1
|
Röckl KSC, Witczak CA, Goodyear LJ. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 2008; 60:145-53. [PMID: 18380005 DOI: 10.1002/iub.21] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chronic exercise training induces alterations in the expression of metabolic genes, such as those involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we briefly summarize the current literature describing the molecular signals underlying skeletal muscle responses to acute and chronic exercise. The search for possible exercise/contraction-stimulated signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is ongoing. Further research is needed because full elucidation of exercise-mediated signaling pathways would represent a significant step toward the development of new pharmacological targets for the treatment of metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Katja S C Röckl
- Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
2
|
Wijesekara N, Tung A, Thong F, Klip A. Muscle cell depolarization induces a gain in surface GLUT4 via reduced endocytosis independently of AMPK. Am J Physiol Endocrinol Metab 2006; 290:E1276-86. [PMID: 16418206 DOI: 10.1152/ajpendo.00573.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contracting skeletal muscle increases glucose uptake to sustain energy demand. This is achieved through a gain in GLUT4 at the membrane, but the traffic mechanisms and regulatory signals involved are unknown. Muscle contraction is elicited by membrane depolarization followed by a rise in cytosolic Ca2+ and actomyosin activation, drawing on ATP stores. It is unknown whether one or more of these events triggers the rise in surface GLUT4. Here, we investigate the effect of membrane depolarization on GLUT4 cycling using GLUT4myc-expressing L6 myotubes devoid of sarcomeres and thus unable to contract. K+-induced membrane depolarization elevated surface GLUT4myc, and this effect was additive to that of insulin, was not prevented by inhibiting phosphatidylinositol 3-kinase (PI3K) or actin polymerization, and did not involve Akt activation. Instead, depolarization elevated cytosolic Ca2+, and the surface GLUT4myc elevation was prevented by dantrolene (an inhibitor of Ca2+ release from sarcoplasmic reticulum) and by extracellular Ca2+ chelation. Ca2+-calmodulin-dependent protein kinase-II (CaMKII) was not phosphorylated after 10 min of K+ depolarization, and the CaMK inhibitor KN62 did not prevent the gain in surface GLUT4myc. Interestingly, although 5'-AMP-activated protein kinase (AMPK) was phosphorylated upon depolarization, lowering AMPKalpha via siRNA did not alter the surface GLUT4myc gain. Conversely, the latter response was abolished by the PKC inhibitors bisindolylmaleimide I and calphostin C. Unlike insulin, K+ depolarization caused only a small increase in GLUT4myc exocytosis and a major reduction in its endocytosis. We propose that K+ depolarization reduces GLUT4 internalization through signals and mechanisms distinct from those engaged by insulin. Such a pathway(s) is largely independent of PI3K, Akt, AMPK, and CaMKII but may involve PKC.
Collapse
Affiliation(s)
- Nadeeja Wijesekara
- Programme in Cell Biology, The Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8
| | | | | | | |
Collapse
|
3
|
Abstract
Contracting skeletal muscles acutely increases glucose transport in both healthy individuals and in people with Type 2 diabetes, and regular physical exercise is a cornerstone in the treatment of the disease. Glucose transport in skeletal muscle is dependent on the translocation of GLUT4 glucose transporters to the cell surface. It has long been believed that there are two major signaling mechanisms leading to GLUT4 translocation. One mechanism is insulin-activated signaling through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The other is an insulin-independent signaling mechanism that is activated by contractions, but the mediators of this signal are still unknown. Accumulating evidence suggests that the energy-sensing enzyme AMP-activated protein kinase plays an important role in contraction-stimulated glucose transport. However, more recent studies in transgenic and knockout animals show that AMP-activated protein kinase is not the sole mediator of the signal to GLUT4 translocation and suggest that there may be redundant signaling pathways leading to contraction-stimulated glucose transport. The search for other possible signal intermediates is ongoing, and calcium, nitric oxide, bradykinin, and the Akt substrate AS160 have been suggested as possible candidates. Further research is needed because full elucidation of an insulin-independent signal leading to glucose transport would be a promising pharmacological target for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Niels Jessen
- Research Div., Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
4
|
Nolte LA, Han DH, Hansen PA, Hucker KA, Holloszy JO. A peroxovanadium compound stimulates muscle glucose transport as powerfully as insulin and contractions combined. Diabetes 2003; 52:1918-25. [PMID: 12882906 DOI: 10.2337/diabetes.52.8.1918] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stimulation of glucose transport by insulin involves tyrosine phosphorylation of the insulin receptor (IR) and IR substrates (IRSs). Peroxovanadates inhibit tyrosine phosphatases, also resulting in tyrosine phosphorylation of the IRSs. Muscle contractions stimulate glucose transport by a mechanism independent of the insulin-signaling pathway. We found that the peroxovanadate compound bis-peroxovanadium,1,10-phenanthrolene [bpV(phen)] stimulates glucose transport to the same extent as the additive effects of maximal insulin and contraction stimuli. Translocation of GLUT4 to the cell surface mediates stimulation of glucose transport. There is evidence suggesting there are separate insulin- and contraction-stimulated pools of GLUT4-containing vesicles. We tested the hypothesis that bpV(phen) stimulates both the insulin- and the contraction-activated pathways. Stimulation of glucose transport and GLUT4 translocation by bpV(phen) was completely blocked by the phosphatidylinositol 3-kinase (PI 3-K) inhibitors wortmannin and LY294002. The combined effect of bpV(phen) and contractions was no greater than that of bpV(phen) alone. Activation of the IRS-PI 3-K signaling pathway was much greater with bpV(phen) than with insulin. Our results suggest that the GLUT4 vesicles that are normally translocated in response to contractions but not insulin can respond to the signal generated via the IRS-PI 3-K pathway if it is sufficiently powerful.
Collapse
Affiliation(s)
- Lorraine A Nolte
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
This historical review describes the research on the regulation of glucose transport in skeletal muscle conducted in my laboratory and in collaboration with a number of colleagues in other laboratories. This research includes studies of stimulation of glucose transport, GLUT4 translocation, and GLUT4 expression by exercise/muscle contractions, the role of Ca(2+) in these processes, and the interactions between the effects of exercise and insulin. Among the last are the additive effects of insulin and contractions on glucose transport and GLUT4 translocation and the increases in muscle insulin sensitivity and responsiveness induced by exercise.
Collapse
Affiliation(s)
- John O Holloszy
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
6
|
Widegren U, Jiang XJ, Krook A, Chibalin AV, Björnholm M, Tally M, Roth RA, Henriksson J, Wallberg-henriksson H, Zierath JR. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J 1998; 12:1379-89. [PMID: 9761781 DOI: 10.1096/fasebj.12.13.1379] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular signaling mechanisms by which muscle contractions lead to changes in glucose metabolism and gene expression remain largely undefined. We assessed whether exercise activates MAP kinase proteins (ERK1/2, SEK1, and p38 MAP kinase) as well as Akt and PYK2 in skeletal muscle from healthy volunteers obtained during and after one-leg cycle ergometry at approximately 70% VO2max. Exercise led to a marked increase in ERK1/2 phosphorylation, which rapidly decreased to resting levels upon recovery. Exercise increased phosphorylation of SEK1 and p38 MAP kinase to a lesser extent than ERK1/2. In contrast to ERK1/2, p38 MAP kinase phosphorylation was increased in nonexercised muscle upon cessation of exercise. Phosphorylation of the transcription factor CREB was increased in nonexercised muscle upon cessation of exercise. Exercise did not activate Akt or increase tyrosine phosphorylation of PYK2. Thus, exercise has divergent effects on parallel MAP kinase pathways, of which only p38 demonstrated a systemic response. However, our data do not support a role of Akt or PYK2 in exercise/contraction-induced signaling in human skeletal. Activation of the different MAP kinase pathways by physical exercise appears to be important in the regulation of transcriptional events in skeletal muscle.
Collapse
Affiliation(s)
- U Widegren
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, SE-114 86,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Physical exercise can be an important adjunct in the treatment of both non-insulin-dependent diabetes mellitus and insulin-dependent diabetes mellitus. Over the past several years, considerable progress has been made in understanding the molecular basis for these clinically important effects of physical exercise. Similarly to insulin, a single bout of exercise increases the rate of glucose uptake into the contracting skeletal muscles, a process that is regulated by the translocation of GLUT4 glucose transporters to the plasma membrane and transverse tubules. Exercise and insulin utilize different signaling pathways, both of which lead to the activation of glucose transport, which perhaps explains why humans with insulin resistance can increase muscle glucose transport in response to an acute bout of exercise. Exercise training in humans results in numerous beneficial adaptations in skeletal muscles, including an increase in GLUT4 expression. The increase in muscle GLUT4 in trained individuals contributes to an increase in the responsiveness of muscle glucose uptake to insulin, although not all studies show that exercise training in patients with diabetes improves overall glucose control. However, there is now extensive epidemiological evidence demonstrating that long-term regular physical exercise can significantly reduce the risk of developing non-insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- L J Goodyear
- Research Division, Joslin Diabetes Center, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | | |
Collapse
|
8
|
Barros LF, Marchant RB, Baldwin SA. Dissection of stress-activated glucose transport from insulin-induced glucose transport in mammalian cells using wortmannin and ML-9. Biochem J 1995; 309 ( Pt 3):731-6. [PMID: 7639686 PMCID: PMC1135693 DOI: 10.1042/bj3090731] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The signaling pathways responsible for the activation of glucose transport by insulin and by metabolic stress in mammalian cells were studied in Clone 9 cells and 3T3-L1 adipocytes. Exposure of both cell types to azide or insulin markedly increased their glucose uptake capacity (Vmax.) without affecting their apparent affinity for glucose (Km). The effects of azide and insulin were not additive. Wortmannin, a selective inhibitor of phosphatidylinositol (PI) 3-kinase, did not affect stimulation of transport by azide but inhibited insulin-induced glucose transport with a Ki of < 10 nM. ML-9, a putative mitogen-activated protein kinase inhibitor, was equipotent in its inhibition of azide- and insulin-stimulated glucose transport. These findings suggest that multiple signalling cascades are involved in the stimulation of glucose transport in mammalian cells and that PI 3-kinase, an essential link in the pathway by which insulin stimulates glucose transport, is not necessary for the activation of glucose uptake by metabolic stress.
Collapse
Affiliation(s)
- L F Barros
- Department of Biochemistry and Molecular Biology, University of Leeds, U.K
| | | | | |
Collapse
|
9
|
Louters LL, Henriksen EJ, Tipton CM. Histone H4 stimulates glucose transport activity in rat skeletal muscle. Biochem J 1993; 295 ( Pt 2):549-53. [PMID: 8240256 PMCID: PMC1134915 DOI: 10.1042/bj2950549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We investigated the effects of purified histone H4 on glucose transport activity in rat soleus and flexor digitorum brevis muscles. Histone H4, at concentrations up to 11.8 microM, increased 2-deoxyglucose (2-DG) uptake in a dose-dependent fashion. However, at concentrations higher than 11.8 microM, H4 caused a decrease in 2-DG uptake from the maximum, suggesting a secondary inhibitory action of this compound. The maximal effect of H4 on 2-DG uptake was not additive to the maximal effect of insulin. Moreover, 2-DG uptake in the presence of both H4 and insulin was significantly lower than the 2-DG uptake in the presence of insulin alone. The maximal effect of H4 on stimulation of 2-DG uptake was neither additive nor inhibitory to the maximal effects of the intracellularly acting insulin mimetics sodium vanadate or H2O2. It was, on the other hand, additive to the maximal effects of muscle contractions. Also, in contrast with the effects of H4 on insulin-stimulated 2-DG uptake, H4 did not inhibit insulin-like growth factor-I (IGF-I)-stimulated 2-DG uptake, as the maximal effects of H4 and IGF-I were additive. Scatchard analysis of the binding of 125I-insulin in the absence or presence of histone H4 revealed that H4 increased the specific binding of insulin without affecting receptor affinity. These data suggest that H4 interacts with the insulin, rather than the hypoxia/contraction, pathway for activation of glucose transport in muscle tissue, and that H4 acts either directly or indirectly to increase the number of insulin receptors at the surface of the muscle cell. This interaction does not appear to occur with the similar, although distinct, IGF-I receptor. These studies may provide additional insight into the complex signal-transduction systems of insulin action.
Collapse
Affiliation(s)
- L L Louters
- Department of Chemistry, Calvin College, Grand Rapids, MI 49546
| | | | | |
Collapse
|
10
|
Dolan PL, Tapscott EB, Dorton PJ, Dohm GL. Contractile activity restores insulin responsiveness in skeletal muscle of obese Zucker rats. Biochem J 1993; 289 ( Pt 2):423-6. [PMID: 8424787 PMCID: PMC1132184 DOI: 10.1042/bj2890423] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Both insulin and contraction stimulate glucose transport in skeletal muscle. Insulin-stimulated glucose transport is decreased in obese humans and rats. The aims of this study were (1) to determine if contraction-stimulated glucose transport was also compromised in skeletal muscle of genetically obese insulin-resistant Zucker rats, and (2) to determine whether the additive effects of insulin and contraction previously observed in muscle from lean subjects were evident in muscle from the obese animals. To measure glucose transport, hindlimbs from lean and obese Zucker rats were perfused under basal, insulin-stimulated (0.1 microM), contraction-stimulated (electrical stimulation of the sciatic nerve) and combined insulin-(+)contraction-stimulated conditions. One hindlimb was stimulated to contract while the contralateral leg served as an unstimulated control. 2-Deoxyglucose transport rates were measured in the white gastrocnemius, red gastrocnemius and extensor digitorum longus muscles. As expected, the insulin-stimulated glucose transport rate in each of the three muscles was significantly slower (P < 0.05) in obese rats when compared with lean animals. When expressed as fold stimulation over basal, there was no significant difference in contraction-induced muscle glucose transport rates between lean and obese animals. Insulin-(+)contraction-stimulation was additive in skeletal muscle of lean animals, but synergistic in skeletal muscle of obese animals. Prior contraction increased insulin responsiveness of glucose transport 2-5-fold in the obese rats, but had no effect on insulin responsiveness in the lean controls. This contraction-induced improvement in insulin responsiveness could be of clinical importance to obese subjects as a way to improve insulin-stimulated glucose uptake in resistant skeletal muscle.
Collapse
Affiliation(s)
- P L Dolan
- Department of Biochemistry, School of Medicine, East Carolina University, Greenville, NC 27858
| | | | | | | |
Collapse
|