1
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
2
|
Alexander SN, Jeong HS, Szabo-Pardi TA, Burton MD. Sex-specific differences in alcohol-induced pain sensitization. Neuropharmacology 2023; 225:109354. [PMID: 36460082 DOI: 10.1016/j.neuropharm.2022.109354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Pain sensitization is a phenomenon that occurs to protect tissues from damage and recent studies have shown how a variety of non-noxious stimuli included in our everyday lives can lead to pain sensitization. Consumption of large amounts of alcohol over a long period of time invokes alcohol use disorder (AUD), a complex pathological state that has many manifestations, including alcohol peripheral neuropathy (neuropathic pain). We asked if 'non-pathological' alcohol consumption can cause pain sensitization in the absence of other pathology? Studies have pointed to glia and other immune cells and their role in pain sensitization that results in cell and sex-specific responses. Using a low-dose and short-term ethanol exposure model, we investigated whether this exposure would sensitize mice to a subthreshold dose of an inflammatory mediator that normally does not induce pain. We observed female mice exhibited specific mechanical and higher thermal sensitivity than males. We also observed an increase in CD68+ macrophages in the ipsilateral dorsal root ganglia (DRG) and Iba1+ microglia in the ipsilateral spinal dorsal horn of animals that were exposed to ethanol and injected with subthreshold inflammatory prostaglandin E2. Our findings suggest that short-term ethanol exposure stimulates peripheral and central, immune and glial activation, respectively to induce pain sensitization. This work begins to reveal a possible mechanism behind the development of alcoholic peripheral neuropathy.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA
| | - Han S Jeong
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
3
|
Gao J, Sun X, Zhou Q, Jiang S, Zhang Y, Ge H, Qin X. Circadian clock disruption aggravates alcohol liver disease in an acute mouse model. Chronobiol Int 2022; 39:1554-1566. [PMID: 36354126 DOI: 10.1080/07420528.2022.2132865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are important for organisms to adapt to the environment and maintain homeostasis. Disruptions of circadian rhythms contribute to the occurrence, progression, and exacerbation of diseases, such as cancer, psychiatric disorders, and metabolic disorders. Alcohol-induced liver disease (ALD) is one of the most prevalent liver diseases. Disruptions of the circadian clock enhance the ALD symptoms using chronic mice models or genetic manipulated mice. However, chronic models are time consuming and clock gene deletions interfere with metabolisms. Here, we report that constant light (LL) condition significantly disrupted the circadian clock in an acute ALD model, resulting in aggravated ALD phenotypes in wild type mice. Comparative transcriptome analysis revealed that the alcohol feeding affected the circadian pathway, as well as metabolic pathways. The acute alcohol feeding plus the LL condition further interfered with metabolic pathways and dysregulated canonical circadian gene expressions. These findings support the idea that disrupting the circadian clock could provide an improved ALD mouse model for further applications, such as facilitating identification of potential therapeutic targets for the prevention and treatment of ALD.Abbreviations: ALD, alcohol-induced liver disease; LD, 12 h light _ 12 h dark; LL, constant light; HF, high-fat liquid control diet; ETH, ethanol-containing diet; NIAAA, National Institute on Alcohol Abuse and Alcoholism; TTFLs, transcription-translation feedback loops; FDA, US Foods and Drug Administration; NAFLD, non-alcoholic fatty liver disease; RER, respiratory exchange rate; DEGs, differentially expressed genes; H&E, haematoxylin and eosin; ALT, alanine transaminase; AST, aspartate transaminase; TG, triglycerides.
Collapse
Affiliation(s)
- Jiajia Gao
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Xianpu Sun
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Qin Zhou
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Shuo Jiang
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Honghua Ge
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ximing Qin
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
4
|
Rizk AA, Jenkins BW, Al-Sabagh Y, Hamidullah S, Reitz CJ, Rasouli M, Martino TA, Khokhar JY. The Impact of Sex, Circadian Disruption, and the ClockΔ19/Δ19 Genotype on Alcohol Drinking in Mice. Genes (Basel) 2022; 13:genes13040701. [PMID: 35456507 PMCID: PMC9031797 DOI: 10.3390/genes13040701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 01/05/2023] Open
Abstract
Shift work is associated with increased alcohol drinking, more so in males than females, and is thought to be a coping mechanism for disrupted sleep cycles. However, little is presently known about the causal influence of circadian rhythm disruptions on sex differences in alcohol consumption. In this study, we disrupted circadian rhythms in female and male mice using both environmental (i.e., shifting diurnal cycles) and genetic (i.e., ClockΔ19/Δ19 mutation) manipulations, and measured changes in alcohol consumption and preference using a two-bottle choice paradigm. Alcohol consumption and preference, as well as food and water consumption, total caloric intake, and weight were assessed in adult female and male ClockΔ19/Δ19 mutant mice or wild-type (WT) litter-mates, housed under a 12-hour:12-hour light:dark (L:D) cycle or a shortened 10-hour:10-hour L:D cycle. Female WT mice (under both light cycles) increased their alcohol consumption and preference over time, a pattern not observed in male WT mice. Compared to WT mice, ClockΔ19/Δ19 mice displayed increased alcohol consumption and preference. Sex differences were not apparent in ClockΔ19/Δ19 mice, with or without shifting diurnal cycles. In conclusion, sex differences in alcohol consumption patterns are evident and increase with prolonged access to alcohol. Disrupting circadian rhythms by mutating the Clock gene greatly increases alcohol consumption and abolishes sex differences present in WT animals.
Collapse
|
5
|
Hao Y, Tong Y, Guo Y, Lang X, Huang X, Xie X, Guan Y, Li Z. Metformin Attenuates the Metabolic Disturbance and Depression-like Behaviors Induced by Corticosterone and Mediates the Glucose Metabolism Pathway. PHARMACOPSYCHIATRY 2021; 54:131-141. [PMID: 33634460 DOI: 10.1055/a-1351-0566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Metabolism disturbances are common in patients with depression. The drug metformin has been reported to exhibit antidepressant activity. The purpose of this study was to investigate metabolism disturbances induced by corticosterone (CORT) and determine if metformin can reverse these effects and their accompanying depression-like behaviors. METHODS Rats were exposed to corticosterone with or without metformin administration. Depression-like behaviors were tested. Gene expression was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. In addition, the metabolites were quantified by LC-MS/MS analysis. RESULTS Metformin attenuated the depression-like behaviors induced by CORT. Furthermore, metformin reversed disturbances in body weight, serum glucose, and triglyceride levels, as well as hepatic TG levels induced by CORT. Metformin normalized the alterations in the expression of glucose metabolism-related genes (PGC-1α, G6pc, Pepck, Gck, PYGL, Gys2, PKLR, GLUT4) and insulin resistance-related genes (AdipoR1, AdipoR2) in the muscles and livers of rats induced by CORT. Metabolomic analysis showed that metformin reversed the effects of CORT on 11 metabolites involved in the pathways of the tricarboxylic acid cycle, glycolysis, and gluconeogenesis (3-phospho-D-glycerate, β-D-fructose 6-phosphate, D-glucose 6-phosphate, and pyruvate). CONCLUSION Our findings suggest that metformin can attenuate metabolism disturbances and depression-like behaviors induced by CORT mediating the glucose metabolism pathway.
Collapse
Affiliation(s)
- Yong Hao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Product, School of Advanced Study, Taizhou University, Taizhou, China
| | - Yanhong Guo
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Xiaoe Lang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | | | - Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Lawler TP, Cialdella-Kam L. Non-carbohydrate Dietary Factors and Their Influence on Post-Exercise Glycogen Storage: a Review. Curr Nutr Rep 2020; 9:394-404. [PMID: 33128726 DOI: 10.1007/s13668-020-00335-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optimization of post-exercise glycogen synthesis can improve endurance performance, delay fatigue in subsequent bouts, and accelerate recovery from exercise. High carbohydrate intakes (1.2 g/kg of body weight/h) are recommended in the first 4 h after exercise. However, athletes may struggle to consume carbohydrates at those levels. PURPOSE OF REVIEW: Thus, we aimed to determine whether the consumption of non-carbohydrate dietary factors (creatine, glutamine, caffeine, flavonoids, and alcohol) enhances post-exercise glycogen synthesis. RECENT FINDINGS: Trained athletes may not realize the benefits of creatine loading on glycogen synthesis. The impacts of caffeine, glutamine, flavonoids, and alcohol on post-exercise glycogen synthesis are poorly understood. Other ergogenic benefits to exercise performance, however, have been reported for creatine, glutamine, caffeine, and flavonoids, which were beyond the scope of this review. Evidence in trained athletes is limited and inconclusive on the impact of these non-carbohydrate dietary factors on post-exercise glycogen synthesis.
Collapse
Affiliation(s)
- Thomas P Lawler
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Nutritional Sciences, University of Wisconsin, Madison, Madison, WI, USA
| | - Lynn Cialdella-Kam
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. .,Warfigther Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA, 92106, USA.
| |
Collapse
|
7
|
Valcin JA, Udoh US, Swain TM, Andringa KK, Patel CR, Al Diffalha S, Baker PRS, Gamble KL, Bailey SM. Alcohol and Liver Clock Disruption Increase Small Droplet Macrosteatosis, Alter Lipid Metabolism and Clock Gene mRNA Rhythms, and Remodel the Triglyceride Lipidome in Mouse Liver. Front Physiol 2020; 11:1048. [PMID: 33013449 PMCID: PMC7504911 DOI: 10.3389/fphys.2020.01048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Heavy alcohol drinking dysregulates lipid metabolism, promoting hepatic steatosis – the first stage of alcohol-related liver disease (ALD). The molecular circadian clock plays a major role in synchronizing daily rhythms in behavior and metabolism and clock disruption can cause pathology, including liver disease. Previous studies indicate that alcohol consumption alters liver clock function, but the impact alcohol or clock disruption, or both have on the temporal control of hepatic lipid metabolism and injury remains unclear. Here, we undertook studies to determine whether genetic disruption of the liver clock exacerbates alterations in lipid metabolism and worsens steatosis in alcohol-fed mice. To address this question, male liver-specific Bmal1 knockout (LKO) and flox/flox (Fl/Fl) control mice were fed a control or alcohol-containing diet for 5 weeks. Alcohol significantly dampened diurnal rhythms of mRNA levels in clock genes Bmal1 and Dbp, phase advanced Nr1d1/REV-ERBα, and induced arrhythmicity in Clock, Noct, and Nfil3/E4BP4, with further disruption in livers of LKO mice. Alcohol-fed LKO mice exhibited higher plasma triglyceride (TG) and different time-of-day patterns of hepatic TG and macrosteatosis, with elevated levels of small droplet macrosteatosis compared to alcohol-fed Fl/Fl mice. Diurnal rhythms in mRNA levels of lipid metabolism transcription factors (Srebf1, Nr1h2, and Ppara) were significantly altered by alcohol and clock disruption. Alcohol and/or clock disruption significantly altered diurnal rhythms in mRNA levels of fatty acid (FA) synthesis and oxidation (Acaca/b, Mlycd, Cpt1a, Fasn, Elovl5/6, and Fads1/2), TG turnover (Gpat1, Agpat1/2, Lpin1/2, Dgat2, and Pnpla2/3), and lipid droplet (Plin2/5, Lipe, Mgll, and Abdh5) genes, along with protein abundances of p-ACC, MCD, and FASN. Lipidomics analyses showed that alcohol, clock disruption, or both significantly altered FA saturation and remodeled the FA composition of the hepatic TG pool, with higher percentages of several long and very long chain FA in livers of alcohol-fed LKO mice. In conclusion, these results show that the liver clock is important for maintaining temporal control of hepatic lipid metabolism and that disrupting the liver clock exacerbates alcohol-related hepatic steatosis.
Collapse
Affiliation(s)
- Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Uduak S Udoh
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Telisha M Swain
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kelly K Andringa
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chirag R Patel
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sameer Al Diffalha
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Mukherji A, Bailey SM, Staels B, Baumert TF. The circadian clock and liver function in health and disease. J Hepatol 2019; 71:200-211. [PMID: 30930223 PMCID: PMC7613420 DOI: 10.1016/j.jhep.2019.03.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Each day, all organisms are subjected to changes in light intensity because of the Earth's rotation around its own axis. To anticipate this geo-physical variability, and to appropriately respond biochemically, most species, including mammals, have evolved an approximate 24-hour endogenous timing mechanism known as the circadian clock (CC). The 'clock' is self-sustained, cell autonomous and present in every cell type. At the core of the clock resides the CC-oscillator, an exquisitely crafted transcriptional-translational feedback system. Remarkably, components of the CC-oscillator not only maintain daily rhythmicity of their own synthesis, but also generate temporal variability in the expression levels of numerous target genes through transcriptional, post-transcriptional and post-translational mechanisms, thus, ensuring proper chronological coordination in the functioning of cells, tissues and organs, including the liver. Indeed, a variety of physiologically critical hepatic functions and cellular processes are CC-controlled. Thus, it is not surprising that modern lifestyle factors (e.g. travel and jet lag, night and rotating shift work), which force 'circadian misalignment', have emerged as major contributors to global health problems including obesity, non-alcoholic fatty liver disease and steatohepatitis. Herein, we provide an overview of the CC-dependent pathways which play critical roles in mediating several hepatic functions under physiological conditions, and whose deregulation is implicated in chronic liver diseases including non-alcoholic steatohepatitis and alcohol-related liver disease.
Collapse
Affiliation(s)
- Atish Mukherji
- Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR 1110, Université de Strasbourg, Strasbourg, France.
| | - Shannon M. Bailey
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, USA
| | - Bart Staels
- Université de Lille-European Genomic Institute for Diabetes, Institut Pasteur de Lille, CHU de Lille, INSERM UMR 1011, Lille, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR 1110, Université de Strasbourg Strasbourg, France,Pôle Hépato-Digestif, Institut Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Abstract
Hepatic lipid metabolism is a series of complex processes that control influx and efflux of not only hepatic lipid pools, but also organismal pools. Lipid homeostasis is usually tightly controlled by expression, substrate supply, oxidation and secretion that keep hepatic lipid pools relatively constant. However, perturbations of any of these processes can lead to lipid accumulation in the liver. Although it is thought that these responses are hepatic arms of the 'thrifty genome', they are maladaptive in the context of chronic fatty liver diseases. Ethanol is likely unique among toxins, in that it perturbs almost all aspects of hepatic lipid metabolism. This complex response is due in part to the large metabolic demand placed on the organ by alcohol metabolism, but also appears to involve more nuanced changes in expression and substrate supply. The net effect is that steatosis is a rapid response to alcohol abuse. Although transient steatosis is largely an inert pathology, the chronicity of alcohol-related liver disease seems to require steatosis. Better and more specific understanding of the mechanisms by which alcohol causes steatosis may therefore translate into targeted therapies to treat alcohol-related liver disease and/or prevent its progression.
Collapse
|
10
|
Srinivasan MP, Shawky NM, Kaphalia BS, Thangaraju M, Segar L. Alcohol-induced ketonemia is associated with lowering of blood glucose, downregulation of gluconeogenic genes, and depletion of hepatic glycogen in type 2 diabetic db/db mice. Biochem Pharmacol 2018; 160:46-61. [PMID: 30529690 DOI: 10.1016/j.bcp.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Alcoholic ketoacidosis and diabetic ketoacidosis are life-threatening complications that share the characteristic features of high anion gap metabolic acidosis. Ketoacidosis is attributed in part to the massive release of ketone bodies (e.g., β-hydroxybutyrate; βOHB) from the liver into the systemic circulation. To date, the impact of ethanol consumption on systemic ketone concentration, glycemic control, and hepatic gluconeogenesis and glycogenesis remains largely unknown, especially in the context of type 2 diabetes. In the present study, ethanol intake (36% ethanol- and 36% fat-derived calories) by type 2 diabetic db/db mice for 9 days resulted in significant decreases in weight gain (∼19.5% ↓) and caloric intake (∼30% ↓). This was accompanied by a transition from macrovesicular-to-microvesicular hepatic steatosis with a modest increase in hepatic TG (∼37% ↑). Importantly, ethanol increased systemic βOHB concentration (∼8-fold ↑) with significant decreases in blood glucose (∼4-fold ↓) and plasma insulin and HOMA-IR index (∼3-fold ↓). In addition, ethanol enhanced hepatic βOHB content (∼5-fold ↑) and hmgcs2 mRNA expression (∼3.7-fold ↑), downregulated key gluconeogenic mRNAs (e.g., Pcx, Pck1, and G6pc), and depleted hepatic glycogen (∼4-fold ↓). Furthermore, ethanol intake led to significant decreases in the mRNA/protein expression and allosteric activation of glycogen synthase (GS) in liver tissues regardless of changes in the phosphorylation of GS, GSK-3β, or Akt. Together, our findings suggest that ethanol-induced ketonemia may occur in concomitance with significant lowering of blood glucose concentration, which may be attributed to suppression of gluconeogenesis in the setting of glycogen depletion in type 2 diabetes.
Collapse
Affiliation(s)
- Mukund P Srinivasan
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Noha M Shawky
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Lakshman Segar
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Vascular Biology Center, Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
11
|
Bailey SM. Emerging role of circadian clock disruption in alcohol-induced liver disease. Am J Physiol Gastrointest Liver Physiol 2018; 315:G364-G373. [PMID: 29848023 PMCID: PMC6732736 DOI: 10.1152/ajpgi.00010.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The detrimental health effects of excessive alcohol consumption are well documented. Alcohol-induced liver disease (ALD) is the leading cause of death from chronic alcohol use. As with many diseases, the etiology of ALD is influenced by how the liver responds to other secondary insults. The molecular circadian clock is an intrinsic cellular timing system that helps organisms adapt and synchronize metabolism to changes in their environment. The clock also influences how tissues respond to toxic, environmental, and metabolic stressors, like alcohol. Consistent with the essential role for clocks in maintaining health, genetic and environmental disruption of the circadian clock contributes to disease. While a large amount of rich literature is available showing that alcohol disrupts circadian-driven behaviors and that circadian clock disruption increases alcohol drinking and preference, very little is known about the role circadian clocks play in alcohol-induced tissue injuries. In this review, recent studies examining the effect alcohol has on the circadian clock in peripheral tissues (liver and intestine) and the impact circadian clock disruption has on development of ALD are presented. This review also highlights some of the rhythmic metabolic processes in the liver that are disrupted by alcohol and potential mechanisms through which alcohol disrupts the liver clock. Improved understanding of the mechanistic links between the circadian clock and alcohol will hopefully lead to the development of new therapeutic approaches for treating ALD and other alcohol-related organ pathologies.
Collapse
Affiliation(s)
- Shannon M. Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
12
|
Udoh US, Valcin JA, Swain TM, Filiano AN, Gamble KL, Young ME, Bailey SM. Genetic deletion of the circadian clock transcription factor BMAL1 and chronic alcohol consumption differentially alter hepatic glycogen in mice. Am J Physiol Gastrointest Liver Physiol 2018; 314:G431-G447. [PMID: 29191941 PMCID: PMC5899240 DOI: 10.1152/ajpgi.00281.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/31/2023]
Abstract
Multiple metabolic pathways exhibit time-of-day-dependent rhythms that are controlled by the molecular circadian clock. We have shown that chronic alcohol is capable of altering the molecular clock and diurnal oscillations in several elements of hepatic glycogen metabolism ( 19 , 44 ). Herein, we sought to determine whether genetic disruption of the hepatocyte clock differentially impacts hepatic glycogen content in chronic alcohol-fed mice. Male hepatocyte-specific BMAL1 knockout (HBK) and littermate controls were fed control or alcohol-containing diets for 5 wk to alter hepatic glycogen content. Glycogen displayed a significant diurnal rhythm in livers of control genotype mice fed the control diet. While rhythmic, alcohol significantly altered the diurnal oscillation of glycogen in livers of control genotype mice. The glycogen rhythm was mildly altered in livers of control-fed HBK mice. Importantly, glycogen content was arrhythmic in livers of alcohol-fed HBK mice. Consistent with these changes in hepatic glycogen content, we observed that some glycogen and glucose metabolism genes were differentially altered by chronic alcohol consumption in livers of HBK and littermate control mice. Diurnal rhythms in glycogen synthase (mRNA and protein) were significantly altered by alcohol feeding and clock disruption. Alcohol consumption significantly altered Gck, Glut2, and Ppp1r3g rhythms in livers of control genotype mice, with diurnal rhythms of Pklr, Glut2, Ppp1r3c, and Ppp1r3g further disrupted (dampened or arrhythmic) in livers of HBK mice. Taken together, these findings show that chronic alcohol consumption and hepatocyte clock disruption differentially influence the diurnal rhythm of glycogen and various key glycogen metabolism-related genes in the liver. NEW & NOTEWORTHY We report that circadian clock disruption exacerbates alcohol-mediated alterations in hepatic glycogen. We observed differential responsiveness in diurnal rhythms of glycogen and glycogen metabolism genes and proteins in livers of hepatocyte-specific BMAL1 knockout and littermate control mice fed alcohol. Our findings provide new insights into potential mechanisms by which alcohol alters glycogen, an important energy source for liver and other organs.
Collapse
Affiliation(s)
- Uduak S Udoh
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jennifer A Valcin
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Telisha M Swain
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Ashley N Filiano
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry, Division of Behavioral Neurobiology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham , Birmingham, Alabama
| | - Shannon M Bailey
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
13
|
Sinturel F, Gerber A, Mauvoisin D, Wang J, Gatfield D, Stubblefield JJ, Green CB, Gachon F, Schibler U. Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles. Cell 2017; 169:651-663.e14. [PMID: 28475894 PMCID: PMC5570523 DOI: 10.1016/j.cell.2017.04.015] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/28/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
Abstract
The liver plays a pivotal role in metabolism and xenobiotic detoxification, processes that must be particularly efficient when animals are active and feed. A major question is how the liver adapts to these diurnal changes in physiology. Here, we show that, in mice, liver mass, hepatocyte size, and protein levels follow a daily rhythm, whose amplitude depends on both feeding-fasting and light-dark cycles. Correlative evidence suggests that the daily oscillation in global protein accumulation depends on a similar fluctuation in ribosome number. Whereas rRNA genes are transcribed at similar rates throughout the day, some newly synthesized rRNAs are polyadenylated and degraded in the nucleus in a robustly diurnal fashion with a phase opposite to that of ribosomal protein synthesis. Based on studies with cultured fibroblasts, we propose that rRNAs not packaged into complete ribosomal subunits are polyadenylated by the poly(A) polymerase PAPD5 and degraded by the nuclear exosome.
Collapse
Affiliation(s)
- Flore Sinturel
- Department of Molecular Biology, Sciences III, University of Geneva, iGE3, 1211 Geneva, Switzerland
| | - Alan Gerber
- Department of Molecular Biology, Sciences III, University of Geneva, iGE3, 1211 Geneva, Switzerland
| | - Daniel Mauvoisin
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Jingkui Wang
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jeremy J Stubblefield
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Ueli Schibler
- Department of Molecular Biology, Sciences III, University of Geneva, iGE3, 1211 Geneva, Switzerland.
| |
Collapse
|
14
|
Inhibition of expression of the circadian clock gene Period causes metabolic abnormalities including repression of glycometabolism in Bombyx mori cells. Sci Rep 2017; 7:46258. [PMID: 28393918 PMCID: PMC5385517 DOI: 10.1038/srep46258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Abnormalities in the circadian clock system are known to affect the body’s metabolic functions, though the molecular mechanisms responsible remain uncertain. In this study, we achieved continuous knockdown of B. mori Period (BmPer) gene expression in the B. mori ovary cell line (BmN), and generated a Per-KD B. mori model with developmental disorders including small individual cells and slow growth. We conducted cell metabolomics assays by gas chromatography/liquid chromatography-mass spectrometry and showed that knockdown of BmPer gene expression resulted in significant inhibition of glycometabolism. Amino acids that used glucose metabolites as a source were also down-regulated, while lipid metabolism and nucleotide metabolism were significantly up-regulated. Metabolite correlation analysis showed that pyruvate and lactate were closely related to glycometabolism, as well as to metabolites such as aspartate, alanine, and xanthine in other pathways. Further validation experiments showed that the activities of the key enzymes of glucose metabolism, hexokinase, phosphofructokinase, and citrate synthase, were significantly decreased and transcription of their encoding genes, as well as that of pyruvate kinase, were also significantly down-regulated. We concluded that inhibition of the circadian clock gene BmPer repressed glycometabolism, and may be associated with changes in cellular amino acid metabolism, and in cell growth and development.
Collapse
|
15
|
Souza-Smith FM, Lang CH, Nagy LE, Bailey SM, Parsons LH, Murray GJ. Physiological processes underlying organ injury in alcohol abuse. Am J Physiol Endocrinol Metab 2016; 311:E605-19. [PMID: 27436613 PMCID: PMC5142006 DOI: 10.1152/ajpendo.00270.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 02/07/2023]
Abstract
This review summarizes the American Physiological Society (APS) Presidential Symposium 1 entitled "Physiological Processes Underlying Organ Injury in Alcohol Abuse" at the 2016 Experimental Biology meeting. The symposium was organized by Dr. Patricia Molina, past president of the APS, was held on April 3 at the Convention Center in San Diego, CA, and was funded by the National Institute on Alcohol Abuse and Alcoholism. The "Physiological Processes Underlying Organ Injury in Alcohol Abuse Symposium" assembled experts and leaders in the field and served as a platform to discuss and share knowledge on the latest developments and scientific advances on the mechanisms underlying organ injury in alcohol abuse. This symposium provided unique, interdisciplinary alcohol research, including several organs, liver, muscle, adipose, and brain, affected by excessive alcohol use.
Collapse
Affiliation(s)
- Flavia M Souza-Smith
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, Louisiana;
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Laura E Nagy
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio
| | - Shannon M Bailey
- Department of Pathology, University of Alabama, Birmingham, Alabama
| | | | - Gary J Murray
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| |
Collapse
|
16
|
Bishehsari F, Levi F, Turek FW, Keshavarzian A. Circadian Rhythms in Gastrointestinal Health and Diseases. Gastroenterology 2016; 151:e1-5. [PMID: 27480174 PMCID: PMC5002365 DOI: 10.1053/j.gastro.2016.07.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Faraz Bishehsari
- Department of Medicine, Rush University Medical Center, Chicago, Illinois.
| | - Francis Levi
- Warwick Medical School, University of Warwick, UK,Cancer Chronotherapy and Post-Operative Liver Team, Institut National de la Santé et de la Recherche Médicale UMRS 935, 94800 Villejuif, France
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL
| | - Ali Keshavarzian
- Department of Medicine, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
17
|
Abstract
Robust circadian rhythms in metabolic processes have been described in both humans and animal models, at the whole body, individual organ, and even cellular level. Classically, these time-of-day-dependent rhythms have been considered secondary to fluctuations in energy/nutrient supply/demand associated with feeding/fasting and wake/sleep cycles. Renewed interest in this field has been fueled by studies revealing that these rhythms are driven, at least in part, by intrinsic mechanisms and that disruption of metabolic synchrony invariably increases the risk of cardiometabolic disease. The objectives of this paper are to provide a comprehensive review regarding rhythms in glucose, lipid, and protein/amino acid metabolism, the relative influence of extrinsic (eg, neurohumoral factors) versus intrinsic (eg, cell autonomous circadian clocks) mediators, the physiologic roles of these rhythms in terms of daily fluctuations in nutrient availability and activity status, as well as the pathologic consequences of dyssynchrony.
Collapse
Affiliation(s)
- Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
Role of glycogen phosphorylase in liver glycogen metabolism. Mol Aspects Med 2015; 46:34-45. [PMID: 26519772 DOI: 10.1016/j.mam.2015.09.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 02/05/2023]
Abstract
Liver glycogen is synthesized after a meal in response to an increase in blood glucose concentration in the portal vein and endocrine and neuroendocrine signals, and is degraded to glucose between meals to maintain blood glucose homeostasis. Glycogen degradation and synthesis during the diurnal cycle are mediated by changes in the activities of phosphorylase and glycogen synthase. Phosphorylase is regulated by phosphorylation of serine-14. Only the phosphorylated form of liver phosphorylase (GPa) is catalytically active. Interconversion between GPa and GPb (unphosphorylated) is dependent on the activities of phosphorylase kinase and of phosphorylase phosphatase. The latter comprises protein phosphatase-1 in conjunction with a glycogen-targeting protein (G-subunit) of the PPP1R3 family. At least two of six G-subunits (GL and PTG) expressed in liver are involved in GPa dephosphorylation. GPa to GPb interconversion is dependent on the conformational state of phosphorylase which can be relaxed (R) or tense (T) depending on the concentrations of allosteric effectors such as glucose, glucose 6-phosphate and adenine nucleotides and on the acetylation state of lysine residues. The G-subunit, GL, encoded by PPP1R3B gene is expressed at high levels in liver and can function as a phosphorylase phosphatase and a synthase phosphatase and has an allosteric binding site for GPa at the C-terminus which inhibits synthase phosphatase activity. GPa to GPb conversion is a major upstream event in the regulation of glycogen synthesis by glucose, its downstream metabolites and extracellular signals such as insulin and neurotransmitters.
Collapse
|
19
|
Udoh US, Valcin JA, Gamble KL, Bailey SM. The Molecular Circadian Clock and Alcohol-Induced Liver Injury. Biomolecules 2015; 5:2504-37. [PMID: 26473939 PMCID: PMC4693245 DOI: 10.3390/biom5042504] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases.
Collapse
Affiliation(s)
- Uduak S Udoh
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Jennifer A Valcin
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Karen L Gamble
- Department of Psychiatry, Division of Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Shannon M Bailey
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|