1
|
Haynes J, Palaniappan B, Crutchley JM, Sundaram U. Regulation of Enterocyte Brush Border Membrane Primary Na-Absorptive Transporters in Human Intestinal Organoid-Derived Monolayers. Cells 2024; 13:1623. [PMID: 39404387 PMCID: PMC11482628 DOI: 10.3390/cells13191623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In the small intestine, sodium (Na) absorption occurs primarily via two apical transporters, Na-hydrogen exchanger 3 (NHE3) and Na-glucose cotransporter 1 (SGLT1). The two primary Na-absorptive pathways were previously shown to compensatorily regulate each other in rabbit and rat intestinal epithelial cells. However, whether NHE3 and SGLT1 regulate one another in normal human enterocytes is unknown, mainly due to a lack of appropriate experimental models. To investigate this, we generated 2D enterocyte monolayers from human jejunal 3D organoids and used small interfering RNAs (siRNAs) to knock down NHE3 or SGLT1. Molecular and uptake studies were performed to determine the effects on NHE3 and SGLT1 expression and activity. Knockdown of NHE3 by siRNA in enterocyte monolayers was verified by qPCR and Western blot analysis and resulted in reduced NHE3 activity. However, in NHE3 siRNA-transfected cells, SGLT1 activity was significantly increased. siRNA knockdown of SGLT1 was confirmed by qPCR and Western blot analysis and resulted in reduced SGLT1 activity. However, in SGLT1 siRNA-transfected cells, NHE3 activity was significantly increased. These results demonstrate for the first time the functionality of siRNA in patient-derived organoid monolayers. Furthermore, they show that the two primary Na absorptive pathways in human enterocytes reciprocally regulate one another.
Collapse
Affiliation(s)
| | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA
| |
Collapse
|
2
|
Regulation of nutrient and electrolyte absorption in human organoid-derived intestinal epithelial cell monolayers. Transl Res 2022; 248:22-35. [PMID: 35513245 DOI: 10.1016/j.trsl.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
Abstract
Recently developed human intestinal epithelial 3D organoid cultures are a useful cell culture model to study intestinal transport physiology. From these, 2D monolayer cultures can be generated in which apical transporters are exposed to the medium, thereby better facilitating in vitro investigation of intestinal absorption processes. However, whether nutrient and electrolyte absorption can be physiologically regulated in human organoid-derived monolayers has not been determined. Constitutive nitric oxide (cNO) is known to regulate multiple gastrointestinal physiological functions. Previous studies using in vivo and in vitro mammalian animal models indicate that enhanced intracellular cNO differentially regulates the two primary apical Na transporters in small intestinal epithelial cells. Here, we generated human jejunal organoid-derived monolayers to determine whether apical nutrient and electrolyte transporter function is regulated by cNO in human enterocytes. Western blot analysis and immunocytochemical staining showed that organoid-derived 2D cultures express markers of enterocyte differentiation and form intact monolayers of apical-basal polarized epithelial cells. Uptake studies demonstrated that jejunal monolayers exhibit functional activity of Na-glucose cotransporter 1 (SGLT1; SLC5A1) and Na-H exchanger 3 (NHE3; SLC9A3). In response to physiological increases in cNO, the two primary apical Na transporters were differentially regulated in human intestinal organoid-derived monolayers, across multiple human specimens. An increase in cNO stimulated SGLT1, while NHE3 was inhibited. These results are similar to what is seen in vivo and in vitro in different animal intestinal models. Thus, human jejunal organoid-derived monolayers are an ideal in vitro model to better understand how intestinal nutrient absorption is regulated.
Collapse
|
3
|
Butts M, Singh S, Haynes J, Arthur S, Sundaram U. Moderate Alcohol Consumption Uniquely Regulates Sodium-Dependent Glucose Co-Transport in Rat Intestinal Epithelial Cells In Vitro and In Vivo. J Nutr 2020; 150:747-755. [PMID: 31769840 PMCID: PMC7138678 DOI: 10.1093/jn/nxz277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic alcohol use often leads to malnutrition. However, how the intestinal absorption of nutrients such as glucose may be affected during moderate ethanol use has not been investigated. Glucose is absorbed via sodium (Na)-dependent glucose co-transport (SGLT1; SLC5A1) along the brush border membrane (BBM) of intestinal absorptive villus cells. OBJECTIVE The aim of this study was to investigate how moderate alcohol consumption affects the absorption of glucose via SGLT1. METHODS Intestinal epithelial cells (IEC-18; rat) were exposed to 8.64 mM ethanol over 1, 3, 6, and 12 h. Rats (16-wk-old, male, Sprague-Dawley) were administered 2 g/kg ethanol over 1, 3, and 6 h. Na-dependent 3H-O-methyl-d-glucose uptake was measured to assess SGLT1 activity. Na-K-ATPase activity was measured as a function of inorganic phosphate release. Protein expression was analyzed by Western blot analysis and immunohistochemical staining. RESULTS Ethanol significantly decreased Na-dependent glucose absorption in enterocytes in vitro (ethanol treatment: 48.4% of controls at 1 h; P < 0.01) and in vivo (ethanol treatment: 60.0% of controls at 1 h; P < 0.01). Na-K-ATPase activity was significantly inhibited in vitro (ethanol treatment: 36.9% of controls at 1 h; P < 0.01) and in vivo (ethanol treatment: 42.1% of controls at 1 h; P < 0.01). Kinetic studies showed that the mechanism of inhibition of Na-glucose co-transport was secondary to a decrease in the affinity (1/Km) of the co-transporter for glucose both in vitro and in vivo. Western blots and immunohistochemistry further demonstrated unaltered amounts of SGLT1 after ethanol treatment. CONCLUSIONS Moderate ethanol significantly decreases glucose absorption in IEC-18 cells and in villus cells of Sprague-Dawley rats. The inhibition of SGLT1 is secondary to an altered Na gradient at the cellular level and secondary to diminished affinity of the co-transporter for glucose at the protein level in the BBM. These observations may, at least in part, explain 1 possible mechanism of the onset of malnutrition associated with alcohol consumption.
Collapse
Affiliation(s)
- Molly Butts
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV, USA
| | - Soudamani Singh
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV, USA
| | - Jennifer Haynes
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV, USA
| | - Subha Arthur
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV, USA
| | - Uma Sundaram
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV, USA,Address correspondence to US (e-mail: )
| |
Collapse
|
4
|
Cao L, Yuan Z, Liu M, Stock C. (Patho-)Physiology of Na +/H + Exchangers (NHEs) in the Digestive System. Front Physiol 2020; 10:1566. [PMID: 32009977 PMCID: PMC6974801 DOI: 10.3389/fphys.2019.01566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are expressed in virtually all human tissues and organs. Two major tasks of those NHE isoforms that are located in plasma membranes are cell volume control by Na+-uptake and cellular pH regulation by H+-extrusion. Several NHEs, particularly NHE 1–4 and 8, are involved in the pathogenesis of diseases of the digestive system such as inflammatory bowel disease (ulcerative colitis, Crohn’s disease) and gastric and colorectal tumorigenesis. In the present review, we describe the physiological purposes, possible malfunctions and pathophysiological effects of the different NHE isoforms along the alimentary canal from esophagus to colon, including pancreas, liver and gallbladder. Particular attention is paid to the functions of NHEs in injury repair and to the role of NHE1 in Barrett’s esophagus. The impact of NHEs on gut microbiota and intestinal mucosal integrity is also dealt with. As the hitherto existing findings are not always consistent, sometimes even controversial, they are compared and critically discussed.
Collapse
Affiliation(s)
- Li Cao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Christian Stock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
5
|
Palaniappan B, Arthur S, Sundaram VL, Butts M, Sundaram S, Mani K, Singh S, Nepal N, Sundaram U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension. FASEB J 2019; 33:9323-9333. [PMID: 31107610 PMCID: PMC6662973 DOI: 10.1096/fj.201802673r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/23/2019] [Indexed: 01/07/2023]
Abstract
During obesity, diabetes and hypertension inevitably coexist and cause innumerable health disparities. In the obesity, diabetes, and hypertension triad (ODHT), deregulation of glucose and NaCl homeostasis, respectively, causes diabetes and hypertension. In the mammalian intestine, glucose is primarily absorbed by Na-glucose cotransport 1 (SGLT1) and coupled NaCl by the dual operation of Na-H exchange 3 (NHE3) and Cl-HCO3 [down-regulated in adenoma (DRA) or putative anion transporter 1 (PAT1)] exchange in the brush border membrane (BBM) of villus cells. The basolateral membrane (BLM) Na/K-ATPase provides the favorable transcellular Na gradient for BBM SGLT1 and NHE3. How these multiple, distinct transport processes may be affected in ODHT is unclear. Here, we show the novel and broad regulation by Na/K-ATPase of glucose and NaCl absorption in ODHT in multiple species (mice, rats, and humans). In vivo, during obesity inhibition of villus-cell BLM, Na/K-ATPase led to compensatory stimulation of BBM SGLT1 and DRA or PAT1, whereas NHE3 was unaffected. Supporting this new cellular adaptive mechanism, direct silencing of BLM Na/K-ATPase in intestinal epithelial cells resulted in selective stimulation of BBM SGLT1 and DRA or PAT1 but not NHE3. These changes will lead to an increase in glucose absorption, maintenance of traditional coupled NaCl absorption, and a de novo increase in NaCl absorption from the novel coupling of stimulated SGLT1 with DRA or PAT1. Thus, these novel observations provide the pathophysiologic basis for the deregulation of glucose and NaCl homeostasis of diabetes and hypertension, respectively, during obesity. These observations may lead to more efficacious treatment for obesity-associated diabetes and hypertension.-Palaniappan, B., Arthur, S., Sundaram, V. L., Butts, M., Sundaram, S., Mani, K., Singh, S., Nepal, N., Sundaram, U. Inhibition of intestinal villus cell Na/K-ATPase mediates altered glucose and NaCl absorption in obesity-associated diabetes and hypertension.
Collapse
Affiliation(s)
- Balasubramanian Palaniappan
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Subha Arthur
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Vijaya Lakshmi Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Molly Butts
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Shanmuga Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Kathiresh Mani
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Soudamani Singh
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Niraj Nepal
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| |
Collapse
|
6
|
Palaniappan B, Manoharan P, Arthur S, Singh S, Murughiyan U, Sundaram U. Stimulation of constitutive nitric oxide uniquely and compensatorily regulates intestinal epithelial cell brush border membrane Na absorption. Physiol Rep 2019; 7:e14086. [PMID: 31074207 PMCID: PMC6509550 DOI: 10.14814/phy2.14086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/04/2023] Open
Abstract
In the mammalian small intestine, sodium is primarily absorbed by Na+ /H+ exchange (NHE3) and Na-glucose cotransport (SGLT1) in the brush border membrane (BBM) of villus cells. However, how enhanced cellular constitutive nitric oxide (cNO) may affect NHE3 and SGLT1 remains unclear. Both in vivo in rabbit intestinal villus cells and in vitro IEC-18 cells, administration of NO donor, GSNAP, modestly increased cNO. GSNAP stimulated SGLT1 in villus and IEC-18 cells. The mechanism of stimulation was secondary to an increase in the affinity of SGLT1 for glucose. The change in SGLT1 was not secondary to altered Na-extruding capacity of the cell since Na+ /K+ -ATPase was decreased by GSNAP treatment. In contrast, GSNAP inhibited NHE3 activity in villus cell BBM. The mechanism of NHE3 inhibition was secondary to reduced BBM transporter numbers. These studies demonstrated that the physiological increase in cNO uniquely regulates mammalian small intestinal NHE3 and SGLT1 to maintain Na homeostasis.
Collapse
Affiliation(s)
- Balasubramanian Palaniappan
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| | - Palanikumar Manoharan
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| | - Subha Arthur
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| | - Soudamani Singh
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| | - Usha Murughiyan
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| | - Uma Sundaram
- Department of Clinical and Translational SciencesJoan C Edwards School of MedicineMarshall UniversityHuntingtonWest Virginia
| |
Collapse
|
7
|
Direct and specific inhibition of constitutive nitric oxide synthase uniquely regulates brush border membrane Na-absorptive pathways in intestinal epithelial cells. Nitric Oxide 2018; 79:8-13. [PMID: 29702252 DOI: 10.1016/j.niox.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Pharmacological manipulations of constitutive nitric oxide (cNO) levels have been shown to have variable effects on Na absorption in vivo and in vitro in different tissues. Species differences, untoward in vivo effects (e.g. ENS, blood flow) and pharmacological non-specificity may account for these confounding observations. Thus, to directly and specifically determine the effect of cNO on brush border membrane Na/H exchange (NHE3) and Na-dependent glucose co-transport (SGLT-1), we inhibited cNO synthase (NOS3) with its siRNA in rat small intestinal epithelial cells (IEC-18) in vitro. As expected, intracellular cNO levels were reduced in siRNA NOS3 transfected cells. In these cells, SGLT-1 was significantly reduced compared to control. In contrast, NHE3 was significantly increased in siRNA NOS3 transfected cells. To determine if SGLT-1 changes were secondary to altered Na/K-ATPase, its activity was measured and found to be increased in NOS3 silenced cells. The mechanism of inhibition of SGLT-1 was secondary to diminished affinity of the co-transporter for glucose in NOS3 silenced cells. In contrast, the mechanism of stimulation of NHE3 is by increasing BBM exchanger numbers in siRNA NOS3 cells while the affinity was unaffected. Western blot studies of immunoreactive BBM proteins also confirmed the kinetic studies. All these data indicates that direct and specific inhibition of NOS3 with its siRNA inhibits SGLT-1 while stimulating NHE3 in the BBM. Thus, cNO uniquely and compensatorily regulates BBM NHE3 and SGLT-1 to maintain cellular Na homeostasis and these unique alterations by cNO are mediated by its intracellular 2nd messenger cGMP.
Collapse
|
8
|
Arthur S, Sundaram U. Inducible nitric oxide regulates intestinal glutamine assimilation during chronic intestinal inflammation. Nitric Oxide 2014; 44:98-104. [PMID: 25524833 DOI: 10.1016/j.niox.2014.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
To facilitate assimilation of glutamine, different Na-dependent glutamine absorptive pathways are present in the rabbit small intestine, specifically B0AT1 in villus and SN2 in crypt cell brush border membrane. Further, both are uniquely regulated in the chronically inflamed intestine. B0AT1 is inhibited secondary to reduced number of brush border membrane (BBM) co-transporters while SN2 is stimulated secondary to an increased affinity for glutamine. These unique changes are reversible by treatment with a broad spectrum immune modulator such as glucocorticoids. However, whether inducible nitric oxide (iNO), known to be elevated in the mucosa of the chronically inflamed intestine, may be responsible for these co-transporter alterations is not known. In the present study, treatment of chronically inflamed rabbits with L-NIL, a selective inhibitor of iNO synthase, reversed the inhibition of B0AT1 in villus and the stimulation of SN2 in crypt cells. At the level of the co-transporter in the brush border membrane, inhibition of iNO production reversed the inhibition of villus B0AT1 by restoring the co-transporter numbers while the stimulation of crypt SN2 was reversed back to normal by restoring its affinity for glutamine. Western blot analyses of BBM proteins also confirmed the kinetic studies. Thus, L-NIL treatment restores the uniquely altered Na-glutamine co-transporters in the enterocytes of chronically inflamed intestine. All these data indicate that iNO functions as an upstream immune modulator directly regulating glutamine assimilation during chronic intestinal inflammation.
Collapse
Affiliation(s)
- Subha Arthur
- Department of Clinical and Translational Sciences, Joan C Edwards School of Medicine, Marshall University, 1600 Medical Centre Drive, Huntington, WV 25701, United States
| | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C Edwards School of Medicine, Marshall University, 1600 Medical Centre Drive, Huntington, WV 25701, United States.
| |
Collapse
|
9
|
Regulation of sodium glucose co-transporter SGLT1 through altered glycosylation in the intestinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1208-14. [PMID: 24412219 DOI: 10.1016/j.bbamem.2014.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/10/2013] [Accepted: 01/02/2014] [Indexed: 01/21/2023]
Abstract
Inhibition of constitutive nitric oxide (cNO) production inhibits SGLT1 activity by a reduction in the affinity for glucose without a change in Vmax in intestinal epithelial cells (IEC-18). Thus, we studied the intracellular pathway responsible for the posttranslational modification/s of SGLT1. NO is known to mediate its effects via cGMP which is diminished tenfold in L-NAME treated cells. Inhibition of cGMP production at the level of guanylyl cyclase or inhibition of protein kinase G also showed reduced SGLT1 activity demonstrating the involvement of PKG pathway in the regulation of SGLT1 activity. Metabolic labeling and immunoprecipitation with anti-SGLT1 specific antibodies did not show any significant changes in phosphorylation of SGLT1 protein. Tunicamycin to inhibit glycosylation reduced SGLT1 activity comparable to that seen with L-NAME treatment. The mechanism of inhibition was secondary to decreased affinity without a change in Vmax. Immunoblots of luminal membranes from tunicamycin treated or L-NAME treated IEC-18 cells showed a decrease in the apparent molecular size of SGLT1 protein to 62 and 67 kD, respectively suggesting an alteration in protein glycosylation. The deglycosylation assay with PNGase-F treatment reduced the apparent molecular size of the specific immunoreactive band of SGLT1 from control and L-NAME treated IEC-18 cells to approximately 62 kD from their original molecular size of 75 kD and 67 kD, respectively. Thus, the posttranslational mechanism responsible for the altered affinity of SGLT1 when cNO is diminished is secondary to altered glycosylation of SGLT1 protein. The intracellular pathway responsible for this alteration is cGMP and its dependent kinase.
Collapse
|
10
|
Thomson ABR, Chopra A, Clandinin MT, Freeman H. Recent advances in small bowel diseases: Part II. World J Gastroenterol 2012; 18:3353-74. [PMID: 22807605 PMCID: PMC3396188 DOI: 10.3748/wjg.v18.i26.3353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 02/06/2023] Open
Abstract
As is the case in all areas of gastroenterology and hepatology, in 2009 and 2010 there were many advances in our knowledge and understanding of small intestinal diseases. Over 1000 publications were reviewed, and the important advances in basic science as well as clinical applications were considered. In Part II we review six topics: absorption, short bowel syndrome, smooth muscle function and intestinal motility, tumors, diagnostic imaging, and cystic fibrosis.
Collapse
|
11
|
Althaus M. Gasotransmitters: novel regulators of epithelial na(+) transport? Front Physiol 2012; 3:83. [PMID: 22509167 PMCID: PMC3321473 DOI: 10.3389/fphys.2012.00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/20/2012] [Indexed: 11/13/2022] Open
Abstract
The vectorial transport of Na(+) across epithelia is crucial for the maintenance of Na(+) and water homeostasis in organs such as the kidneys, lung, or intestine. Dysregulated Na(+) transport processes are associated with various human diseases such as hypertension, the salt-wasting syndrome pseudohypoaldosteronism type 1, pulmonary edema, cystic fibrosis, or intestinal disorders, which indicate that a precise regulation of epithelial Na(+) transport is essential. Novel regulatory signaling molecules are gasotransmitters. There are currently three known gasotransmitters: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S). These molecules are endogenously produced in mammalian cells by specific enzymes and have been shown to regulate various physiological processes. There is a growing body of evidence which indicates that gasotransmitters may also regulate Na(+) transport across epithelia. This review will summarize the available data concerning NO, CO, and H(2)S dependent regulation of epithelial Na(+) transport processes and will discuss whether or not these mediators can be considered as true physiological regulators of epithelial Na(+) transport biology.
Collapse
Affiliation(s)
- Mike Althaus
- Institute of Animal Physiology, Justus Liebig University of Giessen Giessen, Germany
| |
Collapse
|
12
|
Sarigianni M, Tsapas A, Mikhailidis DP, Kaloyianni M, Koliakos G, Paletas K. Involvement of signaling molecules on na/h exchanger-1 activity in human monocytes. Open Cardiovasc Med J 2010; 4:181-8. [PMID: 21160910 PMCID: PMC3002055 DOI: 10.2174/1874192401004010181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 07/30/2010] [Accepted: 08/02/2010] [Indexed: 12/27/2022] Open
Abstract
Background: Sodium/hydrogen exchanger-1 (NHE-1) contributes to maintaining intracellular pH (pHi). We assessed the effect of glucose, insulin, leptin and adrenaline on NHE-1 activity in human monocytes in vitro. These cells play a role in atherogenesis and disturbances in the hormones evaluated are associated with obesity and diabetes. Methods and Results: Monocytes were isolated from 16 healthy obese and 10 lean healthy subjects. NHE-1 activity was estimated by measuring pHi with a fluorescent dye. pHi was assessed pre- and post-incubation with glucose, insulin, leptin and adrenaline. Experiments were repeated after adding a NHE-1 inhibitor (cariporide) or an inhibitor of protein kinase C (PKC), nitric oxide synthase (NOS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, phosphoinositide 3-kinases (PI3K) or actin polymerization. Within the whole study population, glucose enhanced NHE-1 activity by a processes involving PKC, NOS, PI3K and actin polymerization (p = 0.0006 to 0.01). Insulin-mediated activation of NHE-1 (p = <0.0001 to 0.02) required the classical isoforms of PKC, NOS, NADPH oxidase and PI3K. Leptin increased NHE-1 activity (p = 0.0004 to 0.04) through the involvement of PKC and actin polymerization. Adrenaline activated NHE-1 (p = <0.0001 to 0.01) by a process involving the classical isoforms of PKC, NOS and actin polymerization. There were also some differences in responses when lean and obese subjects were compared. Incubation with cariporide attenuated the observed increase in NHE-1 activity. Conclusions: Selective inhibition of NHE-1 in monocytes could become a target for drug action in atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Maria Sarigianni
- Metabolic Diseases Unit, Second Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|