1
|
Sullivan BP, Collins BC, McMillin SL, Toussaint E, Stein CZ, Spangenburg EE, Lowe DA. Ablation of skeletal muscle estrogen receptor alpha impairs contractility in male mice. J Appl Physiol (1985) 2024; 136:764-773. [PMID: 38328824 DOI: 10.1152/japplphysiol.00714.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Estradiol and estrogen receptor α (ERα) have been shown to be important for the maintenance of skeletal muscle strength in females; however, little is known about the roles of estradiol and ERα in male muscle. The purpose of this study was to determine if skeletal muscle ERα is required for optimal contractility in male mice. We hypothesize that reduced ERα in skeletal muscle impairs contractility in male mice. Skeletal muscle-specific knockout (skmERαKO) male mice exhibited reduced strength across multiple muscles and several contractile parameters related to force generation and kinetics compared with wild-type littermates (skmERαWT). Isolated EDL muscle-specific isometric tetanic force, peak twitch force, peak concentric and peak eccentric forces, as well as the maximal rates of force development and relaxation were 11%-21% lower in skmERαKO compared with skmERαWT mice. In contrast, isolated soleus muscles from skmERαKO mice were not affected. In vivo peak torque of the anterior crural muscles was 20% lower in skmERαKO compared with skmERαWT mice. Muscle masses, contractile protein contents, fiber types, phosphorylation of the myosin regulatory light chain, and caffeine-elicited force did not differ between muscles of skmERαKO and skmERαWT mice, suggesting that strength deficits were not due to size, composition, or calcium release components of muscle contraction. These results indicate that in male mice, reduced skeletal muscle ERα blunts contractility to a magnitude similar to that previously reported in females; however, the mechanism may be sexually dimorphic.NEW & NOTEWORTHY We comprehensively measured in vitro and in vivo contractility of leg muscles with reduced estrogen receptor α (ERα) in male mice and reported that force generation and contraction kinetics are impaired. In contrast to findings in females, phosphorylation of myosin regulatory light chain cannot account for low force production in male skeletal muscle ERα knockout mice. These results indicate that ERα is required for optimal contractility in males and females but via sexually dimorphic means.
Collapse
Affiliation(s)
- Brian P Sullivan
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Brittany C Collins
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Shawna L McMillin
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Elise Toussaint
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Clara Z Stein
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Espen E Spangenburg
- Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, United States
| | - Dawn A Lowe
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
2
|
Meczekalski B, Niwczyk O, Bala G, Szeliga A. Managing Early Onset Osteoporosis: The Impact of Premature Ovarian Insufficiency on Bone Health. J Clin Med 2023; 12:4042. [PMID: 37373735 DOI: 10.3390/jcm12124042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Premature ovarian insufficiency is a reproductive endocrine disorder characterized by the cessation of ovarian function before the age of 40 years. Although the etiopathology of POI remains largely unknown, certain causative factors have been identified. Individuals affected by POI are at an increased risk of experiencing bone mineral density (BMD) loss. Hormonal replacement therapy (HRT) is recommended for patients with POI to mitigate the risk of decreased BMD, starting from the time of diagnosis until reaching the average age of natural menopause. Various studies have compared the dose-effect relationship of estradiol supplementation, as well as different HRT formulations on BMD. The impact of oral contraception on reduced BMD or the potential benefits of adding testosterone to estrogen replacement therapy are still subjects of ongoing discussion. This review provides an overview of the latest advancements in the diagnosis, evaluation, and treatment of POI as it relates to BMD loss.
Collapse
Affiliation(s)
- Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Olga Niwczyk
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
3
|
Soedirdjo SDH, Rodriguez LA, Chung YC, Casey E, Dhaher YY. Sex hormone-mediated change on muscle activation deactivation dynamics in young eumenorrheic women. Front Physiol 2023; 14:1104578. [PMID: 36960149 PMCID: PMC10029997 DOI: 10.3389/fphys.2023.1104578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
The goal of the study was to characterize muscle activation/deactivation dynamics across the menstrual cycle in healthy young women. Twenty-two healthy eumenorrheic women (age: 27.0 ± 4.4 years; mean ± SD) were tested every other day for one menstrual cycle. Serum estradiol and progesterone were quantified at the time of testing. Peak torque (PT), time to peak torque (TPT), and half relaxation time (HRT) of soleus muscle twitch were measured. Muscle twitch was elicited by delivering 1 ms width electrical pulses to the tibial nerve at an intensity that generated a maximum motor response (S-100) and at supramaximal intensity (S-120; 1.2 × S-100). The analyses were performed for each menstrual cycle phase: 1) the follicular phase to analyze the effect of estradiol while the progesterone concentrations remained at low concentrations; 2) the luteal phase to analyze the effect of progesterone with background estradiol concentrations. In the follicular phase, there was no association of estradiol for PT, TPT, and HRT. In the luteal phase, while estradiol had no association on PT, TPT, and HRT, progesterone expressed a significant association with HRT reduction but no association on PT or TPT. Also, there was a significant estradiol and progesterone interaction for HRT. However, the regression parameters are nearly zero, suggesting that the change in HRT may not have an impact on muscle performance across the menstrual cycle but implications on other women's health conditions with elevated sex hormone concentrations, such as pregnancy, may prove critical.
Collapse
Affiliation(s)
- Subaryani D. H. Soedirdjo
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX, United States
| | - Luis A. Rodriguez
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Yu-Chen Chung
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ellen Casey
- Department of Physiatry, Hospital for Special Surgery, New York, NY, United States
| | - Yasin Y. Dhaher
- Department of Physical Medicine and Rehabilitation, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Yasin Y. Dhaher,
| |
Collapse
|
4
|
Omosule CL, Joseph D, Weiler B, Gremminger VL, Silvey S, Jeong Y, Rafique A, Krueger P, Kleiner S, Phillips CL. Combinatorial Inhibition of Myostatin and Activin A Improves Femoral Bone Properties in the G610C Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:938-953. [PMID: 35195284 PMCID: PMC10041862 DOI: 10.1002/jbmr.4529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 01/28/2023]
Abstract
Osteogenesis imperfecta (OI) is a collagen-related bone disorder characterized by fragile osteopenic bone and muscle weakness. We have previously shown that the soluble activin receptor type IIB decoy (sActRIIB) molecule increases muscle mass and improves bone strength in the mild to moderate G610C mouse model of OI. The sActRIIB molecule binds multiple transforming growth factor-β (TGF-β) ligands, including myostatin and activin A. Here, we investigate the musculoskeletal effects of inhibiting activin A alone, myostatin alone, or both myostatin and activin A in wild-type (Wt) and heterozygous G610C (+/G610C) mice using specific monoclonal antibodies. Male and female Wt and +/G610C mice were treated twice weekly with intraperitoneal injections of monoclonal control antibody (Ctrl-Ab, Regn1945), anti-activin A antibody (ActA-Ab, Regn2476), anti-myostatin antibody (Mstn-Ab, Regn647), or both ActA-Ab and Mstn-Ab (Combo, Regn2476, and Regn647) from 5 to 16 weeks of age. Prior to euthanasia, whole body composition, metabolism and muscle force generation assessments were performed. Post euthanasia, hindlimb muscles were evaluated for mass, and femurs were evaluated for changes in microarchitecture and biomechanical strength using micro-computed tomography (μCT) and three-point bend analyses. ActA-Ab treatment minimally impacted the +/G610C musculoskeleton, and was detrimental to bone strength in male +/G610C mice. Mstn-Ab treatment, as previously reported, resulted in substantial increases in hindlimb muscle weights and overall body weights in Wt and male +/G610C mice, but had minimal skeletal impact in +/G610C mice. Conversely, the Combo treatment outperformed ActA-Ab alone or Mstn-Ab alone, consistently increasing hindlimb muscle and body weights regardless of sex or genotype and improving bone microarchitecture and strength in both male and female +/G610C and Wt mice. Combinatorial inhibition of activin A and myostatin more potently increased muscle mass and bone microarchitecture and strength than either antibody alone, recapturing most of the observed benefits of sActRIIB treatment in +/G610C mice. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Dominique Joseph
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Brooke Weiler
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | - Spencer Silvey
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | | | | | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Guilherme JPLF, Semenova EA, Borisov OV, Larin AK, Moreland E, Generozov EV, Ahmetov II. Genomic predictors of testosterone levels are associated with muscle fiber size and strength. Eur J Appl Physiol 2022; 122:415-423. [PMID: 34792618 PMCID: PMC8783862 DOI: 10.1007/s00421-021-04851-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Circulating testosterone levels are a heritable trait with anabolic properties in various tissues, including skeletal muscle. So far, hundreds of single nucleotide polymorphisms (SNPs) associated with testosterone levels have been identified in nonathletic populations. The aim of the present study was to test the association of 822 testosterone-increasing SNPs with muscle-related traits (muscle fiber size, fat-free mass and handgrip strength) and to validate the identified SNPs in independent cohorts of strength and power athletes. METHODS One hundred and forty-eight physically active individuals (47 females, 101 males) were assessed for cross-sectional area (CSA) of fast-twitch muscle fibers. Significant SNPs were further assessed for fat-free mass and handgrip strength in > 354,000 participants from the UK Biobank cohort. The validation cohorts included Russian elite athletes. RESULTS From an initial panel of 822 SNPs, we identified five testosterone-increasing alleles (DOCK3 rs77031559 G, ESR1 rs190930099 G, GLIS3 rs34706136 TG, GRAMD1B rs850294 T, TRAIP rs62260729 C) nominally associated (P < 0.05) with CSA of fast-twitch muscle fibers, fat-free mass and handgrip strength. Based on these five SNPs, the number of testosterone-increasing alleles was positively associated with testosterone levels in male athletes (P = 0.048) and greater strength performance in weightlifters (P = 0.017). Moreover, the proportion of participants with ≥ 2 testosterone-increasing alleles was higher in power athletes compared to controls (68.9 vs. 55.6%; P = 0.012). CONCLUSION Testosterone-related SNPs are associated with muscle fiber size, fat-free mass and strength, which combined can partially contribute to a greater predisposition to strength/power sports.
Collapse
Affiliation(s)
- João Paulo L F Guilherme
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ethan Moreland
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
- Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
- Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.
| |
Collapse
|
6
|
Chaiyasing R, Ishikawa T, Warita K, Hosaka YZ. Absence of estrogen receptors delays myoregeneration and leads to intermuscular adipogenesis in a low estrogen status: Morphological comparisons in estrogen receptor alpha and beta knock out mice. J Vet Med Sci 2021; 83:1022-1030. [PMID: 33967186 PMCID: PMC8349812 DOI: 10.1292/jvms.20-0696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate the function of estrogen receptors (ERs) in myoregeneration and intermuscular adipogenesis. Ovariectomized (OVX) ERα knockout
(KO) mice and ERβ KO mice were used to assess the effect of estrogen on the myoregenerative process. Tibialis anterior muscle was collected on days 7, 10, and
14 after cardiotoxin injection to assess myotube morphology and adipogenesis area. Regenerated myotubes from OVX-ERβ KO mice were consistently smaller in
diameter than those from OVX-ERα KO and OVX-wild-type mice, whereas the adipogenesis area of OVX-ERβ KO mice was consistently greater than that of the other
types. Therefore, ERβ may be an influential factor in promoting myoregeneration and adipogenesis inhibition compared to ERα.
Collapse
Affiliation(s)
- Rattanatrai Chaiyasing
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Faculty of Veterinary Sciences, Office of Academic Affairs, Maha Sarakham University, Maha Sarakham 44000, Thailand
| | - Takuro Ishikawa
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
7
|
A prolonged hiatus in postmenopausal HRT, does not nullify the therapy's positive impact on ageing related sarcopenia. PLoS One 2021; 16:e0250813. [PMID: 33951065 PMCID: PMC8099084 DOI: 10.1371/journal.pone.0250813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/14/2021] [Indexed: 11/19/2022] Open
Abstract
Background Previous work suggest a positive skeletal muscle effect of hormone replacement therapy (HRT) on skeletal muscle characteristics This study aimed to quantify any continued positive effect of HRT even after a sustained hiatus in treatment, controlling for two key muscle modulation hormones: Estradiol (E2) and Tri-iodo-thyronine (T3). Method and findings In 61 untrained women (18-78yrs) stratified as pre-menopausal, post-menopausal without (No_HRT) and post-menopausal with (Used_HRT) HRT history, body composition, physical activity, serum E2 and T3 were assessed by dual energy x-ray absorptiometry, Baecke questionnaire and ELISA. Gastrocnemius medialis (GM) and tibialis anterior (TA) electromyographic profiles (mean power frequency (mPowerF)), isometric plantar-flexion (PF) and dorsi-flexion (DF) maximum voluntary contraction (MVC), rate of torque development (RTD), isokinetic MVC and muscle volume, were assessed using surface electromyography, dynamometry and ultrasonography. Muscle quality was quantified as MVC per unit muscle size. E2 and E2:T3 ratio were significantly lower in postmenopausal participants, and were positively correlated with RTD even after controlling for adiposity and/or age. Pre-menopausal females had greater MVC in 8/8 PF and 2/5 DF (23.7–98.1%; P<0.001–0.049) strength measures compared to No_HRT, but only 6/8 PF (17.4–42.3%; P<0.001–0.046) strength measures compared to Used_HRT. Notably, Used_HRT had significant higher MVC in 7 PF MVC (30.0%-37.7%; P = 0.006–0.031) measures than No_HRT, while premenopausal and Used_HRT had similar uncorrected muscle size or quality. In addition, this cross-sectional data suggest an annual reduction in GM muscle volume corrected for intra-muscular fat by 1.3% in No_HRT and only 0.5% in Used_HRT. Conclusion Even years after cessation of the therapy, a history of HRT is positively associated with negating the expected post-menopausal drop in muscle quantity and quality. Whilst mPowerF did not differ between groups, our work highlights positive associations between RTD against E2 and E2:T3. Notwithstanding our study limitation of single time point for blood sampling, our work is the first to illustrate an HRT attenuation of ageing-related decline in RTD. We infer from these data that high E2, even in the absence of high T3, may help maintain muscle contractile speed and quality. Thus our work is the first to points to markedly larger physiological reserves in women with a past history of HRT.
Collapse
|
8
|
Omosule CL, Gremminger VL, Aguillard AM, Jeong Y, Harrelson EN, Miloscio L, Mastaitis J, Rafique A, Kleiner S, Pfeiffer FM, Zhang A, Schulz LC, Phillips CL. Impact of Genetic and Pharmacologic Inhibition of Myostatin in a Murine Model of Osteogenesis Imperfecta. J Bone Miner Res 2021; 36:739-756. [PMID: 33249643 PMCID: PMC8111798 DOI: 10.1002/jbmr.4223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Abstract
Osteogenesis imperfecta (OI) is a genetic connective tissue disorder characterized by compromised skeletal integrity, altered microarchitecture, and bone fragility. Current OI treatment strategies focus on bone antiresorptives and surgical intervention with limited effectiveness, and thus identifying alternative therapeutic options remains critical. Muscle is an important stimulus for bone formation. Myostatin, a TGF-β superfamily myokine, acts through ActRIIB to negatively regulate muscle growth. Recent studies demonstrated the potential benefit of myostatin inhibition with the soluble ActRIIB fusion protein on skeletal properties, although various OI mouse models exhibited variable skeletal responses. The genetic and clinical heterogeneity associated with OI, the lack of specificity of the ActRIIB decoy molecule for myostatin alone, and adverse events in human clinical trials further the need to clarify myostatin's therapeutic potential and role in skeletal integrity. In this study, we determined musculoskeletal outcomes of genetic myostatin deficiency and postnatal pharmacological myostatin inhibition by a monoclonal anti-myostatin antibody (Regn647) in the G610C mouse, a model of mild-moderate type I/IV human OI. In the postnatal study, 5-week-old wild-type and +/G610C male and female littermates were treated with Regn647 or a control antibody for 11 weeks or for 7 weeks followed by a 4-week treatment holiday. Inhibition of myostatin, whether genetically or pharmacologically, increased muscle mass regardless of OI genotype, although to varying degrees. Genetic myostatin deficiency increased hindlimb muscle weights by 6.9% to 34.4%, whereas pharmacological inhibition increased them by 13.5% to 29.6%. Female +/mstn +/G610C (Dbl.Het) mice tended to have similar trabecular and cortical bone parameters as Wt showing reversal of +/G610C characteristics but with minimal effect of +/mstn occurring in male mice. Pharmacologic myostatin inhibition failed to improve skeletal bone properties of male or female +/G610C mice, although skeletal microarchitectural and biomechanical improvements were observed in male wild-type mice. Four-week treatment holiday did not alter skeletal outcomes. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | | | | | - Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Emily N Harrelson
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | | | | | | | - Ferris M Pfeiffer
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Anqing Zhang
- Department of Biostatistics and Research Design, University of Missouri, Columbia, MO, USA
| | - Laura C Schulz
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, USA
| | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Jeon YK, Shin MJ, Saini SK, Custodero C, Aggarwal M, Anton SD, Leeuwenburgh C, Mankowski RT. Vascular dysfunction as a potential culprit of sarcopenia. Exp Gerontol 2020; 145:111220. [PMID: 33373710 DOI: 10.1016/j.exger.2020.111220] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
Aging-related changes to biological structures such as cardiovascular and musculoskeletal systems contribute to the development of comorbid conditions including cardiovascular disease and frailty, and ultimately lead to premature death. Although, frail older adults often demonstrate both cardiovascular and musculoskeletal comorbidities, the etiology of sarcopenia, and especially the contribution of cardiovascular aging is unclear. Aging-related vascular calcification is prevalent in older adults and is a known risk factor for cardiovascular disease and death. The effect vascular calcification has on function during aging is not well understood. Emerging findings suggest vascular calcification can impact skeletal muscle perfusion, negatively affecting nutrient and oxygen delivery to skeletal muscle, ultimately accelerating muscle loss and functional decline. The present review summarizes existing evidence on the biological mechanisms linking vascular calcification with sarcopenia during aging.
Collapse
Affiliation(s)
- Yun Kyung Jeon
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Division of Endocrinology and Metabolism, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Myung Jun Shin
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Department of Rehabilitation Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Sunil Kumar Saini
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Carlo Custodero
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA; Dipartimento Interdisciplinare di Medicina, Clinica Medica Cesare Frugoni, University of Bari Aldo Moro, Bari, Italy
| | - Monica Aggarwal
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida, FL, USA
| | - Stephen D Anton
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | | | - Robert T Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Gremminger VL, Jeong Y, Cunningham RP, Meers GM, Rector RS, Phillips CL. Compromised Exercise Capacity and Mitochondrial Dysfunction in the Osteogenesis Imperfecta Murine (oim) Mouse Model. J Bone Miner Res 2019; 34:1646-1659. [PMID: 30908713 PMCID: PMC6744299 DOI: 10.1002/jbmr.3732] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 11/09/2022]
Abstract
Osteogenesis imperfecta (OI) is a heritable connective tissue disorder that most often arises from type I collagen-COL1A1 and COL1A2-gene defects leading to skeletal fragility, short stature, blue-gray sclera, and muscle weakness. Relative to the skeletal fragility, muscle weakness is much less understood. Recent investigations into OI muscle weakness in both patients and mouse models have revealed the presence of an inherent muscle pathology. Understanding the mechanisms responsible for OI muscle weakness is critical, particularly in light of the extensive cross-talk between muscle and bone via mechanotransduction and biochemical signaling. In the following study we initially subjected WT and oim/oim mice, modeling severe human OI type III, to either weight-bearing (voluntary wheel-running) or non-weight-bearing (swimming) exercise regimens as a modality to improve muscle strength and ultimately bone strength. The oim/oim mice ran only 35% to 42% of the distance run by age- and sex-matched WT mice and exhibited little improvement with either exercise regimen. Upon further investigation, we determined that oim/oim gastrocnemius muscle exhibited severe mitochondrial dysfunction as characterized by a 52% to 65% decrease in mitochondrial respiration rates, alterations in markers of mitochondrial biogenesis, mitophagy, and the electron transport chain components, as well as decreased mitochondrial citrate synthase activity, relative to age- and sex-matched WT gastrocnemius muscle. Thus, mitochondrial dysfunction in the oim/oim mouse likely contributes to compromised muscle function and reduced physical activity levels. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211
| | - Rory P. Cunningham
- Departments of Nutrition and Exercise Physiology and Medicine-GI, University of Missouri; Research Service-Harry S Truman Memorial VA Hospital, Columbia, MO 65201
| | - Grace M. Meers
- Departments of Nutrition and Exercise Physiology and Medicine-GI, University of Missouri; Research Service-Harry S Truman Memorial VA Hospital, Columbia, MO 65201
| | - R. Scott Rector
- Departments of Nutrition and Exercise Physiology and Medicine-GI, University of Missouri; Research Service-Harry S Truman Memorial VA Hospital, Columbia, MO 65201
| | - Charlotte L. Phillips
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211
- Department of Child Health, University of Missouri, Columbia, Missouri, 65211
| |
Collapse
|
11
|
Kumagai H, Miyamoto-Mikami E, Hirata K, Kikuchi N, Kamiya N, Hoshikawa S, Zempo H, Naito H, Miyamoto N, Fuku N. ESR1 rs2234693 Polymorphism Is Associated with Muscle Injury and Muscle Stiffness. Med Sci Sports Exerc 2019; 51:19-26. [PMID: 30113520 PMCID: PMC6310456 DOI: 10.1249/mss.0000000000001750] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Supplemental digital content is available in the text. Purpose Muscle injury is the most common sports injury. Muscle stiffness, a risk factor for muscle injury, is lower in females than in males, implying that sex-related genetic polymorphisms influence muscle injury associated with muscle stiffness. The present study aimed to clarify the associations between two genetic polymorphisms (rs2234693 and rs9340799) in the estrogen receptor 1 gene (ESR1) and muscle injury or muscle stiffness. Methods In study 1, a questionnaire was used to assess the muscle injury history of 1311 Japanese top-level athletes. In study 2, stiffness of the hamstring muscles was assessed using ultrasound shear wave elastography in 261 physically active young adults. In both studies, rs2234693 C/T and rs9340799 G/A polymorphisms in the ESR1 were analyzed using the TaqMan SNP Genotyping Assay. Results In study 1, genotype frequencies for ESR1 rs2234693 C/T were significantly different between the injured and noninjured groups in a C-allele dominant (CC + CT vs TT: odds ratio, 0.62; 95% confidence interval, 0.43–0.91) and additive (CC vs CT vs TT: odds ratio, 0.70; 95% confidence interval, 0.53–0.91) model in all athletes. In study 2, hamstring muscle stiffness was lower in subjects with the CC + CT genotype than in those with the TT genotype; a significant linear trend (CC < CT < TT) was found (r = 0.135, P = 0.029). In contrast, no associations were observed between ESR1 rs9340799 G/A and muscle injury or stiffness. Conclusions Our results suggest that the ESR1 rs2234693 C allele, in contrast to the T allele, provides protection against muscle injury by lowering muscle stiffness.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University, Chiba, JAPAN.,Research Fellow of Japanese Society for the Promotion of Science, Tokyo, JAPAN
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba, JAPAN.,Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Kagoshima, JAPAN
| | - Kosuke Hirata
- Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Kagoshima, JAPAN
| | - Naoki Kikuchi
- Department of Training Science, Nippon Sport Science University, Tokyo, JAPAN
| | - Nobuhiro Kamiya
- Faculty of Budo and Sport Studies, Tenri University, Nara, JAPAN
| | - Seigo Hoshikawa
- Graduate School of Health and Sports Science, Juntendo University, Chiba, JAPAN.,Edogawa University, Chiba, JAPAN
| | - Hirofumi Zempo
- Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo, JAPAN
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba, JAPAN
| | - Naokazu Miyamoto
- Department of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Kagoshima, JAPAN
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, JAPAN
| |
Collapse
|
12
|
Paul RG, Hennebry AS, Elston MS, Conaglen JV, McMahon CD. Regulation of murine skeletal muscle growth by STAT5B is age- and sex-specific. Skelet Muscle 2019; 9:19. [PMID: 31230596 PMCID: PMC6589877 DOI: 10.1186/s13395-019-0204-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Background Sexually dimorphic growth has been attributed to the growth hormone (GH)/insulin-like growth factor 1 (IGF1) axis, particularly GH-induced activation of the intracellular signal transducer and activator of transcription 5B (STAT5B), because deletion of STAT5B reduces body mass and the mass of skeletal muscles in male mice to that in female mice. However, it remains unclear why these effects are sex- and species-specific, because the loss of STAT5B retards growth in girls, but not in male mice. Our objectives were to determine whether sexually dimorphic growth of skeletal muscle persisted in STAT5B−/− mice and investigate the mechanisms by which STAT5B regulates sexually dimorphic growth. Methods Blood and skeletal muscle were harvested from male and female STAT5B−/− mice and their wild-type littermates from the onset of puberty to adulthood. Results Growth of the skeleton and skeletal muscles was retarded in both sexes of STAT5B−/− mice, but more so in males. Although reduced, sexually dimorphic growth of skeletal muscle persisted in STAT5B−/− mice with an oxidative shift in the composition of myofibres in both sexes. Concentrations of IGF1 in blood and skeletal muscle were reduced in male STAT5B−/− mice at all ages, but only in female STAT5B−/− mice at the onset of puberty. Expression of androgen receptor (AR) and oestrogen receptor alpha (ERα) mRNA and protein was reduced in skeletal muscles of male and female STAT5B−/− mice, respectively. Loss of STAT5B abolished the sexually dimorphic expression of myostatin protein and Igf1, Ar, Erα, suppressor of cytokine signalling 2 (Socs2), and cytokine-inducible SH2-containing protein (Cis) mRNA in skeletal muscle. Conclusions STAT5B appears to mediate GH signalling in skeletal muscles of male mice at all ages, but only until puberty in female mice. STAT5B also appears to mediate the actions of androgens and oestrogens in both male and female mice, but sexually dimorphic growth persists in STAT5B−/− mice. Electronic supplementary material The online version of this article (10.1186/s13395-019-0204-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan G Paul
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand. .,Faculty of Medical & Health Sciences, Waikato Clinical Campus, University of Auckland, Private Bag 3200, Hamilton, 3240, New Zealand.
| | - Alex S Hennebry
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| | - Marianne S Elston
- Faculty of Medical & Health Sciences, Waikato Clinical Campus, University of Auckland, Private Bag 3200, Hamilton, 3240, New Zealand
| | - John V Conaglen
- Faculty of Medical & Health Sciences, Waikato Clinical Campus, University of Auckland, Private Bag 3200, Hamilton, 3240, New Zealand
| | - Chris D McMahon
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| |
Collapse
|
13
|
Collins BC, Laakkonen EK, Lowe DA. Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone 2019; 123:137-144. [PMID: 30930293 PMCID: PMC6491229 DOI: 10.1016/j.bone.2019.03.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Skeletal muscle weakness occurs with aging and in females this is compounded by the loss of estrogen with ovarian failure. Estrogen deficiency mediates decrements in muscle strength from both inadequate preservation of skeletal muscle mass and decrements in the quality of the remaining skeletal muscle. Processes and components of skeletal muscle that are affected by estrogens are beginning to be identified. This review focuses on mechanisms that contribute to the loss of muscle force generation when estrogen is low in females, and conversely the maintenance of strength by estrogen. Evidence is accumulating that estrogen deficiency induces apoptosis in skeletal muscle contributing to loss of mass and thus strength. Estrogen sensitive processes that affect quality, i.e., force generating capacity of muscle, include myosin phosphorylation and satellite cell function. Further detailing these mechanisms and identifying additional mechanisms that underlie estrogenic effects on skeletal muscle is important foundation for the design of therapeutic strategies to minimize skeletal muscle pathologies, such as sarcopenia and dynapenia.
Collapse
Affiliation(s)
- Brittany C Collins
- Department of Human Genetics, Medical School, University of Utah, United States of America
| | - Eija K Laakkonen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, United States of America.
| |
Collapse
|
14
|
Banfi S, D'Antona G, Ruocco C, Meregalli M, Belicchi M, Bella P, Erratico S, Donato E, Rossi F, Bifari F, Lonati C, Campaner S, Nisoli E, Torrente Y. Supplementation with a selective amino acid formula ameliorates muscular dystrophy in mdx mice. Sci Rep 2018; 8:14659. [PMID: 30279586 PMCID: PMC6168581 DOI: 10.1038/s41598-018-32613-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most common and severe forms of muscular dystrophy. Oxidative myofibre content, muscle vasculature architecture and exercise tolerance are impaired in DMD. Several studies have demonstrated that nutrient supplements ameliorate dystrophic features, thereby enhancing muscle performance. Here, we report that dietary supplementation with a specific branched-chain amino acid-enriched mixture (BCAAem) increased the abundance of oxidative muscle fibres associated with increased muscle endurance in dystrophic mdx mice. Amelioration of the fatigue index in BCAAem-treated mdx mice was caused by a cascade of events in the muscle tissue, which were promoted by endothelial nitric oxide synthase (eNOS) activation and vascular endothelial growth factor (VEGF) expression. VEGF induction led to recruitment of bone marrow (BM)-derived endothelial progenitors (EPs), which increased the capillary density of dystrophic skeletal muscle. Functionally, BCAAem mitigated the dystrophic phenotype of mdx mice without inducing dystrophin protein expression or replacing the dystrophin-associated glycoprotein (DAG) complex in the membrane, which is typically lost in DMD. BCAAem supplementation could be an effective adjuvant strategy in DMD treatment.
Collapse
Affiliation(s)
- Stefania Banfi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122, Milan, Italy
| | - Giuseppe D'Antona
- Department of Public Health, Molecular and Forensic Medicine, and Sport Medicine Centre Voghera, University of Pavia, Pavia, 27100, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, 20129, Italy
| | - Mirella Meregalli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122, Milan, Italy
| | - Marzia Belicchi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122, Milan, Italy
| | - Pamela Bella
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122, Milan, Italy
| | | | - Elisa Donato
- Centre for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, 20139, Italy.,Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Fabio Rossi
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, 20129, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, 20129, Milan, Italy
| | - Caterina Lonati
- Center for Surgical Research, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Stefano Campaner
- Centre for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, 20139, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, 20129, Italy.
| | - Yvan Torrente
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, 20122, Milan, Italy.
| |
Collapse
|
15
|
Verbrugge SAJ, Schönfelder M, Becker L, Yaghoob Nezhad F, Hrabě de Angelis M, Wackerhage H. Genes Whose Gain or Loss-Of-Function Increases Skeletal Muscle Mass in Mice: A Systematic Literature Review. Front Physiol 2018; 9:553. [PMID: 29910734 PMCID: PMC5992403 DOI: 10.3389/fphys.2018.00553] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle mass differs greatly in mice and humans and this is partially inherited. To identify muscle hypertrophy candidate genes we conducted a systematic review to identify genes whose experimental loss or gain-of-function results in significant skeletal muscle hypertrophy in mice. We found 47 genes that meet our search criteria and cause muscle hypertrophy after gene manipulation. They are from high to small effect size: Ski, Fst, Acvr2b, Akt1, Mstn, Klf10, Rheb, Igf1, Pappa, Ppard, Ikbkb, Fstl3, Atgr1a, Ucn3, Mcu, Junb, Ncor1, Gprasp1, Grb10, Mmp9, Dgkz, Ppargc1a (specifically the Ppargc1a4 isoform), Smad4, Ltbp4, Bmpr1a, Crtc2, Xiap, Dgat1, Thra, Adrb2, Asb15, Cast, Eif2b5, Bdkrb2, Tpt1, Nr3c1, Nr4a1, Gnas, Pld1, Crym, Camkk1, Yap1, Inhba, Tp53inp2, Inhbb, Nol3, Esr1. Knock out, knock down, overexpression or a higher activity of these genes causes overall muscle hypertrophy as measured by an increased muscle weight or cross sectional area. The mean effect sizes range from 5 to 345% depending on the manipulated gene as well as the muscle size variable and muscle investigated. Bioinformatical analyses reveal that Asb15, Klf10, Tpt1 are most highly expressed hypertrophy genes in human skeletal muscle when compared to other tissues. Many of the muscle hypertrophy-regulating genes are involved in transcription and ubiquitination. Especially genes belonging to three signaling pathways are able to induce hypertrophy: (a) Igf1-Akt-mTOR pathway, (b) myostatin-Smad signaling, and (c) the angiotensin-bradykinin signaling pathway. The expression of several muscle hypertrophy-inducing genes and the phosphorylation of their protein products changes after human resistance and high intensity exercise, in maximally stimulated mouse muscle or in overloaded mouse plantaris.
Collapse
Affiliation(s)
- Sander A. J. Verbrugge
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Martin Schönfelder
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fakhreddin Yaghoob Nezhad
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Henning Wackerhage
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
16
|
Jeong Y, Daghlas SA, Kahveci AS, Salamango D, Gentry BA, Brown M, Rector RS, Pearsall RS, Phillips CL. Soluble activin receptor type IIB decoy receptor differentially impacts murine osteogenesis imperfecta muscle function. Muscle Nerve 2018; 57:294-304. [PMID: 28555931 PMCID: PMC5702601 DOI: 10.1002/mus.25706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is characterized by skeletal fragility and muscle weakness. In this study we investigated the effects of soluble activin type IIB receptor (sActRIIB-mFc) on muscle mass and function in 2 distinct mouse models of OI: osteogenesis imperfecta murine (oim) and +/G610C. METHODS Wild-type (WT), +/G610C, and oim/oim mice were treated from 2 to 4 months of age with Tris-buffered saline (vehicle) or sActRIIB-mFc and their hindlimb muscles evaluated for mass, morphology, and contractile function. RESULTS sActRIIB-mFc-treated WT, +/G610C, and oim/oim mice had increased hindlimb muscle weights and myofiber cross-sectional area compared with vehicle-treated counterparts. sActRIIB-mFc-treated oim/oim mice also exhibited increased contractile function relative to vehicle-treated counterparts. DISCUSSION Blocking endogenous ActRIIB was effective at increasing muscle size in mouse models of OI, and increasing contractile function in oim/oim mice. ActRIIB inhibitors may provide a potential mutation-specific therapeutic option for compromised muscle function in OI. Muscle Nerve 57: 294-304, 2018.
Collapse
Affiliation(s)
- Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Salah A. Daghlas
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Alp S. Kahveci
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Daniel Salamango
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - Bettina A. Gentry
- Department of Veterinary Pathology, University of Missouri, Columbia MO 65211
| | - Marybeth Brown
- Department of Biomedical Science and Physical Therapy Program, University of Missouri, Columbia MO 65211
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia MO 65211
| | | | | |
Collapse
|
17
|
Collins BC, Mader TL, Cabelka CA, Iñigo MR, Spangenburg EE, Lowe DA. Deletion of estrogen receptor α in skeletal muscle results in impaired contractility in female mice. J Appl Physiol (1985) 2018; 124:980-992. [PMID: 29345963 DOI: 10.1152/japplphysiol.00864.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Estradiol deficiency in females can result in skeletal muscle strength loss, and treatment with estradiol mitigates the loss. There are three primary estrogen receptors (ERs), and estradiol elicits effects through these receptors in various tissues. Ubiquitous ERα-knockout mice exhibit numerous biological disorders, but little is known regarding the specific role of ERα in skeletal muscle contractile function. The purpose of this study was to determine the impact of skeletal muscle-specific ERα deletion on contractile function, hypothesizing that ERα is a main receptor through which estradiol affects muscle strength in females. Deletion of ERα specifically in skeletal muscle (skmERαKO) did not affect body mass compared with wild-type littermates (skmERαWT) until 26 wk of age, at which time body mass of skmERαKO mice began to increase disproportionally. Overall, skmERαKO mice had low strength demonstrated in multiple muscles and by several contractile parameters. Isolated extensor digitorum longus muscles from skmERαKO mice produced 16% less eccentric and 16-26% less submaximal and maximal isometric force, and isolated soleus muscles were more fatigable, with impaired force recovery relative to skmERαWT mice. In vivo maximal torque productions by plantarflexors and dorsiflexors were 16% and 12% lower in skmERαKO than skmERαWT mice, and skmERαKO muscles had low phosphorylation of myosin regulatory light chain. Plantarflexors also generated 21-32% less power, submaximal isometric and peak concentric torques. Data support the hypothesis that ablation of ERα in skeletal muscle results in muscle weakness, suggesting that the beneficial effects of estradiol on muscle strength are receptor mediated through ERα. NEW & NOTEWORTHY We comprehensively measured in vitro and in vivo skeletal muscle contractility in female estrogen receptor α (ERα) skeletal muscle-specific knockout mice and report that force generation is impaired across multiple parameters. These results support the hypothesis that a primary mechanism through which estradiol elicits its effects on strength is mediated by ERα. Evidence is presented that estradiol signaling through ERα appears to modulate force at the molecular level via posttranslational modifications of myosin regulatory light chain.
Collapse
Affiliation(s)
- Brittany C Collins
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota , Minneapolis, Minnesota
| | - Tara L Mader
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota , Minneapolis, Minnesota
| | - Christine A Cabelka
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota , Minneapolis, Minnesota
| | - Melissa R Iñigo
- East Carolina Diabetes and Obesity Institute, Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Espen E Spangenburg
- East Carolina Diabetes and Obesity Institute, Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
18
|
|
19
|
Jasuja GK, Travison TG, Murabito JM, Davda MN, Rose AJ, Basaria S, Coviello A, Vasan RS, D'Agostino R, Bhasin S. Circulating Estrogen Levels and Self-Reported Health and Mobility Limitation in Community-Dwelling Men of the Framingham Heart Study. J Gerontol A Biol Sci Med Sci 2017; 72:1137-1142. [PMID: 28329787 DOI: 10.1093/gerona/glw197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/06/2016] [Indexed: 11/14/2022] Open
Abstract
Background Self-rated health is a commonly used global indicator of health status. Few studies have examined the association of self-rated health and mobility with estrone and estradiol in men. Accordingly, we determined the cross-sectional, incident, and mediating relations between circulating estrone and estradiol levels with self-rated health, mobility limitation, and physical performance in community-dwelling men. Methods The cross-sectional sample included 1,148 men, who attended Framingham Offspring Study Examinations 7 and 8. Estrone and estradiol levels were measured using liquid chromatography tandem mass spectrometry at Examination 7. Self-reported mobility limitation and self-rated health were assessed at Examinations 7 and 8. Additionally, short physical performance battery, usual walking speed, and grip strength were assessed at Examination 7. Results In incident analysis, estradiol levels at Examination 7 were associated with increased odds of fair or poor self-rated health at Examination 8, after adjusting for age, body mass index, comorbidities, and testosterone levels; in an individual with 50% greater estradiol than other, the odds of reporting "fair or poor" self-rated health increased by 1.78 (95% confidence interval: 1.25-2.55; p = .001). Neither estrone nor estradiol levels were associated with any physical performance measure at baseline. Conclusions Higher circulating levels of estradiol are associated with increased risk of incident fair/poor self-rated health in community-dwelling men. The mechanisms by which circulating levels of estradiol are related to self-rated health in men need further investigation.
Collapse
Affiliation(s)
- Guneet Kaur Jasuja
- Center for Healthcare Organization and Implementation Research, Bedford VA Medical Center, Massachusetts.,Boston University School of Public Health, Massachusetts
| | - Thomas G Travison
- Hebrew SeniorLife, Institute for Aging Research, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Joanne M Murabito
- The National Heart, Lung and Blood Institute's Framingham Heart Study, Massachusetts.,Section of General Internal Medicine, Boston University School of Medicine, Massachusetts
| | - Maithili N Davda
- Brigham and Women's Hospital, Research Program in Men's Health, Aging and Metabolism, Harvard Medical School, Boston, Massachusetts
| | - Adam J Rose
- Section of General Internal Medicine, Boston University School of Medicine, Massachusetts
| | - Shehzad Basaria
- Brigham and Women's Hospital, Research Program in Men's Health, Aging and Metabolism, Harvard Medical School, Boston, Massachusetts
| | - Andrea Coviello
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Massachusetts
| | - Ramachandran S Vasan
- Boston University School of Public Health, Massachusetts.,The National Heart, Lung and Blood Institute's Framingham Heart Study, Massachusetts.,Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Massachusetts
| | - Ralph D'Agostino
- The National Heart, Lung and Blood Institute's Framingham Heart Study, Massachusetts.,Department of Mathematics, Boston University, Massachusetts
| | - Shalender Bhasin
- Brigham and Women's Hospital, Research Program in Men's Health, Aging and Metabolism, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Ueberschlag-Pitiot V, Stantzou A, Messéant J, Lemaitre M, Owens DJ, Noirez P, Roy P, Agbulut O, Metzger D, Ferry A. Gonad-related factors promote muscle performance gain during postnatal development in male and female mice. Am J Physiol Endocrinol Metab 2017; 313:E12-E25. [PMID: 28351832 DOI: 10.1152/ajpendo.00446.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/22/2017] [Accepted: 03/22/2017] [Indexed: 11/22/2022]
Abstract
To better define the role of male and female gonad-related factors (MGRF, presumably testosterone, and FGRF, presumably estradiol, respectively) on mouse hindlimb skeletal muscle contractile performance/function gain during postnatal development, we analyzed the effect of castration initiated before puberty in male and female mice. We found that muscle absolute and specific (normalized to muscle weight) maximal forces were decreased in 6-mo-old male and female castrated mice compared with age- and sex-matched intact mice, without alteration in neuromuscular transmission. Moreover, castration decreased absolute and specific maximal powers, another important aspect of muscle performance, in 6-mo-old males, but not in females. Absolute maximal force was similarly reduced by castration in 3-mo-old muscle fiber androgen receptor (AR)-deficient and wild-type male mice, indicating that the effect of MGRF was muscle fiber AR independent. Castration reduced the muscle weight gain in 3-mo mice of both sexes and in 6-mo females but not in males. We also found that bone morphogenetic protein signaling through Smad1/5/9 was not altered by castration in atrophic muscle of 3-mo-old mice of both sexes. Moreover, castration decreased the sexual dimorphism regarding muscle performance. Together, these results demonstrated that in the long term, MGRF and FGRF promote muscle performance gain in mice during postnatal development, independently of muscle growth in males, largely via improving muscle contractile quality (force and power normalized), and that MGFR and FGRF also contribute to sexual dimorphism. However, the mechanisms underlying MGFR and FGRF actions remain to be determined.
Collapse
Affiliation(s)
- Vanessa Ueberschlag-Pitiot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR7104/INSERM U964, Illkirch, France
| | - Amalia Stantzou
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Julien Messéant
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Megane Lemaitre
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Daniel J Owens
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Philippe Noirez
- Institut de Recherche Biomédicale et D'épidemiologie du Sport, EA 7329, Institut National du Sport de l'Expertise et de la Performance, Laboratory of Excellence GR-Ex, Paris, France
- Université Sorbonne Paris Cité, Université Paris Descartes, Paris, France; and
| | - Pauline Roy
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France
| | - Onnik Agbulut
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Institut de Biologie Paris-Seine, UMR CNRS 8256, Biological Adaptation and Ageing, Paris, France
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR7104/INSERM U964, Illkirch, France
| | - Arnaud Ferry
- Sorbonne Universités, Université Pierre et Marie Curie-Paris6, Myology Research Center, UM76 and INSERM U974 and CNRS FRE 3617 and Institut de Myologie, Paris, France;
- Université Sorbonne Paris Cité, Université Paris Descartes, Paris, France; and
| |
Collapse
|
21
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
22
|
Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 2017. [PMID: 27807202 DOI: 10.1152/physrev.00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Michaël R Laurent
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Vanessa Dubois
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Frank Claessens
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Roger Bouillon
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Dirk Vanderschueren
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| |
Collapse
|
23
|
Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 2017; 97:135-187. [PMID: 27807202 PMCID: PMC5539371 DOI: 10.1152/physrev.00033.2015] [Citation(s) in RCA: 484] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Michaël R Laurent
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Vanessa Dubois
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Frank Claessens
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Roger Bouillon
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Dirk Vanderschueren
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| |
Collapse
|
24
|
Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren D, Gielen E, Jardí F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol Cell Endocrinol 2016; 432:14-36. [PMID: 26506009 DOI: 10.1016/j.mce.2015.10.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Bone is a biomechanical tissue shaped by forces from muscles and gravitation. Simultaneous bone and muscle decay and dysfunction (osteosarcopenia or sarco-osteoporosis) is seen in ageing, numerous clinical situations including after stroke or paralysis, in neuromuscular dystrophies, glucocorticoid excess, or in association with vitamin D, growth hormone/insulin like growth factor or sex steroid deficiency, as well as in spaceflight. Physical exercise may be beneficial in these situations, but further work is still needed to translate acceptable and effective biomechanical interventions like vibration therapy from animal models to humans. Novel antiresorptive and anabolic therapies are emerging for osteoporosis as well as drugs for sarcopenia, cancer cachexia or muscle wasting disorders, including antibodies against myostatin or activin receptor type IIA and IIB (e.g. bimagrumab). Ideally, increasing muscle mass would increase muscle strength and restore bone loss from disuse. However, the classical view that muscle is unidirectionally dominant over bone via mechanical loading is overly simplistic. Indeed, recent studies indicate a role for neuronal regulation of not only muscle but also bone metabolism, bone signaling pathways like receptor activator of nuclear factor kappa-B ligand (RANKL) implicated in muscle biology, myokines affecting bone and possible bone-to-muscle communication. Moreover, pharmacological strategies inducing isolated myocyte hypertrophy may not translate into increased muscle power because tendons, connective tissue, neurons and energy metabolism need to adapt as well. We aim here to critically review key musculoskeletal molecular pathways involved in mechanoregulation and their effect on the bone-muscle unit as a whole, as well as preclinical and emerging clinical evidence regarding the effects of sarcopenia therapies on osteoporosis and vice versa.
Collapse
Affiliation(s)
- Michaël R Laurent
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sabine M P Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Science, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
25
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
26
|
Kitajima Y, Ono Y. Estrogens maintain skeletal muscle and satellite cell functions. J Endocrinol 2016; 229:267-75. [PMID: 27048232 DOI: 10.1530/joe-15-0476] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/25/2022]
Abstract
Estrogens have crucial roles in an extensive range of physiological functions regulating cellular proliferation and differentiation, development, homeostasis, and metabolism. Therefore, prolonged estrogen insufficiency influences various types of tissues expressing estrogen receptors (ERs). Although ERs are expressed in skeletal muscle and its stem cells, called satellite cells, how prolonged estrogen insufficiency affects their function remains unclear. In this study, we investigated the effect of estrogen reduction on muscle in young ovariectomized (OVX) female mice. We found that reduced estrogens resulted in muscle atrophy in a time-dependent manner. Muscle force generation was reduced in OVX mice. Interestingly, prolonged estrogen insufficiency shifted fiber types toward faster myosin heavy chain isoforms. The number of satellite cells per isolated myofiber was unchanged, while satellite cell expansion, differentiation, and self-renewal were all markedly impaired in OVX mice. Indeed, muscle regeneration was significantly compromised in OVX mice. Taken together, our results demonstrate that estrogens are essential for comprehensively maintaining muscle function with its insufficiency affecting muscle strength and regeneration in young female mice.
Collapse
Affiliation(s)
- Yuriko Kitajima
- Department of Stem Cell BiologyAtomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yusuke Ono
- Department of Stem Cell BiologyAtomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
27
|
Aoyama S, Jia H, Nakazawa K, Yamamura J, Saito K, Kato H. Dietary Genistein Prevents Denervation-Induced Muscle Atrophy in Male Rodents via Effects on Estrogen Receptor-α. J Nutr 2016; 146:1147-54. [PMID: 27146914 DOI: 10.3945/jn.115.226316] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/01/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Genistein has high estrogenic activity. Previous studies have shown beneficial effects of estrogen or hormone replacement therapy on muscle mass and muscle atrophy. OBJECTIVE We investigated the preventive effects and underlying mechanisms of genistein on muscle atrophy. METHODS In Expt. 1, male Wistar rats were fed a diet containing no genistein [control (CON)] or 0.05% genistein (GEN; wt:wt diet) for 24 d. On day 14, the sciatic nerve in the left hind leg was severed, and the right hind leg was sham-treated. In Expt. 2, male C57BL6J mice were subcutaneously administered a vehicle (Veh group) or the estrogen receptor (ER) antagonist ICI 182,780 (ICI group) via an osmotic pump for 27 d, and each group was subsequently fed CON or GEN diets from day 3 to day 27. Muscle atrophy was induced on day 17 as in Expt. 1. In Expt. 3, male C57BL6J mice were subcutaneously administered vehicle or a selective ER agonist-ER-α [4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT)] or ER-β [2,3-bis(4-hydroxyphenyl)-propionitrile (DPN)]-or genistein (GEN-sc-i) via an osmotic pump for 13 d, and muscle atrophy was induced on day 3 as in Expt. 1. The ratio of denervated soleus muscle weight to sham-operated soleus muscle weight (d/s ratio) was used as the index of muscle atrophy. RESULTS Expt. 1: The d/s ratio in the GEN group was 20% higher than that in the CON group (P < 0.05). Expt. 2: The d/s ratio in the Veh-GEN group was 14% higher than that in the Veh-CON group (P < 0.05), although there was no significant difference between ICI-CON and ICI-GEN groups (P = 0.69). Expt. 3: The d/s ratio in the PPT-treated group was 20% greater than that in the Veh group (P < 0.05), but DPN and GEN-sc-i had no effect on the d/s ratio (P ≥ 0.05 compared with vehicle). CONCLUSION Genistein intake mitigated denervation-induced soleus muscle atrophy. ER-α was related to the preventive effect of genistein on muscle atrophy.
Collapse
Affiliation(s)
- Shinya Aoyama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, and
| | - Huijuan Jia
- "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Kyoko Nakazawa
- "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Junki Yamamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, and
| | - Kenji Saito
- "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| | - Hisanori Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, and "Food for Life," Organization for Interdisciplinary Research Projects, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Carson JA, Hardee JP, VanderVeen BN. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting. Semin Cell Dev Biol 2015; 54:53-67. [PMID: 26593326 DOI: 10.1016/j.semcdb.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed.
Collapse
Affiliation(s)
- James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA.
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| | - Brandon N VanderVeen
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| |
Collapse
|
29
|
Carson JA, Manolagas SC. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone 2015; 80:67-78. [PMID: 26453497 PMCID: PMC4600533 DOI: 10.1016/j.bone.2015.04.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
Estrogens and androgens influence the growth and maintenance of bones and muscles and are responsible for their sexual dimorphism. A decline in their circulating levels leads to loss of mass and functional integrity in both tissues. In the article, we highlight the similarities of the molecular and cellular mechanisms of action of sex steroids in the two tissues; the commonality of a critical role of mechanical forces on tissue mass and function; emerging evidence for an interplay between mechanical forces and hormonal and growth factor signals in both bones and muscles; as well as the current state of evidence for or against a cross-talk between muscles and bone. In addition, we review evidence for the parallels in the development of osteoporosis and sarcopenia with advancing age and the potential common mechanisms responsible for the age-dependent involution of these two tissues. Lastly, we discuss the striking difference in the availability of several drug therapies for the prevention and treatment of osteoporosis, as compared to none for sarcopenia. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- James A Carson
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|
30
|
Jeong Y, Carleton SM, Gentry BA, Yao X, Ferreira JA, Salamango DJ, Weis M, Oestreich AK, Williams AM, McCray MG, Eyre DR, Brown M, Wang Y, Phillips CL. Hindlimb Skeletal Muscle Function and Skeletal Quality and Strength in +/G610C Mice With and Without Weight-Bearing Exercise. J Bone Miner Res 2015; 30:1874-86. [PMID: 25829218 PMCID: PMC8157311 DOI: 10.1002/jbmr.2518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 11/08/2022]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice.
Collapse
Affiliation(s)
- Youngjae Jeong
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | - Bettina A Gentry
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Xiaomei Yao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - J Andries Ferreira
- Department of Biomedical Sciences and Physical Therapy Program, University of Missouri, Columbia, MO, USA
| | | | - MaryAnn Weis
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Arin K Oestreich
- Department of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Ashlee M Williams
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Marcus G McCray
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - David R Eyre
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Marybeth Brown
- Department of Biomedical Sciences and Physical Therapy Program, University of Missouri, Columbia, MO, USA
| | - Yong Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
31
|
Haizlip KM, Harrison BC, Leinwand LA. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology (Bethesda) 2015; 30:30-9. [PMID: 25559153 DOI: 10.1152/physiol.00024.2014] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous studies have identified over 3,000 genes that are differentially expressed in male and female skeletal muscle. Here, we review the sex-based differences in skeletal muscle fiber composition, myosin heavy chain expression, contractile function, and the regulation of these physiological differences by thyroid hormone, estrogen, and testosterone. The findings presented lay the basis for the continued work needed to fully understand the skeletal muscle differences between males and females.
Collapse
Affiliation(s)
- K M Haizlip
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado
| | - B C Harrison
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado
| | - L A Leinwand
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado
| |
Collapse
|
32
|
Ogawa M, Kitakaze T, Harada N, Yamaji R. Female-specific regulation of skeletal muscle mass by USP19 in young mice. J Endocrinol 2015; 225:135-45. [PMID: 25901042 DOI: 10.1530/joe-15-0128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 01/31/2023]
Abstract
17β-Estradiol (E₂) is thought to be responsible for sex-specific differences in skeletal muscle mass. The biological function of E₂ is exerted through its binding to estrogen receptor α (ERα). The expression of ubiquitin-specific peptidase 19 (USP19) is upregulated during muscle atrophy and by E₂-activated ERα. Here, we investigated the involvement of USP19 in sex difference in muscle mass in young mice. Knockdown of USP19 in hindlimb muscles increased the mass and fiber size in soleus muscle in females but not males. Using Usp19 promoter reporter constructs, a functional half-estrogen response element (hERE) was identified in intron 1 of Usp19. ERα bound to hERE in an E₂-dependent manner in C2C12 myoblasts and in soleus muscle in ovariectomized (OVX) female mice. Furthermore, under normal physiological conditions, ERα bound to hERE in soleus muscle only in females. In contrast, administration of E₂ resulted in increased Usp19 mRNA expression, decreased muscle mass, and recruitment of ERα to hERE in soleus muscle in males. Knockdown of ERα in hindlimb muscles decreased Usp19 mRNA expression and increased the mass of soleus muscle only in females. Knockdown of USP19 resulted in increased levels of ubiquitin conjugates in soleus muscle in females. OVX increased the levels of ubiquitin conjugates and administration of E₂ decreased OVX-induced levels of ubiquitin conjugates. These results demonstrate that in soleus muscle in young female mice under physiological conditions, E₂ upregulates USP19 expression through ERα and consequently leads to decreases in ubiquitin conjugates and muscle mass.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Tomoya Kitakaze
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Naoki Harada
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| | - Ryoichi Yamaji
- Division of Applied Life SciencesGraduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 5998531, Japan
| |
Collapse
|
33
|
Kudo D, Miyakoshi N, Hongo M, Matsumoto-Miyai K, Kasukawa Y, Misawa A, Ishikawa Y, Shimada Y. Nerve Growth Factor and Estrogen Receptor mRNA Expression in Paravertebral Muscles of Patients With Adolescent Idiopathic Scoliosis: A Preliminary Study. Spine Deform 2015; 3:122-127. [PMID: 27927302 DOI: 10.1016/j.jspd.2014.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 05/26/2014] [Accepted: 07/18/2014] [Indexed: 01/02/2023]
Abstract
STUDY DESIGN Comparison of nerve growth factor (NGF) and estrogen receptor (ER)α messenger ribonucleic acid (mRNA) expression in bilateral paravertebral muscles in adolescent idiopathic scoliosis (AIS). This expression in AIS was compared with that of normal control subjects. OBJECTIVES To investigate NGF and ERα mRNA expression in bilateral paravertebral muscles in AIS and control subjects to clarify its association with the development and progression of spinal curvature. SUMMARY OF BACKGROUND DATA Paravertebral muscle abnormalities in AIS patients have been investigated through various methods. Despite the roles of NGF and ER in human skeletal muscles, the association with idiopathic scoliosis is still unclear. METHODS A total of 14 AIS patients (average age, 15.9 ± 2.2 years; average Cobb angle, 48.2° ± 8.9°) and 8 controls (average age, 27.3 ± 9.3 years) were included. Muscle samples were harvested from bilateral paravertebral muscles at the apical vertebral level. Nerve growth factor and ERα mRNA expression was evaluated by the real-time polymerase chain reaction. The researchers compared expression levels in bilateral paravertebral muscles in each group. The expression ratio, the expression at the convex side relative to the concave side, was compared between groups and the correlation between Cobb angle and expression ratio was analyzed. RESULTS Nerve growth factor and ERα mRNA expression on the convex side was higher than on the concave side in the AIS group (p = .024 and .007, respectively) and the expression ratio of NGF and ERα in the AIS group was higher than that of control subjects (p = .004 and .017, respectively). The expression ratio of NGF and the Cobb angle were significantly correlated (r = -0.5728; p = .0323). CONCLUSIONS In the AIS group, both NGF and ERα mRNA expression was asymmetric. The AIS group had higher expression ratios than control group and the NGF expression ratio was positively correlated to the Cobb angle.
Collapse
Affiliation(s)
- Daisuke Kudo
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Michio Hongo
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Kazumasa Matsumoto-Miyai
- Department of Neurophysiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Akiko Misawa
- Department of Orthopedic Surgery, Akita Prefectural Center on Development and Disability, 1-128 Aza-suwanosawa Kamikitate-momozaki, Akita 010-1407, Japan
| | - Yoshinori Ishikawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
34
|
Bombardier E, Vigna C, Bloemberg D, Quadrilatero J, Tiidus PM, Tupling AR. The role of estrogen receptor-α in estrogen-mediated regulation of basal and exercise-induced Hsp70 and Hsp27 expression in rat soleus. Can J Physiol Pharmacol 2014; 91:823-29. [PMID: 24303535 DOI: 10.1139/cjpp-2013-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the influence of estrogen receptor-alpha (ERα) activation on estrogen-mediated regulation of heat shock proteins 70 (Hsp70) and 27 (Hsp27) in soleus. Ovariectomized rats received estrogen (EST), an ERα agonist (propyl pyrazole triol, PPT), both (EST+PPT), or a sham, and they served as either unexercised controls or were subjected to exercise by having to run downhill (17 m/min, -13.5° grade) for 90 min. At 72 h postexercise, soleus muscles were removed and either immunohistochemically stained for Hsp70 and myosin heavy chain or homogenized for Western blotting for Hsp70 and Hsp27. Elevated (p < 0.05) basal Hsp70 in both type I and II fibres in the unexercised EST, PPT, and EST+PPT groups relative to unexercised sham animals was noted. Compared with Hsp70 levels in the unexercised animals, that in exercised animals was elevated (p < 0.05) in both sham and PPT groups but not in EST and EST+PPT groups. Western blot determined that Hsp27 levels were not significantly different between groups. Hence, the ability of estrogen to augment resting type I and type II muscle fibre Hsp70 content is primarily mediated via muscle ERα. However, the blunted Hsp70 response following damaging exercise in estrogen-supplemented animals does not appear to be fully accounted for by ERα-mediated effects.
Collapse
|
35
|
Genetic variations in the androgen receptor are associated with steroid concentrations and anthropometrics but not with muscle mass in healthy young men. PLoS One 2014; 9:e86235. [PMID: 24465978 PMCID: PMC3900506 DOI: 10.1371/journal.pone.0086235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 12/10/2013] [Indexed: 12/20/2022] Open
Abstract
Objective The relationship between serum testosterone (T) levels, muscle mass and muscle force in eugonadal men is incompletely understood. As polymorphisms in the androgen receptor (AR) gene cause differences in androgen sensitivity, no straightforward correlation can be observed between the interindividual variation in T levels and different phenotypes. Therefore, we aim to investigate the relationship between genetic variations in the AR, circulating androgens and muscle mass and function in young healthy male siblings. Design 677 men (25–45 years) were recruited in a cross-sectional, population-based sibling pair study. Methods Relations between genetic variation in the AR gene (CAGn, GGNn, SNPs), sex steroid levels (by LC-MS/MS), body composition (by DXA), muscle cross-sectional area (CSA) (by pQCT), muscle force (isokinetic peak torque, grip strength) and anthropometrics were studied using linear mixed-effect modelling. Results Muscle mass and force were highly heritable and related to age, physical activity, body composition and anthropometrics. Total T (TT) and free T (FT) levels were positively related to muscle CSA, whereas estradiol (E2) and free E2 (FE2) concentrations were negatively associated with muscle force. Subjects with longer CAG repeat length had higher circulating TT, FT, and higher E2 and FE2 concentrations. Weak associations with TT and FT were found for the rs5965433 and rs5919392 SNP in the AR, whereas no association between GGN repeat polymorphism and T concentrations were found. Arm span and 2D:4D finger length ratio were inversely associated, whereas muscle mass and force were not associated with the number of CAG repeats. Conclusions Age, physical activity, body composition, sex steroid levels and anthropometrics are determinants of muscle mass and function in young men. Although the number of CAG repeats of the AR are related to sex steroid levels and anthropometrics, we have no evidence that these variations in the AR gene also affect muscle mass or function.
Collapse
|
36
|
Pelvic floor muscle training for urinary incontinence: a comparison of outcomes in premenopausal versus postmenopausal women. Female Pelvic Med Reconstr Surg 2013; 19:219-24. [PMID: 23797521 DOI: 10.1097/spv.0b013e31829950e5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Previous studies examining the effectiveness of pelvic floor muscle training (PFMT) for urinary incontinence in premenopausal and postmenopausal women have shown ambiguous results. The aim of this study was to compare subjective PFMT outcome in premenopausal versus postmenopausal women. METHODS This is a retrospective study including premenopausal and postmenopausal women after PFMT for urodynamically proven stress urinary incontinence, mixed urinary incontinence, or urgency urinary incontinence from January 2003 to December 2008, with assessment of the need of an incontinence surgery in a follow-up time of least 24 months. Patients evaluated the change of their urinary incontinence on a 4-point Likert scale (1, no improvement; 2, slightly better; 3, no relevant incontinence; 4, excellent outcome; no incontinence at all) and their goal attainment on a 3-point Likert scale (1, less than expected; 2, as expected; and 3, more than expected). RESULTS Successful outcome was reported by 59% of the premenopausal patients and 70% of the postmenopausal patients (P = 0.16), the attainment of the subjective goal by 68% and 81% (P = 0.09), and the need of an incontinence operation in a follow-up of 30 to 102 months by 15% and 14% (P = 1.0), respectively. None of the outcome parameters reached significance. CONCLUSIONS In comparing premenopausal to postmenopausal women, we could not detect any statistically significant difference with regard to patients' satisfaction for the outcome of PFMT.
Collapse
|
37
|
Acute effects of sex-specific sex hormones on heat shock proteins in fast muscle of male and female rats. Eur J Appl Physiol 2013; 113:2503-10. [PMID: 23821238 DOI: 10.1007/s00421-013-2686-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Heat shock protein (HSP) expression and sex hormone levels have been shown to influence several aspects of skeletal muscle physiology (e.g., hypertrophy, resistance to oxidative stress), suggesting that sex hormone levels can effect HSP expression. This study evaluated the effects of differing levels of sex-specific sex hormones (i.e., testosterone in males and estrogen in females) on the expression of 4: HSP70, HSC70, HSP25, and αB-crystallin in the quadriceps muscles of male and female rats. Animals were assigned to 1 of 3 groups (n = 5 M and F/group). The first group (Ctl) consisted of typically cage-housed animals that served as controls. The second group (H) was gonadectomized and received either testosterone (males) or estradiol (females) via injection for 12 consecutive days. The third group (Gx) was gonadectomized and injected as above, but with vehicle only, rather than hormones. Significant sex by condition interactions (P < 0.05 by two-way MANOVA) were found for all 4 proteins studied, except for HSP70, which exhibited a significant effect of condition only. The expression of all HSPs was greater (1.9-2.5-fold) in males vs. females in the Ctl group, except for HSP70, which was no different. Generally, gonadectomy appeared to have greater effects in males than females, but administration of the exogenous sex hormones tended to produce more robust relative changes in females than males. There were no differences in myosin composition in any of the groups, suggesting that changes in fiber type were not a factor in the differential protein expression. These data may have implications for sex-related differences in muscular responses to exercise, disuse, and injury.
Collapse
|
38
|
Abstract
The controversy surrounding the results from the Women's Health Initiative (WHI) trials published a decade ago caused a significant decline in the use of menopausal hormone replacement therapy. However, these results have been vehemently contested and several lines of evidence suggest that in perimenopausal and non-obese women, estrogen therapy may indeed be of benefit. There is ample proof that menopause causes a loss of musculoskeletal tissue mass and quality, thereby causing a loss of health and quality of life. There is also solid evidence that hormone replacement therapy in itself prevents most of these effects in connective tissue in itself. Besides the independent, direct effects on the musculoskeletal tissues, estrogen deficiency also reduces the ability to adequately respond and adapt to external mechanical and metabolic stressors, e.g. exercise, which are otherwise the main stimuli that should maintain musculoskeletal integrity and metabolic function. Thus, normophysiological estrogen levels appear to exert a permissive effect on musculoskeletal adaptations to loading, thereby likely improving the outcome of rehabilitation following critical illness, musculoskeletal trauma or orthopedic surgical therapy. These effects add to the evidence supporting the use of estrogen therapy, particularly accelerated gain of functional capacity and independence following musculoskeletal disuse.
Collapse
Affiliation(s)
- Anders Nedergaard
- Nordic Bioscience - Biomarkers and Research (Part of CCBR Group), Herlev, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
39
|
A rehabilitation exercise program induces severe bone mineral deficits in estrogen-deficient rats after extended disuse. Menopause 2013; 19:1267-76. [PMID: 22713863 DOI: 10.1097/gme.0b013e318255657f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Both estrogen and mechanical loading regulate bone maintenance. However, mechanical overload seems less effective in enhancing bone mineral density (BMD) in estrogen-deficient women. The aim of this study was to determine whether estradiol (E2) influences early-phase bone adaptations to reambulation (REAMB) and/or rehabilitation exercises after hindlimb unloading (HLU) of ovariectomized rats. METHODS Eighty-one 5-month-old female Sprague-Dawley rats were randomized into the following groups: (1) intact controls, (2) ovariectomy (OVX), (3) OVX + E2, (4) OVX + 4 weeks of HLU, (5) OVX + E2 + HLU, (6) OVX + HLU + 2 weeks of quadrupedal REAMB, (7) OVX + E2 + HLU + REAMB, (8) OVX + HLU + REAMB + supplemental climbing, jumping, and balance exercises (EX), or (9) OVX + E2 + HLU + REAMB + EX. Serial dual-energy x-ray absorptiometry scans were performed to track total body bone characteristics throughout the study, and peripheral quantitative computerized tomography was used to determine distal femoral metaphyseal bone mineral characteristics. RESULTS Total body BMD increased by 4% to 8% in all animals receiving supplemental E2, whereas BMD did not change in animals without E2. OVX reduced trabecular BMD at the femoral metaphysis, and HLU exacerbated this loss while also reducing cortical BMD. E2 protected against OVX + HLU-induced bone loss at the femoral metaphysis. Conversely, REAMB did not alter BMD, regardless of estrogen status. In the absence of E2, REAMB + EX resulted in severe bone loss after OVX + HLU, with trabecular BMD and cortical BMD measurements that were 91% and 7% below those of controls, respectively (P ≤ 0.001). However, in the presence of E2, REAMB + EX did not negatively influence bone mineral characteristics. CONCLUSIONS E2 protects against bone loss resulting from combined OVX + HLU of rodents. In the absence of estrogen, exercise induces disadvantageous early-phase bone adaptations after extended disuse.
Collapse
|
40
|
Swanson HI, Wada T, Xie W, Renga B, Zampella A, Distrutti E, Fiorucci S, Kong B, Thomas AM, Guo GL, Narayanan R, Yepuru M, Dalton JT, Chiang JYL. Role of nuclear receptors in lipid dysfunction and obesity-related diseases. Drug Metab Dispos 2012; 41:1-11. [PMID: 23043185 DOI: 10.1124/dmd.112.048694] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This article is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 12 meeting in San Diego, CA. The presentations discussed the roles of a number of nuclear receptors in regulating glucose and lipid homeostasis, the pathophysiology of obesity-related disease states, and the promise associated with targeting their activities to treat these diseases. While many of these receptors (in particular, constitutive androstane receptor and pregnane X receptor) and their target enzymes have been thought of as regulators of drug and xenobiotic metabolism, this symposium highlighted the advances made in our understanding of the endogenous functions of these receptors. Similarly, as we gain a better understanding of the mechanisms underlying bile acid signaling pathways in the regulation of body weight and glucose homeostasis, we see the importance of using complementary approaches to elucidate this fascinating network of pathways. The observation that some receptors, like the farnesoid X receptor, can function in a tissue-specific manner via well defined mechanisms has important clinical implications, particularly in the treatment of liver diseases. Finally, the novel findings that agents that selectively activate estrogen receptor β can effectively inhibit weight gain in a high-fat diet model of obesity identifies a new role for this member of the steroid superfamily. Taken together, the significant findings reported during this symposium illustrate the promise associated with targeting a number of nuclear receptors for the development of new therapies to treat obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Hollie I Swanson
- Department of Molecular and Biomedical Pharmacology, MS305, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY40536, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Auyeung TW, Lee JSW, Kwok T, Leung J, Ohlsson C, Vandenput L, Leung PC, Woo J. Testosterone but not estradiol level is positively related to muscle strength and physical performance independent of muscle mass: a cross-sectional study in 1489 older men. Eur J Endocrinol 2011; 164:811-7. [PMID: 21346095 DOI: 10.1530/eje-10-0952] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To examine the relationship between different measures of testosterone and estradiol (E(2)), muscle mass, muscle strength, and physical performance; and to test whether the association of sex hormone level with muscle strength and physical performance was independent of muscle mass. DESIGN AND METHODS A cross-sectional survey on 1489 community-dwelling men older than 64 years of age. Serum levels of testosterone and E(2) were measured by mass spectrometry, and sex hormone-binding globulin (SHBG) levels were measured by immunoradioassay. Muscle mass was examined by dual-energy X-ray absorptiometry and physical performance was assessed by hand-grip strength, gait speed, step length and chair-stand test. RESULTS Appendicular skeletal mass (ASM) was positively associated with total testosterone (TT; P<0.001), free testosterone (FT; P<0.001), and total E(2) (P<0.001) but not with free E(2) (P=0.102). After adjustment for age, serum SHBG and relative ASM, both TT and FT were significantly associated with grip strength, narrow-walk speed and the composite neuromuscular score. Higher total E(2), but not free E(2) was associated with lower grip strength (P<0.05) after adjustment for age, FT, SHBG and relative ASM. CONCLUSIONS Testosterone level was related to both muscle mass, strength and physical performance. Total E(2) level, though related to muscle mass positively, affected muscle strength adversely in older men.
Collapse
Affiliation(s)
- Tung Wai Auyeung
- The S H Ho Centre of Gerontology and Geriatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Brown M, Ferreira JA, Foley AM, Hemmann KM. A rehabilitation exercise program to remediate skeletal muscle atrophy in an estrogen-deficient organism may be ineffective. Eur J Appl Physiol 2011; 112:91-104. [PMID: 21499884 DOI: 10.1007/s00421-011-1925-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/15/2011] [Indexed: 01/25/2023]
Abstract
To determine rehabilitation exercise program effects under hormone deficient (ovariectomy or OVX) and hormone supplemented [OVX + 17-beta estradiol (E2)] conditions. Mature female rats (n = 123) were assigned to OVX or OVX + E2-supplemented groups. OVX and OVX + E2 groups were allocated to one of four conditions: (1) control, (2) hindlimb unweighted (HLU) for 4 weeks to induce muscle atrophy, (3) cage Recovery for 2 weeks after HLU, and (4) Recovery with 2 weeks of rehabilitation exercise program after 4 weeks of HLU. Atrophy following HLU was comparable for OVX and OVX + E2-supplemented rats and was significant in all muscles examined (soleus, tibialis anterior, plantaris, gastrocnemius, quadriceps). Also significant with HLU was the decline in muscle force (P < 0.05) in soleus, plantaris, gastrocnemius and tibialis anterior (quadriceps not tested). There were trends toward return of muscle mass in Recovery OVX and Recovery OVX + E2 groups but only the E2 supplemented OVX rats had return of muscle mass (4/5 muscles studied) with exercise. Peak tetanic tension (Po) returned to control values in the E2 supplemented Exercise rats but not in the unsupplemented Exercise group. For example, gastrocnemius Po for OVX HLU, OVX Recovery and OVX-Exercise groups was 82%*, 82%* and 76%* of control. Gastrocnemius Po for E2 supplemented HLU, Recovery and Exercise groups was 72%*, 95% and 106% of control (*P < 0.05 compared to control). H&E cross-sections from OVX-Exercise rats showed central nuclei. In conclusion, a rehabilitation exercise program to remediate acute atrophy in females appears more effective if E2 is present.
Collapse
Affiliation(s)
- Marybeth Brown
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
43
|
Gentry BA, Ferreira JA, Phillips CL, Brown M. Hindlimb skeletal muscle function in myostatin-deficient mice. Muscle Nerve 2011; 43:49-57. [PMID: 21082689 DOI: 10.1002/mus.21796] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Absence of functional myostatin (MSTN) during fetal development results in adult skeletal muscle hypertrophy and hyperplasia. To more fully characterize MSTN loss in hindlimb muscles, the morphology and contractile function of the soleus, plantaris, gastrocnemius, tibialis anterior, and quadriceps muscles in male and female null (Mstn(-/-)), heterozygous (Mstn(+/-)), and wild-type (Mstn(+/+)) mice were investigated. Muscle weights of Mstn(-/-) mice were greater than those of Mstn(+/+) and Mstn(+/-) mice. Fiber cross-sectional area (CSA) was increased in female Mstn(-/-) soleus and gastrocnemius muscles and in the quadriceps of male Mstn(-/-) mice; peak tetanic force in Mstn(-/-) mice did not parallel the increased muscle weight or CSA. Male Mstn(-/-) muscle exhibited moderate degeneration. Visible pathology in male mice and decreased contractile strength relative to increased muscle weight suggest MSTN loss results in muscle impairment, which is dose-, sex-, and muscle-dependent.
Collapse
Affiliation(s)
- Bettina A Gentry
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | | | | | | |
Collapse
|
44
|
Cosper PF, Leinwand LA. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res 2010; 71:1710-20. [PMID: 21163868 DOI: 10.1158/0008-5472.can-10-3145] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Approximately one-third of cancer deaths are caused by cachexia, a severe form of skeletal muscle and adipose tissue wasting that affects men more than women. The heart also undergoes atrophy in cancer patients, but the mechanisms and the basis for apparent sex differences are unclear. In a mouse colon-adenocarcinoma model, cancer causes a loss of cardiac mass due to a decrease in cardiac myocyte size that is associated with reduced levels of all sarcomeric proteins. Unlike skeletal muscle cachexia, atrophic hearts do not upregulate the ubiquitin-proteasome system or its activity but increase autophagy. Thus, cancer causes cardiac atrophy by a mechanism distinct from that in skeletal muscle. Male tumor-bearing mice have a more severe phenotype than females, including greater cardiac mass loss and mortality, a more robust pro-inflammatory response to the tumor, and greater cardiac autophagy. In females, estrogen protects against cancer-induced cardiac atrophy and body weight loss by signaling through its receptor. Sex differences in cardiac atrophy need to be considered during the treatment of patients suffering from chemotherapy-induced cardiomyopathy to prevent exacerbation of cardiac dysfunction.
Collapse
Affiliation(s)
- Pippa F Cosper
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, USA
| | | |
Collapse
|
45
|
Gentry BA, Ferreira JA, McCambridge AJ, Brown M, Phillips CL. Skeletal muscle weakness in osteogenesis imperfecta mice. Matrix Biol 2010; 29:638-44. [PMID: 20619344 DOI: 10.1016/j.matbio.2010.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 12/11/2022]
Abstract
Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (P(o), P(o)/mg and P(o)/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased P(o) and an inability to sustain P(o) for the 300-ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology.
Collapse
Affiliation(s)
- Bettina A Gentry
- Department of Veterinary Pathobiology, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
46
|
Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. PLoS One 2010; 5:e10164. [PMID: 20405008 PMCID: PMC2854140 DOI: 10.1371/journal.pone.0010164] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/22/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Estrogens are associated with the loss of skeletal muscle strength in women with age. Ovarian hormone removal by ovariectomy in mice leads to a loss of muscle strength, which is reversed with 17beta-estradiol replacement. Aging is also associated with an increase in antioxidant stress, and estrogens can improve antioxidant status via their interaction with estrogen receptors (ER) to regulate antioxidant gene expression. The purpose of this study was to determine if ER and antioxidant gene expression in skeletal muscle are responsive to changes in circulating estradiol, and if ERs regulate antioxidant gene expression in this tissue. METHODOLOGY/PRINCIPAL FINDINGS Adult C57BL/6 mice underwent ovariectomies or sham surgeries to remove circulating estrogens. These mice were implanted with placebo or 17beta-estradiol pellets acutely or chronically. A separate experiment examined mice that received weekly injections of Faslodex to chronically block ERs. Skeletal muscles were analyzed for expression of ER genes and proteins and antioxidant genes. ERalpha was the most abundant, followed by Gper and ERbeta in both soleus and EDL muscles. The loss of estrogens through ovariectomy induced ERalpha gene and protein expression in the soleus, EDL, and TA muscles at both the acute and chronic time points. Gpx3 mRNA was also induced both acutely and chronically in all 3 muscles in mice receiving 17beta-estradiol. When ERs were blocked using Faslodex, Gpx3 mRNA was downregulated in the soleus muscle, but not the EDL and TA muscles. CONCLUSIONS/SIGNIFICANCE These data suggest that Gpx3 and ERalpha gene expression are sensitive to circulating estrogens in skeletal muscle. ERs may regulate Gpx3 gene expression in the soleus muscle, but skeletal muscle regulation of Gpx3 via ERs is dependent upon muscle type. Further work is needed to determine the indirect effects of estrogen and ERalpha on Gpx3 expression in skeletal muscle, and their importance in the aging process.
Collapse
|
47
|
Vandenput L, Mellström D, Karlsson MK, Orwoll E, Labrie F, Ljunggren O, Ohlsson C. Serum estradiol is associated with lean mass in elderly Swedish men. Eur J Endocrinol 2010; 162:737-45. [PMID: 20061331 DOI: 10.1530/eje-09-0696] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Association studies in men have shown that androgens are inversely related to fat measures, while the relation between sex steroids and lean mass remains unclear. We, therefore, investigated the associations between serum sex steroid levels and body composition in elderly men with a main focus on lean mass measures. DESIGN AND METHODS A cross-sectional survey of a population-based cohort of 3014 elderly men, aged 69-80 years (Osteoporotic Fractures in Men study, Sweden). Serum levels of testosterone and estradiol (E(2)) were measured by mass spectrometry, sex hormone-binding globulin (SHBG) levels were measured by IRMA, and measures of body composition were obtained by dual-energy X-ray absorptiometry. RESULTS Total as well as free serum testosterone associated independently inversely (P<0.001), while total as well as free serum E(2) associated independently directly (P<0.001) with total body fat mass and trunk fat mass. Serum SHBG associated independently inversely with central fat distribution. Serum E(2) and free E(2) but not serum testosterone or free testosterone levels associated positively with lean mass (P<0.01). Elderly men within the lowest quartile of free E(2) had 0.5 kg less lean mass in the legs than subjects within the highest quartile, while the subjects in the different quartiles of free testosterone did not differ in lean mass. CONCLUSIONS Serum E(2), but not serum testosterone, is directly associated with lean mass in this large study of elderly Swedish men. In addition, serum SHBG is associated with central fat distribution and we confirmed that serum testosterone is inversely associated with fat mass.
Collapse
Affiliation(s)
- Liesbeth Vandenput
- Division of Endocrinology, Department of Internal Medicine and Geriatrics, Institute of Medicine, University of Gothenburg, Center for Bone Research at the Sahlgrenska Academy, SE-41345 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Thomas A, Bunyan K, Tiidus PM. Oestrogen receptor-alpha activation augments post-exercise myoblast proliferation. Acta Physiol (Oxf) 2010; 198:81-9. [PMID: 19694624 DOI: 10.1111/j.1748-1716.2009.02033.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Our laboratory has shown that oestrogen acts to augment myoblast (satellite cell) activation, proliferation and total number and that this may occur through an oestrogen receptor (OR)-mediated mechanism. The purpose of this study was to further investigate the mechanism of oestrogen influence on augmentation of post-exercise myoblast numbers through use of a specific OR-alpha agonist, propyl pyrazole triol (PPT). METHODS Ovariectomized rats were used (n = 64) and separated into four groups: sham, oestrogen supplemented, agonist supplemented, and a combined oestrogen and agonist supplemented group. These groups were further subdivided into control (unexercised) and exercise groups. Surgical removal of white vastus and soleus muscles was performed 72 h post-exercise. Muscle samples were immunostained for the myoblast markers Pax7 and MyoD. RESULTS A significant increase in total (Pax7-positive) and activated (MyoD-positive) myoblasts was found in all groups post-exercise. A further significant augmentation of total and activated myoblasts occurred in oestrogen supplemented, agonist supplemented and the combined oestrogen and agonist supplemented groups post-exercise in white vastus and soleus muscles relative to unsupplemented animals. CONCLUSION These results demonstrate that both oestrogen and the specific OR-alpha receptor agonist, PPT, can significantly and to similar degrees augment myoblast number and activation following exercise-induced muscle damage. This suggests that oestrogen acts through an OR-mediated mechanism to stimulate myoblast proliferation following exercise, with OR-alpha playing a primary role.
Collapse
Affiliation(s)
- A Thomas
- Department of Kinesiology & PE and Faculty of Science, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | |
Collapse
|
49
|
Roman-Blas JA, Castañeda S, Largo R, Herrero-Beaumont G. Osteoarthritis associated with estrogen deficiency. Arthritis Res Ther 2009; 11:241. [PMID: 19804619 PMCID: PMC2787275 DOI: 10.1186/ar2791] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Osteoarthritis (OA) affects all articular tissues and finally leads to joint failure. Although articular tissues have long been considered unresponsive to estrogens or their deficiency, there is now increasing evidence that estrogens influence the activity of joint tissues through complex molecular pathways that act at multiple levels. Indeed, we are only just beginning to understand the effects of estrogen deficiency on articular tissues during OA development and progression, as well as on the association between OA and osteoporosis. Estrogen replacement therapy and current selective estrogen receptor modulators have mixed effectiveness in preserving and/or restoring joint tissue in OA. Thus, a better understanding of how estrogen acts on joints and other tissues in OA will aid the development of specific and safe estrogen ligands as novel therapeutic agents targeting the OA joint as a whole organ.
Collapse
Affiliation(s)
- Jorge A Roman-Blas
- Bone and Joint Research Unit, Service of Rheumatology, Fundación Jiménez Díaz, Universidad Autónoma, Madrid 28040, Spain.
| | | | | | | |
Collapse
|