1
|
Kaneko YK, Morioka A, Sano M, Tashiro M, Watanabe N, Kasahara N, Nojiri M, Ishiwatari C, Ichinose K, Minami A, Suzuki T, Yamaguchi M, Kimura T, Ishikawa T. Asymmetric dimethylarginine accumulation under hyperglycemia facilitates β-cell apoptosis via inhibiting nitric oxide production. Biochem Biophys Res Commun 2022; 637:108-116. [DOI: 10.1016/j.bbrc.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
|
2
|
Ren Y, Li Z, Li W, Fan X, Han F, Huang Y, Yu Y, Qian L, Xiong Y. Arginase: Biological and Therapeutic Implications in Diabetes Mellitus and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2419412. [PMID: 36338341 PMCID: PMC9629921 DOI: 10.1155/2022/2419412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2023]
Abstract
Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of β-cell functions, insulin resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its related pathologies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenqing Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Feifei Han
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Bellis A, Mauro C, Barbato E, Di Gioia G, Sorriento D, Trimarco B, Morisco C. The Rationale of Neprilysin Inhibition in Prevention of Myocardial Ischemia-Reperfusion Injury during ST-Elevation Myocardial Infarction. Cells 2020; 9:cells9092134. [PMID: 32967374 PMCID: PMC7565478 DOI: 10.3390/cells9092134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
During the last three decades, timely myocardial reperfusion using either thrombolytic therapy or primary percutaneous intervention (pPCI) has allowed amazing improvements in outcomes with a more than halving in 1-year ST-elevation myocardial infarction (STEMI) mortality. However, mortality and left ventricle (LV) remodeling remain substantial in these patients. As such, novel therapeutic interventions are required to reduce myocardial infarction size, preserve LV systolic function, and improve survival in reperfused-STEMI patients. Myocardial ischemia-reperfusion injury (MIRI) prevention represents the main goal to reach in order to reduce STEMI mortality. There is currently no effective therapy for MIRI prevention in STEMI patients. A significant reason for the weak and inconsistent results obtained in this field may be the presence of multiple, partially redundant, mechanisms of cell death during ischemia-reperfusion, whose relative importance may depend on the conditions. Therefore, it is always more recognized that it is important to consider a "multi-targeted cardioprotective therapy", defined as an additive or synergistic cardioprotective agents or interventions directed to distinct targets with different timing of application (before, during, or after pPCI). Given that some neprilysin (NEP) substrates (natriuretic peptides, angiotensin II, bradykinin, apelins, substance P, and adrenomedullin) exert a cardioprotective effect against ischemia-reperfusion injury, it is conceivable that antagonism of proteolytic activity by this enzyme may be considered in a multi-targeted strategy for MIRI prevention. In this review, by starting from main pathophysiological mechanisms promoting MIRI, we discuss cardioprotective effects of NEP substrates and the potential benefit of NEP pharmacological inhibition in MIRI prevention.
Collapse
Affiliation(s)
- Alessandro Bellis
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Ciro Mauro
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Emanuele Barbato
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Giuseppe Di Gioia
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Cardiac Catheterization Laboratory, Montevergine Clinic, 83013 Mercogliano (AV), Italy
| | - Daniela Sorriento
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Bruno Trimarco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Carmine Morisco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Correspondence: ; Tel.: +39-081-746-2253; Fax: +39-081-746-2256
| |
Collapse
|
4
|
Oleson BJ, Corbett JA. Can insulin secreting pancreatic β-cells provide novel insights into the metabolic regulation of the DNA damage response? Biochem Pharmacol 2020; 176:113907. [PMID: 32171728 DOI: 10.1016/j.bcp.2020.113907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022]
Abstract
Insulin, produced by pancreatic β-cells, is responsible for the control of whole-body glucose metabolism. Insulin is secreted by pancreatic β-cells in a tightly regulated process that is controlled by the serum level of glucose, glucose sensing and glucose oxidative metabolism. The regulation of intermediary metabolism in β-cells is unique as these cells oxidize glucose to CO2 on substrate supply while mitochondrial oxidative metabolism occurs on demand, for the production of intermediates or energy production, in most cell types. This review discusses recent findings that the regulation of intermediary metabolism by nitric oxide attenuates the DNA damage response (DDR) and DNA damage-dependent apoptosis in a β-cell selective manner. Specific focus is placed on the mechanisms by which iNOS derived nitric oxide (low micromolar levels) regulates DDR activation via the inhibition of intermediary metabolism. The physiological significance of the association of metabolism, nitric oxide and DDR signaling for cancer biology and diabetes is discussed.
Collapse
Affiliation(s)
- Bryndon J Oleson
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A Corbett
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
5
|
Lackey AI, Chen T, Zhou YX, Bottasso Arias NM, Doran JM, Zacharisen SM, Gajda AM, Jonsson WO, Córsico B, Anthony TG, Joseph LB, Storch J. Mechanisms underlying reduced weight gain in intestinal fatty acid-binding protein (IFABP) null mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G518-G530. [PMID: 31905021 PMCID: PMC7099495 DOI: 10.1152/ajpgi.00120.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
Intestinal-fatty acid binding protein (IFABP; FABP2) is a 15-kDa intracellular protein abundantly present in the cytosol of the small intestinal (SI) enterocyte. High-fat (HF) feeding of IFABP-/- mice resulted in reduced weight gain and fat mass relative to wild-type (WT) mice. Here, we examined intestinal properties that may underlie the observed lean phenotype of high fat-fed IFABP-/- mice. No alterations in fecal lipid content were found, suggesting that the IFABP-/- mice are not malabsorbing dietary fat. However, the total excreted fecal mass, normalized to food intake, was increased for the IFABP-/- mice relative to WT mice. Moreover, intestinal transit time was more rapid in the IFABP-/- mice. IFABP-/- mice displayed a shortened average villus length, a thinner muscularis layer, reduced goblet cell density, and reduced Paneth cell abundance. The number of proliferating cells in the crypts of IFABP-/- mice did not differ from that of WT mice, suggesting that the blunt villi phenotype is not due to alterations in proliferation. IFABP-/- mice were observed to have altered expression of genes and proteins related to intestinal structure, while immunohistochemical analyses revealed increased staining for markers of inflammation. Taken together, these studies indicate that the ablation of IFABP, coupled with high-fat feeding, leads to changes in gut motility and morphology, which likely contribute to the relatively leaner phenotype occurring at the whole-body level. Thus, IFABP is likely involved in dietary lipid sensing and signaling, influencing intestinal motility, intestinal structure, and nutrient absorption, thereby impacting systemic energy metabolism.NEW & NOTEWORTHY Intestinal fatty acid binding protein (IFABP) is thought to be essential for the efficient uptake and trafficking of dietary fatty acids. In this study, we demonstrate that high-fat-fed IFABP-/- mice have an increased fecal output and are likely malabsorbing other nutrients in addition to lipid. Furthermore, we observe that the ablation of IFABP leads to marked alterations in intestinal morphology and secretory cell abundance.
Collapse
Affiliation(s)
- Atreju I Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Tina Chen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Yin X Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Natalia M Bottasso Arias
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Justine M Doran
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Sophia M Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
| | - Angela M Gajda
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| | - Laurie B Joseph
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey
- Rutgers Center for Lipid Research, New Brunswick, New Jersey
| |
Collapse
|
6
|
Soiberman US, Shehata AEM, Lu MX, Young T, Daoud YJ, Chakravarti S, Jun AS, Foster JW. Small Molecule Modulation of the Integrated Stress Response Governs the Keratoconic Phenotype In Vitro. Invest Ophthalmol Vis Sci 2019; 60:3422-3431. [PMID: 31390655 PMCID: PMC6686743 DOI: 10.1167/iovs.19-27151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose The degenerative corneal disease keratoconus is a leading indicator for corneal transplant with an unknown etiology. We recently identified the activation of the integrated stress response (ISR) in ex vivo human corneas and in vitro cell culture. Utilizing small molecules to modulate the ISR we sought to investigate the effects of stimulating the ISR in healthy cells to recapitulate aspects of the in vitro keratoconic phenotype and whether relieving the ISR signaling would recover the disease phenotype. Methods Corneal fibroblasts were extracted from patients undergoing corneal transplant or unaffected cadaverous donor limbal rings. Cells were exposed to the DNA damage-inducible protein (GADD34) inhibitor SAL003 to stimulate the ISR, or Trans-ISRIB to relieve ISR signaling pathway. Collagen production was assessed through hydroxyproline production, Sirius Red incorporation, or quantitative (q)PCR. Western blotting, hydroxyproline, and qPCR were used to assess components of the ISR pathway and collagen production. Results ISR stimulation through SAL003 resulted in significant decrease of hydroxyproline and COL1A1 transcription and eventual apoptosis in normal fibroblasts. Patient (KC) fibroblast production of hydroxyproline was increased in response to ISRIB, while matrix metalloproteinase (MMP)9 production was lowered. The prospective biomarker of keratoconus prolactin-inducible factor was also upregulated in KC fibroblast cultures in response to ISRIB. Inflammatory markers TNFα and IL-1β were unaffected. Conclusions Activation of the ISR is sufficient to recapitulate many key aspects of the KC phenotype in unaffected cells in vitro. Inhibition of the ISR also relieves many of the hallmarks of KC in affected cells. Therefore, targeting of the ISR through small molecules is a potential therapeutic path for small molecule treatment of keratoconus.
Collapse
Affiliation(s)
- Uri Simcha Soiberman
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | | | | | - Tempest Young
- Johns Hopkins University, Baltimore, Maryland, United States
| | - Yassine J Daoud
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Langone Health, New York, New York, United States
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - James William Foster
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Abuid NJ, Gattás-Asfura KM, Schofield EA, Stabler CL. Layer-by-Layer Cerium Oxide Nanoparticle Coating for Antioxidant Protection of Encapsulated Beta Cells. Adv Healthc Mater 2019; 8:e1801493. [PMID: 30633854 PMCID: PMC6625950 DOI: 10.1002/adhm.201801493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Indexed: 01/15/2023]
Abstract
In type 1 diabetes, the replacement of the destroyed beta cells could restore physiological glucose regulation and eliminate the need for exogenous insulin. Immunoisolation of these foreign cellular transplants via biomaterial encapsulation is widely used to prevent graft rejection. While highly effective in blocking direct cell-to-cell contact, nonspecific inflammatory reactions to the implant lead to the overproduction of reactive oxygen species, which contribute to foreign body reaction and encapsulated cell loss. For antioxidant protection, cerium oxide nanoparticles (CONPs) are a self-renewable, ubiquitous, free radical scavenger currently explored in several biomedical applications. Herein, 2-12 alternating layers of CONP/alginate are assembled onto alginate microbeads containing beta cells using a layer-by-layer (LbL) technique. The resulting nanocomposite coatings demonstrate robust antioxidant activity. The degree of cytoprotection correlates with layer number, indicating tunable antioxidant protection. Coating of alginate beads with 12 layers of CONP/alginate provides complete protection to the entrapped beta cells from exposure to 100 × 10-6 m H2 O2 , with no significant changes in cellular metabolic activity, oxidant capacity, or insulin secretion dynamics, when compared to untreated controls. The flexibility of this LbL method, as well as its nanoscale profile, provides a versatile approach for imparting antioxidant protection to numerous biomedical implants, including beta cell transplantation.
Collapse
Affiliation(s)
- Nicholas J Abuid
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Kerim M Gattás-Asfura
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Emily A Schofield
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Cherie L Stabler
- Department of Biomedical Engineering, UF Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
8
|
|
9
|
Mandaliya DK, Seshadri S. Short Chain Fatty Acids, pancreatic dysfunction and type 2 diabetes. Pancreatology 2019; 19:280-284. [PMID: 30713129 DOI: 10.1016/j.pan.2019.01.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
The microbiota living in gut influence the immune response, metabolism, mood and behavior. The diet plays a pivotal role in maintaining healthy gut microbiota composition and its fermentation leads to production of Short Chain Fatty Acids (SCFAs) mainly acetate, propionate and butyrate. During pancreatic dysfunction, insulin mediated suppression of glucagon is impaired leading to uncontrolled glucose production by liver and state of hyperglycemia. Insulin and glucagon balance is as important as insulin sensitivity which is reduced during Type 2 Diabetes (T2D). Glucagon like peptide-1 (GLP1) produced by Intestinal epithelial cells regulates insulin and glucagon secretion directly via GLP1 receptor on pancreatic cells or via nervous system. But half-life period of GLP1 is very short i.e. about 2 min, after which it is cleaved and inactivated. SCFAs are well documented to induce GLP1 but its direct effect on pancreatic dysfunction has not been reported. This review opens a new avenue to study the role of SCFAs as treatment to pancreatic dysfunction and T2D.
Collapse
Affiliation(s)
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
10
|
Thomaidou S, Zaldumbide A, Roep BO. Islet stress, degradation and autoimmunity. Diabetes Obes Metab 2018; 20 Suppl 2:88-94. [PMID: 30230178 PMCID: PMC6174957 DOI: 10.1111/dom.13387] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
β-cell destruction in type 1 diabetes (T1D) results from the effect of inflammation and autoimmunity. In response to inflammatory signals, islet cells engage adaptive mechanisms to restore and maintain cellular homeostasis. Among these mechanisms, the unfolded protein response (UPR) leads to a reduction of the general protein translation rate, increased production of endoplasmic reticulum chaperones and the initiation of degradation by activation of the ER associated degradation pathway (ERAD) in which newly synthetized proteins are ubiquitinylated and processed through the proteasome. This adaptive phase is also believed to play a critical role in the development of autoimmunity by the generation of neoantigens. While we have previously investigated the effect of stress on transcription, translation and post-translational events as possible source for neoantigens, the participation of the degradation machinery, yet crucial in the generation of antigenic peptides, remains to be investigated in the context of T1D pathology. In this review, we will describe the relation between the unfolded protein response and the Ubiquitin Proteasome System (UPS) and address the role of the cellular degradation machinery in the generation of antigens. Learning from tumour immunology, we propose how these processes may unmask β-cells by triggering the generation of aberrant peptides recognized by the immune cells.
Collapse
Affiliation(s)
- Sofia Thomaidou
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Bart O. Roep
- Department of Immunohematology and Blood bank Leiden University Medical CenterLeiden University Medical CenterLeidenThe Netherlands
- Department of Diabetes ImmunologyDiabetes & Metabolism Research Institute at the Beckman Research InstituteDuarteCalifornia
| |
Collapse
|
11
|
Caballano-Infantes E, Terron-Bautista J, Beltrán-Povea A, Cahuana GM, Soria B, Nabil H, Bedoya FJ, Tejedo JR. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells. World J Stem Cells 2017; 9:26-36. [PMID: 28289506 PMCID: PMC5329687 DOI: 10.4252/wjsc.v9.i2.26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/09/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies.
Collapse
|
12
|
Chen Z, Wu D, Li L, Chen L. Apelin/APJ System: A Novel Therapeutic Target for Myocardial Ischemia/Reperfusion Injury. DNA Cell Biol 2016; 35:766-775. [DOI: 10.1089/dna.2016.3391] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Di Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang, China
| |
Collapse
|
13
|
Bucris E, Beck A, Boura-Halfon S, Isaac R, Vinik Y, Rosenzweig T, Sampson SR, Zick Y. Prolonged insulin treatment sensitizes apoptosis pathways in pancreatic β cells. J Endocrinol 2016; 230:291-307. [PMID: 27411561 DOI: 10.1530/joe-15-0505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
Abstract
Insulin resistance results from impaired insulin signaling in target tissues that leads to increased levels of insulin required to control plasma glucose levels. The cycle of hyperglycemia and hyperinsulinemia eventually leads to pancreatic cell deterioration and death by a mechanism that is yet unclear. Insulin induces ROS formation in several cell types. Furthermore, death of pancreatic cells induced by oxidative stress could be potentiated by insulin. Here, we investigated the mechanism underlying this phenomenon. Experiments were done on pancreatic cell lines (Min-6, RINm, INS-1), isolated mouse and human islets, and on cell lines derived from nonpancreatic sources. Insulin (100nM) for 24h selectively increased the production of ROS in pancreatic cells and isolated pancreatic islets, but only slightly affected the expression of antioxidant enzymes. This was accompanied by a time- and dose-dependent decrease in cellular reducing power of pancreatic cells induced by insulin and altered expression of several ER stress response elements including a significant increase in Trb3 and a slight increase in iNos The effect on iNos did not increase NO levels. Insulin also potentiated the decrease in cellular reducing power induced by H2O2 but not cytokines. Insulin decreased the expression of MCL-1, an antiapoptotic protein of the BCL family, and induced a modest yet significant increase in caspase 3/7 activity. In accord with these findings, inhibition of caspase activity eliminated the ability of insulin to increase cell death. We conclude that prolonged elevated levels of insulin may prime apoptosis and cell death-inducing mechanisms as a result of oxidative stress in pancreatic cells.
Collapse
Affiliation(s)
- E Bucris
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel Mina and Everard Goodman Faculty of Life SciencesBar-Ilan University, Ramat-Gan, Israel
| | - A Beck
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel
| | - S Boura-Halfon
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel
| | - R Isaac
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel
| | - Y Vinik
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel
| | - T Rosenzweig
- Department of Molecular Biology and Nutritional StudiesAriel University, Ariel, Israel
| | - S R Sampson
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel Mina and Everard Goodman Faculty of Life SciencesBar-Ilan University, Ramat-Gan, Israel
| | - Y Zick
- Department of Molecular Cell BiologyWeizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Kaneko YK. Development and Analysis of Novel Therapeutic Targets to Improve Pancreatic β-Cell Function in Type 2 Diabetes. YAKUGAKU ZASSHI 2016; 136:1623-1629. [DOI: 10.1248/yakushi.16-00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukiko K. Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
15
|
Abstract
The intestinal mucosa harbors the largest population of antibody (Ab)-secreting plasma cells (PC) in the human body, producing daily several grams of immunoglobulin A (IgA). IgA has many functions, serving as a first-line barrier that protects the mucosal epithelium from pathogens, toxins and food antigens (Ag), shaping the intestinal microbiota, and regulating host-commensal homeostasis. Signals induced by commensal colonization are central for regulating IgA induction, maintenance, positioning and function and the number of IgA(+) PC is dramatically reduced in neonates and germ-free (GF) animals. Recent evidence demonstrates that the innate immune effector molecules tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) are required for IgA(+) PC homeostasis during the steady state and infection. Moreover, new functions ascribed to PC independent of Ab secretion continue to emerge, suggesting that PC, including IgA(+) PC, should be re-examined in the context of inflammation and infection. Here, we outline mechanisms of IgA(+) PC generation and survival, reviewing their functions in health and disease.
Collapse
Key Words
- AID, activation-induced deaminase
- APC, antigen-presenting cell
- APRIL, a proliferation-inducing ligand
- Ab, antibody
- Ag, antigen
- Arg, arginase
- Atg, autophagy-related gene
- B cell
- BAFF, B-cell activating factor
- BCMA, B-cell maturation antigen
- BM, bone marrow
- Blimp, B-lymphocyte-induced maturation protein
- CCL, CC chemokine ligand
- CCR, CC chemokine receptor
- CD, cluster of differentiation
- CSR, class-switch recombination
- CXCL, CXC chemokine ligand
- DC, dendritic cell
- ER, endoplasmic reticulum
- FDC, follicular dendritic cells
- FcαR, Fc fragment of IgA receptor
- GALT, gut-associated lymphoid tissues
- GC, germinal center
- GF, germ-free
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- GRP, glucose-regulated proteins
- HIV, human immunodeficiency virus
- IEC, intestinal epithelial cells
- IFN, interferon
- IL, interleukin
- ILC, innate lymphoid cells
- ILF, isolated lymphoid follicles
- IRE, inositol-requiring enzyme
- IRF, interferon regulatory factor
- Id, inhibitor of DNA binding
- IgA, immunoglobulin A
- IgAD, selective IgA deficiency
- L-Arg, L-Arginine
- L-Cit, L-citrulline
- L-Glu, L-Glutamate
- L-Orn, L-Ornithine
- L-Pro, L-Proline
- LIGHT, homologous to lymphotoxin, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes
- LP, lamina propria
- LT, lymphotoxinLTβR, LTβ-receptor
- LTi, lymphoid tissue-inducer
- LTo, lymphoid tissue organizing
- Ly, lymphocyte antigen
- MHC, major histocompatibility complex
- MLN, mesenteric lymph nodes
- NO, nitric oxide
- PC, plasma cells
- PP, Peyer's patch
- Pax, paired box
- ROR, Retionic acid receptor (RAR)- or retinoid-related orphan receptor
- SC, stromal cells
- SHM, somatic hypermutation
- SIGNR, specific intercellular adhesion molecule-3-grabbing non-integrin-related
- SIgAsecretory IgA
- TACI, transmembrane activator and calcium-modulator and cyclophilin ligand interactor
- TD, T-dependent
- TFH, T-follicular helper cells
- TGFβR, transforming growth factor β receptor
- TI, T-independent
- TLR, Toll-like receptor
- TNFR, TNF receptor
- TNFα, tumor necrosis factor α
- Th, T helper cell
- Treg, T-regulatory cell
- UPR, unfolded protein response
- XBP, X-box binding protein
- bcl, B-cell lymphoma
- cGMP, cyclic guanosine monophosphate
- iNOS, inducible nitric oxide synthase
- immunoglobulin A (IgA)
- inducible nitric oxide synthase (iNOS)
- innate immune recognition
- intestinal microbiota
- mucosa
- pIgA, polymeric IgA
- pIgR, polymeric Ig receptor
- plasma cell
Collapse
Affiliation(s)
| | - Olga L Rojas
- Department of Immunology; University of Toronto; Toronto, ON Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology; Department of Physiology; Complex Traits Group; McGill University; Montreal, QC Canada,Correspondence to: Jörg H Fritz;
| |
Collapse
|
16
|
Lim DJ, Andukuri A, Vines JB, Rahman SM, Hwang PT, Kim J, Shalev A, Corbett JA, Jun HW. Enhanced MIN-6 beta cell survival and function on a nitric oxide-releasing peptide amphiphile nanomatrix. Int J Nanomedicine 2014; 9 Suppl 1:13-21. [PMID: 24872700 PMCID: PMC4024973 DOI: 10.2147/ijn.s50873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Innovative biomaterial strategies are required to improve islet cell retention, viability, and functionality, and thereby obtain clinically successful outcomes from pancreatic islet cell transplantation. To address this need, we have developed a peptide amphiphile-based nanomatrix that incorporates multifunctional bioactive cues and sustained release of nitric oxide. The goal of this study was to evaluate the effect of this peptide amphiphile nanomatrix on the viability and functionality of MIN-6 islet cells. Additionally, this study provides insight into the role of nitric oxide in islet cell biology, given that conventional nitric oxide donors are unable to release nitric oxide in a controlled, sustained manner, leading to ambiguous results. It was hypothesized that controlled nitric oxide release in synergy with multifunctional bioactive cues would promote islet cell viability and functionality. Nitric oxide-releasing peptide amphiphile nanomatrices within the range of 16.25 μmol to 130 μmol were used to analyze MIN-6 cell behavior. Both 32.5 μmol and 65 μmol peptide amphiphiles showed improved MIN-6 functionality in response to glucose over a 7-day time period, and the elevated functionality was correlated with both PDX-1 and insulin gene expression. Our results demonstrate that nitric oxide has a beneficial effect on MIN-6 cells in a concentration-dependent manner.
Collapse
Affiliation(s)
- Dong-Jin Lim
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adinarayana Andukuri
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy B Vines
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA ; Nutech Medical Inc, Division of Endocrinology, Diabetes and Metabolism, Birmingham, AL, USA
| | - Shibli M Rahman
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick Tj Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeonga Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Birmingham, AL, USA
| | - Anath Shalev
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA ; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA ; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells. Nat Immunol 2014; 15:275-82. [DOI: 10.1038/ni.2806] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/06/2013] [Indexed: 12/31/2022]
|
18
|
Tapia-Limonchi R, Díaz I, Cahuana GM, Bautista M, Martín F, Soria B, Tejedo JR, Bedoya FJ. Impact of exposure to low concentrations of nitric oxide on protein profile in murine and human pancreatic islet cells. Islets 2014; 6:e995997. [PMID: 25658244 PMCID: PMC4398281 DOI: 10.1080/19382014.2014.995997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homeostatic levels of nitric oxide (NO) protect efficiently against apoptotic death in both human and rodent pancreatic β cells, but the protein profile of this action remains to be determined. We have applied a 2 dimensional LC-MS-MALDI-TOF/TOF-based analysis to study the impact of protective NO in rat insulin-producing RINm5F cell line and in mouse and human pancreatic islets (HPI) exposed to serum deprivation condition. 24 proteins in RINm5F and 22 in HPI were identified to undergo changes in at least one experimental condition. These include stress response mitochondrial proteins (UQCRC2, VDAC1, ATP5C1, ATP5A1) in RINm5F cells and stress response endoplasmic reticulum proteins (HSPA5, PDIA6, VCP, GANAB) in HPI. In addition, metabolic and structural proteins, oxidoreductases and chaperones related with protein metabolism are also regulated by NO treatment. Network analysis of differentially expressed proteins shows their interaction in glucocorticoid receptor and NRF2-mediated oxidative stress response pathways and eNOS signaling. The results indicate that exposure to exogenous NO counteracts the impact of serum deprivation on pancreatic β cell proteome. Species differences in the proteins involved are apparent.
Collapse
Affiliation(s)
- Rafael Tapia-Limonchi
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Irene Díaz
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Gladys M Cahuana
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Mario Bautista
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Franz Martín
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Bernat Soria
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)-Fundación Progreso y Salud; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Juan R Tejedo
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Francisco J Bedoya
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
- Correspondence to: Francisco J. Bedoya;
| |
Collapse
|
19
|
Hsu HC, Chiou JF, Wang YH, Chen CH, Mau SY, Ho CT, Chang PJ, Liu TZ, Chen CH. Folate deficiency triggers an oxidative-nitrosative stress-mediated apoptotic cell death and impedes insulin biosynthesis in RINm5F pancreatic islet β-cells: relevant to the pathogenesis of diabetes. PLoS One 2013; 8:e77931. [PMID: 24223745 PMCID: PMC3817167 DOI: 10.1371/journal.pone.0077931] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/06/2013] [Indexed: 12/19/2022] Open
Abstract
It has been postulated that folic acid (folate) deficiency (FD) may be a risk factor for the pathogenesis of a variety of oxidative stress-triggered chronic degenerative diseases including diabetes, however, the direct evidence to lend support to this hypothesis is scanty. For this reason, we set out to study if FD can trigger the apoptotic events in an insulin-producing pancreatic RINm5F islet β cells. When these cells were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature proceeding through a mitochondria-dependent pathway. In addition to evoke oxidative stress, FD condition could also trigger nitrosative stress through a NF-κB-dependent iNOS-mediated overproduction of nitric oxide (NO). The latter compound could then trigger depletion of endoplasmic reticulum (ER) calcium (Ca2+) store leading to cytosolic Ca2+ overload and caused ER stress as evidence by the activation of CHOP expression. Furthermore, FD-induced apoptosis of RINm5F cells was found to be correlated with a time-dependent depletion of intracellular gluthathione (GSH) and a severe down-regulation of Bcl-2 expression. Along the same vein, we also demonstrated that FD could severely impede RINm5F cells to synthesize insulin and their abilities to secret insulin in response to glucose stimulation were appreciably hampered. Even more importantly, we found that folate replenishment could not restore the ability of RINm5F cells to resynthesize insulin. Taken together, our data provide strong evidence to support the hypothesis that FD is a legitimate risk factor for the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Hung-Chih Hsu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi, Taiwan
- Department of Nursing, Chang-Gung University of Science and Technology, Chia-Yi, Taiwan
| | - Jeng-Fong Chiou
- Cancer Center and Department of Radiation Oncology, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Yu-Huei Wang
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Chia-Hui Chen
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Shin-Yi Mau
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Chun-Te Ho
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsan-Zon Liu
- Translational Research Laboratory, Cancer Center, Taipei Medical University and Hospital, Taipei, Taiwan
- * E-mail: (TZL); (CHC)
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, Collage of Life Sciences, National Chiayi University, Chiayi City, Taiwan
- * E-mail: (TZL); (CHC)
| |
Collapse
|
20
|
Haredy AM, Nishizawa A, Honda K, Ohya T, Ohtake H, Omasa T. Improved antibody production in Chinese hamster ovary cells by ATF4 overexpression. Cytotechnology 2013; 65:993-1002. [PMID: 24026344 DOI: 10.1007/s10616-013-9631-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/10/2013] [Indexed: 12/11/2022] Open
Abstract
To improve antibody production in Chinese hamster ovary (CHO) cells, the humanized antibody-producing CHO DP-12-SF cell line was transfected with the gene encoding activating transcription factor 4 (ATF4), a central factor in the unfolded protein response. Overexpression of ATF4 significantly enhanced the production of antibody in the CHO DP-12-SF cell line. The specific IgG production rate of in the ATF4-overexpressing CHO-ATF4-16 cells was approximately 2.4 times that of the parental host cell line. Clone CHO-ATF4-16 did not show any change in growth rate compared with the parental cells or mock-transfected CHO-DP12-SF cells. The expression levels of mRNAs encoding both the antibody heavy and light chains in the CHO-ATF4-16 clone were analyzed. This analysis showed that ATF4 overexpression improved the total production and specific production rate of antibody without affecting the mRNA transcription level. These results indicate that ATF4 overexpression is a promising method for improving recombinant IgG production in CHO cells.
Collapse
Affiliation(s)
- Ahmad M Haredy
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Bhandary B, Marahatta A, Kim HR, Chae HJ. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 2012; 14:434-56. [PMID: 23263672 PMCID: PMC3565273 DOI: 10.3390/ijms14010434] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/01/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the major site of calcium storage and protein folding. It has a unique oxidizing-folding environment due to the predominant disulfide bond formation during the process of protein folding. Alterations in the oxidative environment of the ER and also intra-ER Ca2+ cause the production of ER stress-induced reactive oxygen species (ROS). Protein disulfide isomerases, endoplasmic reticulum oxidoreductin-1, reduced glutathione and mitochondrial electron transport chain proteins also play crucial roles in ER stress-induced production of ROS. In this article, we discuss ER stress-associated ROS and related diseases, and the current understanding of the signaling transduction involved in ER stress.
Collapse
Affiliation(s)
- Bidur Bhandary
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
| | - Anu Marahatta
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, Dental School, Wonkwang University, Iksan 570-749, South Korea
- Authors to whom correspondence should be addressed; E-Mails: (H.-R.K.); (H.-J.C.); Tel.: +82-63-850-6640 (H.-R.K.); +82-63-270-3092 (H.-J.C.); Fax: +82-63-854-0285 (H.-R.K.); +82-63-275-8799 (H.-J.C.)
| | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
- Authors to whom correspondence should be addressed; E-Mails: (H.-R.K.); (H.-J.C.); Tel.: +82-63-850-6640 (H.-R.K.); +82-63-270-3092 (H.-J.C.); Fax: +82-63-854-0285 (H.-R.K.); +82-63-275-8799 (H.-J.C.)
| |
Collapse
|
22
|
Mailloux RJ, Fu A, Robson-Doucette C, Allister EM, Wheeler MB, Screaton R, Harper ME. Glutathionylation state of uncoupling protein-2 and the control of glucose-stimulated insulin secretion. J Biol Chem 2012; 287:39673-85. [PMID: 23035124 DOI: 10.1074/jbc.m112.393538] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The role of reactive oxygen species (ROS) in glucose-stimulated insulin release remains controversial because ROS have been shown to both amplify and impede insulin release. In regard to preventing insulin release, ROS activates uncoupling protein-2 (UCP2), a mitochondrial inner membrane protein that negatively regulates glucose-stimulated insulin secretion (GSIS) by uncoupling oxidative phosphorylation. With our recent discovery that the UCP2-mediated proton leak is modulated by reversible glutathionylation, a process responsive to small changes in ROS levels, we resolved to determine whether glutathionylation is required for UCP2 regulation of GSIS. Using Min6 cells and pancreatic islets, we demonstrate that induction of glutathionylation not only deactivates UCP2-mediated proton leak but also enhances GSIS. Conversely, an increase in mitochondrial matrix ROS was found to deglutathionylate and activate UCP2 leak and impede GSIS. Glucose metabolism also decreased the total amount of cellular glutathionylated proteins and increased the cellular glutathione redox ratio (GSH/GSSG). Intriguingly, the provision of extracellular ROS (H(2)O(2), 10 μM) amplified GSIS and also activated UCP2. Collectively, our findings indicate that the glutathionylation status of UCP2 contributes to the regulation of GSIS, and different cellular sites and inducers of ROS can have opposing effects on GSIS, perhaps explaining some of the controversy surrounding the role of ROS in GSIS.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
23
|
Mosbah IB, Zaouali MA, Martel C, Bjaoui M, Abdennebi HB, Hotter G, Brenner C, Roselló-Catafau J. IGL-1 solution reduces endoplasmic reticulum stress and apoptosis in rat liver transplantation. Cell Death Dis 2012; 3:e279. [PMID: 22402603 PMCID: PMC3317344 DOI: 10.1038/cddis.2012.12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Injury due to cold ischemia reperfusion (I/R) is a major cause of primary graft non-function following liver transplantation. We postulated that I/R-induced cellular damage during liver transplantation might affect the secretory pathway, particularly at the endoplasmic reticulum (ER). We examined the involvement of ER stress in organ preservation, and compared cold storage in University of Wisconsin (UW) solution and in Institute Georges Lopez-1 (IGL-1) solution. In one group of rats, livers were preserved in UW solution for 8 h at 4 °C, and then orthotopic liver transplantation was performed according to Kamada's cuff technique. In another group, livers were preserved in IGL-1 solution. The effect of each preservation solution on the induction of ER stress, hepatic injury, mitochondrial damage and cell death was evaluated. As expected, we found increased ER stress after liver transplantation. IGL-1 solution significantly attenuated ER damage by reducing the activation of three pathways of unfolded protein response and their effector molecules caspase-12, C/EBP homologous protein-10, X-box-binding protein 1, tumor necrosis factor-associated factor 2 and eukaryotic translation initiation factor 2. This attenuation of ER stress was associated with a reduction in hepatic injury and cell death. Our results show that IGL-1 solution may be a useful means to circumvent excessive ER stress reactions associated with liver transplantation, and may optimize graft quality.
Collapse
Affiliation(s)
- I B Mosbah
- Experimental Hepatic Ischemia-Reperfusion Unit, IIBB-CSIC Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bedoya FJ, Salguero-Aranda C, Cahuana GM, Tapia-Limonchi R, Soria B, Tejedo JR. Regulation of pancreatic β-cell survival by nitric oxide: clinical relevance. Islets 2012; 4:108-18. [PMID: 22614339 DOI: 10.4161/isl.19822] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The reduction of pancreatic β-cell mass is an important factor in the development of type 1 and type 2 diabetes. Understanding the mechanisms that regulate the maintenance of pancreatic β-cell mass as well as β-cell death is necessary for the establishment of therapeutic strategies. In this context, nitric oxide (NO) is a diatomic, gaseous, highly reactive molecule with biological activity that participates in the regulation of pancreatic β-cell mass. Two types of cellular responses can be distinguished depending on the level of NO production. First, pancreatic β-cells exposed to inflammatory cytokines, lipid stress or hyperglycaemia produce high concentrations of NO, mainly due to the activation of inducible NO synthase (iNOS), thus promoting cell death. Meanwhile, under homeostatic conditions, low concentrations of NO, constitutively produced by endothelial NO synthase (eNOS), promote cell survival. Here, we will discuss the current knowledge of the NO-dependent mechanisms activated during cellular responses, emphasizing those related to the regulation of cell survival.
Collapse
Affiliation(s)
- Francisco J Bedoya
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, CIBERDEM, RED-TERCEL, Seville, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Rajpal G, Schuiki I, Liu M, Volchuk A, Arvan P. Action of protein disulfide isomerase on proinsulin exit from endoplasmic reticulum of pancreatic β-cells. J Biol Chem 2011; 287:43-47. [PMID: 22105075 DOI: 10.1074/jbc.c111.279927] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For insulin synthesis, the proinsulin precursor is translated at the endoplasmic reticulum (ER), folds to include its three native disulfide bonds, and is exported to secretory granules for processing and secretion. Protein disulfide isomerase (PDI) has long been assumed to assist proinsulin in this process. Herein we have examined the effect of PDI knockdown (PDI-KD) in β-cells. The data establish that upon PDI-KD, oxidation of proinsulin to form native disulfide bonds is unimpaired and in fact enhanced. This is accompanied by improved proinsulin exit from the ER and increased total insulin secretion, with no evidence of ER stress. We provide evidence for direct physical interaction between PDI and proinsulin in the ER of pancreatic β-cells, in a manner requiring the catalytic activity of PDI. In β-cells after PDI-KD, enhanced export is selective for proinsulin over other secretory proteins, but the same effect is observed for recombinant proinsulin trafficking upon PDI-KD in heterologous cells. We hypothesize that PDI exhibits unfoldase activity for proinsulin, increasing retention of proinsulin within the ER of pancreatic β-cells.
Collapse
Affiliation(s)
- Gautam Rajpal
- Division of Metabolism, Endocrinology and Diabetes and the Cellular and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, Michigan 48105-51714
| | - Irmgard Schuiki
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Ming Liu
- Division of Metabolism, Endocrinology and Diabetes and the Cellular and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, Michigan 48105-51714
| | - Allen Volchuk
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes and the Cellular and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, Michigan 48105-51714.
| |
Collapse
|
26
|
Tao J, Zhu W, Li Y, Xin P, Li J, Liu M, Li J, Redington AN, Wei M. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am J Physiol Heart Circ Physiol 2011; 301:H1471-86. [PMID: 21803944 DOI: 10.1152/ajpheart.00097.2011] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) stress is activated during and contributes to ischemia-reperfusion (I/R) injury. Attenuation of ER stress-induced apoptosis protects the heart against I/R injury. Using apelin, a ligand used to activate the apelin APJ receptor, which is known to be cardioprotective, this study was designed to investigate 1) the time course of changes in I/R injury after ER stress; 2) whether apelin infusion protects the heart against I/R injury via modulation of ER stress-dependent apoptosis signaling pathways; and 3) how phosphatidylinositol 3-kinase (PI3K)/Akt, endothelial nitric oxide synthase (eNOS), AMP-activated protein kinase (AMPK), and ERK activation are involved in the protection offered by apelin treatment. The results showed that, using an in vivo rat I/R model induced by 30 min of ischemia followed by reperfusion, infarct size (IS) increased from 2 h of reperfusion (34.85 ± 2.14%) to 12 h of reperfusion (48.98 ± 3.35, P < 0.05), which was associated with an abrupt increase in ER stress-dependent apoptosis activation, as evidenced by increased CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, and JNK activation (CHOP: 2.49-fold increase, caspase-12: 2.09-fold increase, and JNK: 3.38-fold increase, P < 0.05, respectively). Administration of apelin at 1 μg/kg not only completely abolished the activation of ER stress-induced apoptosis signaling pathways at 2 h of reperfusion but also significantly attenuated time-related changes at 24 h of reperfusion. Using pharmacological inhibition, we also demonstrated that PI3K/Akt, AMPK, and ERK activation were involved in the protection against I/R injury via inhibition of ER stress-dependent apoptosis activation. In contrast, although eNOS activation played a role in decreasing IS at 2 h of reperfusion, it failed to modify either IS or ER stress-induced apoptosis signaling pathways at 24 h after reperfusion.
Collapse
Affiliation(s)
- Jianping Tao
- Division of Cardiology, Shanghai Sixth Hospital, Shanghai Jiao Tong University School of Medicine, State Key Discipline Cardiology, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Appenzeller-Herzog C. Glutathione- and non-glutathione-based oxidant control in the endoplasmic reticulum. J Cell Sci 2011; 124:847-55. [PMID: 21378306 DOI: 10.1242/jcs.080895] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The redox-active tripeptide glutathione is an endogenous reducing agent that is found in abundance and throughout the cell. In the endoplasmic reticulum (ER), the ratio of glutathione to glutathione disulfide is lower compared with non-secretory organelles. This relatively oxidizing thiol-disulfide milieu is essential for the oxidative folding of nascent proteins in the ER and, at least in part, maintained by the activity of ER-resident endoplasmic oxidoreductin 1 (Ero1) enzymes that oxidize cysteine side chains at the expense of molecular oxygen. Glutathione disulfide and hydrogen peroxide formed as a consequence of Ero1 activity are widely considered as being inoperative and potentially dangerous by-products of oxidative protein folding in the ER. In contrast to this common view, this Commentary highlights the importance of glutathione- and non glutathione-based homeostatic redox control mechanisms in the ER. Stability in the thiol-disulfide system that prominently includes the protein disulfide isomerases is ensured by the contribution of tightly regulated Ero1 activity, ER-resident peroxidases and the glutathione-glutathione-disulfide redox pair that acts as a potent housekeeper of redox balance. Accordingly, the widely held concept that Ero1-mediated over-oxidation in the ER constitutes a common cause of cellular demise is critically re-evaluated.
Collapse
Affiliation(s)
- Christian Appenzeller-Herzog
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
28
|
Bachar E, Ariav Y, Cerasi E, Kaiser N, Leibowitz G. Neuronal nitric oxide synthase protects the pancreatic beta cell from glucolipotoxicity-induced endoplasmic reticulum stress and apoptosis. Diabetologia 2010; 53:2177-87. [PMID: 20596694 DOI: 10.1007/s00125-010-1833-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/28/2010] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Cytokines stimulate nitric oxide production in pancreatic beta cells, leading to endoplasmic reticulum (ER) stress and apoptosis. Treatment of beta cells with glucose and NEFA induces nitric oxide synthase (NOS) as well as ER stress. However, the role of NO in glucolipotoxicity-induced ER stress in beta cells is not clear. METHODS We studied the effect of high glucose and palmitate levels on NOS isoform production in rat and Psammomys obesus islets and in insulinoma-1E beta cells. The effects of neuronal NOS (nNOS) inhibition by small interfering RNA or by N (omega)-nitro-L-arginine methyl ester (L-NAME) on beta cell function, ER stress and apoptosis under conditions of glucolipotoxicity were investigated. RESULTS Overnight incubation of rat and P. obesus islets at 22.2 mmol/l glucose with 0.5 mmol/l palmitate induced the production of nNOS but not inducible NOS (iNOS), in contrast with the robust stimulation of iNOS by cytokines. NOS inhibition by L-NAME did not prevent the decrease in glucose-stimulated insulin secretion and proinsulin biosynthesis or the depletion of islet insulin content observed under conditions of glucolipotoxicity. Moreover, treatment of beta cells with palmitate and L-NAME together resulted in marked activation of the IRE1alpha and PERK pathways of the unfolded protein response. This was associated with increased JNK phosphorylation and apoptosis in islets and beta cells. Moreover, partial nNos knockdown increased JNK phosphorylation and CHOP production, leading to apoptosis. CONCLUSIONS/INTERPRETATION In beta cells subjected to glucolipotoxic conditions, chronic inhibition of NOS exacerbates ER stress and activates JNK. Therefore, induction of nNOS is an adaptive response to glucolipotoxicity that protects beta cells from stress and apoptosis.
Collapse
Affiliation(s)
- E Bachar
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah Hebrew University Medical Center, P.O. Box 12000, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
29
|
Insulin release, peripheral insulin resistance and muscle function in protein malnutrition: a role of tricarboxylic acid cycle anaplerosis. Br J Nutr 2009; 103:1237-50. [DOI: 10.1017/s0007114509993060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic β-cells and skeletal muscle act in a synergic way in the control of systemic glucose homeostasis. Several pyruvate-dependent and -independent shuttles enhance tricarboxylic acid cycle intermediate (TACI) anaplerosis and increase β-cell ATP:ADP ratio, triggering insulin exocytotic mechanisms. In addition, mitochondrial TACI cataplerosis gives rise to the so-called metabolic coupling factors, which are also related to insulin release. Peripheral insulin resistance seems to be related to skeletal muscle fatty acid (FA) accumulation and oxidation imbalance. In this sense, exercise has been shown to enhance skeletal muscle TACI anaplerosis, increasing FA oxidation and by this manner restores insulin sensitivity. Protein malnutrition reduces β-cell insulin synthesis, release and peripheral sensitivity. Despite little available data concerning mitochondrial metabolism under protein malnutrition, evidence points towards reduced β-cell and skeletal muscle mitochondrial capacity. The observed decrease in insulin synthesis and release may reflect reduced anaplerotic and cataplerotic capacity. Furthermore, insulin release is tightly coupled to ATP:ADP rise which in turn is related to TACI anaplerosis. The effect of protein malnutrition upon peripheral insulin resistance is time-dependent and directly related to FA oxidation capacity. In contrast to β-cells, TACI anaplerosis and cataplerosis pathways in skeletal muscle seem to control FA oxidation and regulate insulin resistance.
Collapse
|
30
|
Santos CXC, Tanaka LY, Wosniak J, Laurindo FRM. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 2009; 11:2409-27. [PMID: 19388824 DOI: 10.1089/ars.2009.2625] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular mechanisms governing redox homeostasis likely involve their integration with other stresses. Endoplasmic reticulum (ER) stress triggers complex adaptive or proapoptotic signaling defined as the unfolded protein response (UPR), involved in several pathophysiological processes. Since protein folding is highly redox-dependent, convergence between ER stress and oxidative stress has attracted interest. Evidence suggests that ROS production and oxidative stress are not only coincidental to ER stress, but are integral UPR components, being triggered by distinct types of ER stressors and contributing to support proapoptotic, as well as proadaptive UPR signaling. Thus, ROS generation can be upstream or downstream UPR targets and may display a UPR-specific plus a nonspecific component. Enzymatic mechanisms of ROS generation during UPR include: (a) Multiple thiol-disulfide exchanges involving ER oxidoreductases including flavooxidase Ero1 and protein disulfide isomerase (PDI); (b) Mitochondrial electron transport; (c) Nox4 NADPH oxidase complex, particularly Nox4. Understanding the roles of such mechanisms and how they interconnect with the UPR requires more investigation. Integration among such ROS sources may depend on Ca(2+) levels, ROS themselves, and PDI, which associates with NADPH oxidase and regulates its function. Oxidative stress may frequently integrate with a background of ER stress/UPR in several diseases; here we discuss a focus in the vascular system.
Collapse
Affiliation(s)
- Célio X C Santos
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, CEP 05403-000, São Paulo, Brazil
| | | | | | | |
Collapse
|
31
|
Kitamura M. Biphasic, bidirectional regulation of NF-kappaB by endoplasmic reticulum stress. Antioxid Redox Signal 2009; 11:2353-64. [PMID: 19187000 DOI: 10.1089/ars.2008.2391] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endoplasmic reticulum (ER) stress induces an adaptive program called the unfolded protein response (UPR), which affects activity of an array of kinases and transcription factors. Previous reports provided evidence for activation of nuclear factor-kappaB (NF-kappaB), the major transcription factor regulating inflammatory processes, by ER stress. However, recent investigation also suggested that preceding ER stress suppresses activation of NF-kappaB by subsequent exposure to inflammatory stimuli. Although ER stress induces activation of NF-kappaB in the early phase, consequent UPR may inhibit NF-kappaB-dependent cellular activation in the later phase. This article summarizes current knowledge on potential mechanisms underlying the biphasic, bidirectional regulation of NF-kappaB by ER stress.
Collapse
Affiliation(s)
- Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
32
|
Shimizu Y, Hendershot LM. Oxidative folding: cellular strategies for dealing with the resultant equimolar production of reactive oxygen species. Antioxid Redox Signal 2009; 11:2317-31. [PMID: 19243234 PMCID: PMC2819804 DOI: 10.1089/ars.2009.2501] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
All eukaryotic cells possess an endoplasmic reticulum (ER), which is the site for synthesizing proteins that populate the cell surface or extracellular space. The environment of the ER is oxidizing, which supports the formation of intra- and interchain disulfide bonds that serve to stabilize the folding and assembly of nascent proteins. Recent experimental data reveal that the formation of disulfide bonds does not occur spontaneously but results from the enzymatic transfer of disulfide bonds through a number of intermediate proteins, with molecular oxygen serving as the terminal electron acceptor. Thus, each disulfide bond that forms during oxidative folding should produce a single reactive oxygen species (ROS). Dedicated secretory tissues like the pancreas and plasma cells have been estimated to form up to 3-6 million disulfide bonds per minute, which would be expected to result in the production of the same number of molecules of ROS. Although the methods used to deal with this amount of oxidative stress are not well understood, recent research suggests that different types of cells use distinct strategies and that the unfolded protein response (UPR) is a critical component of the defense.
Collapse
Affiliation(s)
- Yuichiro Shimizu
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
33
|
Li N, Brun T, Cnop M, Cunha DA, Eizirik DL, Maechler P. Transient oxidative stress damages mitochondrial machinery inducing persistent beta-cell dysfunction. J Biol Chem 2009; 284:23602-12. [PMID: 19546218 DOI: 10.1074/jbc.m109.024323] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transient exposure of beta-cells to oxidative stress interrupts the transduction of signals normally coupling glucose metabolism to insulin secretion. We investigated putative persistence of effects induced by one transient oxidative stress (200 microm H(2)O(2), 10 min) on insulin secreting cells following recovery periods of days and weeks. Three days after oxidative stress INS-1E cells and rat islets exhibited persistent dysfunction. In particular, the secretory response to 15 mm glucose was reduced by 40% in INS-1E cells stressed 3 days before compared with naïve cells. Compared with non-stressed INS-1E cells, we observed reduced oxygen consumption (-43%) and impaired glucose-induced ATP generation (-46%). These parameters correlated with increased mitochondrial reactive oxygen species formation (+60%) accompanied with down-regulation of subunits of the respiratory chain and decreased expression of genes responsible for mitochondrial biogenesis (TFAM, -24%; PGC-1alpha, -67%). Three weeks after single oxidative stress, both mitochondrial respiration and secretory responses were recovered. Moreover, such recovered INS-1E cells exhibited partial resistance to a second transient oxidative stress and up-regulation of UCP2 (+78%) compared with naïve cells. In conclusion, one acute oxidative stress induces beta-cell dysfunction lasting over days, explained by persistent damages in mitochondrial components.
Collapse
Affiliation(s)
- Ning Li
- Department of Cell Physiology, Faculty of Medicine, University of Geneva, rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Yamazaki M, Chiba K, Yoshikawa C. Genipin Suppresses A23187-Induced Cytotoxicity in Neuro2a Cells. Biol Pharm Bull 2009; 32:1043-6. [DOI: 10.1248/bpb.32.1043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Matsumi Yamazaki
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hokuriku University
| | - Kenzo Chiba
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hokuriku University
- Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University
| | - Chiaki Yoshikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hokuriku University
| |
Collapse
|
35
|
Noguchi A, Takada M, Nakayama K, Ishikawa T. cGMP-independent anti-apoptotic effect of nitric oxide on thapsigargin-induced apoptosis in the pancreatic beta-cell line INS-1. Life Sci 2008; 83:865-70. [PMID: 18957297 DOI: 10.1016/j.lfs.2008.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/09/2008] [Accepted: 10/03/2008] [Indexed: 01/09/2023]
Abstract
AIMS Low concentrations of nitric oxide (NO) produced by constitutive NO synthase (cNOS) in pancreatic beta-cells have been suggested to be a physiological regulator of insulin secretion. In contrast, excessive NO produced by inducible NO synthase is known to mediate beta-cell apoptosis. The aim of the present study was to investigate the effect of low concentrations of NO on beta-cell apoptosis. MAIN METHODS Apoptosis of the pancreatic beta-cell line INS-1 was quantitatively determined by Annexin V flow cytometry. KEY FINDINGS The 24-h incubation with 1 mM DETA/NO, a long half-life NO donor, induced beta-cell apoptosis, which was insensitive to the soluble guanylate cyclase (sGC) inhibitor ODQ. In contrast, DETA/NO at lower concentrations until 300 microM concentration-dependently decreased the apoptosis induced by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+-ATPase. ODQ did not affect the anti-apoptotic effect of DETA/NO. Moreover, neither the cGMP analogue 8-Br-cGMP nor the sGC activator YC-1 mimicked the anti-apoptotic effect of DETA/NO. SIGNIFICANCE These results suggest that low levels of NO protect beta-cells from thapsigargin-induced apoptosis in a cGMP-independent manner.
Collapse
Affiliation(s)
- Akiko Noguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
36
|
Abstract
Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a role in the pathogenesis of diabetes, contributing to pancreatic beta-cell loss and insulin resistance. Components of the unfolded protein response (UPR) play a dual role in beta-cells, acting as beneficial regulators under physiological conditions or as triggers of beta-cell dysfunction and apoptosis under situations of chronic stress. Novel findings suggest that "what makes a beta-cell a beta-cell", i.e., its enormous capacity to synthesize and secrete insulin, is also its Achilles heel, rendering it vulnerable to chronic high glucose and fatty acid exposure, agents that contribute to beta-cell failure in type 2 diabetes. In this review, we address the transition from physiology to pathology, namely how and why the physiological UPR evolves to a proapoptotic ER stress response and which defenses are triggered by beta-cells against these challenges. ER stress may also link obesity and insulin resistance in type 2 diabetes. High fat feeding and obesity induce ER stress in liver, which suppresses insulin signaling via c-Jun N-terminal kinase activation. In vitro data suggest that ER stress may also contribute to cytokine-induced beta-cell death. Thus, the cytokines IL-1beta and interferon-gamma, putative mediators of beta-cell loss in type 1 diabetes, induce severe ER stress through, respectively, NO-mediated depletion of ER calcium and inhibition of ER chaperones, thus hampering beta-cell defenses and amplifying the proapoptotic pathways. A better understanding of the pathways regulating ER stress in beta-cells may be instrumental for the design of novel therapies to prevent beta-cell loss in diabetes.
Collapse
Affiliation(s)
- Décio L Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Route de Lennik, 808-CP-618, 1070 Brussels, Belgium.
| | | | | |
Collapse
|