1
|
Roussa E, Juda P, Laue M, Mai-Kolerus O, Meyerhof W, Sjöblom M, Nikolovska K, Seidler U, Kilimann MW. LRBA, a BEACH protein mutated in human immune deficiency, is widely expressed in epithelia, exocrine and endocrine glands, and neurons. Sci Rep 2024; 14:10678. [PMID: 38724551 PMCID: PMC11082223 DOI: 10.1038/s41598-024-60257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Mutations in LRBA, a BEACH domain protein, cause severe immune deficiency in humans. LRBA is expressed in many tissues and organs according to biochemical analysis, but little is known about its cellular and subcellular localization, and its deficiency phenotype outside the immune system. By LacZ histochemistry of Lrba gene-trap mice, we performed a comprehensive survey of LRBA expression in numerous tissues, detecting it in many if not all epithelia, in exocrine and endocrine cells, and in subpopulations of neurons. Immunofluorescence microscopy of the exocrine and endocrine pancreas, salivary glands, and intestinal segments, confirmed these patterns of cellular expression and provided information on the subcellular localizations of the LRBA protein. Immuno-electron microscopy demonstrated that in neurons and endocrine cells, which co-express LRBA and its closest relative, neurobeachin, both proteins display partial association with endomembranes in complementary, rather than overlapping, subcellular distributions. Prominent manifestations of human LRBA deficiency, such as inflammatory bowel disease or endocrinopathies, are believed to be primarily due to immune dysregulation. However, as essentially all affected tissues also express LRBA, it is possible that LRBA deficiency enhances their vulnerability and contributes to the pathogenesis.
Collapse
Affiliation(s)
- Eleni Roussa
- Department Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Pavel Juda
- Department of Molecular Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Leukocyte Motility Lab, 1st Faculty of Medicine, Charles University of Prague, Vestec, Czech Republic
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Oliver Mai-Kolerus
- Department of Molecular Genetics, German Institute for Human Nutrition, Potsdam-Rehbruecke, Germany
- Einstein Center for Neurosciences, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute for Human Nutrition, Potsdam-Rehbruecke, Germany
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Markus Sjöblom
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Medical University Hannover, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Medical University Hannover, Hannover, Germany
| | - Manfred W Kilimann
- Department of Molecular Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Delpire E, Ben-Ari Y. A Wholistic View of How Bumetanide Attenuates Autism Spectrum Disorders. Cells 2022; 11:2419. [PMID: 35954263 PMCID: PMC9367773 DOI: 10.3390/cells11152419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023] Open
Abstract
The specific NKCC1 cotransporter antagonist, bumetanide, attenuates the severity of Autism Spectrum Disorders (ASD), and many neurodevelopmental or neurodegenerative disorders in animal models and clinical trials. However, the pervasive expression of NKCC1 in many cell types throughout the body is thought to challenge the therapeutic efficacy of bumetanide. However, many peripheral functions, including intestinal, metabolic, or vascular, etc., are perturbed in brain disorders contributing to the neurological sequels. Alterations of these functions also increase the incidence of the disorder suggesting complex bidirectional links with the clinical manifestations. We suggest that a more holistic view of ASD and other disorders is warranted to account for the multiple sites impacted by the original intra-uterine insult. From this perspective, large-spectrum active repositioned drugs that act centrally and peripherally might constitute a useful approach to treating these disorders.
Collapse
Affiliation(s)
- Eric Delpire
- Departments of Anesthesiology and Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yehezkel Ben-Ari
- NeuroChlore, Campus Scientifique de Luminy, 163 Route de Luminy, 13273 Marseilles, France
| |
Collapse
|
3
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
4
|
Gagnon KB, Delpire E. Sodium Transporters in Human Health and Disease. Front Physiol 2021; 11:588664. [PMID: 33716756 PMCID: PMC7947867 DOI: 10.3389/fphys.2020.588664] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sodium (Na+) electrochemical gradients established by Na+/K+ ATPase activity drives the transport of ions, minerals, and sugars in both excitable and non-excitable cells. Na+-dependent transporters can move these solutes in the same direction (cotransport) or in opposite directions (exchanger) across both the apical and basolateral plasma membranes of polarized epithelia. In addition to maintaining physiological homeostasis of these solutes, increases and decreases in sodium may also initiate, directly or indirectly, signaling cascades that regulate a variety of intracellular post-translational events. In this review, we will describe how the Na+/K+ ATPase maintains a Na+ gradient utilized by multiple sodium-dependent transport mechanisms to regulate glucose uptake, excitatory neurotransmitters, calcium signaling, acid-base balance, salt-wasting disorders, fluid volume, and magnesium transport. We will discuss how several Na+-dependent cotransporters and Na+-dependent exchangers have significant roles in human health and disease. Finally, we will discuss how each of these Na+-dependent transport mechanisms have either been shown or have the potential to use Na+ in a secondary role as a signaling molecule.
Collapse
Affiliation(s)
- Kenneth B. Gagnon
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
5
|
Caron TJ, Scott KE, Sinha N, Muthupalani S, Baqai M, Ang LH, Li Y, Turner JR, Fox JG, Hagen SJ. Claudin-18 Loss Alters Transcellular Chloride Flux but not Tight Junction Ion Selectivity in Gastric Epithelial Cells. Cell Mol Gastroenterol Hepatol 2020; 11:783-801. [PMID: 33069918 PMCID: PMC7847960 DOI: 10.1016/j.jcmgh.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Tight junctions form a barrier to the paracellular passage of luminal antigens. Although most tight junction proteins reside within the apical tight junction complex, claudin-18 localizes mainly to the basolateral membrane where its contribution to paracellular ion transport is undefined. Claudin-18 loss in mice results in gastric neoplasia development and tumorigenesis that may or may not be due to tight junction dysfunction. The aim here was to investigate paracellular permeability defects in stomach mucosa from claudin-18 knockout (Cldn18-KO) mice. METHODS Stomach tissue from wild-type, heterozygous, or Cldn18-KO mice were stripped of the external muscle layer and mounted in Ussing chambers. Transepithelial resistance, dextran 4 kDa flux, and potential difference (PD) were calculated from the chambered tissues after identifying differences in tissue histopathology that were used to normalize these measurements. Marker expression for claudins and ion transporters were investigated by transcriptomic and immunostaining analysis. RESULTS No paracellular permeability defects were evident in stomach mucosa from Cldn18-KO mice. RNAseq identified changes in 4 claudins from Cldn18-KO mice, particularly the up-regulation of claudin-2. Although claudin-2 localized to tight junctions in cells at the base of gastric glands, its presence did not contribute overall to mucosal permeability. Stomach tissue from Cldn18-KO mice also had no PD versus a lumen-negative PD in tissues from wild-type mice. This difference resulted from changes in transcellular Cl- permeability with the down-regulation of Cl- loading and Cl- secreting anion transporters. CONCLUSIONS Our findings suggest that Cldn18-KO has no effect on tight junction permeability in the stomach from adult mice but rather affects anion permeability. The phenotype in these mice may thus be secondary to transcellular anion transporter expression/function in the absence of claudin-18.
Collapse
Affiliation(s)
- Tyler J Caron
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kathleen E Scott
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nishita Sinha
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mahnoor Baqai
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Lay-Hong Ang
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Yue Li
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Jerrold R Turner
- Harvard Medical School, Boston, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Susan J Hagen
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Li T, Liu X, Riederer B, Nikolovska K, Singh AK, Mäkelä KA, Seidler A, Liu Y, Gros G, Bartels H, Herzig KH, Seidler U. Genetic ablation of carbonic anhydrase IX disrupts gastric barrier function via claudin-18 downregulation and acid backflux. Acta Physiol (Oxf) 2018; 222:e12923. [PMID: 28748627 PMCID: PMC5901031 DOI: 10.1111/apha.12923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/21/2016] [Accepted: 07/24/2017] [Indexed: 12/28/2022]
Abstract
Aim This study aimed to explore the molecular mechanisms for the parietal cell loss and fundic hyperplasia observed in gastric mucosa of mice lacking the carbonic anhydrase 9 (CAIX). Methods We assessed the ability of CAIX‐knockout and WT gastric surface epithelial cells to withstand a luminal acid load by measuring the pHi of exteriorized gastric mucosa in vivo using two‐photon confocal laser scanning microscopy. Cytokines and claudin‐18A2 expression was analysed by RT‐PCR. Results CAIX‐knockout gastric surface epithelial cells showed significantly faster pHi decline after luminal acid load compared to WT. Increased gastric mucosal IL‐1β and iNOS, but decreased claudin‐18A2 expression (which confer acid resistance) was observed shortly after weaning, prior to the loss of parietal and chief cells. At birth, neither inflammatory cytokines nor claudin‐18 expression were altered between CAIX and WT gastric mucosa. The gradual loss of acid secretory capacity was paralleled by an increase in serum gastrin, IL‐11 and foveolar hyperplasia. Mild chronic proton pump inhibition from the time of weaning did not prevent the claudin‐18 decrease nor the increase in inflammatory markers at 1 month of age, except for IL‐1β. However, the treatment reduced the parietal cell loss in CAIX‐KO mice in the subsequent months. Conclusions We propose that CAIX converts protons that either backflux or are extruded from the cells rapidly to CO2 and H2O, contributing to tight junction protection and gastric epithelial pHi regulation. Lack of CAIX results in persistent acid backflux via claudin‐18 downregulation, causing loss of parietal cells, hypergastrinaemia and foveolar hyperplasia.
Collapse
Affiliation(s)
- T. Li
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - X. Liu
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
- Department of Department of Gastroenterology; Affiliated Hospital of Zunyi Medical College; Zunyi China
| | - B. Riederer
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - K. Nikolovska
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - A. K. Singh
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - K. A. Mäkelä
- Institute of Biomedicine and Biocenter of Oulu; Oulu University; Finland
| | - A. Seidler
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - Y. Liu
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - G. Gros
- Department of Physiology; Hannover Medical School; Hannover Germany
| | - H. Bartels
- Department of Anatomy; Hannover Medical School; Hannover Germany
| | - K. H. Herzig
- Institute of Biomedicine and Biocenter of Oulu; Oulu University; Finland
| | - U. Seidler
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| |
Collapse
|
7
|
Molecular features and physiological roles of K +-Cl - cotransporter 4 (KCC4). Biochim Biophys Acta Gen Subj 2017; 1861:3154-3166. [PMID: 28935604 DOI: 10.1016/j.bbagen.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
Abstract
A K+-Cl- cotransport system was documented for the first time during the mid-seventies in sheep and goat red blood cells. It was then described as a Na+-independent and ouabain-insensitive ion carrier that could be stimulated by cell swelling and N-ethylmaleimide (NEM), a thiol-reacting agent. Twenty years later, this system was found to be dispensed by four different isoforms in animal cells. The first one was identified in the expressed sequence tag (EST) database by Gillen et al. based on the assumption that it would be homologous to the Na+-dependent K+-Cl- cotransport system for which the molecular identity had already been uncovered. Not long after, the three other isoforms were once again identified in the EST databank. Among those, KCC4 has generated much interest a few years ago when it was shown to sustain distal renal acidification and hearing development in mouse. As will be seen in this review, many additional roles were ascribed to this isoform, in keeping with its wide distribution in animal species. However, some of them have still not been confirmed through animal models of gene inactivation or overexpression. Along the same line, considerable knowledge has been acquired on the mechanisms by which KCC4 is regulated and the environmental cues to which it is sensitive. Yet, it is inferred to some extent from historical views and extrapolations.
Collapse
|
8
|
Flores-Delgado G, Lytle C, Quinton PM. Site of Fluid Secretion in Small Airways. Am J Respir Cell Mol Biol 2016; 54:312-8. [PMID: 26562629 DOI: 10.1165/rcmb.2015-0238rc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The secretion and management of readily transportable airway surface liquid (ASL) along the respiratory tract is crucial for the clearance of debris and pathogens from the lungs. In proximal large airways, submucosal glands (SMGs) can produce ASL. However, in distal small airways, SMGs are absent, although the lumens of these airways are, uniquely, highly plicated. Little is known about the production and maintenance of ASL in small airways, but using electrophysiology, we recently found that native porcine small airways simultaneously secrete and absorb. How these airways can concurrently transport ASL in opposite directions is puzzling. Using high expression of the Na-K-2Cl cotransport (NKCC) 1 protein (SLC12a2) as a phenotypic marker for fluid secretory cells, immunofluorescence microscopy of porcine small airways revealed two morphologically separated sets of luminal epithelial cells. NKCC1 was abundantly expressed by most cells in the contraluminal regions of the pleats but highly expressed very infrequently by cells in the luminal folds of the epithelial plications. In larger proximal airways, the acini of SMGs expressed NKCC1 prominently, but cells expressing NKCC1 in the surface epithelium were sparse. Our findings indicate that, in the small airway, cells in the pleats of the epithelium secrete ASL, whereas, in the larger proximal airways, SMGs mainly secrete ASL. We propose a mechanism in which the locations of secretory cells in the base of pleats and of absorptive cells in luminal folds physically help maintain a constant volume of ASL in small airways.
Collapse
Affiliation(s)
- Guillermo Flores-Delgado
- 1 Department of Pediatrics, School of Medicine, University of California-San Diego, La Jolla, California; and
| | - Christian Lytle
- 2 Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Paul M Quinton
- 1 Department of Pediatrics, School of Medicine, University of California-San Diego, La Jolla, California; and.,2 Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| |
Collapse
|
9
|
Crothers JM, Forte JG, Machen TE. Computer modeling of gastric parietal cell: significance of canalicular space, gland lumen, and variable canalicular [K+]. Am J Physiol Gastrointest Liver Physiol 2016; 310:G671-81. [PMID: 26847387 PMCID: PMC4867330 DOI: 10.1152/ajpgi.00431.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/31/2016] [Indexed: 01/31/2023]
Abstract
A computer model, constructed for evaluation of integrated functioning of cellular components involved in acid secretion by the gastric parietal cell, has provided new interpretations of older experimental evidence, showing the functional significance of a canalicular space separated from a mucosal bath by a gland lumen and also shedding light on basolateral Cl(-) transport. The model shows 1) changes in levels of parietal cell secretion (with stimulation or H-K-ATPase inhibitors) result mainly from changes in electrochemical driving forces for apical K(+) and Cl(-) efflux, as canalicular [K(+)] ([K(+)]can) increases or decreases with changes in apical H(+)/K(+) exchange rate; 2) H-K-ATPase inhibition in frog gastric mucosa would increase [K(+)]can similarly with low or high mucosal [K(+)], depolarizing apical membrane voltage similarly, so electrogenic H(+) pumping is not indicated by inhibition causing similar increase in transepithelial potential difference (Vt) with 4 and 80 mM mucosal K(+); 3) decreased H(+) secretion during strongly mucosal-positive voltage clamping is consistent with an electroneutral H-K-ATPase being inhibited by greatly decreased [K(+)]can (Michaelis-Menten mechanism); 4) slow initial change ("long time-constant transient") in current or Vt with clamping of Vt or current involves slow change in [K(+)]can; 5) the Na(+)-K(+)-2Cl(-) symporter (NKCC) is likely to have a significant role in Cl(-) influx, despite evidence that it is not necessary for acid secretion; and 6) relative contributions of Cl(-)/HCO3 (-) exchanger (AE2) and NKCC to Cl(-) influx would differ greatly between resting and stimulated states, possibly explaining reported differences in physiological characteristics of stimulated open-circuit Cl(-) secretion (≈H(+)) and resting short-circuit Cl(-) secretion (>>H(+)).
Collapse
Affiliation(s)
- James M. Crothers
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - John G. Forte
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| |
Collapse
|
10
|
Takahashi Y, Fujii T, Fujita K, Shimizu T, Higuchi T, Tabuchi Y, Sakamoto H, Naito I, Manabe K, Uchida S, Sasaki S, Ikari A, Tsukada K, Sakai H. Functional coupling of chloride-proton exchanger ClC-5 to gastric H+,K+-ATPase. Biol Open 2014; 3:12-21. [PMID: 24429108 PMCID: PMC3892156 DOI: 10.1242/bio.20136205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
It has been reported that chloride–proton exchanger ClC-5 and vacuolar-type H+-ATPase are essential for endosomal acidification in the renal proximal cells. Here, we found that ClC-5 is expressed in the gastric parietal cells which secrete actively hydrochloric acid at the luminal region of the gland, and that it is partially localized in the intracellular tubulovesicles in which gastric H+,K+-ATPase is abundantly expressed. ClC-5 was co-immunoprecipitated with H+,K+-ATPase in the lysate of tubulovesicles. The ATP-dependent uptake of 36Cl− into the vesicles was abolished by 2-methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine-3-acetonitrile (SCH28080), an inhibitor of H+,K+-ATPase, suggesting functional expression of ClC-5. In the tetracycline-regulated expression system of ClC-5 in the HEK293 cells stably expressing gastric H+,K+-ATPase, ClC-5 was co-immunoprecipitated with H+,K+-ATPase, but not with endogenous Na+,K+-ATPase. The SCH28080-sensitive 36Cl− transporting activity was observed in the ClC-5-expressing cells, but not in the ClC-5-non-expressing cells. The mutant (E211A-ClC-5), which has no H+ transport activity, did not show the SCH28080-sensitive 36Cl− transport. On the other hand, both ClC-5 and its mutant (E211A) significantly increased the activity of H+,K+-ATPase. Our results suggest that ClC-5 and H+,K+-ATPase are functionally associated and that they may contribute to gastric acid secretion.
Collapse
Affiliation(s)
- Yuji Takahashi
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fisher JT, Tyler SR, Zhang Y, Lee BJ, Liu X, Sun X, Sui H, Liang B, Luo M, Xie W, Yi Y, Zhou W, Song Y, Keiser N, Wang K, de Jonge HR, Engelhardt JF. Bioelectric characterization of epithelia from neonatal CFTR knockout ferrets. Am J Respir Cell Mol Biol 2013; 49:837-44. [PMID: 23782101 DOI: 10.1165/rcmb.2012-0433oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening, recessive, multiorgan genetic disorder caused by the loss of CF transmembrane conductance regulator (CFTR) chloride channel function found in many types of epithelia. Animal models that recapitulate the human disease phenotype are critical to understanding pathophysiology in CF and developing therapies. CFTR knockout ferrets manifest many of the phenotypes observed in the human disease, including lung infections, pancreatic disease and diabetes, liver disease, malnutrition, and meconium ileus. In the present study, we have characterized abnormalities in the bioelectric properties of the trachea, stomach, intestine, and gallbladder of newborn CF ferrets. Short-circuit current (ISC) analysis of CF and wild-type (WT) tracheas revealed the following similarities and differences: (1) amiloride-sensitive sodium currents were similar between genotypes; (2) responses to 4,4'-diisothiocyano-2,2'-stilbene disulphonic acid were 3.3-fold greater in CF animals, suggesting elevated baseline chloride transport through non-CFTR channels in a subset of CF animals; and (3) a lack of 3-isobutyl-1-methylxanthine (IBMX)/forskolin-stimulated and N-(2-Naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide (GlyH-101)-inhibited currents in CF animals due to the lack of CFTR. CFTR mRNA was present throughout all levels of the WT ferret and IBMX/forskolin-inducible ISC was only observed in WT animals. However, despite the lack of CFTR function in the knockout ferret, the luminal pH of the CF ferret gallbladder, stomach, and intestines was not significantly changed relative to WT. The WT stomach and gallbladder exhibited significantly enhanced IBMX/forskolin ISC responses and inhibition by GlyH-101 relative to CF samples. These findings demonstrate that multiple organs affected by disease in the CF ferret have bioelectric abnormalities consistent with the lack of cAMP-mediated chloride transport.
Collapse
|
12
|
WEIS VICTORIAG, SOUSA JOSANEF, LAFLEUR BONNIEJ, NAM KITAEK, WEIS JAREDA, FINKE PAULE, AMEEN NADIAA, FOX JAMESG, GOLDENRING JAMESR. Heterogeneity in mouse spasmolytic polypeptide-expressing metaplasia lineages identifies markers of metaplastic progression. Gut 2013; 62:1270-9. [PMID: 22773549 PMCID: PMC3762676 DOI: 10.1136/gutjnl-2012-302401] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Spasmolytic polypeptide-expressing metaplasia (SPEM) develops as a preneoplastic lesion in the stomachs of mice and humans after parietal cell loss. To identify the commonalities and differences between phenotypic SPEM lineages, SPEM were studied from three different mouse models of parietal cell loss: with chronic inflammation with Helicobacter felis infection; with acute inflammation with L635 treatment; and without inflammation following DMP-777 treatment. DESIGN RNA transcripts from laser capture microdissected normal chief cells and SPEM lineages were compared using gene microarray. Alterations in transcripts were validated by quantitative real-time PCR. Clusterin and cystic fibrosis transmembrane conductance regulator (CFTR) were selected for immunohistochemical analysis in all mouse models as well as in human SPEM, intestinal metaplasia and gastric cancer. RESULTS Transcript expression patterns demonstrated differences among the phenotypic SPEM models. Clusterin expression was significantly upregulated in all three mouse SPEM models as well as in human SPEM. The highest clusterin expression in human gastric cancers correlated with poor survival. Conversely, CFTR expression was upregulated only in SPEM with inflammation in mice. In humans, intestinal metaplasia, but not SPEM, expressed CFTR. CONCLUSIONS While markers such as clusterin are expressed in all phenotypic SPEM lineages, distinct patterns of upregulated genes including CFTR are present in murine metaplasia associated with inflammation, indicative of progression of metaplasia towards a more intestinalised metaplastic phenotype.
Collapse
Affiliation(s)
- VICTORIA G. WEIS
- Nashville VA Medical Center and the Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - JOSANE F. SOUSA
- Nashville VA Medical Center and the Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - BONNIE J. LAFLEUR
- Division of Epidemiology and Biostatistics, University of Arizona, Tuscon, Arizona
| | - KI TAEK NAM
- Nashville VA Medical Center and the Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - JARED A. WEIS
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - PAUL E. FINKE
- Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, New Jersey
| | - NADIA A. AMEEN
- Departments of Pediatrics/Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, Connecticut
| | - JAMES G. FOX
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - JAMES R. GOLDENRING
- Nashville VA Medical Center and the Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
13
|
Tuo B, Ju Z, Riederer B, Engelhardt R, Manns MP, Rudolph KL, Seidler U. Telomere shortening is associated with reduced duodenal HCOFormula secretory but normal gastric acid secretory capacity in aging mice. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1312-21. [PMID: 23019197 DOI: 10.1152/ajpgi.00035.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The incidence of duodenal ulcer, especially Helicobacter pylori-negative duodenal ulcer, strongly increases with age. In humans, telomere length shortening is considered to be one critical factor in cellular senescence and organ survival. In this study, we compared basal and stimulated gastric acid and duodenal HCO(3)(-) secretory rates in aged late-generation (G(3)) telomerase-deficient (mTERC(-/-)) mice, which are characterized by severe telomere dysfunction due to the inability to elongate telomeres during cell division. We found that basal and forskolin-stimulated HCO(3)(-) secretion and short-circuit current (I(sc)) in isolated duodenal mucosa of G(3) mTERC(-/-) mice were markedly reduced compared with age-matched wild-type mice. In contrast, basal and forskolin-stimulated acid secretory rates in isolated G(3) mTERC(-/-) gastric mucosa were not significantly altered. Correspondingly, duodenal mucosa of G(3) mTERC(-/-) mice showed slimming and shortening of villi, whereas gastric mucosal histology was not significantly altered. However, the ratios of cystic fibrosis transmembrane conductance regulator (CFTR) and solute-linked carrier 26 gene family (Slc26a6) mRNA expression in relation to cytokeratin-18 were not altered in duodenal mucosa. The further knockout of p21, which is a downstream effector of telomere shortening-induced senescence, rescued villus atrophy of duodenal mucosa, and basal and forskolin-stimulated duodenal HCO(3)(-) secretion and I(sc) in mTERC(-/-) p21(-/-) double-knockout mice were not different from wild-type controls. In conclusion, genetic ablation of telomerase resulted in p21-dependent duodenal mucosal atrophy and reduced duodenal HCO(3)(-) secretory capacity, whereas gastric morphology and acid secretory function were preserved. This suggests that telomere shortening during aging may result in an imbalance between aggressive and protective secretions against duodenal mucosa and thus predispose to ulcer formation.
Collapse
Affiliation(s)
- Biguang Tuo
- Dept. of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Dalian Rd. 149, Zunyi 563003, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Cellular distribution of NKCC2 in the gastric mucosa and its response to short-term osmotic shock. Cell Tissue Res 2012; 348:155-65. [PMID: 22388656 DOI: 10.1007/s00441-012-1359-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 02/02/2012] [Indexed: 01/03/2023]
Abstract
The Na(+)-K(+)-2Cl(-) cotransporter-2 (NKCC2) has long been recognized as a "kidney-specific" transporter and is important in salt reabsorption. NKCC2 has been found in the gastric mucosa; however, its cellular distribution and function remain obscure. The present study characterized the distribution pattern of NKCC2 in mammalian gastric mucosa and investigated its response to osmotic challenge. Reverse transcription with the polymerase chain reaction, Western blot and immunofluorescence were used to determine NKCC2 expression and localization. The effect of osmotic shock on NKCC2 expression was studied in isolated gastric mucosa with variable osmolarity treatment. Results from all of the above studies were compared with those of NKCC1. Our data indicated that NKCC1 and NKCC2 were expressed in the gastric mucosa of rat, mouse and human. The mRNA transcripts and proteins for NKCC1 and NKCC2 were broadly expressed in the rat gastric mucosa. In rat and mouse, NKCC1 was largely confined to the lower part of the oxyntic and pyloric gland areas, whereas NKCC2 extended throughout the gastric glands. NKCC1 immunoreactivity was strongly expressed in the parietal and chief cells but was weaker in the mucous cells. NKCC2 was abundantly located in the parietal and mucous cells but faintly distributed in the chief cells. Hypertonic treatment increased the protein level of NKCC1 and caused evident membrane translocation. In contrast, NKCC2 was significantly downregulated and no obvious membrane translocation was observed. Thus, NKCC2 displayed a more ubiquitous distribution in the gastric mucosa and might work coordinately with NKCC1 to maintain cell volume homeostasis under hypertonic conditions.
Collapse
|
15
|
Kihara M, Igarashi M, Suzuki T, Itou F, Kozeni S, Toyomane M, Nakano J, Yamai I. Stimulative effect of skipjack tuna soluble extract on pepsin-like protease in the stomach of rockfish (Sebastes schlegelii) using an in vitro perfusion method. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:444-9. [DOI: 10.1016/j.cbpa.2010.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/10/2010] [Accepted: 11/29/2010] [Indexed: 11/30/2022]
|
16
|
Song P, Groos S, Riederer B, Feng Z, Krabbenhöft A, Manns MP, Smolka A, Hagen SJ, Neusch C, Seidler U. Kir4.1 channel expression is essential for parietal cell control of acid secretion. J Biol Chem 2011; 286:14120-8. [PMID: 21367857 DOI: 10.1074/jbc.m110.151191] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kir4.1 channels were found to colocalize with the H(+)/K(+)-ATPase throughout the parietal cell (PC) acid secretory cycle. This study was undertaken to explore their functional role. Acid secretory rates, electrophysiological parameters, PC ultrastructure, and gene and protein expression were determined in gastric mucosae of 7-8-day-old Kir4.1-deficient mice and WT littermates. Kir4.1(-/-) mucosa secreted significantly more acid and initiated secretion significantly faster than WT mucosa. No change in PC number but a relative up-regulation of H(+)/K(+)-ATPase gene and protein expression (but not of other PC ion transporters) was observed. Electron microscopy revealed fully fused canalicular membranes and a lack of tubulovesicles in resting state Kir4.1(-/-) PCs, suggesting that Kir4.1 ablation may also interfere with tubulovesicle endocytosis. The role of this inward rectifier in the PC apical membrane may therefore be to balance between K(+) loss via KCNQ1/KCNE2 and K(+) reabsorption by the slow turnover of the H(+)/K(+)-ATPase, with consequences for K(+) reabsorption, inhibition of acid secretion, and membrane recycling. Our results demonstrate that Kir4.1 channels are involved in the control of acid secretion and suggest that they may also affect secretory membrane recycling.
Collapse
Affiliation(s)
- Penghong Song
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Seidler U, Song P, Xiao F, Riederer B, Bachmann O, Chen M. Recent advances in the molecular and functional characterization of acid/base and electrolyte transporters in the basolateral membranes of gastric and duodenal epithelial cells. Acta Physiol (Oxf) 2011; 201:3-20. [PMID: 20331540 DOI: 10.1111/j.1748-1716.2010.02107.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
All segments of the gastrointestinal tract are comprised of an elaborately folded epithelium that expresses a variety of cell types and performs multiple secretory and absorptive functions. While the apical membrane expresses the electrolyte transporters that secrete or absorb electrolytes and water, basolateral transporters regulate the secretory or absorptive rates. During gastric acid formation, Cl⁻/HCO₃⁻ and Na(+) /H(+) exchange and other transporters secure Cl⁻ re-supply as well as pH and volume regulation. Gastric surface cells utilize ion transporters to secrete HCO₃⁻, maintain pH(i) during a luminal acid load and repair damaged surface areas during the process of epithelial restitution. Na(+)/H(+) exchange and Na(+)/HCO₃⁻ cotransport serve basolateral acid/base import for gastroduodenal HCO₃⁻ secretion. The gastric and duodenal epithelium also absorbs salt and water. Recent molecular information on novel ion transporters expressed in the gastric and duodenal epithelium has exploded; however, a function has not been found yet for all transporters. The purpose of this review is to summarize current knowledge on the molecular identity and cellular function of basolateral ion transporters in the gastric and duodenal epithelium.
Collapse
Affiliation(s)
- U Seidler
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Roepke TK, King EC, Purtell K, Kanda VA, Lerner DJ, Abbott GW. Genetic dissection reveals unexpected influence of beta subunits on KCNQ1 K+ channel polarized trafficking in vivo. FASEB J 2010; 25:727-36. [PMID: 21084694 DOI: 10.1096/fj.10-173682] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Targeted deletion of the Kcne2 potassium channel β subunit gene ablates gastric acid secretion and predisposes to gastric neoplasia in mice. Here, we discovered that Kcne2 deletion basolaterally reroutes the Kcnq1 α subunit in vivo in parietal cells (PCs), in which the normally apical location of the Kcnq1-Kcne2 channel facilitates its essential role in gastric acid secretion. Quantitative RT-PCR and Western blotting revealed that Kcne2 deletion remodeled fundic Kcne3 (2.9±0.8-fold mRNA increase, n=10; 5.3±0.4-fold protein increase, n=7) but not Kcne1, 4, or 5, and resulted in basolateral Kcnq1-Kcne3 complex formation in Kcne2(-/-) PCs. Concomitant targeted deletion of Kcne3 (creating Kcne2(-/-)Kcne3(-/-) mice) restored PC apical Kcnq1 localization without Kcne1, 4, or 5 remodeling (assessed by quantitative RT-PCR; n=5-10), indicating Kcne3 actively, basolaterally rerouted Kcnq1 in Kcne2(-/-) PCs. Despite this, Kcne3 deletion exacerbated gastric hyperplasia in Kcne2(-/-) mice, and both hypochlorhydria and hyperplasia in Kcne2(+/-) mice, suggesting that Kcne3 up-regulation was beneficial in Kcne2-depleted PCs. The findings reveal, in vivo, Kcne-dependent α subunit polarized trafficking and the existence and consequences of potassium channel β subunit remodeling.
Collapse
Affiliation(s)
- Torsten K Roepke
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
19
|
Duan DX, Liu SF, Zhao WC, Zhu JX, Xing Y. Long-term use of ligustrazine suppresses anion secretion in rat colonic mucosa. Shijie Huaren Xiaohua Zazhi 2010; 18:290-293. [DOI: 10.11569/wcjd.v18.i3.290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of long-term use of ligustrazine on anion secretion in rat colonic mucosa.
METHODS: Healthy Sprague-Dawley rats were divided into two groups: ligustrazine treatment group and control group. The treatment group and control group were injected intraperitoneally with ligustrazine [40 mg/(kg•d)] and normal saline [2 mL/(kg•d)], respectively. After treatment for 7 consecutive days, the anion secretion in colonic mucosa was investigated using short-circuit current (Isc) technique.
RESULTS: The basal current (BC) in colonic mucosa in the ligustrazine treatment group was significantly lower than that in the control group (23.4 µA/cm2 ± 2.2 µA/cm2vs 18.1 µA/cm2 ± 2.2 µA/cm2, P < 0.05). However, no significant difference was noted in the BC in colonic mucosa pretreated with indomethacin (10 µmoL/L), a prostaglandin synthesis inhibitor, between the two groups. After addition of forskolin, an activator of adenylyl cyclase, the increase in charge density in 30 minutes was higher in the control group than in the ligustrazine treatment group(47.9 mC/cm2 ± 3.6 mC/cm2vs 27.1 mC/cm2 ± 2.6 mC/cm2, P < 0.01). In contrast, no significant difference was noted in forskolin-induced increase in charge density in colonic mucosa pretreated with indomethacin between the two groups.
CONCLUSION: Long-term treatment with ligustrazine inhibits anion secretion in rat colonic mucosa by decreasing the synthesis of prostaglandin.
Collapse
|
20
|
Abstract
The parietal cell is responsible for secreting concentrated hydrochloric acid into the gastric lumen. To fulfill this task, it is equipped with a broad variety of functionally coupled apical and basolateral ion transport proteins. The concerted scientific effort over the last years by a variety of researchers has provided us with the molecular identity of many of these transport mechanisms, thereby contributing to the clarification of persistent controversies in the field. This article will briefly review the current model of parietal cell physiology and ion transport in particular and will update the existing models of apical and basolateral transport in the parietal cell.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| | - Michael Murek
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| | - John P. Geibel
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut
| |
Collapse
|
21
|
Xu J, Song P, Nakamura S, Miller M, Barone S, Alper SL, Riederer B, Bonhagen J, Arend LJ, Amlal H, Seidler U, Soleimani M. Deletion of the chloride transporter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J Biol Chem 2009; 284:29470-9. [PMID: 19723628 PMCID: PMC2785580 DOI: 10.1074/jbc.m109.044396] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/18/2009] [Indexed: 11/06/2022] Open
Abstract
SLC26A7 (human)/Slc26a7 (mouse) is a recently identified chloride-base exchanger and/or chloride transporter that is expressed on the basolateral membrane of acid-secreting cells in the renal outer medullary collecting duct (OMCD) and in gastric parietal cells. Here, we show that mice with genetic deletion of Slc26a7 expression develop distal renal tubular acidosis, as manifested by metabolic acidosis and alkaline urine pH. In the kidney, basolateral Cl(-)/HCO3(-) exchange activity in acid-secreting intercalated cells in the OMCD was significantly decreased in hypertonic medium (a normal milieu for the medulla) but was reduced only mildly in isotonic medium. Changing from a hypertonic to isotonic medium (relative hypotonicity) decreased the membrane abundance of Slc26a7 in kidney cells in vivo and in vitro. In the stomach, stimulated acid secretion was significantly impaired in isolated gastric mucosa and in the intact organ. We propose that SLC26A7 dysfunction should be investigated as a potential cause of unexplained distal renal tubular acidosis or decreased gastric acid secretion in humans.
Collapse
Affiliation(s)
- Jie Xu
- From Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio 45220
- the Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Penghong Song
- the Department of Gastroenterology, University of Hannover, 30625 Hannover, Germany
| | - Suguru Nakamura
- the Department of Biological Sciences, Murray State University, Murray, Kentucky 42071
| | | | - Sharon Barone
- the Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
- the Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Seth L. Alper
- the Renal Division, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Brigitte Riederer
- the Department of Gastroenterology, University of Hannover, 30625 Hannover, Germany
| | - Janina Bonhagen
- the Department of Gastroenterology, University of Hannover, 30625 Hannover, Germany
| | - Lois J. Arend
- Pathology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Hassane Amlal
- the Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
- the Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Ursula Seidler
- the Department of Gastroenterology, University of Hannover, 30625 Hannover, Germany
| | - Manoocher Soleimani
- From Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio 45220
- the Department of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
- the Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, Ohio 45267
| |
Collapse
|
22
|
Xue H, Liu S, Ji T, Ren W, Zhang XH, Zheng LF, Wood JD, Zhu JX. Expression of NKCC2 in the rat gastrointestinal tract. Neurogastroenterol Motil 2009; 21:1068-e89. [PMID: 19460103 DOI: 10.1111/j.1365-2982.2009.01334.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
NKCC2, an isoform of Na+-K+-2Cl(-) cotransporter, is principally present in the kidney and plays a critical role in salt reabsorption. Expression of NKCC2 has been found in the apical membrane of intestinal epithelial cells in a number of marine fish, however, details for expression in the mammalian gastrointestinal tract are lacking. RT-PCR, Western blotting and immunohistochemistry were used to study the expression and localization of NKCC2 in the rat gastrointestinal tract. We found that mRNA transcripts, protein and immunoreactivity (IR) for NKCC2 were expressed in the stomach, small and large intestine of adult rats. NKCC2 IR was localized to the base of the gastric glands, intestinal epithelia, myenteric and submucosal plexuses. NKCC2 IR was expressed strongly in the apical membranes and weakly in the basolateral membranes of intestinal epithelial cells. In the enteric nervous system, NKCC2 IR was widely distributed and localized to enteric neurons with cholinergic, calretinin and nitrergic neuronal immunochemical codes in the myenteric plexus. It was localized to non-cholinergic secretomotor neurons in the submucosal plexus. In conclusion, this study for the first time clearly detected the expression of NKCC2 in the gastrointestinal tract of a mammalian species. Expression of NKCC2 in gastrointestinal epithelial cells suggested that this cation chloride cotransporter might be involved in gastrointestinal ion transport. Expression of NKCC2 in enteric neurons might contribute to the accumulation of Cl(-) and a more depolarized E(Cl)(-) in enteric neurons.
Collapse
Affiliation(s)
- H Xue
- Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Song P, Groos S, Riederer B, Feng Z, Krabbenhöft A, Smolka A, Seidler U. KCNQ1 is the luminal K+ recycling channel during stimulation of gastric acid secretion. J Physiol 2009; 587:3955-65. [PMID: 19491250 PMCID: PMC2746622 DOI: 10.1113/jphysiol.2009.173302] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/27/2009] [Indexed: 01/07/2023] Open
Abstract
Parietal cell (PC) proton secretion via H(+)/K(+)-ATPase requires apical K(+) recycling. A variety of K(+) channels and transporters are expressed in the PC and the molecular nature of the apical K(+) recycling channel is under debate. This study was undertaken to delineate the exact function of KCNQ1 channels in gastric acid secretion. Acid secretory rates and electrophysiological parameters were determined in gastric mucosae of 7- to 8-day-old KCNQ1(+/+), (+/-) and (-/-) mice. Parietal cell ultrastructure, abundance and gene expression levels were quantified. Glandular structure and PC abundance, and housekeeping gene expression did not differ between the KCNQ1(-/-) and (+/+) mucosae. Microvillar secretory membranes were intact, but basal acid secretion was absent and forskolin-stimulated acid output reduced by approximately 90% in KCNQ1(-/-) gastric mucosa. Application of a high K(+) concentration to the luminal membrane restored normal acid secretory rates in the KCNQ1(-/-) mucosa. The study demonstrates that the KCNQ1 channel provides K(+) to the extracellular K(+) binding site of the H(+)/K(+)-ATPase during acid secretion, and no other gastric K(+) channel can substitute for this function.
Collapse
Affiliation(s)
- Penghong Song
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Price TJ, Cervero F, Gold MS, Hammond DL, Prescott SA. Chloride regulation in the pain pathway. BRAIN RESEARCH REVIEWS 2009; 60:149-70. [PMID: 19167425 PMCID: PMC2903433 DOI: 10.1016/j.brainresrev.2008.12.015] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/18/2022]
Abstract
Melzack and Wall's Gate Control Theory of Pain laid the theoretical groundwork for a role of spinal inhibition in endogenous pain control. While the Gate Control Theory was based on the notion that spinal inhibition is dynamically regulated, mechanisms underlying the regulation of inhibition have turned out to be far more complex than Melzack and Wall could have ever imagined. Recent evidence indicates that an exquisitely sensitive form of regulation involves changes in anion equilibrium potential (E(anion)), which subsequently impacts fast synaptic inhibition mediated by GABA(A), and to a lesser extent, glycine receptor activation, the prototypic ligand gated anion channels. The cation-chloride co-transporters (in particular NKCC1 and KCC2) have emerged as proteins that play a critical role in the dynamic regulation of E(anion) which in turn appears to play a critical role in hyperalgesia and allodynia following peripheral inflammation or nerve injury. This review summarizes the current state of knowledge in this area with particular attention to how such findings relate to endogenous mechanisms of hyperalgesia and allodynia and potential applications for therapeutics based on modulation of intracellular Cl(-) gradients or pharmacological interventions targeting GABA(A) receptors.
Collapse
Affiliation(s)
| | - Fernando Cervero
- McGill University, Department of Anesthesia, McGill Centre for Research on Pain,
| | | | - Donna L Hammond
- University of Iowa, Department of Anesthesia, Department of Pharmacology,
| | | |
Collapse
|
25
|
Deletion of the chloride transporter Slc26a9 causes loss of tubulovesicles in parietal cells and impairs acid secretion in the stomach. Proc Natl Acad Sci U S A 2008; 105:17955-60. [PMID: 19004773 DOI: 10.1073/pnas.0800616105] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Slc26a9 is a recently identified anion transporter that is abundantly expressed in gastric epithelial cells. To study its role in stomach physiology, gene targeting was used to prepare mice lacking Slc26a9. Homozygous mutant (Slc26a9(-/-)) mice appeared healthy and displayed normal growth. Slc26a9 deletion resulted in the loss of gastric acid secretion and a moderate reduction in the number of parietal cells in mutant mice at 5 weeks of age. Immunofluorescence labeling detected the H-K-ATPase exclusively on the apical pole of gastric parietal cells in Slc26a9(-/-) mice, in contrast to the predominant cytoplasmic localization in Slc26a9(+/+) mice. Light microscopy indicated that gastric glands were dilated, and electron micrographs displayed a distinct and striking absence of tubulovesicles in parietal cells and reductions in the numbers of parietal and zymogen cells in Slc26a9(-/-) stomach. Expression studies indicated that Slc26a9 can function as a chloride conductive pathway in oocytes as well as a Cl(-)/HCO(3)(-) exchanger in cultured cells, and localization studies in parietal cells detected its presence in tubulovesicles. We propose that Slc26a9 plays an essential role in gastric acid secretion via effects on the viability of tubulovesicles/secretory canaliculi and by regulating chloride secretion in parietal cells.
Collapse
|
26
|
Heitzmann D, Warth R. No potassium, no acid: K+ channels and gastric acid secretion. Physiology (Bethesda) 2008; 22:335-41. [PMID: 17928547 DOI: 10.1152/physiol.00016.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gastric H+-K+-ATPase pumps H+ into the lumen and takes up K+ in parallel. In the acid-producing parietal cells, luminal KCNE2/KCNQ1 K+ channels play a pivotal role in replenishing K+ in the luminal fluid. Inactivation of KCNE2/KCNQ1 channels abrogates gastric acid secretion and dramatically modifies the architecture of gastric mucosa.
Collapse
|
27
|
Reynolds A, Parris A, Evans LA, Lindqvist S, Sharp P, Lewis M, Tighe R, Williams MR. Dynamic and differential regulation of NKCC1 by calcium and cAMP in the native human colonic epithelium. J Physiol 2007; 582:507-24. [PMID: 17478539 PMCID: PMC2075325 DOI: 10.1113/jphysiol.2007.129718] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The capacity of the intestine to secrete fluid is dependent on the basolateral Na(+)-K(+)-2Cl(-) co-transporter (NKCC1). Given that cAMP and Ca(2+) signals promote sustained and transient episodes of fluid secretion, respectively, this study investigated the differential regulation of functional NKCC1 membrane expression in the native human colonic epithelium. Tissue sections and colonic crypts were obtained from sigmoid rectal biopsy tissue samples. Cellular location of NKCC1, Na(+)-K(+)-ATPase, M3 muscarinic acetylcholine receptor (M(3)AChR) and lysosomes was examined by immunolabelling techniques. NKCC1 activity (i.e. bumetanide-sensitive uptake), intracellular Ca(2+) and cell volume were assessed by 2',7'-bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), Fura-2 and differential interference contrast/calcein imaging. Unstimulated NKCC1 was expressed on basolateral membranes and exhibited a topological expression gradient, predominant at the crypt base. Cholinergic Ca(2+) signals initiated at the crypt base and spread along the crypt axis. In response, NKCC1 underwent a Ca(2+)-dependent 4 h cycle of recruitment to basolateral membranes, activation, internalization, degradation and re-expression. Internalization was prevented by the epidermal growth factor receptor kinase inhibitor tyrphostin-AG1478, and re-expression was prohibited by the protein synthesis inhibitor cylcoheximide; the lysosome inhibitor chloroquine promoted accumulation of NKCC1 vesicles. NKCC1 internalization and re-expression were accompanied by secretory volume decrease and bumetanide-sensitive regulatory volume increase, respectively. In contrast, forskolin (i.e. cAMP elevation)-stimulated NKCC1 activity was sustained, and membrane expression and cell volume remained constant. Co-stimulation with forskolin and acetylcholine promoted dramatic recruitment of NKCC1 to basolateral membranes and prolonged the cycle of co-transporter activation, internalization and re-expression. In conclusion, persistent NKCC1 activation by cAMP is constrained by a Ca(2+)-dependent cycle of co-transporter internalization, degradation and re-expression; this is a novel mechanism to limit intestinal fluid loss.
Collapse
Affiliation(s)
- Amy Reynolds
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kosiek O, Busque SM, Föller M, Shcheynikov N, Kirchhoff P, Bleich M, Muallem S, Geibel JP. SLC26A7 can function as a chloride-loading mechanism in parietal cells. Pflugers Arch 2007; 454:989-98. [PMID: 17404755 DOI: 10.1007/s00424-007-0254-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/07/2007] [Accepted: 03/13/2007] [Indexed: 01/23/2023]
Abstract
To date three potential candidates for parietal cell basolateral Cl(-) entry have been described: the highly 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)-sensitive Cl(-)/HCO(3)(-) exchanger AE2, the HCO(3)(-) and lowly DIDS-sensitive SLC26A7 protein, and the Na(+)-2Cl(-)K(+) cotransporter (NKCC1). In this study we investigate the contribution of these pathways to secretagogue stimulated acid secretion. Individually hand-dissected rat gastric glands were microfluorimetrically monitored for Cl(-) influx and pH(i) changes. Transporter activity was determined by varying ion content and through the use of pharmacological inhibitors. Expression of SLC26A7 in rat parietal cells was shown by immunohistochemistry and Western blot. SLC26A7 was inhibited by 5-Nitro-2-(3-phenylpropyl-amino)benzoic acid (NPPB) (100 microM) in the Xenopus laevis oocyte expression system. Cl(-) influx in parietal cells was enhanced by histamine, depended partially on endogenous HCO(3)(-) synthesis and completely on extracellular Na(+). Removal and subsequent readdition of Cl(-) revealed a low and a high DIDS-sensitive HCO(3)(-) extrusion system contributing to Cl(-) uptake. At acidic pH(i), however, H(+) extrusion via the H(+),K(+)-ATPase depending on Cl(-) uptake was abolished only in the presence of 100 microM (NPPB) and at high (250 microM) DIDS concentration. There was no effect of the NKCC inhibitor bumetanide on stimulated H(+) extrusion. These results would be compatible with SLC26A7 as a Cl(-) uptake system under histamine stimulation.
Collapse
Affiliation(s)
- Ortrud Kosiek
- Department of Surgery, Yale University School of Medicine, BML 265, 310 Cedar Street, New Haven, CT, 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Price TJ, Hargreaves KM, Cervero F. Protein expression and mRNA cellular distribution of the NKCC1 cotransporter in the dorsal root and trigeminal ganglia of the rat. Brain Res 2006; 1112:146-58. [PMID: 16904086 PMCID: PMC1899153 DOI: 10.1016/j.brainres.2006.07.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/17/2006] [Accepted: 07/05/2006] [Indexed: 11/16/2022]
Abstract
Primary afferent neurons maintain depolarizing responses to GABA into adulthood. The molecular basis for this GABAergic response appears to be the Na+K+2Cl- cotransporter NKCC1 that contributes to the maintenance of a high intracellular chloride concentration. Recently, a role for NKCC1 has been proposed in nociceptive processing which makes it timely to gain a better understanding of the distribution of NKCC1 in sensory ganglia. Here, we describe that, in the rat, NKCC1 mRNA is predominately expressed by small and medium diameter dorsal root (DRG) and trigeminal (TG) ganglion neurons. The colocalization of NKCC1 mRNA with sensory neuron population markers was assessed. In the DRG, many NKCC1 mRNA-expressing neurons colocalized peripherin (57.0+/-2.5%), calcitonin-gene-related peptide (CGRP, 39.2+/-4.4%) or TRPV1 immunoreactivity (50.0+/-1.9%) whereas only 8.7+/-1.2% were co-labeled with a marker for large diameter afferents (N52). Similarly, in the TG, NKCC1 mRNA-expressing neurons frequently colocalized peripherin (50.0+/-3.0%), CGRP (35.4+/-2.6%) or TRPV1 immunoreactivity (44.7+/-1.2%) while 14.8+/-1.3% were co-labeled with the N52 antibody. NKCC1 mRNA was also detected in satellite glial (SGCs) in both the DRG and TG. Colocalization of NKCC1 protein with the SGC marker NG2 confirmed the phenotype of these NKCC1-expressing glial cells. In contrast to in situ hybridization experiments, we did not observe NKCC1 immunoreactivity in primary afferent somata. These findings suggest that NKCC1 is expressed in anatomically appropriate cells in order to modulate GABAergic responses in nociceptive neurons. Moreover, these results suggest the possibility of a functional role of NKCC1 in the glial cells closely apposed to primary sensory afferents.
Collapse
Affiliation(s)
- Theodore J Price
- McGill University, Departments of Anesthesia and Dentistry and McGill Centre for Research on Pain, 3655 Prom Sir William Osler, Montreal, QC, Canada H3G 1Y6.
| | | | | |
Collapse
|
30
|
Abstract
Gastric acid secretion is a complex process that requires hormonal, neuronal, or calcium-sensing receptor activation for insertion of pumps into the apical surface of the parietal cell. Activation of any or all these pathways causes the parietal cell to secrete concentrated acid with a pH at or close to 1. This acidic fluid combines with enzymes that are secreted from neighbouring chief cells and passes out of the gland up through a mucous gel layer covering the surface of the stomach producing a final intragastric pH of less than 4 during the active phase of acid secretion. Defects in either the mucosal barrier or in the regulatory mechanisms that modulate the secretory pathways will result in erosion of the barrier and ulcerations of the stomach or esophagus. The entire process of acid secretion relies on activation of the catalytic cycle of the gastric H+,K+-ATPase, resulting in the secretion of acid into the parietal cell canaliculus, with K+ being the important and rate-limiting ion in this activation process. In addition to K+ as a rate limiter for acid production, Cl- secretion via an apical channel must also occur. In this review we present a discussion of the mechanics of acid secretion and a discussion of recently identified transporter proteins and receptors. Included is a discussion of some of the recent candidates for the apical K' recycling channel, as well as two recently identified apical proteins (NHE-3, PAT-1), and the newly characterized calcium-sensing receptor (CaSR). We hope that this review will give additional insight into the complex process of acid secretion.
Collapse
Affiliation(s)
- J P Geibel
- Yale University School of Medicine, Department of Surgery, BML 265, New Haven, 06520 CT, USA.
| | | |
Collapse
|