dKP6 and dK(Btn)P6, respectively, were investigated for their effects on PAF-induced inflammation. In the experiments using a rat model of hind paw oedema, (Btn)KP6, K(Btn)P6, (Btn)dKP6, and dK(Btn)P6 significantly inhibited PAF-induced paw oedema, with the highest inhibitory effect exhibited by dK(Btn)P6. The inhibitory effect of D-Tyr-D-Lys-D-Asp-Gly tetrapeptide on PAF-induced paw oedema was much lower than that of Tyr-Lys-Asp-Gly tetrapeptide. In the experiments using tryptophan fluorescence spectroscopy, (Btn)KP6, K(Btn)P6, (Btn)dKP6, and dK(Btn)P6 bound to PAF dose-dependently, with dK(Btn)P6 showing the strongest binding affinity, indicating that its affinity appears to be closely correlated with its inhibitory effect on PAF-induced inflammation. These results suggest that direct binding of (Btn)KP6, K(Btn)P6, (Btn)dKP6, and dK(Btn)P6 to PAF can lead to marked inhibition of PAF-induced inflammation, and these agents, particularly dK(Btn)P6, may be useful as anti-inflammatory drugs targeting PAF with high stability in plasma.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan.
| | - Izumi Yokoyama
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan
| | - Keiichi Ebina
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima 970-8551, Japan
| |
Collapse
|
27
|
Roussotte FF, Gutman BA, Hibar DP, Madsen SK, Narr KL, Thompson PM. Carriers of a common variant in the dopamine transporter gene have greater dementia risk, cognitive decline, and faster ventricular expansion. Alzheimers Dement 2015; 11:1153-62. [PMID: 25496873 PMCID: PMC4465053 DOI: 10.1016/j.jalz.2014.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/19/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Genetic variants in DAT1, the gene encoding the dopamine transporter (DAT) protein, have been implicated in many brain disorders. In a recent case-control study of Alzheimer's disease (AD), a regulatory polymorphism in DAT1 showed a significant association with the clinical stages of dementia. METHODS We tested whether this variant was associated with increased AD risk, and with measures of cognitive decline and longitudinal ventricular expansion, in a large sample of elderly participants with genetic, neurocognitive, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative. RESULTS The minor allele-previously linked with increased DAT expression in vitro-was more common in AD patients than in both individuals with mild cognitive impairment and healthy elderly controls. The same allele was also associated with poorer cognitive performance and faster ventricular expansion, independently of diagnosis. DISCUSSION These results may be due to reduced dopaminergic transmission in carriers of the DAT1 mutation.
Collapse
Affiliation(s)
- Florence F Roussotte
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Boris A Gutman
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derrek P Hibar
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah K Madsen
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Narr
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Paul M Thompson
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Departments of Psychiatry, Engineering, Radiology, & Ophthalmology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
C-reactive protein specifically enhances platelet-activating factor-induced inflammatory activity in vivo. Eur J Pharmacol 2014; 745:46-51. [DOI: 10.1016/j.ejphar.2014.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/16/2014] [Accepted: 10/06/2014] [Indexed: 11/19/2022]
|
29
|
Hishikawa D, Hashidate T, Shimizu T, Shindou H. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J Lipid Res 2014; 55:799-807. [PMID: 24646950 PMCID: PMC3995458 DOI: 10.1194/jlr.r046094] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular membranes are composed of numerous kinds of glycerophospholipids with different combinations of polar heads at the sn-3 position and acyl moieties at the sn-1 and sn-2 positions, respectively. The glycerophospholipid compositions of different cell types, organelles, and inner/outer plasma membrane leaflets are quite diverse. The acyl moieties of glycerophospholipids synthesized in the de novo pathway are subsequently remodeled by the action of phospholipases and lysophospholipid acyltransferases. This remodeling cycle contributes to the generation of membrane glycerophospholipid diversity and the production of lipid mediators such as fatty acid derivatives and lysophospholipids. Furthermore, specific glycerophospholipid transporters are also important to organize a unique glycerophospholipid composition in each organelle. Recent progress in this field contributes to understanding how and why membrane glycerophospholipid diversity is organized and maintained.
Collapse
Affiliation(s)
- Daisuke Hishikawa
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | | | | | | |
Collapse
|
30
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
31
|
Stanca E, Serviddio G, Bellanti F, Vendemiale G, Siculella L, Giudetti AM. Down-regulation of LPCAT expression increases platelet-activating factor level in cirrhotic rat liver: potential antiinflammatory effect of silybin. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:2019-26. [PMID: 23851051 DOI: 10.1016/j.bbadis.2013.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 02/08/2023]
Abstract
Cholestasis is one of the major causes of liver diseases. A chronic accumulation of toxic bile acids in the liver, which occurs in this condition, can induce fibrosis and cirrhosis. Inflammation is a fundamental component of acute and chronic cholestatic liver injury. Platelet-activating factor (PAF) is a proinflammatory lipid which may be generated by two independent pathways called the de novo and remodeling pathway being the last responsible for the synthesis of PAF during inflammation. In recent years a key role in PAF remodeling has been attributed to lysophosphatidylcholine acyltransferase (LPCAT) enzymes. Although the knowledge on their characteristic is growing, the exact mechanism of LPCAT in pathological conditions remains still unknown. Here, we reported that the level of lyso-PAF and PAF significantly increased in the liver of cirrhotic vs. control rats together with a significant decrease in both mRNA abundance and protein level of both LPCAT1 and LPCAT2. Acyltransferase activities of both LPCAT1 and LPCAT2 were parallel decreased in the liver of cirrhotic animals. Interestingly, treatment with silybin strongly decreased the level of both pro-inflammatory lipids and restored the activity and expression of both LPCAT1 and LPCAT2 of cirrhotic liver. Silybin effect was specific for LPCAT1 and LPCAT2 since it did not affect LPCAT3 mRNA abundance of cirrhotic liver.
Collapse
Affiliation(s)
- Eleonora Stanca
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Sato A, Suzuki T, Oikawa K, Ohta R, Ebina K. An endothelin-3-related synthetic biotinylated pentapeptide as a novel inhibitor of platelet-activating factor. Eur J Pharmacol 2013; 714:142-7. [DOI: 10.1016/j.ejphar.2013.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/23/2013] [Accepted: 05/30/2013] [Indexed: 12/31/2022]
|
33
|
High lysophosphatidylcholine acyltransferase 1 expression independently predicts high risk for biochemical recurrence in prostate cancers. Mol Oncol 2013; 7:1001-11. [PMID: 23941784 DOI: 10.1016/j.molonc.2013.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 01/10/2023] Open
Abstract
Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been suggested to play a role in cancer. To assess its role in prostate cancer, LPCAT1 expression was analyzed on a tissue microarray containing samples from 11,152 prostate cancer patients. In benign prostate glands, LPCAT1 immunostaining was absent or weak. In prostate cancer, LPCAT1 positivity was found in 73.8% of 8786 interpretable tumors including 29.2% with strong expression. Increased LPCAT1 expression was associated with advanced tumor stage (pT3b/T4) (p < 0.0001), high Gleason score (≥4 + 4) (p < 0.0001), positive nodal involvement (p = 0.0002), positive surgical margin (p = 0.0005), and early PSA recurrence (p < 0.0001). High LPCAT1 expression was strongly linked to ERG-fusion type prostate cancer. Strong LPCAT1 staining was detected in 45.3% of ERG positive but in only 16.7% of ERG negative tumors (p < 0.0001). Within ERG negative cancers, LPCAT1 staining was strongly increased within the subgroup of PTEN deleted cancers (p < 0.0001). Further subgroup analyses revealed that associations of high LPCAT1 expression with PSA recurrence and unfavorable tumor phenotype were largely driven by ERG negative cancers (p < 0.0001) while these effects were substantially mitigated in ERG positive cancers (p = 0.0073). The prognostic impact of LPCAT1 expression was independent of histological and clinical parameters. It is concluded, that LPCAT1 measurement, either alone or in combination, may be utilized for better clinical decision-making. These data also highlight the potentially important role of lipid metabolism in prostate cancer biology.
Collapse
|
34
|
Shindou H, Hishikawa D, Harayama T, Eto M, Shimizu T. Generation of membrane diversity by lysophospholipid acyltransferases. J Biochem 2013; 154:21-8. [DOI: 10.1093/jb/mvt048] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Nitoda E, Moschos MM, Mavragani CP, Koutsilieris M. Ocular actions of platelet-activating factor: clinical implications. Expert Opin Ther Targets 2012; 16:1027-39. [DOI: 10.1517/14728222.2012.712961] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Soupene E, Kuypers FA. Phosphatidylcholine formation by LPCAT1 is regulated by Ca(2+) and the redox status of the cell. BMC BIOCHEMISTRY 2012; 13:8. [PMID: 22676268 PMCID: PMC3439698 DOI: 10.1186/1471-2091-13-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/25/2012] [Indexed: 12/21/2022]
Abstract
Background Unsaturated fatty acids are susceptible to oxidation and damaged chains are removed from glycerophospholipids by phospholipase A2. De-acylated lipids are then re-acylated by lysophospholipid acyltransferase enzymes such as LPCAT1 which catalyses the formation of phosphatidylcholine (PC) from lysoPC and long-chain acyl-CoA. Results Activity of LPCAT1 is inhibited by Ca2+, and a Ca2+-binding motif of the EF-hand type, EFh-1, was identified in the carboxyl-terminal domain of the protein. The residues Asp-392 and Glu-403 define the loop of the hairpin structure formed by EFh-1. Substitution of D392 and E403 to alanine rendered an enzyme insensitive to Ca2+, which established that Ca2+ binding to that region negatively regulates the activity of the acyltransferase amino-terminal domain. Residue Cys-211 of the conserved motif III is not essential for catalysis and not sufficient for sensitivity to treatment by sulfhydryl-modifier agents. Among the several active cysteine-substitution mutants of LPCAT1 generated, we identified one to be resistant to treatment by sulfhydryl-alkylating and sulfhydryl-oxidizer agents. Conclusion Mutant forms of LPCAT1 that are not inhibited by Ca2+ and sulfhydryl-alkylating and –oxidizing agents will provide a better understanding of the physiological function of a mechanism that places the formation of PC, and the disposal of the bioactive species lysoPC, under the control of the redox status and Ca2+ concentration of the cell.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr, Way, Oakland, CA 94609, USA.
| | | |
Collapse
|
37
|
Sato A, Kumagai T, Aoki J, Ebina K. Synthetic biotinylated peptide compounds derived from Asp-hemolysin: novel potent inhibitors of platelet-activating factor. Eur J Pharmacol 2012; 685:205-12. [PMID: 22542654 DOI: 10.1016/j.ejphar.2012.04.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 11/29/2022]
Abstract
Platelet-activating factor (PAF: 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), a potent inflammatory mediator, is implicated in many inflammatory diseases and may possibly serve as a direct target for anti-inflammatory drugs. We have previously reported that Asp-hemolysin-related synthetic peptides (P4-P29) inhibit the bioactivities of oxidized low-density lipoprotein (ox-LDL) containing PAF-like lipids by direct binding to ox-LDL, which plays a key role in the atherosclerotic inflammatory process. In this study, we investigated whether these peptides inhibit the bioactivities of PAF by binding to PAF and its metabolite/precursor lyso-PAF. In in vitro experiments, P21, one of the peptides, bound to both PAF and lyso-PAF in a dose-dependent manner and markedly inhibited PAF-induced apoptosis in human umbilical vein endothelial cells. Moreover, in in vivo experiments, P4 and P21, particularly their N-terminally biotinylated peptide compounds (BP4 and BP21), inhibited PAF-induced rat paw oedema dose dependently and markedly, and showed sufficient inhibition of the oedema even at doses 150-300 times less than the doses of PAF antagonists. These results provide evidence that direct binding of N-terminally biotinylated peptide compounds derived from Asp-hemolysin to PAF and lyso-PAF leads to a dramatic inhibition of the bioactivities of PAF, both in vitro and in vivo, and strongly suggesting that these compounds may be useful as a novel type of anti-inflammatory drug for the treatment of several inflammatory diseases caused by PAF.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai-Iino, Iwaki, Fukushima, 970-8551 Japan.
| | | | | | | |
Collapse
|
38
|
Zhou X, Lawrence TJ, He Z, Pound CR, Mao J, Bigler SA. The expression level of lysophosphatidylcholine acyltransferase 1 (LPCAT1) correlates to the progression of prostate cancer. Exp Mol Pathol 2011; 92:105-10. [PMID: 22101258 DOI: 10.1016/j.yexmp.2011.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lysophosphatidylcholine acyltransferase 1 (LPCAT1), the enzyme catalyzing the reaction in remodeling of phosphatidylcholine (PC) has been reported to express in prostate. However, its diagnostic and prognostic values remain unclear. METHODS Immunohistochemistry (IHC) for LPCAT1 was performed on the tissue microarray (TMA) slides containing 251 samples from 148 patients with various prostatic disorders. The association of expression level of LPCAT1 with the progression of prostate cancer was analyzed. RESULTS LPCAT1 IHC mean score was the highest in metastatic prostate cancer (8.00±1.28), which was significantly higher than that in primary prostate cancer (4.63±3.00, p=9.73E-07), in high grade prostatic intraepithelial neoplasia (HGPIN, 2.72±2.47, p=1.02E-12), and in benign prostate (2.68, p=6.17E-12). The mean score in primary prostate cancer was significantly higher than that in HGPIN (p=4.09E-04) and in benign prostate (p=2.74E-04). There was no significant difference in the mean score between HGPIN and benign prostate (p=0.951). LPCAT1 IHC score also correlated to the tumor grade and stage of prostate cancer. Patients who underwent prostatectomy for prostate cancer and developed biochemical recurrence or clinical metastasis had higher LPCAT1 IHC score than those who underwent prostatectomy for prostate cancer and did not develop biochemical recurrence and clinical metastasis. The association of LPCAT1 with the progression of prostate cancer was independent of patient race and age, PSA level and positivity of surgical resection margins. CONCLUSIONS LPCAT1 correlates with the progression of prostate cancer and could be a new biomarker in diagnosis, prognosis and studying the pathogenesis of prostate cancer.
Collapse
Affiliation(s)
- Xinchun Zhou
- Department of Pathology University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Carobbio S, Rodriguez-Cuenca S, Vidal-Puig A. Origins of metabolic complications in obesity: ectopic fat accumulation. The importance of the qualitative aspect of lipotoxicity. Curr Opin Clin Nutr Metab Care 2011; 14:520-6. [PMID: 21849895 DOI: 10.1097/mco.0b013e32834ad966] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW This study highlights two aspects of the concept of lipotoxicity. First, the metabolic consequences following ectopic fat accumulation are not only determined by the amount of lipid accumulated, but also the quality of lipid species. Second, the existence of allostatic mechanisms operating at cellular and tissue levels, which counterbalance the negative effects of lipid overload. RECENT FINDINGS The development of lipidomics has allowed the isolation and identification of a wide range of lipid species. Some are highly reactive and capable of inducing undesirable toxic effects. Here we focus on recent information related to pathways involved in the production of these reactive lipid species, their sites of generation and tropism for specific organelles and the molecular mechanisms through which they exert toxic effects. We describe how cell membranes and the lipid species forming their bilayer constitute the main platform from which reactive lipid species are generated. We propose that strategies aimed at maintaining membrane lipid homeostasis are fundamental to preventing the initiation of metabolically relevant lipotoxicity. SUMMARY It is essential to understand the qualitative component of lipid species involved in cellular toxicity and the molecular mechanisms mediating these toxic effects to identify new therapeutic targets.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge, Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
40
|
Zou C, Ellis BM, Smith RM, Chen BB, Zhao Y, Mallampalli RK. Acyl-CoA:lysophosphatidylcholine acyltransferase I (Lpcat1) catalyzes histone protein O-palmitoylation to regulate mRNA synthesis. J Biol Chem 2011; 286:28019-25. [PMID: 21685381 PMCID: PMC3151047 DOI: 10.1074/jbc.m111.253385] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/09/2011] [Indexed: 11/06/2022] Open
Abstract
The enzyme acyl-CoA:lysophosphatidylcholine acyltransferase (Lpcat1) is a critical cytosolic enzyme needed for lung surfactant synthesis that catalyzes an acyltransferase reaction by adding a palmitate to the sn-2 position of lysophospholipids. Here we report that histone H4 protein is subject to palmitoylation catalyzed by Lpcat1 in a calcium-regulated manner. Cytosolic Lpcat1 was observed to shift into the nucleus in lung epithelia in response to exogenous Ca(2+). Nuclear Lpcat1 colocalizes with and binds to histone H4, where it catalyzes histone H4 palmitoylation. Mutagenesis studies demonstrated that Ser(47) within histone H4 serves as a putative acceptor site, indicative of Lpcat1-mediated O-palmitoylation. Lpcat1 knockdown or expression of a histone H4 Ser(47A) mutant protein in cells decreased cellular mRNA synthesis. These findings provide the first evidence of a protein substrate for Lpcat1 and reveal that histone lipidation may occur through its O-palmitoylation as a novel post-translational modification. This epigenetic modification regulates global gene transcriptional activity.
Collapse
Affiliation(s)
- Chunbin Zou
- Department of Medicine, the Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Loss of lysophosphatidylcholine acyltransferase 1 leads to photoreceptor degeneration in rd11 mice. Proc Natl Acad Sci U S A 2010; 107:15523-8. [PMID: 20713727 DOI: 10.1073/pnas.1002897107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retinal degenerative diseases, such as retinitis pigmentosa and Leber congenital amaurosis, are a leading cause of untreatable blindness with substantive impact on the quality of life of affected individuals and their families. Mouse mutants with retinal dystrophies have provided a valuable resource to discover human disease genes and helped uncover pathways critical for photoreceptor function. Here we show that the rd11 mouse mutant and its allelic strain, B6-JR2845, exhibit rapid photoreceptor dysfunction, followed by degeneration of both rods and cones. Using linkage analysis, we mapped the rd11 locus to mouse chromosome 13. We then identified a one-nucleotide insertion (c.420-421insG) in exon 3 of the Lpcat1 gene. Subsequent screening of this gene in the B6-JR2845 strain revealed a seven-nucleotide deletion (c.14-20delGCCGCGG) in exon 1. Both sequence changes are predicted to result in a frame-shift, leading to premature truncation of the lysophosphatidylcholine acyltransferase-1 (LPCAT1) protein. LPCAT1 (also called AYTL2) is a phospholipid biosynthesis/remodeling enzyme that facilitates the conversion of palmitoyl-lysophosphatidylcholine to dipalmitoylphosphatidylcholine (DPPC). The analysis of retinal lipids from rd11 and B6-JR2845 mice showed substantially reduced DPPC levels compared with C57BL/6J control mice, suggesting a causal link to photoreceptor dysfunction. A follow-up screening of LPCAT1 in retinitis pigmentosa and Leber congenital amaurosis patients did not reveal any obvious disease-causing mutations. Previously, LPCAT1 has been suggested to be critical for the production of lung surfactant phospholipids and biosynthesis of platelet-activating factor in noninflammatory remodeling pathway. Our studies add another dimension to an essential role for LPCAT1 in retinal photoreceptor homeostasis.
Collapse
|
42
|
Dirscherl K, Karlstetter M, Ebert S, Kraus D, Hlawatsch J, Walczak Y, Moehle C, Fuchshofer R, Langmann T. Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J Neuroinflammation 2010; 7:3. [PMID: 20074346 PMCID: PMC2819254 DOI: 10.1186/1742-2094-7-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 01/14/2010] [Indexed: 11/10/2022] Open
Abstract
Background Luteolin, a plant derived flavonoid, exerts a variety of pharmacological activities and anti-oxidant properties associated with its capacity to scavenge oxygen and nitrogen species. Luteolin also shows potent anti-inflammatory activities by inhibiting nuclear factor kappa B (NFkB) signaling in immune cells. To better understand the immuno-modulatory effects of this important flavonoid, we performed a genome-wide expression analysis in pro-inflammatory challenged microglia treated with luteolin and conducted a phenotypic and functional characterization. Methods Resting and LPS-activated BV-2 microglia were treated with luteolin in various concentrations and mRNA levels of pro-inflammatory markers were determined. DNA microarray experiments and bioinformatic data mining were performed to capture global transcriptomic changes following luteolin stimulation of microglia. Extensive qRT-PCR analyses were carried out for an independent confirmation of newly identified luteolin-regulated transcripts. The activation state of luteolin-treated microglia was assessed by morphological characterization. Microglia-mediated neurotoxicity was assessed by quantifying secreted nitric oxide levels and apoptosis of 661W photoreceptors cultured in microglia-conditioned medium. Results Luteolin dose-dependently suppressed pro-inflammatory marker expression in LPS-activated microglia and triggered global changes in the microglial transcriptome with more than 50 differentially expressed transcripts. Pro-inflammatory and pro-apoptotic gene expression was effectively blocked by luteolin. In contrast, mRNA levels of genes related to anti-oxidant metabolism, phagocytic uptake, ramification, and chemotaxis were significantly induced. Luteolin treatment had a major effect on microglial morphology leading to ramification of formerly amoeboid cells associated with the formation of long filopodia. When co-incubated with luteolin, LPS-activated microglia showed strongly reduced NO secretion and significantly decreased neurotoxicity on 661W photoreceptor cultures. Conclusions Our findings confirm the inhibitory effects of luteolin on pro-inflammatory cytokine expression in microglia. Moreover, our transcriptomic data suggest that this flavonoid is a potent modulator of microglial activation and affects several signaling pathways leading to a unique phenotype with anti-inflammatory, anti-oxidative, and neuroprotective characteristics. With the identification of several novel luteolin-regulated genes, our findings provide a molecular basis to understand the versatile effects of luteolin on microglial homeostasis. The data also suggest that luteolin could be a promising candidate to develop immuno-modulatory and neuroprotective therapies for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Konstantin Dirscherl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|