1
|
Johnston MJ, Rakoczy SG, Thompson LV, Brown-Borg HM. Growth hormone-deficient Ames dwarf mice resist sarcopenia and exhibit enhanced endurance running performance at 24 months. GeroScience 2025:10.1007/s11357-025-01630-9. [PMID: 40140153 DOI: 10.1007/s11357-025-01630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Ames dwarf mice (df/df) live 50% longer than normal littermates due to a genetic defect in growth hormone (GH) signaling. The enhanced longevity of Ames dwarfs has been studied extensively in an endocrinological context of cellular metabolism and increased resistance to oxidative stress (Bartke. World J Mens Health 37(1):19, 8; Bartke 2; BartkeJ Am Aging Assoc 23(4):219, 10; Bartke. World J Mens Health 39(3):454-465, 11; Brown-Borg et al. Nature 384(6604):33-33, 1; Masternak et al. 2018). However, the skeletal muscle system is relatively unexplored, the quality of which dictates metabolic homeostasis, permits movement and exercise, and exerts paracrine effects on other organs (Delmonico and Beck Am J Lifestyle Med 11(2):167-181, 25; Evans et al. GeroScience 46(1):183, 26; Kim and Kim. Endocrinol Metab (Seoul) 35(1):1-6, 15; Masternak et al. 2018). Here, we characterize the fitness capacity and skeletal muscle morphology of Ames mice to determine if previously established longevous effects of GH deficiency extend to skeletal muscle tissue. Mutually exclusive, age-matched cohorts of male Ames mice and wildtype controls performed grip strength, rotarod, and endurance running experiments over 6 months. The largest difference in physical performance was observed in endurance running capacity, where dwarf mice outperformed wildtype controls increasingly with age. Tibialis anterior (TA) muscles were evaluated for myofiber size, quality, and environment. Ames mice show reduced myofiber cross-sectional area (CSA) paired with increased myofibers per muscle. Dwarf myofiber populations are less heterogenous in size and seemingly resist sarcopenia, as skeletal muscle from aged individuals shows youthful morphological resemblance in mean myofiber CSA, size frequency distribution, and presence of fibrotic tissue. Declines in fitness performance and myofiber integrity were observable in age-matched wildtype controls. Utilizing an established longevity model to investigate skeletal muscle function and morphology is a novel approach to gaining insight into the seemingly inverse relationship between GH signaling and mammalian longevity.
Collapse
Affiliation(s)
- Matthew J Johnston
- Biomedical Sciences Department, University of North Dakota, 504 Hamline St., Grand Forks, ND, 58203, USA
| | - Sharlene G Rakoczy
- Biomedical Sciences Department, University of North Dakota, 504 Hamline St., Grand Forks, ND, 58203, USA
| | | | - Holly M Brown-Borg
- Biomedical Sciences Department, University of North Dakota, 504 Hamline St., Grand Forks, ND, 58203, USA.
| |
Collapse
|
2
|
Suzuki Y, Yamaguchi K, Hardell KNL, Ota K, Kamikado T, Kawamura Y, Buffenstein R, Oka K, Miura K. Establishment of primary and immortalized fibroblasts reveals resistance to cytotoxic agents and loss of necroptosis-inducing ability in long-lived Damaraland mole-rats. GeroScience 2025; 47:1381-1396. [PMID: 39623066 PMCID: PMC11872962 DOI: 10.1007/s11357-024-01420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/27/2024] [Indexed: 03/04/2025] Open
Abstract
The Damaraland mole-rat (DMR; Fukomys damarensis) is a long-lived (~ 20 years) Bathyergid rodent that diverged 26 million years ago from its close relative, the naked mole-rat (NMR). While the properties of NMR cultured fibroblasts have been extensively studied and have revealed several unusual features of this cancer-resistant, long-lived species, comparative DMR studies are extremely limited. We optimized conditions for successfully culturing primary DMR skin fibroblasts and also established immortalized DMR cells using simian virus 40 early region expression. Like NMRs, DMR fibroblasts are more resistant than mice to various cytotoxins including heavy metals, DNA-damaging agents, oxidative stressors, and proteasome inhibitors. DMR genome sequencing analyses revealed the presence of premature stop codons in the master regulator genes of necroptosis, an inflammatory programmed cell death-receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), although these mutations have different locations to those found in the NMR. DMR cells, like NMR cells, did not show significantly increased cell death in response to necroptosis induction. Our data suggest that both Bathyergid species require species-specific cell culture conditions for optimized growth, display similar resistance to cytotoxins, and show loss-of-function mutations abrogating the ability to employ necroptosis. These shared traits may contribute to their evolved adaptations to their subterranean lifestyle and prolonged longevity. These convergent insights and valuable resource may be pertinent to biomedical research.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Kanta Yamaguchi
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | | | - Kurumi Ota
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Taira Kamikado
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, South San Francisco, USA
- Department of Biological Sciences, University of Illinois, Chicago, USA
| | - Kaori Oka
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
| | - Kyoko Miura
- Department of Aging and Longevity Research, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
3
|
List EO, Basu R, Berryman DE, Duran-Ortiz S, Martos-Moreno GÁ, Kopchick JJ. Common and Uncommon Mouse Models of Growth Hormone Deficiency. Endocr Rev 2024; 45:818-842. [PMID: 38853618 PMCID: PMC12102728 DOI: 10.1210/endrev/bnae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Mouse models of growth hormone deficiency (GHD) have provided important tools for uncovering the various actions of GH. Nearly 100 years of research using these mouse lines has greatly enhanced our knowledge of the GH/IGF-1 axis. Some of the shared phenotypes of the 5 "common" mouse models of GHD include reduced body size, delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, and enhanced insulin sensitivity. Since these common mouse lines outlive their normal-sized littermates-and have protection from age-associated disease-they have become important fixtures in the aging field. On the other hand, the 12 "uncommon" mouse models of GHD described herein have tremendously divergent health outcomes ranging from beneficial aging phenotypes (similar to those described for the common models) to extremely detrimental features (such as improper development of the central nervous system, numerous sensory organ defects, and embryonic lethality). Moreover, advancements in next-generation sequencing technologies have led to the identification of an expanding array of genes that are recognized as causative agents to numerous rare syndromes with concomitant GHD. Accordingly, this review provides researchers with a comprehensive up-to-date collection of the common and uncommon mouse models of GHD that have been used to study various aspects of physiology and metabolism associated with multiple forms of GHD. For each mouse line presented, the closest comparable human syndromes are discussed providing important parallels to the clinic.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | | | - Gabriel Á Martos-Moreno
- Department of Endocrinology & Pediatrics, Hospital Infantil Universitario Niño Jesús, IIS La Princesa & Universidad Autónoma de Madrid. CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, E28009, Spain
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| |
Collapse
|
4
|
Selman C. The dietary exposome: a brief history of diet, longevity, and age-related health in rodents. Clin Sci (Lond) 2024; 138:1343-1356. [PMID: 39444221 DOI: 10.1042/cs20241248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
It has been recognized for over a century that feeding animals less food than they would normally eat increases lifespan and leads to broad-spectrum improvements in age-related health. A significant number of studies have subsequently shown that restricting total protein, branched chain amino acids or individual amino acids in the diet, as well as ketogenic diets, can elicit similar effects. In addition, it is becoming clear that fasting protocols, such as time-restricted-feeding or every-other-day feeding, without changes in overall energy intake can also profoundly affect rodent longevity and late-life health. In this review, I will provide a historical perspective on various dietary interventions that modulate ageing in rodents and discuss how this understanding of the dietary exposome may help identify future strategies to maintain late-life health and wellbeing in humans.
Collapse
Affiliation(s)
- Colin Selman
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom, G12 8QQ
| |
Collapse
|
5
|
Huang S, Cox RL, Tuckowski A, Beydoun S, Bhat A, Howington MB, Sarker M, Miller H, Ruwe E, Wang E, Li X, Gardea EA, DeNicola D, Peterson W, Carrier JM, Miller RA, Sutphin GL, Leiser SF. Fmo induction as a tool to screen for pro-longevity drugs. GeroScience 2024; 46:4689-4706. [PMID: 38787463 PMCID: PMC11335711 DOI: 10.1007/s11357-024-01207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Dietary restriction (DR) and hypoxia (low oxygen) extend lifespan in Caenorhabditis elegans through the induction of a convergent downstream longevity gene, fmo-2. Flavin-containing monooxygenases (FMOs) are highly conserved xenobiotic-metabolizing enzymes with a clear role in promoting longevity in nematodes and a plausible similar role in mammals. This makes them an attractive potential target of small molecule drugs to stimulate the health-promoting effects of longevity pathways. Here, we utilize an fmo-2 fluorescent transcriptional reporter in C. elegans to screen a set of 80 compounds previously shown to improve stress resistance in mouse fibroblasts. Our data show that 19 compounds significantly induce fmo-2, and 10 of the compounds induce fmo-2 more than twofold. Interestingly, 9 of the 10 high fmo-2 inducers also extend lifespan in C. elegans. Two of these drugs, mitochondrial respiration chain complex inhibitors, interact with the hypoxia pathway to induce fmo-2, whereas two dopamine receptor type 2 (DRD2) antagonists interact with the DR pathway to induce fmo-2, indicating that dopamine signaling is involved in DR-mediated fmo-2 induction. Together, our data identify nine drugs that each (1) increase stress resistance in mouse fibroblasts, (2) induce fmo-2 in C. elegans, and (3) extend nematode lifespan, some through known longevity pathways. These results define fmo-2 induction as a viable approach to identifying and understanding mechanisms of putative longevity compounds.
Collapse
Affiliation(s)
- Shijiao Huang
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Rebecca L Cox
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angela Tuckowski
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Safa Beydoun
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay Bhat
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marshall B Howington
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marjana Sarker
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hillary Miller
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ethan Ruwe
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emily Wang
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xinna Li
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 316048109-2200, USA
| | - Emily A Gardea
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Destiny DeNicola
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - William Peterson
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jeffrey M Carrier
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 316048109-2200, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA
| | - George L Sutphin
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Scott F Leiser
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Badial K, Lacayo P, Murakami S. Biology of Healthy Aging: Biological Hallmarks of Stress Resistance Related and Unrelated to Longevity in Humans. Int J Mol Sci 2024; 25:10493. [PMID: 39408822 PMCID: PMC11477412 DOI: 10.3390/ijms251910493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Stress resistance is highly associated with longer and healthier lifespans in various model organisms, including nematodes, fruit flies, and mice. However, we lack a complete understanding of stress resistance in humans; therefore, we investigated how stress resistance and longevity are interlinked in humans. Using more than 180 databases, we identified 541 human genes associated with stress resistance. The curated gene set is highly enriched with genes involved in the cellular response to stress. The Reactome analysis identified 398 biological pathways, narrowed down to 172 pathways using a medium threshold (p-value < 1 × 10-4). We further summarized these pathways into 14 pathway categories, e.g., cellular response to stimuli/stress, DNA repair, gene expression, and immune system. There were overlapping categories between stress resistance and longevity, including gene expression, signal transduction, immune system, and cellular responses to stimuli/stress. The categories include the PIP3-AKT-FOXO and mTOR pathways, known to specify lifespans in the model systems. They also include the accelerated aging syndrome genes (WRN and HGPS/LMNA), while the genes were also involved in non-overlapped categories. Notably, nuclear pore proteins are enriched among the stress-resistance pathways and overlap with diverse metabolic pathways. This study fills the knowledge gap in humans, suggesting that stress resistance is closely linked to longevity pathways but not entirely identical. While most longevity categories intersect with stress-resistance categories, some do not, particularly those related to cell proliferation and beta-cell development. We also note inconsistencies in pathway terminologies with aging hallmarks reported previously, and propose them to be more unified and integral.
Collapse
Affiliation(s)
| | | | - Shin Murakami
- Department of Foundational Biomedical Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
7
|
Harper JM, Hicks M, Jiménez AG. The resistance of domestic canine skin-derived fibroblasts to oxidative and non-oxidative chemical injury: implications of breed and body size. GeroScience 2024:10.1007/s11357-024-01358-y. [PMID: 39316259 DOI: 10.1007/s11357-024-01358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Small-breed dogs live significantly longer lives than large-breed dogs, while having higher mass-specific metabolic rates and faster growth rates. Underlying this observed physiological difference across domestic dogs, there must also be differences at other levels of organization that could lead to elucidating what accounts for the disparity in aging rates and life span within this species. At the cellular level, a clear mechanism underlying whole animal traits has not been fully elucidated. Here, we cultured dermal fibroblasts from large and small breed dogs from both young and old age categories and examined the degree of resistance to multiple sources of cytotoxic stress. This included heat (42 °C), paraquat, cadmium, and hydrogen peroxide for increasing amounts of time (heat) or increasing concentrations (chemical stressors). We hypothesized that small breed dogs, with longer lifespans, would have greater cellular resistance to stress compared with large breed dogs. Final sample sizes include small puppies (N = 18), large puppy (N = 32), small old (N = 11), and large old (N = 23) dogs. Using a 2 (donor size) by 2 (donor age) between-subjects multivariate analysis of variance, we found that the values for the dose that killed 50% of the cells (LD50) were not significantly different based on donor size (p = 0.45) or donor age (p = 0.20). The interaction was also not significant (p = 0.47). Interestingly, we did find that the degree of resistance to cadmium toxicity was significantly correlated with the degree of resistance to both heat and hydrogen peroxide, but not paraquat (p < 0.01 for both). These data suggest that cellular stress resistance does not differ among domestic dogs as a function of size or age, pointing to other cellular pathways as the mechanistic basis for the observed differences in lifespan.
Collapse
Affiliation(s)
- James M Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77341, USA.
| | - Megan Hicks
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77341, USA
| | | |
Collapse
|
8
|
Walton A, Herman JJ, Rueppell O. Social life results in social stress protection: a novel concept to explain individual life-history patterns in social insects. Biol Rev Camb Philos Soc 2024; 99:1444-1457. [PMID: 38468146 DOI: 10.1111/brv.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Resistance to and avoidance of stress slow aging and confer increased longevity in numerous organisms. Honey bees and other superorganismal social insects have two main advantages over solitary species to avoid or resist stress: individuals can directly help each other by resource or information transfer, and they can cooperatively control their environment. These benefits have been recognised in the context of pathogen and parasite stress as the concept of social immunity, which has been extensively studied. However, we argue that social immunity is only a special case of a general concept that we define here as social stress protection to include group-level defences against all biotic and abiotic stressors. We reason that social stress protection may have allowed the evolution of reduced individual-level defences and individual life-history optimization, including the exceptional aging plasticity of many social insects. We describe major categories of stress and how a colonial lifestyle may protect social insects, particularly against temporary peaks of extreme stress. We use the honey bee (Apis mellifera L.) to illustrate how patterns of life expectancy may be explained by social stress protection and how modern beekeeping practices can disrupt social stress protection. We conclude that the broad concept of social stress protection requires rigorous empirical testing because it may have implications for our general understanding of social evolution and specifically for improving honey bee health.
Collapse
Affiliation(s)
- Alexander Walton
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| | - Jacob J Herman
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Montazid S, Bandyopadhyay S, Hart DW, Gao N, Johnson B, Thrumurthy SG, Penn DJ, Wernisch B, Bansal M, Altrock PM, Rost F, Gazinska P, Ziolkowski P, Hayee B, Liu Y, Han J, Tessitore A, Koth J, Bodmer WF, East JE, Bennett NC, Tomlinson I, Irshad S. Adult stem cell activity in naked mole rats for long-term tissue maintenance. Nat Commun 2023; 14:8484. [PMID: 38123565 PMCID: PMC10733326 DOI: 10.1038/s41467-023-44138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The naked mole rat (NMR), Heterocephalus glaber, the longest-living rodent, provides a unique opportunity to explore how evolution has shaped adult stem cell (ASC) activity and tissue function with increasing lifespan. Using cumulative BrdU labelling and a quantitative imaging approach to track intestinal ASCs (Lgr5+) in their native in vivo state, we find an expanded pool of Lgr5+ cells in NMRs, and these cells specifically at the crypt base (Lgr5+CBC) exhibit slower division rates compared to those in short-lived mice but have a similar turnover as human LGR5+CBC cells. Instead of entering quiescence (G0), NMR Lgr5+CBC cells reduce their division rates by prolonging arrest in the G1 and/or G2 phases of the cell cycle. Moreover, we also observe a higher proportion of differentiated cells in NMRs that confer enhanced protection and function to the intestinal mucosa which is able to detect any chemical imbalance in the luminal environment efficiently, triggering a robust pro-apoptotic, anti-proliferative response within the stem/progenitor cell zone.
Collapse
Affiliation(s)
- Shamir Montazid
- Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Daniel W Hart
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0028, Republic of South Africa
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, 07102, NJ, USA
| | - Brian Johnson
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, 92093, CA, USA
| | - Sri G Thrumurthy
- Endoscopy, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Dustin J Penn
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, 1160, Austria
| | - Bettina Wernisch
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, 1160, Austria
| | | | - Philipp M Altrock
- Department for Theoretical Biology, Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany
| | - Fabian Rost
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Patrycja Gazinska
- Biobank Research Group, Lukasiewicz Research Network, PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Piotr Ziolkowski
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Bu'Hussain Hayee
- Endoscopy, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, 07102, NJ, USA
| | - Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, 07102, NJ, USA
| | | | - Jana Koth
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Walter F Bodmer
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - James E East
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0028, Republic of South Africa
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Shazia Irshad
- Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
10
|
List EO, Duran-Ortiz S, Kulkarni P, Davis E, Mora-Criollo P, Berryman DE, Kopchick JJ. Growth hormone receptor gene disruption. VITAMINS AND HORMONES 2023; 123:109-149. [PMID: 37717983 PMCID: PMC11462719 DOI: 10.1016/bs.vh.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Much of our understanding of growth hormone's (GH)'s numerous activities stems from studies utilizing GH receptor (GHR) knockout mice. More recently, the role of GH action has been examined by creating mice with tissue-specific or temporal GHR disruption. To date, 37 distinct GHR knockout mouse lines have been created. Targeted tissues include fat, liver, muscle, heart, bone, brain, macrophage, intestine, hematopoietic stem cells, pancreatic β cells, and inducible multi-tissue "global" disruption at various ages. In this chapter, a summary of each mouse line is provided with background information on the generation of the mouse line as well as important physiological outcomes resulting from GHR gene disruption. Collectively, these mouse lines provide unique insights into GH action and have resulted in the development of new hypotheses about the functions ascribed to GH action in particular tissues.
Collapse
Affiliation(s)
- Edward O List
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Silvana Duran-Ortiz
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Prateek Kulkarni
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Emily Davis
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Patricia Mora-Criollo
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Darlene E Berryman
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - John J Kopchick
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States.
| |
Collapse
|
11
|
Fang Y, Medina D, Stockwell R, McFadden S, Hascup ER, Hascup KN, Bartke A. Resistance to mild cold stress is greater in both wild-type and long-lived GHR-KO female mice. GeroScience 2023; 45:1081-1093. [PMID: 36527583 PMCID: PMC9886789 DOI: 10.1007/s11357-022-00706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Adapting to stress, including cold environmental temperature (eT), is crucial for the survival of mammals, especially small rodents. Long-lived mutant mice have enhanced stress resistance against oxidative and non-oxidative challenges. However, much less is known about the response of those long-lived mice to cold stress. Growth hormone receptor knockout (GHR-KO) mice are long-lived with reduced growth hormone signaling. We wanted to test whether GHR-KO mice have enhanced resistance to cold stress. To examine the response of GHR-KO mice to cold eT, GHR-KO mice were housed at mild cold eT (16 °C) immediately following weaning. Longevity results showed that female GHR-KO and wild-type (WT) mice retained similar lifespan, while both male GHR-KO and WT mice had shortened lifespan compared to the mice housed at 23 °C eT. Female GHR-KO and WT mice housed at 16 °C had upregulated fibroblast growth factor 21 (FGF21), enhanced energy metabolism, reduced plasma triglycerides, and increased mRNA expression of some xenobiotic enzymes compared to females housed at 23 °C and male GHR-KO and WT mice housed under the same condition. In contrast, male GHR-KO and WT mice housed at 16 °C showed deleterious effects in parameters which might be associated with their shortened longevity compared to male GHR-KO and WT mice housed at 23 °C. Together, this study suggests that in response to mild cold stress, sex plays a pivotal role in the regulation of longevity, and female GHR-KO and WT mice are more resistant to this challenge than the males.
Collapse
Affiliation(s)
- Yimin Fang
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| | - David Medina
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Robert Stockwell
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Samuel McFadden
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Erin R Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Kevin N Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| |
Collapse
|
12
|
Garratt M, Erturk I, Alonzo R, Zufall F, Leinders-Zufall T, Pletcher SD, Miller RA. Lifespan extension in female mice by early, transient exposure to adult female olfactory cues. eLife 2022; 11:e84060. [PMID: 36525360 PMCID: PMC9904757 DOI: 10.7554/elife.84060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Several previous lines of research have suggested, indirectly, that mouse lifespan is particularly susceptible to endocrine or nutritional signals in the first few weeks of life, as tested by manipulations of litter size, growth hormone levels, or mutations with effects specifically on early-life growth rate. The pace of early development in mice can also be influenced by exposure of nursing and weanling mice to olfactory cues. In particular, odors of same-sex adult mice can in some circumstances delay maturation. We hypothesized that olfactory information might also have a sex-specific effect on lifespan, and we show here that the lifespan of female mice can be increased significantly by odors from adult females administered transiently, that is from 3 days until 60 days of age. Female lifespan was not modified by male odors, nor was male lifespan susceptible to odors from adults of either sex. Conditional deletion of the G protein Gαo in the olfactory system, which leads to impaired accessory olfactory system function and blunted reproductive priming responses to male odors in females, did not modify the effect of female odors on female lifespan. Our data provide support for the idea that very young mice are susceptible to influences that can have long-lasting effects on health maintenance in later life, and provide a potential example of lifespan extension by olfactory cues in mice.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - Ilkim Erturk
- Department of Pathology and Geriatrics Center, University of MichiganAnn ArborUnited States
| | - Roxann Alonzo
- Department of Pathology and Geriatrics Center, University of MichiganAnn ArborUnited States
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland UniversityHomburgGermany
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of MichiganAnn ArborUnited States
| |
Collapse
|
13
|
Soo SK, Traa A, Rudich ZD, Moldakozhayev A, Mistry M, Van Raamsdonk JM. Genetic basis of enhanced stress resistance in long-lived mutants highlights key role of innate immunity in determining longevity. Aging Cell 2022; 22:e13740. [PMID: 36514863 PMCID: PMC9924947 DOI: 10.1111/acel.13740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Mutations that extend lifespan are associated with enhanced resistance to stress. To better understand the molecular mechanisms underlying this relationship, we directly compared lifespan extension, resistance to external stressors, and gene expression in a panel of nine long-lived Caenorhabditis elegans mutants from different pathways of lifespan extension. All of the examined long-lived mutants exhibited increased resistance to one or more types of stress. Resistance to each of the examined types of stress had a significant, positive correlation with lifespan, with bacterial pathogen resistance showing the strongest relationship. Analysis of transcriptional changes indicated that all of the examined long-lived mutants showed a significant upregulation of multiple stress response pathways. Interestingly, there was a very significant overlap between genes highly correlated with stress resistance and genes highly correlated with longevity, suggesting that the same genetic pathways drive both phenotypes. This was especially true for genes correlated with bacterial pathogen resistance, which showed an 84% overlap with genes correlated with lifespan. To further explore the relationship between innate immunity and longevity, we disrupted the p38-mediated innate immune signaling pathway in each of the long-lived mutants and found that this pathway is required for lifespan extension in eight of nine mutants. Overall, our results demonstrate a strong correlation between stress resistance and longevity that results from the high degree of overlap in genes contributing to each phenotype. Moreover, these findings demonstrate the importance of the innate immune system in lifespan determination and indicate that the same underlying genes drive both immunity and longevity.
Collapse
Affiliation(s)
- Sonja K. Soo
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Annika Traa
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Zenith D. Rudich
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Alibek Moldakozhayev
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Meeta Mistry
- Bioinformatics Core, Harvard School of Public HealthHarvard Medical SchoolBostonMassachusettsUSA
| | - Jeremy M. Van Raamsdonk
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada,Division of Experimental Medicine, Department of MedicineMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
14
|
List EO, Berryman DE, Slyby J, Duran-Ortiz S, Funk K, Bisset ES, Howlett SE, Kopchick JJ. Disruption of Growth Hormone Receptor in Adipocytes Improves Insulin Sensitivity and Lifespan in Mice. Endocrinology 2022; 163:bqac129. [PMID: 35952979 PMCID: PMC9467438 DOI: 10.1210/endocr/bqac129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Growth hormone receptor knockout (GHRKO) mice have been used for 25 years to uncover some of the many actions of growth hormone (GH). Since they are extremely long-lived with enhanced insulin sensitivity and protected from multiple age-related diseases, they are often used to study healthy aging. To determine the effect that adipose tissue has on the GHRKO phenotype, our laboratory recently created and characterized adipocyte-specific GHRKO (AdGHRKO) mice, which have increased adiposity but appear healthy with enhanced insulin sensitivity. To test the hypothesis that removal of GH action in adipocytes might partially replicate the increased lifespan and healthspan observed in global GHRKO mice, we assessed adiposity, cytokines/adipokines, glucose homeostasis, frailty, and lifespan in aging AdGHRKO mice of both sexes. Our results show that disrupting the GH receptor gene in adipocytes improved insulin sensitivity at advanced age and increased lifespan in male AdGHRKO mice. AdGHRKO mice also exhibited increased fat mass, reduced circulating levels of insulin, c-peptide, adiponectin, resistin, and improved frailty scores with increased grip strength at advanced ages. Comparison of published mean lifespan data from GHRKO mice to that from AdGHRKO and muscle-specific GHRKO mice suggests that approximately 23% of lifespan extension in male GHRKO is due to GHR disruption in adipocytes vs approximately 19% in muscle. Females benefited less from GHR disruption in these 2 tissues with approximately 19% and approximately 0%, respectively. These data indicate that removal of GH's action, even in a single tissue, is sufficient for observable health benefits that promote long-term health, reduce frailty, and increase longevity.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, USA
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Athens, Ohio 45701, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens, Ohio 45701, USA
| | - Julie Slyby
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, USA
| | | | - Kevin Funk
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, USA
| | - Elise S Bisset
- Department of Pharmacology Dalhousie University Halifax, Halifax , Nova Scotia , Canada
| | - Susan E Howlett
- Department of Pharmacology Dalhousie University Halifax, Halifax , Nova Scotia , Canada
- Department of Medicine (Geriatric Medicine), Dalhousie University Halifax, Halifax , Nova Scotia , Canada
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens, Ohio 45701, USA
| |
Collapse
|
15
|
Stress-Induced Membraneless Organelles in Eukaryotes and Prokaryotes: Bird’s-Eye View. Int J Mol Sci 2022; 23:ijms23095010. [PMID: 35563401 PMCID: PMC9105482 DOI: 10.3390/ijms23095010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Stress is an inevitable part of life. An organism is exposed to multiple stresses and overcomes their negative consequences throughout its entire existence. A correlation was established between life expectancy and resistance to stress, suggesting a relationship between aging and the ability to respond to external adverse effects as well as quickly restore the normal regulation of biological processes. To combat stress, cells developed multiple pro-survival mechanisms, one of them is the assembly of special stress-induced membraneless organelles (MLOs). MLOs are formations that do not possess a lipid membrane but rather form as a result of the “liquid–liquid” phase separation (LLPS) of biopolymers. Stress-responsive MLOs were found in eukaryotes and prokaryotes, they form as a reaction to the acute environmental conditions and are dismantled after its termination. These compartments function to prevent damage to the genetic and protein material of the cell during stress. In this review, we discuss the characteristics of stress-induced MLO-like structures in eukaryotic and prokaryotic cells.
Collapse
|
16
|
Buffenstein R, Amoroso V, Andziak B, Avdieiev S, Azpurua J, Barker AJ, Bennett NC, Brieño‐Enríquez MA, Bronner GN, Coen C, Delaney MA, Dengler‐Crish CM, Edrey YH, Faulkes CG, Frankel D, Friedlander G, Gibney PA, Gorbunova V, Hine C, Holmes MM, Jarvis JUM, Kawamura Y, Kutsukake N, Kenyon C, Khaled WT, Kikusui T, Kissil J, Lagestee S, Larson J, Lauer A, Lavrenchenko LA, Lee A, Levitt JB, Lewin GR, Lewis Hardell KN, Lin TD, Mason MJ, McCloskey D, McMahon M, Miura K, Mogi K, Narayan V, O'Connor TP, Okanoya K, O'Riain MJ, Park TJ, Place NJ, Podshivalova K, Pamenter ME, Pyott SJ, Reznick J, Ruby JG, Salmon AB, Santos‐Sacchi J, Sarko DK, Seluanov A, Shepard A, Smith M, Storey KB, Tian X, Vice EN, Viltard M, Watarai A, Wywial E, Yamakawa M, Zemlemerova ED, Zions M, Smith ESJ. The naked truth: a comprehensive clarification and classification of current 'myths' in naked mole-rat biology. Biol Rev Camb Philos Soc 2022; 97:115-140. [PMID: 34476892 PMCID: PMC9277573 DOI: 10.1111/brv.12791] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.
Collapse
Affiliation(s)
| | - Vincent Amoroso
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Blazej Andziak
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | | | - Jorge Azpurua
- Department of AnesthesiologyStony Brook University101 Nicolls RoadStony BrookNY11794U.S.A.
| | - Alison J. Barker
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoria0002South Africa
| | - Miguel A. Brieño‐Enríquez
- Department of Obstetrics, Gynecology & Reproductive MedicineMagee‐Womens Research Institute204 Craft AvenuePittsburghPA15213U.S.A.
| | - Gary N. Bronner
- Department Biological SciencesRondeboschCape Town7701South Africa
| | - Clive Coen
- Reproductive Neurobiology, Division of Women's HealthSchool of Medicine, King's College LondonWestminster Bridge RoadLondonSE1 7EHU.K.
| | - Martha A. Delaney
- Zoological Pathology ProgramUniversity of Illinois3505 Veterinary Medicine Basic Sciences Building, 2001 S Lincoln AvenueUrbanaIL6180U.S.A.
| | - Christine M. Dengler‐Crish
- Department of Pharmaceutical SciencesNortheast Ohio Medical University4209 State Route 44RootstownOH44272U.S.A.
| | - Yael H. Edrey
- Northwest Vista College3535 N. Ellison DriveSan AntonioTX78251U.S.A.
| | - Chris G. Faulkes
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSU.K.
| | - Daniel Frankel
- School of EngineeringNewcastle UniversityMerz CourtNewcastle Upon TyneNE1 7RUU.K.
| | - Gerard Friedlander
- Université Paris DescartesFaculté de Médecine12 Rue de l'École de MédecineParis5006France
| | - Patrick A. Gibney
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Vera Gorbunova
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Christopher Hine
- Cleveland ClinicLerner Research Institute9500 Euclid AvenueClevelandOH44195U.S.A.
| | - Melissa M. Holmes
- Department of PsychologyUniversity of Toronto Mississauga3359 Mississauga Road NorthMississaugaONL5L 1C6Canada
| | | | - Yoshimi Kawamura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Cynthia Kenyon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Walid T. Khaled
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Joseph Kissil
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Samantha Lagestee
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - John Larson
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Amanda Lauer
- Department of OtolaryngologyJohns Hopkins School of MedicineBaltimoreMD21205U.S.A.
| | - Leonid A. Lavrenchenko
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Angela Lee
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Jonathan B. Levitt
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Gary R. Lewin
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | | | - TzuHua D. Lin
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Matthew J. Mason
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Dan McCloskey
- College of Staten Island in the City University of New York2800 Victory BlvdStaten IslandNY10314U.S.A.
| | - Mary McMahon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kyoko Miura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Kazutaka Mogi
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Vikram Narayan
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Kazuo Okanoya
- Department of Life SciencesThe University of Tokyo7‐3‐1 HongoTokyo153‐8902Japan
| | | | - Thomas J. Park
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Ned J. Place
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Katie Podshivalova
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Sonja J. Pyott
- Groningen Department of OtorhinolaryngologyUniversity Medical CenterPostbus 30.001GroningenRB9700The Netherlands
| | - Jane Reznick
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University Hospital CologneJoseph‐Stelzmann‐Street 26Cologne50931Germany
| | - J. Graham Ruby
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Adam B. Salmon
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center4939 Charles Katz Dr.San AntonioTX78229U.S.A.
| | - Joseph Santos‐Sacchi
- Department of NeuroscienceYale University School of Medicine200 South Frontage Road, SHM C‐303New HavenCT06510U.S.A.
| | - Diana K. Sarko
- Department of AnatomySchool of Medicine, Southern Illinois University975 S. NormalCarbondaleIL62901U.S.A.
| | - Andrei Seluanov
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Alyssa Shepard
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Megan Smith
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kenneth B. Storey
- Department of BiologyCarleton University1125 Colonel By DriveOttawaONK1S 5B6Canada
| | - Xiao Tian
- Department of Genetics – Blavatnik InstituteHarvard Medical School77 Avenue Louis PasteurBostonMA02115U.S.A.
| | - Emily N. Vice
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Mélanie Viltard
- Fondation pour la recherche en PhysiologieUniversité Catholique de LouvainClos Chapelle‐aux‐Champs 30Woluwe‐saint Lambert1200Belgium
| | - Akiyuki Watarai
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Ewa Wywial
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Masanori Yamakawa
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Elena D. Zemlemerova
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Michael Zions
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Ewan St. John Smith
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| |
Collapse
|
17
|
Stead ER, Bjedov I. Balancing DNA repair to prevent ageing and cancer. Exp Cell Res 2021; 405:112679. [PMID: 34102225 PMCID: PMC8361780 DOI: 10.1016/j.yexcr.2021.112679] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
DNA damage is a constant stressor to the cell. Persistent damage to the DNA over time results in an increased risk of mutation and an accumulation of mutations with age. Loss of efficient DNA damage repair can lead to accelerated ageing phenotypes or an increased cancer risk, and the trade-off between cancer susceptibility and longevity is often driven by the cell's response to DNA damage. High levels of mutations in DNA repair mutants often leads to excessive cell death and stem cell exhaustion which may promote premature ageing. Stem cells themselves have distinct characteristics that enable them to retain low mutation rates. However, when mutations do arise, stem cell clonal expansion can also contribute to age-related tissue dysfunction as well as heightened cancer risk. In this review, we will highlight increasing DNA damage and mutation accumulation as hallmarks common to both ageing and cancer. We will propose that anti-ageing interventions might be cancer preventative and discuss the mechanisms through which they may act.
Collapse
Affiliation(s)
- Eleanor Rachel Stead
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London WC1E 6DD, UK
| | - Ivana Bjedov
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London WC1E 6DD, UK; University College London, Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Harper JM, Holmes DJ. New Perspectives on Avian Models for Studies of Basic Aging Processes. Biomedicines 2021; 9:biomedicines9060649. [PMID: 34200297 PMCID: PMC8230007 DOI: 10.3390/biomedicines9060649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
Avian models have the potential to elucidate basic cellular and molecular mechanisms underlying the slow aging rates and exceptional longevity typical of this group of vertebrates. To date, most studies of avian aging have focused on relatively few of the phenomena now thought to be intrinsic to the aging process, but primarily on responses to oxidative stress and telomere dynamics. But a variety of whole-animal and cell-based approaches to avian aging and stress resistance have been developed-especially the use of primary cell lines and isolated erythrocytes-which permit other processes to be investigated. In this review, we highlight newer studies using these approaches. We also discuss recent research on age-related changes in neural function in birds in the context of sensory changes relevant to homing and navigation, as well as the maintenance of song. More recently, with the advent of "-omic" methodologies, including whole-genome studies, new approaches have gained momentum for investigating the mechanistic basis of aging in birds. Overall, current research suggests that birds exhibit an enhanced resistance to the detrimental effects of oxidative damage and maintain higher than expected levels of cellular function as they age. There is also evidence that genetic signatures associated with cellular defenses, as well as metabolic and immune function, are enhanced in birds but data are still lacking relative to that available from more conventional model organisms. We are optimistic that continued development of avian models in geroscience, especially under controlled laboratory conditions, will provide novel insights into the exceptional longevity of this animal taxon.
Collapse
Affiliation(s)
- James M. Harper
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
- Correspondence: ; Tel.: +1-936-294-1543
| | - Donna J. Holmes
- Department of Biological Sciences and WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
19
|
Age and sex modify cellular proliferation responses to oxidative stress and glucocorticoid challenges in baboon cells. GeroScience 2021; 43:2067-2085. [PMID: 34089175 DOI: 10.1007/s11357-021-00395-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022] Open
Abstract
Aging is associated with progressive loss of cellular homeostasis resulting from intrinsic and extrinsic challenges. Lack of a carefully designed, well-characterized, precise, translational experimental model is a major limitation to understanding the cellular perturbations that characterize aging. Here, we tested the feasibility of primary fibroblasts isolated from nonhuman primates (baboons) as a model of cellular resilience in response to homeostatic challenge. Using a real-time live-cell imaging system, we precisely defined a protocol for testing effects of prooxidant compounds (e.g., hydrogen peroxide (H2O2), paraquat), thapsigargin, dexamethasone, and a low glucose environment on cell proliferation in fibroblasts derived from baboons across the life course (n = 11/sex). Linear regression analysis indicated that donor age significantly reduced the ability of cells to proliferate following exposure to H2O2 (50 and 100 µM) and paraquat (100 and 200 µM) challenges in cells from males (6.4-21.3 years; average lifespan 21 years) but not cells from females (4.3-15.9 years). Inhibitory effects of thapsigargin on cell proliferation were dependent on challenge duration (2 vs 24 h) and concentration (0.1 and 1 µM). Cells from older females (14.4-15.9 years) exhibited greater resilience to thapsigargin (1 µM; 24 h) and dexamethasone (500 µM) challenges than did those from younger females (4.3-6.7 years). The cell proliferation response to low glucose (1 mM) was reduced with age in both sexes. These data indicate that donor's chronological age and sex are important variables in determining fibroblast responses to metabolite and other challenges.
Collapse
|
20
|
Icyuz M, Zhang F, Fitch MP, Joyner MR, Challa AK, Sun LY. Physiological and metabolic characteristics of novel double-mutant female mice with targeted disruption of both growth hormone-releasing hormone and growth hormone receptor. Aging Cell 2021; 20:e13339. [PMID: 33755309 PMCID: PMC8045953 DOI: 10.1111/acel.13339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mice with disruptions of growth hormone-releasing hormone (GHRH) or growth hormone receptor (GHR) exhibit similar phenotypes of prolonged lifespan and delayed age-related diseases. However, these two models respond differently to calorie restriction indicating that they might carry different and/or independent mechanisms for improved longevity and healthspan. In order to elucidate these mechanisms, we generated GHRH and GHR double-knockout mice (D-KO). In the present study, we focused specifically on the characteristics of female D-KO mice. The D-KO mice have reduced body weight and enhanced insulin sensitivity compared to wild-type (WT) controls. Growth retardation in D-KO mice is accompanied by decreased GH expression in pituitary, decreased circulating IGF-1, increased high-molecular-weight (HMW) adiponectin, and leptin hormones compared to WT controls. Generalized linear model-based regression analysis, which controls for body weight differences between D-KO and WT groups, shows that D-KO mice have decreased lean mass, bone mineral density, and bone mineral content, but increased adiposity. Indirect calorimetry markers including oxygen consumption, carbon dioxide production, and energy expenditure were significantly lower in D-KO mice relative to the controls. In comparison with WT mice, the D-KO mice displayed reduced respiratory exchange ratio (RER) values only during the light cycle, suggesting a circadian-related metabolic shift toward fat utilization. Interestingly, to date survival data suggest extended lifespan in D-KO female mice.
Collapse
Affiliation(s)
- Mert Icyuz
- Department of Biology University of Alabama at Birmingham Birmingham Alabama USA
| | - Fang Zhang
- Department of Biology University of Alabama at Birmingham Birmingham Alabama USA
| | - Michael P. Fitch
- Department of Biology University of Alabama at Birmingham Birmingham Alabama USA
| | - Matthew R. Joyner
- Department of Biology University of Alabama at Birmingham Birmingham Alabama USA
| | - Anil K. Challa
- Department of Biology University of Alabama at Birmingham Birmingham Alabama USA
| | - Liou Y. Sun
- Department of Biology University of Alabama at Birmingham Birmingham Alabama USA
| |
Collapse
|
21
|
Abstract
Growth hormone (GH) actions impact growth, metabolism, and body composition and have been associated with aging and longevity. Lack of GH results in slower growth, delayed maturation, and reduced body size and can lead to delayed aging, increased healthspan, and a remarkable extension of longevity. Adult body size, which is a GH-dependent trait, has a negative association with longevity in several mammalian species. Mechanistic links between GH and aging include evolutionarily conserved insulin/insulin-like growth factors and mechanistic target of rapamycin signaling pathways in accordance with long-suspected trade-offs between anabolic/growth processes and longevity. Height and the rate and regulation of GH secretion have been related to human aging, but longevity is not extended in humans with syndromes of GH deficiency or resistance. However, the risk of age-related chronic disease is reduced in individuals affected by these syndromes and various indices of increased healthspan have been reported.
Collapse
Affiliation(s)
- Andrzej Bartke
- Southern Illinois University School of Medicine, 801 N. Rutledge, P.O. Box 19628, Springfield, IL, 62794-9628, USA.
| |
Collapse
|
22
|
List EO, Basu R, Duran-Ortiz S, Krejsa J, Jensen EA. Mouse models of growth hormone deficiency. Rev Endocr Metab Disord 2021; 22:3-16. [PMID: 33033978 DOI: 10.1007/s11154-020-09601-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Nearly one century of research using growth hormone deficient (GHD) mouse lines has contributed greatly toward our knowledge of growth hormone (GH), a pituitary-derived hormone that binds and signals through the GH receptor and affects many metabolic processes throughout life. Although delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, small body size, and glucose intolerance appear to be among the negative characteristics of these GHD mouse lines, these mice still consistently outlive their normal sized littermates. Furthermore, the absence of GH action in these mouse lines leads to enhanced insulin sensitivity (likely due to the lack of GH's diabetogenic actions), delayed onset for a number of age-associated physiological declines (including cognition, cancer, and neuromusculoskeletal frailty), reduced cellular senescence, and ultimately, extended lifespan. In this review, we provide details about history, availability, growth, physiology, and aging of five commonly used GHD mouse lines.
Collapse
Affiliation(s)
- Edward O List
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA.
- The Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| | - Reetobrata Basu
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Silvana Duran-Ortiz
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Jackson Krejsa
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
| | - Elizabeth A Jensen
- The Edison Biotechnology Institute, Ohio University, 172 Water Tower Drive, Athens, OH, 45701, USA
- The Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
23
|
Huang S, Howington MB, Dobry CJ, Evans CR, Leiser SF. Flavin-Containing Monooxygenases Are Conserved Regulators of Stress Resistance and Metabolism. Front Cell Dev Biol 2021; 9:630188. [PMID: 33644069 PMCID: PMC7907451 DOI: 10.3389/fcell.2021.630188] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/15/2021] [Indexed: 01/14/2023] Open
Abstract
Flavin-Containing Monooxygenases are conserved xenobiotic-detoxifying enzymes. Recent studies have revealed endogenous functions of FMOs in regulating longevity in Caenorhabditis elegans and in regulating aspects of metabolism in mice. To explore the cellular mechanisms of FMO's endogenous function, here we demonstrate that all five functional mammalian FMOs may play similar endogenous roles to improve resistance to a wide range of toxic stresses in both kidney and liver cells. We further find that stress-activated c-Jun N-terminal kinase activity is enhanced in FMO-overexpressing cells, which may lead to increased survival under stress. Furthermore, FMO expression modulates cellular metabolic activity as measured by mitochondrial respiration, glycolysis, and metabolomics analyses. FMO expression augments mitochondrial respiration and significantly changes central carbon metabolism, including amino acid and energy metabolism pathways. Together, our findings demonstrate an important endogenous role for the FMO family in regulation of cellular stress resistance and major cellular metabolic activities including central carbon metabolism.
Collapse
Affiliation(s)
- Shijiao Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Marshall B. Howington
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
| | - Craig J. Dobry
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Charles R. Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Scott F. Leiser
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Fasting and fasting-mimicking diets for chemotherapy augmentation. GeroScience 2021; 43:1201-1216. [PMID: 33410090 DOI: 10.1007/s11357-020-00317-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022] Open
Abstract
The increasingly older population in most developed countries will likely experience aging-related chronic diseases such as diabetes, metabolic syndrome, heart and lung diseases, osteoporosis, arthritis, dementia, and/or cancer. Genetic and environmental factors, but also lifestyle choices including physical activity and dietary habits, play essential roles in disease onset and progression. Sixty-five percent of Americans diagnosed with cancer now survive more than 5 years, making the need for informed lifestyle choices particularly important to successfully complete their treatment, increase the recovery from the cytotoxic therapy options, and improve cancer-free survival. This review will discuss the findings on the use of prolonged fasting, as well as fasting-mimicking diets to augment cancer treatment. Preclinical studies in rodents strongly support the implementation of these dietary interventions and a small number of clinical trials begin to provide encouraging results for cancer patients and cancer survivors.
Collapse
|
25
|
Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev 2020; 64:101194. [PMID: 33091597 PMCID: PMC7710569 DOI: 10.1016/j.arr.2020.101194] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
The progressive increase in lifespan over the past century carries with it some adversity related to the accompanying burden of debilitating diseases prevalent in the older population. This review focuses on oxidative stress as a major mechanism limiting longevity in general, and healthful aging, in particular. Accordingly, the first goal of this review is to discuss the role of oxidative stress in limiting longevity, and compare healthful aging and its mechanisms in different longevity models. Secondly, we discuss common signaling pathways involved in protection against oxidative stress in aging and in the associated diseases of aging, e.g., neurological, cardiovascular and metabolic diseases, and cancer. Much of the literature has focused on murine models of longevity, which will be discussed first, followed by a comparison with human models of longevity and their relationship to oxidative stress protection. Finally, we discuss the extent to which the different longevity models exhibit the healthful aging features through physiological protective mechanisms related to exercise tolerance and increased β-adrenergic signaling and also protection against diabetes and other metabolic diseases, obesity, cancer, neurological diseases, aging-induced cardiomyopathy, cardiac stress and osteoporosis.
Collapse
Affiliation(s)
- Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA.
| | - Jie Zhang
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Marko Oydanich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Tolga Berkman
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Rotem Naftalovich
- Department of Anesthesiology, New Jersey Medical School, Newark, New Jersey, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
26
|
Lombard DB, Kohler WJ, Guo AH, Gendron C, Han M, Ding W, Lyu Y, Ching TT, Wang FY, Chakraborty TS, Nikolovska-Coleska Z, Duan Y, Girke T, Hsu AL, Pletcher SD, Miller RA. High-throughput small molecule screening reveals Nrf2-dependent and -independent pathways of cellular stress resistance. SCIENCE ADVANCES 2020; 6:6/40/eaaz7628. [PMID: 33008901 PMCID: PMC7852388 DOI: 10.1126/sciadv.aaz7628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 08/14/2020] [Indexed: 05/03/2023]
Abstract
Aging is the dominant risk factor for most chronic diseases. Development of antiaging interventions offers the promise of preventing many such illnesses simultaneously. Cellular stress resistance is an evolutionarily conserved feature of longevity. Here, we identify compounds that induced resistance to the superoxide generator paraquat (PQ), the heavy metal cadmium (Cd), and the DNA alkylator methyl methanesulfonate (MMS). Some rescue compounds conferred resistance to a single stressor, while others provoked multiplex resistance. Induction of stress resistance in fibroblasts was predictive of longevity extension in a published large-scale longevity screen in Caenorhabditis elegans, although not in testing performed in worms and flies with a more restricted set of compounds. Transcriptomic analysis and genetic studies implicated Nrf2/SKN-1 signaling in stress resistance provided by two protective compounds, cardamonin and AEG 3482. Small molecules identified in this work may represent attractive tools to elucidate mechanisms of stress resistance in mammalian cells.
Collapse
Affiliation(s)
- David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| | - William J Kohler
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Angela H Guo
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Christi Gendron
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa Han
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Weiqiao Ding
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yang Lyu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Tsui-Ting Ching
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 112, Taiwan
| | - Feng-Yung Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 112, Taiwan
| | - Tuhin S Chakraborty
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Yuzhu Duan
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Thomas Girke
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Ao-Lin Hsu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, MI, USA
- Research Center for Healthy Aging, China Medical University, Taichung, Taiwan
| | - Scott D Pletcher
- Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Abstract
DNA damage response (DDR) and DNA repair pathways determine neoplastic cell transformation and therapeutic responses, as well as the aging process. Altered DDR functioning results in accumulation of unrepaired DNA damage, increased frequency of tumorigenic mutations, and premature aging. Recent evidence suggests that polypeptide hormones play a role in modulating DDR and DNA damage repair, while DNA damage accumulation may also affect hormonal status. We review the available reports elucidating involvement of insulin-like growth factor 1 (IGF1), growth hormone (GH), α-melanocyte stimulating hormone (αMSH), and gonadotropin-releasing hormone (GnRH)/gonadotropins in DDR and DNA repair as well as the current understanding of pathways enabling these actions. We discuss effects of DNA damage pathway mutations, including Fanconi anemia, on endocrine function and consider mechanisms underlying these phenotypes. (Endocrine Reviews 41: 1 - 19, 2020).
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
28
|
Poudel SB, Dixit M, Neginskaya M, Nagaraj K, Pavlov E, Werner H, Yakar S. Effects of GH/IGF on the Aging Mitochondria. Cells 2020; 9:cells9061384. [PMID: 32498386 PMCID: PMC7349719 DOI: 10.3390/cells9061384] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
The mitochondria are key organelles regulating vital processes in the eukaryote cell. A decline in mitochondrial function is one of the hallmarks of aging. Growth hormone (GH) and the insulin-like growth factor-1 (IGF-1) are somatotropic hormones that regulate cellular homeostasis and play significant roles in cell differentiation, function, and survival. In mammals, these hormones peak during puberty and decline gradually during adulthood and aging. Here, we review the evidence that GH and IGF-1 regulate mitochondrial mass and function and contribute to specific processes of cellular aging. Specifically, we discuss the contribution of GH and IGF-1 to mitochondrial biogenesis, respiration and ATP production, oxidative stress, senescence, and apoptosis. Particular emphasis was placed on how these pathways intersect during aging.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry New York, NY 10010–4086, USA; (S.B.P.); (M.D.); (M.N.); (E.P.)
| | - Manisha Dixit
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry New York, NY 10010–4086, USA; (S.B.P.); (M.D.); (M.N.); (E.P.)
| | - Maria Neginskaya
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry New York, NY 10010–4086, USA; (S.B.P.); (M.D.); (M.N.); (E.P.)
| | - Karthik Nagaraj
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (K.N.); (H.W.)
| | - Evgeny Pavlov
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry New York, NY 10010–4086, USA; (S.B.P.); (M.D.); (M.N.); (E.P.)
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (K.N.); (H.W.)
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry New York, NY 10010–4086, USA; (S.B.P.); (M.D.); (M.N.); (E.P.)
- Correspondence: ; Tel.: +212-998-9721
| |
Collapse
|
29
|
Chan YH, Teo TH, Utt A, Tan JJ, Amrun SN, Abu Bakar F, Yee WX, Becht E, Lee CYP, Lee B, Rajarethinam R, Newell E, Merits A, Carissimo G, Lum FM, Ng LF. Mutating chikungunya virus non-structural protein produces potent live-attenuated vaccine candidate. EMBO Mol Med 2020; 11:emmm.201810092. [PMID: 31015278 PMCID: PMC6554673 DOI: 10.15252/emmm.201810092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Currently, there are no commercially available live-attenuated vaccines against chikungunya virus (CHIKV). Here, CHIKVs with mutations in non-structural proteins (nsPs) were investigated for their suitability as attenuated CHIKV vaccines. R532H mutation in nsP1 caused reduced infectivity in mouse tail fibroblasts but an enhanced type-I IFN response compared to WT-CHIKV Adult mice infected with this nsP-mutant exhibited a mild joint phenotype with low-level viremia that rapidly cleared. Mechanistically, ingenuity pathway analyses revealed a tilt in the anti-inflammatory IL-10 versus pro-inflammatory IL-1β and IL-18 balance during CHIKV nsP-mutant infection that modified acute antiviral and cell signaling canonical pathways. Challenging CHIKV nsP-mutant-infected mice with WT-CHIKV or the closely related O'nyong-nyong virus resulted in no detectable viremia, observable joint inflammation, or damage. Challenged mice showed high antibody titers with efficient neutralizing capacity, indicative of immunological memory. Manipulating molecular processes that govern CHIKV replication could lead to plausible vaccine candidates against alphavirus infection.
Collapse
Affiliation(s)
- Yi-Hao Chan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,Molecular Microbial Pathogenesis Unit, Department of Cell Biology and Infection, Institute Pasteur, Paris, France
| | - Age Utt
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jeslin Jl Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Siti Naqiah Amrun
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Farhana Abu Bakar
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Etienne Becht
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cheryl Yi-Pin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore City, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | | | - Evan Newell
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Guillaume Carissimo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Lisa Fp Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
30
|
Buffenstein R, Lewis KN, Gibney PA, Narayan V, Grimes KM, Smith M, Lin TD, Brown-Borg HM. Probing Pedomorphy and Prolonged Lifespan in Naked Mole-Rats and Dwarf Mice. Physiology (Bethesda) 2020; 35:96-111. [DOI: 10.1152/physiol.00032.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pedomorphy, maintenance of juvenile traits throughout life, is most pronounced in extraordinarily long-lived naked mole-rats. Many of these traits (e.g., slow growth rates, low hormone levels, and delayed sexual maturity) are shared with spontaneously mutated, long-lived dwarf mice. Although some youthful traits likely evolved as adaptations to subterranean habitats (e.g., thermolability), the nature of these intrinsic pedomorphic features may also contribute to their prolonged youthfulness, longevity, and healthspan.
Collapse
Affiliation(s)
| | | | - Patrick A. Gibney
- Calico Life Sciences LLC, South San Francisco, California
- Department of Food Science, College of Agriculture and Life Sciences, Stocking Hall, Cornell University, Ithaca, New York
| | - Vikram Narayan
- Calico Life Sciences LLC, South San Francisco, California
| | - Kelly M. Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Megan Smith
- Calico Life Sciences LLC, South San Francisco, California
| | - Tzuhua D. Lin
- Calico Life Sciences LLC, South San Francisco, California
| | - Holly M. Brown-Borg
- Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
31
|
Bulgakova SV, Treneva EV, Zakharova NO, Gorelik SG. [Aging and growthhormone: assumptions and facts (review of literature).]. Klin Lab Diagn 2020; 64:708-715. [PMID: 32040893 DOI: 10.18821/0869-2084-2019-64-12-708-715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
Growth hormone is a powerful metabolic hormone with pleiotropic effects, which is positioned as a "source of youth". Somatotropin has various functions: stimulation of bone growth, regulation of carbohydrate, protein, lipid metabolism, metabolic function of the liver and energy balance. At the cellular level, somatotropic hormone regulates cell growth, differentiation, apoptosis, and cytoskeleton reorganization. The review article presents the results of topical studies that reflect the relationship of growth hormone deficiency or resistance to it with the development of aging and diseases associated with age, as well as with an increase in life expectancy.
Collapse
Affiliation(s)
- S V Bulgakova
- Samara State Medical University, 43099, Samara, Russia
| | - E V Treneva
- Samara State Medical University, 43099, Samara, Russia
| | - N O Zakharova
- Samara State Medical University, 43099, Samara, Russia
| | - S G Gorelik
- Samara State Medical University, 43099, Samara, Russia
| |
Collapse
|
32
|
Stress Resistance Screen in a Human Primary Cell Line Identifies Small Molecules That Affect Aging Pathways and Extend Caenorhabditis elegans' Lifespan. G3-GENES GENOMES GENETICS 2020; 10:849-862. [PMID: 31879284 PMCID: PMC7003076 DOI: 10.1534/g3.119.400618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased resistance to environmental stress at the cellular level is correlated with the longevity of long-lived mutants and wild-animal species. Moreover, in experimental organisms, screens for increased stress resistance have yielded mutants that are long-lived. To find entry points for small molecules that might extend healthy longevity in humans, we screened ∼100,000 small molecules in a human primary-fibroblast cell line and identified a set that increased oxidative-stress resistance. Some of the hits fell into structurally related chemical groups, suggesting that they may act on common targets. Two small molecules increased C. elegans’ stress resistance, and at least 9 extended their lifespan by ∼10–50%. We further evaluated a chalcone that produced relatively large effects on lifespan and were able to implicate the activity of two, stress-response regulators, NRF2/skn-1 and SESN/sesn-1, in its mechanism of action. Our findings suggest that screening for increased stress resistance in human cells can enrich for compounds with promising pro-longevity effects. Further characterization of these compounds may reveal new ways to extend healthy human lifespan.
Collapse
|
33
|
Ozkurede U, Kala R, Johnson C, Shen Z, Miller RA, Garcia GG. Cap-independent mRNA translation is upregulated in long-lived endocrine mutant mice. J Mol Endocrinol 2019; 63:123-138. [PMID: 31357177 PMCID: PMC6691957 DOI: 10.1530/jme-19-0021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
It has been hypothesized that transcriptional changes associated with lower mTORC1 activity in mice with reduced levels of growth hormone and insulin-like growth factor 1 are responsible for the longer healthy lifespan of these mutant mice. Cell lines and tissues from these mice show alterations in the levels of many proteins that cannot be explained by corresponding changes in mRNAs. Such post-transcriptional modulation may be the result of preferential mRNA translation by the cap-independent translation of mRNA bearing the N6-methyl-adenosine (m6A) modification. The long-lived endocrine mutants - Snell dwarf, growth hormone receptor deletion and pregnancy-associated plasma protein-A knockout - all show increases in the N6-adenosine-methyltransferases (METTL3/14) that catalyze 6-methylation of adenosine (m6A) in the 5' UTR region of select mRNAs. In addition, these mice have elevated levels of YTH domain-containing protein 1 (YTHDF1), which recognizes m6A and promotes translation by a cap-independent mechanism. Consistently, multiple proteins that can be translated by the cap-independent mechanism are found to increase in these mice, including DNA repair and mitochondrial stress response proteins, without changes in corresponding mRNA levels. Lastly, a drug that augments cap-independent translation by inhibition of cap-dependent pathways (4EGI-1) was found to elevate levels of the same set of proteins and able to render cells resistant to several forms of in vitro stress. Augmented translation by cap-independent pathways facilitated by m6A modifications may contribute to the stress resistance and increased healthy longevity of mice with diminished GH and IGF-1 signals.
Collapse
Affiliation(s)
- Ulas Ozkurede
- Department of Pathology, Ann Arbor, Michigan 48109, USA
| | - Rishabh Kala
- Department of Pathology, Ann Arbor, Michigan 48109, USA
| | - Cameron Johnson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science and the Arts, Ann Arbor, Michigan 48109, USA
| | - Ziqian Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science and the Arts, Ann Arbor, Michigan 48109, USA
| | - Richard A. Miller
- Department of Pathology, Ann Arbor, Michigan 48109, USA
- University of Michigan Geriatrics Center, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
34
|
Csiszar A, Balasubramanian P, Tarantini S, Yabluchanskiy A, Zhang XA, Springo Z, Benbrook D, Sonntag WE, Ungvari Z. Chemically induced carcinogenesis in rodent models of aging: assessing organismal resilience to genotoxic stressors in geroscience research. GeroScience 2019; 41:209-227. [PMID: 31037472 DOI: 10.1007/s11357-019-00064-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
There is significant overlap between the cellular and molecular mechanisms of aging and pathways contributing to carcinogenesis, including the role of genome maintenance pathways. In the field of geroscience analysis of novel genetic mouse models with either a shortened, or an extended, lifespan provides a unique opportunity to evaluate the synergistic roles of longevity assurance pathways in cancer resistance and regulation of lifespan and to develop novel targets for interventions that both delay aging and prevent carcinogenesis. There is a growing need for robust assays to assess the susceptibility of cancer in these models. The present review focuses on a well-characterized method frequently used in cancer research, which can be adapted to study resilience to genotoxic stress and susceptibility to genotoxic stress-induced carcinogenesis in geroscience research namely, chemical carcinogenesis induced by treatment with 7,12-dimethylbenz(a)anthracene (DMBA). Recent progress in understanding how longer-living mice may achieve resistance to chemical carcinogenesis and how these pathways are modulated by anti-aging interventions is reviewed. Strain-specific differences in sensitivity to DMBA-induced carcinogenesis are also explored and contrasted with mouse lifespan. The clinical relevance of inhibition of DMBA-induced carcinogenesis for the pathogenesis of mammary adenocarcinomas in older human subjects is discussed. Finally, the potential role of insulin-like growth factor-1 (IGF-1) in the regulation of pathways responsible for cellular resilience to DMBA-induced mutagenesis is discussed.
Collapse
Affiliation(s)
- Anna Csiszar
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priya Balasubramanian
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zsolt Springo
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Doris Benbrook
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary. .,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary. .,Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
35
|
Aguiar-Oliveira MH, Bartke A. Growth Hormone Deficiency: Health and Longevity. Endocr Rev 2019; 40:575-601. [PMID: 30576428 PMCID: PMC6416709 DOI: 10.1210/er.2018-00216] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
The important role of GH in the control of mammalian longevity was first deduced from extended longevity of mice with genetic GH deficiency (GHD) or GH resistance. Mice with isolated GHD (IGHD) due to GHRH or GHRH receptor mutations, combined deficiency of GH, prolactin, and TSH, or global deletion of GH receptors live longer than do their normal siblings. They also exhibit multiple features of delayed and/or slower aging, accompanied by extension of healthspan. The unexpected, remarkable longevity benefit of severe endocrine defects in these animals presumably represents evolutionarily conserved trade-offs among aging, growth, maturation, fecundity, and the underlying anabolic processes. Importantly, the negative association of GH signaling with longevity extends to other mammalian species, apparently including humans. Data obtained in humans with IGHD type 1B, owing to a mutation of the GHRH receptor gene, in the Itabaianinha County, Brazil, provide a unique opportunity to study the impact of severe reduction in GH signaling on age-related characteristics, health, and functionality. Individuals with IGHD are characterized by proportional short stature, doll facies, high-pitched voices, and central obesity. They have delayed puberty but are fertile and generally healthy. Moreover, these IGHD individuals are partially protected from cancer and some of the common effects of aging and can attain extreme longevity, 103 years of age in one case. We think that low, but detectable, residual GH secretion combined with life-long reduction of circulating IGF-1 and with some tissue levels of IGF-1 and/or IGF-2 preserved may account for the normal longevity and apparent extension of healthspan in these individuals.
Collapse
Affiliation(s)
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
36
|
Arai Y, Kamide K, Hirose N. Adipokines and Aging: Findings From Centenarians and the Very Old. Front Endocrinol (Lausanne) 2019; 10:142. [PMID: 30923512 PMCID: PMC6426744 DOI: 10.3389/fendo.2019.00142] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue, which was once considered as a simple energy storage depot, is now recognized as an active endocrine organ that regulates the whole-body energy homeostasis by secreting hundreds of bioactive substances termed adipokines. Dysregulation of adipokines is a key feature of insulin resistance and a metabolic syndrome associated with obesity. Adipokine dysregulation and insulin resistance are also associated with energy-deprivation conditions, such as frailty in old age. Previous studies have demonstrated that preserved insulin sensitivity and low prevalence of diabetes are the metabolic peculiarities of centenarians, suggesting the possible role of adipokine homeostasis in healthy longevity. Among the numerous adipokines, adiponectin is regarded as unique and salutary, showing negative correlations with several age- and obesity-related metabolic disturbances and a positive correlation with longevity and insulin sensitivity among centenarians. However, large-scale epidemiological studies have implied the opposite aspect of this adipokine as a prognostic factor for all-cause and cardiovascular mortality in patients with heart failure or kidney disease. In this review, the clinical significance of adiponectin was comparatively addressed in centenarians and the very old, in terms of frailty, cardiovascular risk, and mortality.
Collapse
Affiliation(s)
- Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kei Kamide
- School of Allied Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Bartke A, Quainoo N. Impact of Growth Hormone-Related Mutations on Mammalian Aging. Front Genet 2018; 9:586. [PMID: 30542372 PMCID: PMC6278173 DOI: 10.3389/fgene.2018.00586] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations of a single gene can lead to a major increase in longevity in organisms ranging from yeast and worms to insects and mammals. Discovering these mutations (sometimes referred to as “longevity genes”) led to identification of evolutionarily conserved molecular, cellular, and organismal mechanisms of aging. Studies in mice provided evidence for the important role of growth hormone (GH) signaling in mammalian aging. Mice with mutations or gene deletions leading to GH deficiency or GH resistance have reduced body size and delayed maturation, but are healthier and more resistant to stress, age slower, and live longer than their normal (wild type) siblings. Mutations of the same genes in people can provide remarkable protection from age-related disease, but have no consistent impact on lifespan. Ongoing research indicates that genetic defects in GH signaling are linked to extension of healthspan and lifespan via a variety of interlocking mechanism, including improvements in genome and stem cell maintenance, stress resistance, glucose homeostasis, and thermogenesis, along with reductions in the mechanistic target of rapamycin (mTOR) C1 complex signaling and in chronic low grade inflammation.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Nana Quainoo
- Department of Biology, University of Illinois Springfield, Springfield, IL, United States
| |
Collapse
|
38
|
Hahn O, Stubbs TM, Reik W, Grönke S, Beyer A, Partridge L. Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity. PLoS Genet 2018; 14:e1007766. [PMID: 30462643 PMCID: PMC6281273 DOI: 10.1371/journal.pgen.1007766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/05/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Dietary, pharmacological and genetic interventions can extend health- and lifespan in diverse mammalian species. DNA methylation has been implicated in mediating the beneficial effects of these interventions; methylation patterns deteriorate during ageing, and this is prevented by lifespan-extending interventions. However, whether these interventions also actively shape the epigenome, and whether such epigenetic reprogramming contributes to improved health at old age, remains underexplored. We analysed published, whole-genome, BS-seq data sets from mouse liver to explore DNA methylation patterns in aged mice in response to three lifespan-extending interventions: dietary restriction (DR), reduced TOR signaling (rapamycin), and reduced growth (Ames dwarf mice). Dwarf mice show enhanced DNA hypermethylation in the body of key genes in lipid biosynthesis, cell proliferation and somatotropic signaling, which strongly correlates with the pattern of transcriptional repression. Remarkably, DR causes a similar hypermethylation in lipid biosynthesis genes, while rapamycin treatment increases methylation signatures in genes coding for growth factor and growth hormone receptors. Shared changes of DNA methylation were restricted to hypermethylated regions, and they were not merely a consequence of slowed ageing, thus suggesting an active mechanism driving their formation. By comparing the overlap in ageing-independent hypermethylated patterns between all three interventions, we identified four regions, which, independent of genetic background or gender, may serve as novel biomarkers for longevity-extending interventions. In summary, we identified gene body hypermethylation as a novel and partly conserved signature of lifespan-extending interventions in mouse, highlighting epigenetic reprogramming as a possible intervention to improve health at old age.
Collapse
Affiliation(s)
- Oliver Hahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
| | - Thomas M. Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
39
|
Salmon AB, Dorigatti J, Huber HF, Li C, Nathanielsz PW. Maternal nutrient restriction in baboon programs later-life cellular growth and respiration of cultured skin fibroblasts: a potential model for the study of aging-programming interactions. GeroScience 2018; 40:269-278. [PMID: 29802507 PMCID: PMC6060193 DOI: 10.1007/s11357-018-0024-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023] Open
Abstract
Compelling data exist for programming of chronic later-life diseases and longevity by perinatal developmental programming challenges. Understanding mechanisms by which life course health trajectory and longevity are set is fundamental to understanding aging. Appropriate approaches are needed to determine programming effects on cellular function. We have developed a baboon model in which control mothers eat ad libitum while a second group eat 70% of the global diet fed controls, leading to male and female offspring intrauterine growth restriction (IUGR). We have shown that IUGR suffer from acceleration of several age-related physiological declines. Here, we report on a skin-derived fibroblast model with potential relevance for mechanistic studies on how IUGR impacts aging. Fibroblasts were cultured from the skin biopsies taken from adult baboons from control and IUGR cohorts. IUGR-derived fibroblasts grew in culture less well than controls and those derived from male, but not female, IUGR baboons had a significant reduction in maximum respiration rate compared to control-derived fibroblasts. We also show that relative levels of several mitochondrial protein subunits, including NDUFB8 and cytochrome c oxidase subunit IV, were reduced in IUGR-derived fibroblasts even after serial passaging in culture. The lower levels of electron transport system components provide potential mechanisms for accelerated life course aging in the setting of programmed IUGR. This observation fits with the greater sensitivity of males compared with females to many, but not all, outcomes in response to programming challenges. These approaches will be powerful in the determination of programming-aging interactions.
Collapse
Affiliation(s)
- Adam B Salmon
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Jonathan Dorigatti
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hillary F Huber
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
40
|
Protective effects of short-term dietary restriction in surgical stress and chemotherapy. Ageing Res Rev 2017; 39:68-77. [PMID: 28216454 DOI: 10.1016/j.arr.2017.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 01/09/2023]
Abstract
Reduced caloric intake including fasting, as well as the dietary composition or the timing of food intake, impact longevity, likely through a modification in the onset or the severity of chronic aging-related diseases such as cancer. As with pre- and post-operative dietary recommendations, evidence-based nutritional advice from healthcare professionals during and after cancer treatment is often vague or conflicting. We hypothesize that preventive dietary recommendations can help in the context of both chronic cancer treatment efficacy and the avoidance of development of secondary malignancies, as well as in the context of protection from the acute stress of surgery. In this perspective review, we will discuss the latest findings on the potential role of short-term dietary restriction in cancer treatment and improvement of surgical outcome.
Collapse
|
41
|
Brown-Borg HM, Buffenstein R. Cutting back on the essentials: Can manipulating intake of specific amino acids modulate health and lifespan? Ageing Res Rev 2017; 39:87-95. [PMID: 27570078 DOI: 10.1016/j.arr.2016.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Abstract
With few exceptions, nutritional and dietary interventions generally impact upon both old-age quality of life and longevity. The life prolonging effects, commonly observed with dietary restriction reportedly are linked to alterations in protein intake and specifically limiting the dietary intake of certain essential amino acids. There is however a paucity of data methodically evaluating the various essential amino acids on health- and lifespan and the mechanisms involved. Rodent diets containing either lower methionine content, or tryptophan, than that found in commercially available chow, appear to elicit beneficial effects. It is unclear whether all of these favorable effects associated with restricted intake of methionine and tryptophan are due to their specific unique properties or if restriction of other essential amino acids, or proteins in general, may produce similar results. Considerably more work remains to be done to elucidate the mechanisms by which limiting these vital molecules may delay the onset of age-associated diseases and improve quality of life at older ages.
Collapse
|
42
|
Miller BF, Seals DR, Hamilton KL. A viewpoint on considering physiological principles to study stress resistance and resilience with aging. Ageing Res Rev 2017; 38:1-5. [PMID: 28676286 DOI: 10.1016/j.arr.2017.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022]
Abstract
Adaptation to stress is identified as one of the seven pillars of aging research. Our viewpoint discusses the importance of the distinction between stress resistance and resilience, highlights how integration of physiological principles is critical for further understanding in vivo stress resistance and resilience, and advocates for the use of early warning signs to prevent a tipping point in stress resistance and resilience.
Collapse
Affiliation(s)
- Benjamin F Miller
- Department of Health and Exercise Science, 201 Moby B Complex, Colorado State University, Fort Collins, CO, 80523-1582, USA.
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309,USA.
| | - Karyn L Hamilton
- Department of Health and Exercise Science, 201 Moby B Complex, Colorado State University, Fort Collins, CO, 80523-1582, USA.
| |
Collapse
|
43
|
Gesing A, Wiesenborn D, Do A, Menon V, Schneider A, Victoria B, Stout MB, Kopchick JJ, Bartke A, Masternak MM. A Long-lived Mouse Lacking Both Growth Hormone and Growth Hormone Receptor: A New Animal Model for Aging Studies. J Gerontol A Biol Sci Med Sci 2017; 72:1054-1061. [PMID: 27688483 PMCID: PMC5861925 DOI: 10.1093/gerona/glw193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/13/2016] [Indexed: 11/14/2022] Open
Abstract
Disruption of the growth hormone (GH) signaling pathway promotes insulin sensitivity and is associated with both delayed aging and extended longevity. Two kinds of long-lived mice-Ames dwarfs (df/df) and GH receptor gene-disrupted knockouts (GHRKO) are characterized by a suppressed GH axis with a significant reduction of body size and decreased plasma insulin-like growth factor-1 (IGF-1) and insulin levels. Ames dwarf mice are deficient in GH, prolactin, and thyrotropin, whereas GHRKOs are GH resistant and are dwarf with decreased circulating IGF-1 and increased GH. Crossing Ames dwarfs and GHRKOs produced a new mouse line (df/KO), lacking both GH and GH receptor. These mice are characterized by improved glucose tolerance and increased adiponectin level, which could imply that these mice should be also characterized by additional life-span extension when comparing with GHRKOs and Ames dwarfs. Importantly, our longevity experiments showed that df/KO mice maintain extended longevity when comparing with N control mice; however, they do not live longer than GHRKO and Ames df/df mice. These important findings indicate that silencing GH signal is important to extend the life span; however, further decrease of body size in mice with already inhibited GH signal does not extend the life span regardless of improved some health-span markers.
Collapse
Affiliation(s)
- Adam Gesing
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield
- Department of Oncological Endocrinology, Medical University of Lodz, Poland
| | - Denise Wiesenborn
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Department of Medical Biochemistry and Molecular Biology, University of Saarland, Homburg, Germany
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Andrew Do
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton
| | - Vinal Menon
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia
| | - Augusto Schneider
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Berta Victoria
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
| | - Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens
| | - Andrzej Bartke
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
44
|
Pickering AM, Lehr M, Gendron CM, Pletcher SD, Miller RA. Mitochondrial thioredoxin reductase 2 is elevated in long-lived primate as well as rodent species and extends fly mean lifespan. Aging Cell 2017; 16:683-692. [PMID: 28474396 PMCID: PMC5506402 DOI: 10.1111/acel.12596] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
In a survey of enzymes related to protein oxidation and cellular redox state, we found activity of the redox enzyme thioredoxin reductase (TXNRD) to be elevated in cells from long‐lived species of rodents, primates, and birds. Elevated TXNRD activity in long‐lived species reflected increases in the mitochondrial form, TXNRD2, rather than the cytosolic forms TXNRD1 and TXNRD3. Analysis of published RNA‐Seq data showed elevated TXNRD2 mRNA in multiple organs of longer‐lived primates, suggesting that the phenomenon is not limited to skin‐derived fibroblasts. Elevation of TXNRD2 activity and protein levels was also noted in liver of three different long‐lived mutant mice, and in normal male mice treated with a drug that extends lifespan in males. Overexpression of mitochondrial TXNRD2 in Drosophila melanogaster extended median (but not maximum) lifespan in female flies with a small lifespan extension in males; in contrast, overexpression of the cytosolic form, TXNRD1, did not produce a lifespan extension.
Collapse
Affiliation(s)
- Andrew M. Pickering
- Barshop Institute for Longevity and Aging Studies; University of Texas Health Science Center at San Antonio; San Antonio TX USA
- Department of Pathology; University of Michigan; Ann Arbor MI USA
- Geriatrics Center; University of Michigan; Ann Arbor MI USA
| | - Marcus Lehr
- Department of Pathology; University of Michigan; Ann Arbor MI USA
- Geriatrics Center; University of Michigan; Ann Arbor MI USA
| | - Christi M. Gendron
- Geriatrics Center; University of Michigan; Ann Arbor MI USA
- Department of Molecular and Integrative Physiology; University of Michigan; Ann Arbor MI USA
| | - Scott D. Pletcher
- Geriatrics Center; University of Michigan; Ann Arbor MI USA
- Department of Molecular and Integrative Physiology; University of Michigan; Ann Arbor MI USA
| | - Richard A. Miller
- Department of Pathology; University of Michigan; Ann Arbor MI USA
- Geriatrics Center; University of Michigan; Ann Arbor MI USA
| |
Collapse
|
45
|
Cole JJ, Robertson NA, Rather MI, Thomson JP, McBryan T, Sproul D, Wang T, Brock C, Clark W, Ideker T, Meehan RR, Miller RA, Brown-Borg HM, Adams PD. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol 2017; 18:58. [PMID: 28351383 PMCID: PMC5370462 DOI: 10.1186/s13059-017-1185-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging "clock", a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. RESULTS In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. CONCLUSIONS Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock.
Collapse
Affiliation(s)
- John J Cole
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Neil A Robertson
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Mohammed Iqbal Rather
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tony McBryan
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Claire Brock
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - William Clark
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Richard A Miller
- Department of Pathology and Glenn Center for the Biology of Aging, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58203, USA.
| | - Peter D Adams
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK.
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
46
|
Abstract
Cancer is the second leading cause of death in the USA and among the leading major diseases in the world. It is anticipated to continue to increase because of the growth of the aging population and prevalence of risk factors such as obesity, smoking, and/or poor dietary habits. Cancer treatment has remained relatively similar during the past 30 years with chemotherapy and/or radiotherapy in combination with surgery remaining the standard therapies although novel therapies are slowly replacing or complementing the standard ones. According to the American Cancer Society, the dietary recommendation for cancer patients receiving chemotherapy is to increase calorie and protein intake. In addition, there are no clear guidelines on the type of nutrition that could have a major impact on cancer incidence. Yet, various forms of reduced caloric intake such as calorie restriction (CR) or fasting demonstrate a wide range of beneficial effects able to help prevent malignancies and increase the efficacy of cancer therapies. Whereas chronic CR provides both beneficial and detrimental effects as well as major compliance challenges, periodic fasting (PF), fasting-mimicking diets (FMDs), and dietary restriction (DR) without a reduction in calories are emerging as interventions with the potential to be widely used to prevent and treat cancer. Here, we review preclinical and preliminary clinical studies on dietary restriction and fasting and their role in inducing cellular protection and chemotherapy resistance.
Collapse
|
47
|
Podlutsky A, Valcarcel-Ares MN, Yancey K, Podlutskaya V, Nagykaldi E, Gautam T, Miller RA, Sonntag WE, Csiszar A, Ungvari Z. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. GeroScience 2017; 39:147-160. [PMID: 28233247 DOI: 10.1007/s11357-017-9966-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
Experimental, clinical, and epidemiological findings support the concept of developmental origins of health and disease (DOHAD), suggesting that early-life hormonal influences during a sensitive period around adolescence have a powerful impact on cancer morbidity later in life. The endocrine changes that occur during puberty are highly conserved across mammalian species and include dramatic increases in circulating GH and IGF-1 levels. Importantly, patients with developmental IGF-1 deficiency due to GH insensitivity (Laron syndrome) do not develop cancer during aging. Rodents with developmental GH/IGF-1 deficiency also exhibit significantly decreased cancer incidence at old age, marked resistance to chemically induced carcinogenesis, and cellular resistance to genotoxic stressors. Early-life treatment of GH/IGF-1-deficient mice and rats with GH reverses the cancer resistance phenotype; however, the underlying molecular mechanisms remain elusive. The present study was designed to test the hypothesis that developmental GH/IGF-1 status impacts cellular DNA repair mechanisms. To achieve that goal, we assessed repair of γ-irradiation-induced DNA damage (single-cell gel electrophoresis/comet assay) and basal and post-irradiation expression of DNA repair-related genes (qPCR) in primary fibroblasts derived from control rats, Lewis dwarf rats (a model of developmental GH/IGF-1 deficiency), and GH-replete dwarf rats (GH administered beginning at 5 weeks of age, for 30 days). We found that developmental GH/IGF-1 deficiency resulted in persisting increases in cellular DNA repair capacity and upregulation of several DNA repair-related genes (e.g., Gadd45a, Bbc3). Peripubertal GH treatment reversed the radiation resistance phenotype. Fibroblasts of GH/IGF-1-deficient Snell dwarf mice also exhibited improved DNA repair capacity, showing that the persisting influence of peripubertal GH/IGF-1 status is not species-dependent. Collectively, GH/IGF-1 levels during a critical period during early life determine cellular DNA repair capacity in rodents, presumably by transcriptional control of genes involved in DNA repair. Because lifestyle factors (e.g., nutrition and childhood obesity) cause huge variation in peripubertal GH/IGF-1 levels in children, further studies are warranted to determine their persisting influence on cellular cancer resistance pathways.
Collapse
Affiliation(s)
- Andrej Podlutsky
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Marta Noa Valcarcel-Ares
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Krysta Yancey
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Viktorija Podlutskaya
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Eszter Nagykaldi
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - William E Sonntag
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
48
|
Abstract
The interrelationships of growth hormone (GH) actions and aging are complex and incompletely understood. The very pronounced age-related decline in GH secretion together with benefits of GH therapy in individuals with congenital or adult GH deficiency (GHD) prompted interest in GH as an anti-aging agent. However, the benefits of treatment of normal elderly subjects with GH appear to be marginal and counterbalanced by worrisome side effects. In laboratory mice, genetic GH deficiency or resistance leads to a remarkable extension of longevity accompanied by signs of delayed and/or slower aging. Mechanisms believed to contribute to extended longevity of GH-related mutants include improved anti-oxidant defenses, enhanced insulin sensitivity and reduced insulin levels, reduced inflammation and cell senescence, major shifts in mitochondrial function and energy metabolism, and greater stress resistance. Negative association of the somatotropic signaling and GH/insulin-like growth factor 1 (IGF-1)-dependent traits with longevity has also been shown in other mammalian species. In humans, syndromes of GH resistance or deficiency have no consistent effect on longevity, but can provide striking protection from cancer, diabetes and atherosclerosis. More subtle alterations in various steps of GH and IGF-1 signaling are associated with reduced old-age mortality, particularly in women and with improved chances of attaining extremes of lifespan. Epidemiological studies raise a possibility that the relationship of IGF-1 and perhaps also GH levels with human healthy aging and longevity may be biphasic. However, the impact of somatotropic signaling on neoplastic disease is difficult to separate from its impact on aging, and IGF-1 levels exhibit opposite associations with different chronic, age-related diseases.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
| |
Collapse
|
49
|
Reynolds LJ, Dickens BJ, Green BB, Marsit CJ, Pearson KJ. Using neonatal skin to study the developmental programming of aging. Exp Gerontol 2016; 94:93-98. [PMID: 28034763 DOI: 10.1016/j.exger.2016.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023]
Abstract
Numerous studies have examined how both negative and positive maternal exposures (environmental contaminants, nutrition, exercise, etc.) impact offspring risk for age-associated diseases such as obesity, type 2 diabetes, hypertension, and others. The purpose of this study was to introduce the foreskin as a novel model to examine developmental programming in human neonates, particularly in regard to adipogenesis and insulin receptor signaling, major contributors to age-associated diseases such as obesity and diabetes. Neonatal foreskin was collected following circumcision and primary dermal fibroblasts were isolated to perform adipocyte differentiation and insulin stimulation experiments. Human neonatal foreskin primary fibroblasts take up lipid when stimulated with a differentiation cocktail and demonstrate insulin signaling when stimulated with insulin. Thus, we propose that foreskin tissue can be used to study developmental exposures and programming that occur in the neonate as it relates to age-associated diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Leryn J Reynolds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Brett J Dickens
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Benjamin B Green
- Department of Epidemiology and of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
50
|
Ma S, Upneja A, Galecki A, Tsai YM, Burant CF, Raskind S, Zhang Q, Zhang ZD, Seluanov A, Gorbunova V, Clish CB, Miller RA, Gladyshev VN. Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. eLife 2016; 5:e19130. [PMID: 27874830 PMCID: PMC5148604 DOI: 10.7554/elife.19130] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
Mammalian lifespan differs by >100 fold, but the mechanisms associated with such longevity differences are not understood. Here, we conducted a study on primary skin fibroblasts isolated from 16 species of mammals and maintained under identical cell culture conditions. We developed a pipeline for obtaining species-specific ortholog sequences, profiled gene expression by RNA-seq and small molecules by metabolite profiling, and identified genes and metabolites correlating with species longevity. Cells from longer lived species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated proteolysis and protein transport, and showed high levels of amino acids but low levels of lysophosphatidylcholine and lysophosphatidylethanolamine. The amino acid patterns were recapitulated by further analyses of primate and bird fibroblasts. The study suggests that fibroblast profiling captures differences in longevity across mammals at the level of global gene expression and metabolite levels and reveals pathways that define these differences.
Collapse
Affiliation(s)
- Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Akhil Upneja
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Andrzej Galecki
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
- Geriatrics Center, University of Michigan Medical School, Ann Arbor, United States
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, United States
| | - Yi-Miau Tsai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
- Geriatrics Center, University of Michigan Medical School, Ann Arbor, United States
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Sasha Raskind
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, United States
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, United States
| | | | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, United States
- Geriatrics Center, University of Michigan Medical School, Ann Arbor, United States
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|