1
|
Zhao M, Cui M, Fan M, Huang C, Wang J, Zeng Y, Wang X, Lu Y. Octreotide attenuates experimental severe acute pancreatitis through inhibiting pyroptosis and modulating intestinal homeostasis. Eur J Pharmacol 2025; 994:177314. [PMID: 39922420 DOI: 10.1016/j.ejphar.2025.177314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
Severe acute pancreatitis (SAP) is a common clinical condition characterized by acute abdominal symptoms. Octreotide (OCT) is a commonly prescribed treatment for acute pancreatitis (AP). Recent research shows that pyroptosis and intestinal homeostasis significantly contribute to the progression of AP. However, it remains unclear whether OCT treats SAP through modulating pyroptosis and intestinal microbiota. Our study aimed to investigate and validate the potential therapeutic effects of OCT on SAP and underlying mechanisms. The inhibition of pyroptosis in mice using disulfiram was investigated to elucidate the role of pyroptosis in AP. Molecular biology experiments confirmed that OCT effectively inhibited the expression of pyroptosis-related markers. Additionally, the composition, abundance, and functionality of the intestinal microbiota were analyzed using 16S rRNA sequencing, while short-chain fatty acids (SCFAs) were quantified by targeted metabolomics. Our study demonstrated that the administration of OCT significantly mitigated the severity of SAP in a dose-dependent manner. Furthermore, the inhibition of pyroptosis in mice attenuated SAP, thereby highlighting the critical role of pyroptosis in this condition. OCT administration was observed to suppress the expression of key pyroptosis markers. Additionally, there was a notable reduction in intestinal permeability and bacterial translocation. OCT reverses gut dysbiosis caused by SAP, increasing beneficial bacteria while inhibiting pathogenic strains. Furthermore, OCT administration enhanced the levels of SCFAs, including propanoic acid, acetic acid, and butyric acid. Our findings indicate OCT has the potential to alleviate SAP by suppressing pyroptosis and restoring intestinal homeostasis.
Collapse
Affiliation(s)
- Mengqi Zhao
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Mengyan Cui
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Miaoyan Fan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China; Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Chunlan Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Yue Zeng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China.
| | - Yingying Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
2
|
Iyer S, Tarique M, Sahay P, Giri S, Bava EP, Guan J, Jain T, Vaish U, Jin X, Moon S, Crossman DK, Dudeja V. Inhibition of hedgehog signaling ameliorates severity of chronic pancreatitis in experimental mouse models. Am J Physiol Gastrointest Liver Physiol 2025; 328:G342-G363. [PMID: 39499252 DOI: 10.1152/ajpgi.00212.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024]
Abstract
Chronic pancreatitis (CP) is a fibro-inflammatory disease of the pancreas with no specific cure. Research highlighting the pathogenesis and especially the therapeutic aspect remains limited. Aberrant activation of developmental pathways in adults has been implicated in several diseases. Hedgehog pathway is a notable embryonic signaling pathway, known to promote fibrosis of various organs when overactivated. The aim of this study is to explore the role of the hedgehog pathway in the progression of CP and evaluate its inhibition as a novel therapeutic strategy against CP. CP was induced in mice by repeated injections of l-arginine or caerulein in two separate models. Mice were administered with the FDA-approved pharmacological hedgehog pathway inhibitor, vismodegib during or after establishing the disease condition to inhibit hedgehog signaling. Various parameters of CP were analyzed to determine the effect of hedgehog pathway inhibition on the severity and progression of the disease. Our study shows that hedgehog signaling was overactivated during CP and its inhibition was effective in improving the histopathological parameters associated with CP. Vismodegib administration not only halted the progression of CP but was also able to resolve already-established fibrosis. In addition, inhibition of hedgehog signaling resulted in the reversal of pancreatic stellate cell activation ex vivo. Findings from our study justify conducting clinical trials using vismodegib against CP and, thus, could lead to the development of a novel therapeutic strategy for the treatment of CP.NEW & NOTEWORTHY Hedgehog signaling is activated in human and experimental models of CP. Inhibition of hedgehog signaling using an FDA-approved inhibitor, vismodegib, leads to the resolution of fibrosis and improves CP. This study has immense and immediate translational benefits.
Collapse
Affiliation(s)
- Srikanth Iyer
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Mohammad Tarique
- Department of Pediatrics, University of Missouri, Columbia, Missouri, United States
| | - Preeti Sahay
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sagnik Giri
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ejas P Bava
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - JiaShiung Guan
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tejeshwar Jain
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Utpreksha Vaish
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Xiuwen Jin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sabrina Moon
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veteran Affairs Medical Center, Birmingham, Alabama, United States
| |
Collapse
|
3
|
Abd El-Fattah AA, Hamid Sadik NA, Shahin AM, Shahin NN. Simvastatin and eugenol restore autophagic flux and alleviate oxidative, inflammatory, and fibrotic perturbations in an arginine-induced chronic pancreatitis rat model. Arch Biochem Biophys 2025; 768:110357. [PMID: 40015469 DOI: 10.1016/j.abb.2025.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Chronic pancreatitis (CP), a progressive inflammatory disease characterized by pancreatic tissue destruction and fibrosis, is considered a challenging health burden due to insufficiencies of current management procedures. Autophagy impairment has emerged as a major triggering event in pancreatitis, raising interest in exploring the potential of targeting autophagy as a possible interventional strategy. This study aimed to evaluate the possible ameliorative effect of two autophagy modulators, simvastatin and eugenol, on CP-related perturbations in an arginine-induced rat model. Repeated l-arginine administration (5 g/kg divided into 2 doses with a 1 h interval, given intraperitoneally every 3rd day for a total of 10 times) provoked CP features, demonstrated by acinar damage, oxidative stress, inflammation, and fibrosis. Arginine-triggered pancreatitis was accompanied by hampered pancreatic autophagic flux, evidenced by overexpression of pancreatic p62 and LC3-Ⅱ and downregulation of pancreatic AMPK and LAMP-1 mRNA expression. Treatment with simvastatin (20 mg/kg, intraperitoneally 24 h, before each arginine dose) and eugenol (50 mg/kg/day orally for 30 days) achieved significant anti-oxidative, anti-inflammatory, and anti-fibrotic effects, and reversed the arginine-instigated autophagic blockade, with superior ameliorative effects attained by eugenol. Altogether, simvastatin and eugenol provide a promising interventional approach for CP, at least partly, by restoring the impaired autophagic flux associated with CP.
Collapse
Affiliation(s)
| | | | - Ahmad Mustafa Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Nancy Nabil Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Zhang T, Huang X, Feng S, Shao H. Lactate-Dependent HIF1A Transcriptional Activation Exacerbates Severe Acute Pancreatitis Through the ACSL4/LPCAT3/ALOX15 Pathway Induced Ferroptosis. J Cell Biochem 2025; 126:e30687. [PMID: 39676583 DOI: 10.1002/jcb.30687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Acute pancreatitis (AP) is a common emergency in the digestive system, and in severe cases, it can progress to severe acute pancreatitis (SAP), with a mortality rate of up to 30%, representing a dire situation. SAP in mice was induced by l-arginine (l-Arg). HE, IHC, WB and ELISA were used to study the role and regulation of HIF1A in SAP. At the same time, QPCR, WB, CHIP-QPCR and luciferase report were used to explore the specific mechanism of HIF1A regulation of SAP in vitro. The research results indicate that following SAP induction, the pancreatic tissue of mice exhibited significant glycolytic abnormalities, accompanied by a marked upregulation of HIF1A expression. This led to apparent damage in the pancreatic tissue, lungs, and kidneys. However, in sh-HIF1A mice, the degree of these injuries was significantly alleviated, along with a reduction in the production of inflammatory factors, oxidative products, and lipid peroxidation markers. This suggests that HIF1A plays a crucial role in the inflammatory and oxidative stress processes during SAP. Further exploration revealed that the absence or overexpression of HIF1A affects SAP by inducing ferroptosis through the ACSL4/LPCAT3/ALOX15 pathway. Notably, the elevated lactate level resulting from glycolytic abnormalities further enhances the histone lactylation in the HIF1A promoter region, thereby aggravating the expression of HIF1A. Lactate-dependent HIF1A transcriptional activation exacerbates severe acute pancreatitis through the ACSL4/LPCAT3/ALOX15 pathway induced ferroptosis.
Collapse
Affiliation(s)
- Tingyuan Zhang
- Department of ICU, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaopei Huang
- Department of ICU, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shengnan Feng
- Department of ICU, Henan Provincial People's Hospital, Zhengzhou, China
| | - Huanzhang Shao
- Department of ICU, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Swetha K, Indumathi MC, Siddappa S, Chen CH, Marathe GK. Comparative Study of Non-invasive Mouse Models of Pancreatitis. Dig Dis Sci 2025; 70:233-244. [PMID: 39604666 DOI: 10.1007/s10620-024-08771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND AIMS Although a relevant animal model is essential for studying human diseases, one has yet to be established for mouse pancreatitis. Early non-invasive models of mouse pancreatitis have serious limitations. METHODS In this study, we compared the efficiency, consistency, and reproducibility of inducing pancreatitis in 3 non-invasive mouse models of pancreatitis in Wistar albino mice: (1) L-arginine-induced model (2 intraperitoneal injections of 4 g/kg body weight of L-arginine spaced 1 h apart), (2) caerulein-induced model (6 intraperitoneal injections of 50 µg/kg body weight of caerulein at hourly intervals), and (3) caerulein + LPS (lipopolysaccharide)-induced model (6 intraperitoneal doses of 50 µg/kg body weight of caerulein at hourly intervals, along with an LPS [10 mg/kg body weight] injection immediately after the last caerulein injection). RESULTS Our findings showed that the L-arginine-induced model was inconsistent. The levels of the pancreatic enzymes, amylase and lipase, were higher in the caerulein and caerulein + LPS groups. Histological examination showed tissue destruction in the induced groups, with varying degrees of fibrosis in the caerulein + LPS group. CONCLUSIONS The caerulein + LPS model was the most reliable model in Wistar albino mice. Our findings may be useful in helping investigators choose the most appropriate animal model for pancreatitis research.
Collapse
Affiliation(s)
- Kamatam Swetha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-06, India
| | | | - Shiva Siddappa
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore-15, India
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Gopal K Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore-06, India.
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore-06, India.
| |
Collapse
|
6
|
Gukovskaya AS, Lerch MM, Mayerle J, Sendler M, Ji B, Saluja AK, Gorelick FS, Gukovsky I. Trypsin in pancreatitis: The culprit, a mediator, or epiphenomenon? World J Gastroenterol 2024; 30:4417-4438. [PMID: 39534420 PMCID: PMC11551668 DOI: 10.3748/wjg.v30.i41.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatitis is a common, life-threatening inflammatory disease of the exocrine pancreas. Its pathogenesis remains obscure, and no specific or effective treatment is available. Gallstones and alcohol excess are major etiologies of pancreatitis; in a small portion of patients the disease is hereditary. Pancreatitis is believed to be initiated by injured acinar cells (the main exocrine pancreas cell type), leading to parenchymal necrosis and local and systemic inflammation. The primary function of these cells is to produce, store, and secrete a variety of enzymes that break down all categories of nutrients. Most digestive enzymes, including all proteases, are secreted by acinar cells as inactive proforms (zymogens) and in physiological conditions are only activated when reaching the intestine. The generation of trypsin from inactive trypsinogen in the intestine plays a critical role in physiological activation of other zymogens. It was proposed that pancreatitis results from proteolytic autodigestion of the gland, mediated by premature/inappropriate trypsinogen activation within acinar cells. The intra-acinar trypsinogen activation is observed in experimental models of acute and chronic pancreatitis, and in human disease. On the basis of these observations, it has been considered the central pathogenic mechanism of pancreatitis - a concept with a century-old history. This review summarizes the data on trypsinogen activation in experimental and genetic rodent models of pancreatitis, particularly the more recent genetically engineered mouse models that mimic mutations associated with hereditary pancreatitis; analyzes the mechanisms mediating trypsinogen activation and protecting the pancreas against its' damaging effects; discusses the gaps in our knowledge, potential therapeutic approaches, and directions for future research. We conclude that trypsin is not the culprit in the disease pathogenesis but, at most, a mediator of some pancreatitis responses. Therefore, the search for effective therapies should focus on approaches to prevent or normalize other intra-acinar pathologic processes, such as defective autophagy leading to parenchymal cell death and unrelenting inflammation.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Markus M Lerch
- Department of Medicine, Ludwig Maximilian University Hospital, Munich 81377, Germany
| | - Julia Mayerle
- Department of Medicine II, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Matthias Sendler
- Department of Medicine A, University of Greifswald, Greifswald 17475, Germany
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Ashok K Saluja
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Fred S Gorelick
- Departments of Cell Biology and Internal Medicine, Yale University School of Medicine and VA West Haven, New Haven, CT 06519, United States
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| |
Collapse
|
7
|
Jia Y, Shi Y, Wang J, Liu H, Huang Y, Wang H, Liu Y, Peng J. Integrating metagenomics with metabolomics for gut microbiota and metabolites profiling in acute pancreatitis. Sci Rep 2024; 14:21491. [PMID: 39277616 PMCID: PMC11401878 DOI: 10.1038/s41598-024-72057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas. Despite of a steadily increasing in morbidity and mortality, there is still no effective therapy. Gut microbial dysbiosis and its derived-metabolites disorder have been shown to play an important role in the development of AP, however, little is known regarding the crosstalk between gut microbiota and metabolites. In this study, we assessed the alterations in gut microbiota and metabolites by constructing three AP mouse models by means of metagenomic and metabolomic sequencing, and further clarified their relationship by correlation analysis. The results revealed that each model exhibited unique flora and metabolite profiles. KEGG analysis showed that the differential flora and metabolite-enriched pathway functions were correlated with lipid metabolism and amino acid metabolism. Moreover, two core differential bacterial species on Burkholderiales bacterium YL45 and Bifidobacterium pseudolongum along with eleven differential metabolites appeared to exert certain effects during the course of AP. In conclusion, further exploration of the crosstalk between microbiota and derived metabolites may provide novel insights and strategies into the diagnosis and treatment of AP.
Collapse
Affiliation(s)
- Yan Jia
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuxin Shi
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Honghui Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yilin Huang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hanyue Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ya Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Han X, Bao J, Ni J, Li B, Song P, Wan R, Wang X, Hu G, Chen C. Qing Xia Jie Yi Formula granules alleviated acute pancreatitis through inhibition of M1 macrophage polarization by suppressing glycolysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117750. [PMID: 38216100 DOI: 10.1016/j.jep.2024.117750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal formulas from Traditional Chinese Medicine are common and well-established practice for treating acute pancreatitis (AP) patients. However, little is known about their bioactive ingredients and mechanisms, such as their targets and pathways to inhibit inflammation. AIM OF THE STUDY This study aimed to evaluate the effect of Qing Xia Jie Yi Formula (QXJYF) granules on AP and discuss the molecular mechanisms involved. MATERIALS AND METHODS Major compounds in QXJYF granules were identified using UPLC-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). The effect of QXJYF granules on experimental AP models both in vitro and in vivo, and detailed mechanisms were clarified. Two AP models were induced in mice by intraperitoneally injections of caerulein or L-arginine, and QXJYF granules were used to treat AP mice in vivo. Histological evaluation of pancreas and lung, serum amylase and lipase levels, serum inflammatory cytokines, inflammatory cell infiltration and macrophage phenotype were assessed. Bone marrow derived macrophages (BMDMs) were cultured and treated with QXJYF granules in vitro. BMDM phenotype and glycolysis levels were measured. Lastly, clinical effect of QXJYF granules on AP patients was verified. Predicted severe AP (pSAP) patients eligible for inclusion were assessed for enrollment. RESULTS Nine major compounds were identified in QXJYF granules. Data showed that QXJYF granules significantly alleviated AP severity both in caerulein and L-arginine-induced AP models in vivo, pancreatic injury and inflammatory cell infiltration, systematic inflammation, lung injury and inflammatory cell infiltration were all improved after QXJYF treatment. QXJYF granules significantly reduced M1 macrophages during AP both in vivo and in vitro; besides, the mRNA expression levels of M1 genes such as inos, Tnfα, Il1β and Il6 were significantly lower after QXJYF treatment in M1 macrophages. Mechanistically, we found that HK2, PFKFB3, PKM, LDHα levels were increased in M1 macrophages, but significantly decreased after QXJYF treatment. Clinical data indicated that QXJYF granules could significantly reduce CRP levels and shorten the duration of organ failure, thereby reducing the incidence of SAP and preventing pSAP patients from progressing to SAP. CONCLUSION QXJYF granules alleviated AP through the inhibition of M1 macrophage polarization by suppressing glycolysis.
Collapse
Affiliation(s)
- Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengli Song
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Walker J, Babyok OL, Saloman JL, Phillips AE. Recent advances in the understanding and management of chronic pancreatitis pain. JOURNAL OF PANCREATOLOGY 2024; 7:35-44. [PMID: 38524856 PMCID: PMC10959534 DOI: 10.1097/jp9.0000000000000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/09/2023] [Indexed: 03/26/2024] Open
Abstract
Abdominal pain is the most common symptom of chronic pancreatitis (CP) and is often debilitating for patients and very difficult to treat. To date, there exists no cure for the disease. Treatment strategies focus on symptom management and on mitigation of disease progression by reducing toxin exposure and avoiding recurrent inflammatory events. Traditional treatment protocols start with medical management followed by consideration of procedural or surgical intervention on selected patients with severe and persistent pain. The incorporation of adjuvant therapies to treat comorbidities including psychiatric disorders, exocrine pancreatic insufficiency, mineral bone disease, frailty, and malnutrition, are in its early stages. Recent clinical studies and animal models have been designed to improve investigation into the pathophysiology of CP pain, as well as to improve pain management. Despite the array of tools available, many therapeutic options for the management of CP pain provide incomplete relief. There still remains much to discover about the neural regulation of pancreas-related pain. In this review, we will discuss research from the last 5 years that has provided new insights into novel methods of pain phenotyping and the pathophysiology of CP pain. These discoveries have led to improvements in patient selection for optimization of outcomes for both medical and procedural management, and identification of potential future therapies.
Collapse
Affiliation(s)
- Jessica Walker
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Olivia L. Babyok
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jami L. Saloman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anna Evans Phillips
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Zhang R, Lan J, Chen Q, Liu Y, Hu L, Cao J, Zhao H, Shen Y. Hesperidin Alleviates Acute Necrotizing Pancreatitis by Activating SIRT1 - Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation. Comb Chem High Throughput Screen 2024; 27:1745-1757. [PMID: 37534793 DOI: 10.2174/1386207326666230803140408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Acute necrotizing pancreatitis is a serious pancreatic injury with limited effective treatments. This study aims to investigate the therapeutic effects of hesperidin on Larginine- induced acute pancreatitis and its potential targets. METHODS The authors induced acute pancreatitis in mice by administering two hourly intraperitoneal injections of L-arginine-HCl, and evaluated the impact of hesperidin on pancreatic and lung tissues, plasma amylase activity, and myeloperoxidase content. Additionally, necrosis and mitochondrial function was tested in primary pancreatic acinar cells. The interactions between hesperidin and proteins involved in necrosis and mitochondrial dysfunction were further invested using in silico molecular docking and molecular dynamic simulations. RESULTS Hesperidin effectively ameliorated the severity of acute necrotizing pancreatitis by reducing plasma amylase, pancreatic MPO, serum IL-6 levels, pancreatic edema, inflammation, and pancreatic necrosis. Hesperidin also protected against acute pancreatitis-associated lung injury and prevented acinar cell necrosis, mitochondrial membrane potential loss, and ATP depletion. In addition, hesperidin exhibited a high binding affinity with SIRT1 and increased the protein levels of SIRT1. The SIRT1 inhibitor EX527 abolished the protective effect of hesperidin against necrosis in acinar cells. CONCLUSION These findings indicate that hesperidin alleviates the severity of acute necrotizing pancreatitis by activating SIRT1, which may provide insight into the mechanisms of natural compounds in treating AP. Hesperidin has potential as a therapeutic agent for acute necrotizing pancreatitis and provides a new approach for novel therapeutic strategies.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Junjie Lan
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Qi Chen
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Yang Liu
- Department of Hepatobiliary Surgery II, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Linfang Hu
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Jinyong Cao
- Department of Endoscopy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Huaye Zhao
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| |
Collapse
|
11
|
Li Y, Ding X, Wu X, Ding L, Yang Y, Jiang X, Liu X, Zhang X, Su J, Xu J, Yang Z. A non-human primate derived anti-P-selectin glycoprotein ligand-1 antibody curtails acute pancreatitis by alleviating the inflammatory responses. Acta Pharm Sin B 2023; 13:4461-4476. [PMID: 37969726 PMCID: PMC10638517 DOI: 10.1016/j.apsb.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 11/17/2023] Open
Abstract
Acute pancreatitis (AP) is a devastating disease characterized by an inflammatory disorder of the pancreas. P-selectin glycoprotein ligand-1 (PSGL-1) plays a crucial role in the initial steps of the adhesive at process to inflammatory sites, blockade of PSGL-1 might confer potent anti-inflammatory effects. In this study, we generated two non-human primate derived monoclonal antibodies capable of efficiently targeting human PSGL-1, RH001-6 and RH001-22, which were screened from immunized rhesus macaques. We found that RH001-6, can effectively block the binding of P-selectin to PSGL-1, and abolish the adhesion of leukocytes to endothelial cells in vitro. In vivo, we verified that RH001-6 relieved inflammatory responses and pancreatic injury in both caerulein and l-arginine induced AP models. We also evaluated the safety profile after RH001-6 treatment in mice, and verified that RH001-6 did not cause any significant pathological damages in vivo. Taken together, we developed a novel non-human primate derived PSGL-1 blocking antibody with high-specificity, named RH001-6, which can interrupt the binding of PSGL-1 and P-selectin and attenuate inflammatory responses during AP. Therefore, RH001-6 is highly potential to be further developed into therapeutics against acute inflammatory diseases, such as AP.
Collapse
Affiliation(s)
- Yuhan Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiangqing Ding
- Shanghai Sinobay Biotechnology Company (Limited), Shanghai 201500, China
| | - Xianxian Wu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Longfei Ding
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 200083, China
| | - Yuhui Yang
- Capital Medical University, Beijing 100069, China
| | - Xiaoliang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Xing Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Xu Zhang
- Department of Hepatobiliary Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianqing Xu
- Shanghai Sinobay Biotechnology Company (Limited), Shanghai 201500, China
- Chongqing Institutes for Life Science Innovation, Chongqing 400715, China
| | - Zhiwei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China
| |
Collapse
|
12
|
Liu Y, Cui H, Mei C, Cui M, He Q, Wang Q, Li D, Song Y, Li J, Chen S, Zhu C. Sirtuin4 alleviates severe acute pancreatitis by regulating HIF-1α/HO-1 mediated ferroptosis. Cell Death Dis 2023; 14:694. [PMID: 37865653 PMCID: PMC10590376 DOI: 10.1038/s41419-023-06216-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Acute pancreatitis (AP) is a common emergency of the digestive system and serious cases can develop into severe acute pancreatitis (SAP), which ortality rates up to 30%. Sirtuin4 (SIRT4) is a member of the sirtuin family, and plays a key role in inflammation and oxidative stress. However, the potential role of SIRT4 in SAP has yet to be elucidated. In the present study, we found that the expression level of SIRT4 in human AP was downregulated by screening a public database, suggesting that SIRT4 may play a role in AP. Subsequently, we used L-arginine (L-Arg) to induce SAP in SIRT4 knockout (SIRT4_KO) and SIRT4 overexpression (AAV_SIRT4) mice. The results showed that the pancreatic tissue injury and related lung and kidney injury were serious in SIRT4_KO mice after SAP induction, but were significantly reduced in AAV_SIRT4 mice. More importantly, we found that the levels of antioxidant factors GSH and SOD were decreased in SIRT4_KO mice, and the production of oxidative products and lipid peroxidation markers was increased, suggesting that SIRT4 was involved in inflammation and oxidative stress during SAP. Further studies showed that the absence or overexpression of SIRT4 affected the expression level of Hypoxia-inducible factor-1α (HIF-1α) after SAP induction, and regulated the expression of ferroptosis related proteins by mediating HIF-1α/HO-1 pathway. Collectively, our study revealed that SIRT4 plays a protective role in SAP by regulating the HIF-1α/HO-1 pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Yanna Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Huning Cui
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chaopeng Mei
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Mengwei Cui
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qianqian He
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qiaofang Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Dejian Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Yaodong Song
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Jiye Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China
| | - Sanyang Chen
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China.
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China.
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Changju Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- Henan Medical Key Laboratory of Emergency and Trauma Research, Zhengzhou, Henan, 450052, China.
- Henan Emergency and Trauma Medicine Engineering Research Center, Zhengzhou, Henan, 450052, China.
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
13
|
Ridha M, Rivera Gonzalez G, Seenivasagam M. Pre-Workout-Induced Pancreatitis. Cureus 2023; 15:e44609. [PMID: 37795059 PMCID: PMC10547118 DOI: 10.7759/cureus.44609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 10/06/2023] Open
Abstract
The use of dietary supplements, including pre-workout formulations, has gained widespread popularity among individuals engaged in sports and fitness. This case report presents a unique instance of pre-workout-induced pancreatitis in a previously healthy young adult. The patient, a 35-year-old male, presented to the emergency department with abdominal pain, elevated pancreatic enzymes, and characteristic radiological findings indicative of acute pancreatitis. The patient's history revealed no prior predisposing factors for pancreatitis such as alcohol consumption or gallstone disease. Extensive diagnostic evaluation excluded other potential causes leading to the suspicion of his pre-workout supplement as the source. Pre-workout supplements contain a blend of stimulants, amino acids, and other metabolic ingredients designed to enhance exercise and muscle performance. Research shows that some of these ingredients, such as amino acids, induce metabolic chain reactions which may damage pancreatic cells. However, there is extremely limited literature regarding these amino acids in combination such as in workout supplements. This case prompts an examination of the potential adverse effects of pre-workout supplements, highlighting the need for increased vigilance among healthcare providers and consumers alike. As the use of these products grows, further research is warranted to allow for safe commercial distribution and to protect consumers from serious harm.
Collapse
|
14
|
Wiley MB, Mehrotra K, Bauer J, Yazici C, Bialkowska AB, Jung B. Acute Pancreatitis: Current Clinical Approaches, Molecular Pathophysiology, and Potential Therapeutics. Pancreas 2023; 52:e335-e343. [PMID: 38127317 PMCID: PMC11913250 DOI: 10.1097/mpa.0000000000002259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/28/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Severe acute pancreatitis (SAP), pancreatic inflammation leading to multiorgan failure, is associated with high morbidity and mortality. There is a critical need to identify novel therapeutic strategies to improve clinical outcomes for SAP patients. MATERIALS AND METHODS A comprehensive literature review was performed to identify current clinical strategies, known molecular pathophysiology, and potential therapeutic targets for SAP. RESULTS Current clinical approaches focus on determining which patients will likely develop SAP. However, therapeutic options are limited to supportive care and fluid resuscitation. The application of a novel 5-cytokine panel accurately predicting disease outcomes in SAP suggests that molecular approaches will improve impact of future clinical trials in AP. CONCLUSIONS Inflammatory outcomes in acute pancreatitis are driven by several unique molecular signals, which compound to promote both local and systemic inflammation. The identification of master cytokine regulators is critical to developing therapeutics, which reduce inflammation through several mechanisms.
Collapse
Affiliation(s)
- Mark B Wiley
- From the Department of Medicine, University of Washington, Seattle, WA
| | - Kunaal Mehrotra
- From the Department of Medicine, University of Washington, Seattle, WA
| | - Jessica Bauer
- From the Department of Medicine, University of Washington, Seattle, WA
| | - Cemal Yazici
- Department of Medicine, University of Illinois Chicago, Chicago, IL
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY
| | - Barbara Jung
- From the Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
15
|
Han C, Dong ZQ, Li ZS, Hu LH. Historical Review of Acute Pancreatitis Research Over the Last 80 Years. Pancreas 2023; 52:e263-e274. [PMID: 37855819 DOI: 10.1097/mpa.0000000000002249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Research on acute pancreatitis (AP) has been ongoing for a long time. It is necessary to summarize and investigate the history of AP research. METHODS Publications related to AP research were retrieved from PubMed. Medical Subject Headings (MeSH) terms, countries, journals, and publication dates were analyzed. Co-occurrence analysis was conducted to illustrate the holistic trend in AP research. A dynamic bar graph, heat maps, and line charts were created to illustrate change trends of MeSH terms. RESULTS In total, 28,222 publications with 8558 MeSH terms were retrieved from 1941 to 2020. Among these, 16,575 publications with 7228 MeSH terms were from 2001 to 2020. The top 10 MeSH terms showed a considerable change from 1941 to 1970 but remained stable since the 1970s. Four clusters obtained from the co-occurrence analysis were "experiments on animals," "diagnosis and treatment," "prognosis and expectation," and "protein and enzyme." From 1941 to 2020, 33 MeSH terms with increasing trends (MH-I) and 15 MeSH terms with decreasing trends (MH-D) were selected to create a heat map (every decade). Meanwhile, 16 MH-I and 41 MH-D were selected to create the heat map from 2001 to 2020 (every 2 years). CONCLUSION Over the past 80 years, the pathogenesis, treatment, risk management, and experimental model were the main research highlights. Optimal supportive management, minimally invasive treatment, and prediction of prognosis are subjects of interest for clinical practitioners; signal transduction to identify a target for precise treatment is the focus of experimental research in AP.
Collapse
Affiliation(s)
| | - Zhi-Qi Dong
- Department of Gastroenterology, Shanghai Fourth People's Hospital, Tongji University School of Medicine
| | - Zhao-Shen Li
- From the Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai
| | - Liang-Hao Hu
- From the Department of Gastroenterology, First Affiliated Hospital of Naval Medical University, Shanghai
| |
Collapse
|
16
|
Chen L, Zhang X, Liu Y, Liu L, Liang X, Yang S, Xia Q, Jin T, Ma Y, Chen Y, Yuan X, Tie Y, Gu Y, Fang C, Chen S, Mo F, Yu T, Hu Y, Qian Z, Peng Y, Geng J, Zhou Z, Wu M, Ding J, Yang D, Wei X. JMJD3 Is Required for Acute Pancreatitis and Pancreatitis-Associated Lung Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:180-190. [PMID: 36458991 PMCID: PMC9772398 DOI: 10.4049/jimmunol.2200484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/01/2022] [Indexed: 01/04/2023]
Abstract
Acute pancreatitis (AP) can be complicated by inflammatory disorders of remote organs, such as lung injury, in which Jumonji domain-containing protein 3 (JMJD3) plays a vital role in proinflammatory responses. Currently, we found that JMJD3 expression was upregulated in the pancreas and lung in an AP male mouse model, which was also confirmed in AP patients. Further experiments revealed that the upregulation of JMJD3 and proinflammatory effects were possibly exerted by mitochondrial DNA (mtDNA) or oxidized-mtDNA from tissue injury caused by AP. The release of mtDNA and oxidized-mtDNA contributed to the infiltration of inflammatory monocytes in lung injury through the stimulator of IFN genes (STING)/TLR9-NF-κB-JMJD3-TNF-α pathway. The inhibition of JMJD3 or utilization of Jmjd3-cKO mice significantly alleviated pulmonary inflammation induced by AP. Blocking mtDNA oxidation or knocking down the TLR9/STING pathway effectively alleviated inflammation. Therefore, inhibition of JMJD3 or STING/TLR9 pathway blockage might be a potential therapeutic strategy to treat AP and the associated lung injury.
Collapse
Affiliation(s)
- Li Chen
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiangxian Zhang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yu Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiao Liang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shengqun Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yun Ma
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yonghua Chen
- Department of Pancreatic Surgery/Pancreatic Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xia Yuan
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yan Tie
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yangzhuo Gu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Chunju Fang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Fei Mo
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ting Yu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yuzhu Hu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhiyong Qian
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yong Peng
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Jia Geng
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND; and
| | - Jiansheng Ding
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daoke Yang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
17
|
Kurashige S, Matsutani N, Aoki T, Kodama T, Otagiri Y, Togashi Y. Evaluation of circulating miR-216a and miR-217 as biomarkers of pancreatic damage in the L-arginine-induced acute pancreatitis mouse model. J Toxicol Sci 2023; 48:527-534. [PMID: 37778981 DOI: 10.2131/jts.48.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
We investigated the usefulness of circulating miR-216a-5p and miR-217-5p that are pancreas-enriched micro RNAs (miRNAs) as biomarkers of acute pancreatic damage, and compared them with conventional pancreatic biomarkers in L-arginine-induced acute pancreatitis mouse model. As the results, amylase and lipase levels apparently increased and peaked on Day 3 when acute pancreatitis including acinar cell degeneration/necrosis and inflammatory cell infiltration reached its peak. In contrast, miR-216a-5p and miR-217-5p increased from Day 1 when histopathological findings in the acinar cells were limited to decreased zymogen granules, and the increases in ratios were much higher than those of amylase and lipase. The miRNAs remained at high levels until Day 5 when the pseudo-tubular complex and replacement of inflammatory cells and fibrotic cells were apparent instead of necrosis, whereas amylase and lipase levels decreased to the control levels. Furthermore, we examined the relationship between biomarker levels and histopathological degeneration/necrosis scores in the acinar cells. miR-216a-5p and miR-217-5p levels increased depending on the score of degeneration/necrosis, and all individual miRNAs exceeded the control levels from a score of 2 (focal necrosis), whereas all individual amylase and lipase levels exceeded the control levels at scores of 4 (lobular necrosis) and 3 (sublobular necrosis), respectively. In conclusion, we demonstrated that circulating miR-216a-5p and miR-217-5p could detect pancreatic damage earlier with greater magnitude, and the sensitivity to detect acinar cell degeneration/necrosis was superior to that of conventional biomarkers in the L-arginine-induced acute pancreatitis mouse model.
Collapse
Affiliation(s)
- Seiichiro Kurashige
- Toxicology and Pharmacokinetics Research Group, Research Institute, EA Pharma Co., Ltd
| | - Naomi Matsutani
- Toxicology and Pharmacokinetics Research Group, Research Institute, EA Pharma Co., Ltd
| | | | | | - Yasuteru Otagiri
- Toxicology and Pharmacokinetics Research Group, Research Institute, EA Pharma Co., Ltd
| | - Yuko Togashi
- Toxicology and Pharmacokinetics Research Group, Research Institute, EA Pharma Co., Ltd
| |
Collapse
|
18
|
Siriviriyakul P, Sriko J, Somanawat K, Chayanupatkul M, Klaikeaw N, Werawatganon D. Genistein attenuated oxidative stress, inflammation, and apoptosis in L-arginine induced acute pancreatitis in mice. BMC Complement Med Ther 2022; 22:208. [PMID: 35927726 PMCID: PMC9351145 DOI: 10.1186/s12906-022-03689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
Aim Acute pancreatitis is a common and potentially serious condition. However, a specific treatment for this condition is still lacking. Genistein, with its anti-oxidant and anti-inflammatory effects, could possibly be used to tackle the underlying pathophysiology of acute pancreatitis. Therefore, the aim of this study was to investigate the effects of genistein on oxidative stress, inflammation, and apoptosis in acute pancreatitis induced by L-arginine in mice. Methods Twenty-four male ICR mice were equally divided into 4 groups: Control (Con); Acute pancreatitis (AP) group: Two doses of i.p. 350 mg/100 g body weight (BW) of L-arginine were administered 1 h apart; AP and low-dose genistein (LG) group: mice were given i.p. injection of 10 mg/kg genistein 2 h prior to L-arginine injection followed by once-daily dosing for 3 days; and AP and high-dose genistein (HG) group: mice were given 100 mg/kg genistein with the similar protocol as the LG group. Pancreatic tissue was evaluated for histopathological changes and acinar cell apoptosis, malondialdehyde (MDA) levels, immunohistochemical staining for myeloperoxidase (MPO), nuclear factor-kappa beta (NF-kB), and 4-hydroxynonenal (4-HNE). Serum levels of amylase (AMY), c-reactive protein (CRP), and interleukin (IL)-6 were measured. Results Significant increases in the degree of acinar cell apoptosis, pancreatic MDA, serum IL-6 and amylase, MPO, NF-kB and 4-HNE positivity were observed in the AP group. All these parameters declined after low- and high-dose genistein treatment. Severe pancreatic inflammation, edema, and acinar cell necrosis were observed in the AP group. Significant improvement of histopathological changes was seen in both low- and high-dose genistein groups. There were no significant differences in any parameters between low and high doses of genistein. Conclusion Genistein could attenuate the severity of histopathological changes in acute pancreatitis through its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03689-9.
Collapse
|
19
|
Liu X, Luo W, Chen J, Hu C, Mutsinze RN, Wang X, Zhang Y, Huang L, Zuo W, Liang G, Wang Y. USP25 Deficiency Exacerbates Acute Pancreatitis via Up-Regulating TBK1-NF-κB Signaling in Macrophages. Cell Mol Gastroenterol Hepatol 2022; 14:1103-1122. [PMID: 35934222 PMCID: PMC9490099 DOI: 10.1016/j.jcmgh.2022.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Severe acute pancreatitis can easily lead to systemic inflammatory response syndrome and death. Macrophages are known to be involved in the pathophysiology of acute pancreatitis (AP), and macrophage activation correlates with disease severity. In this study, we examined the role of ubiquitin-specific protease 25, a deubiquitinating enzyme and known regulator of macrophages, in the pathogenesis of AP. METHODS We used L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP in Usp25-/- mice and wild-type mice. We also generated bone marrow Usp25-/- chimeric mice and initiated L-arginine-mediated AP. Primary acinar cells and bone marrow-derived macrophages were isolated from wild-type and Usp25-/- mice to dissect molecular mechanisms. RESULTS Our results show that Usp25 deficiency exacerbates pancreatic and lung injury, neutrophil and macrophage infiltration, and systemic inflammatory responses in L-arginine, cerulein, and choline-deficient ethionine-supplemented diet-induced models of AP. Bone marrow Usp25-/- chimeric mice challenged with L-arginine show that Usp25 deficiency in macrophages exaggerates AP by up-regulating the TANK-binding kinase 1 (TBK1)-nuclear factor-κB (NF-κB) signaling pathway. Similarly, in vitro data confirm that Usp25 deficiency enhances the TBK1-NF-κB pathway, leading to increased expression of inflammatory cytokines in bone marrow-derived macrophages. CONCLUSIONS Usp25 deficiency in macrophages enhances TBK1-NF-κB signaling, and the induction of inflammatory chemokines and type I interferon-related genes exacerbates pancreatic and lung injury in AP.
Collapse
Affiliation(s)
- Xin Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Luo
- Medical Research Center, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghong Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rumbidzai N. Mutsinze
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanmei Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijiang Huang
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Wei Zuo
- Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Gastroenterology, Affiliated Xiangshan Hospital of Wenzhou Medial University, Xiangshan, Zhejiang, China,Correspondence Address correspondence to: Yi Wang, PhD, Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. fax: (86) 577 85773060
| |
Collapse
|
20
|
Drug D, a Diosgenin Derive, Inhibits L-Arginine-Induced Acute Pancreatitis through Meditating GSDMD in the Endoplasmic Reticulum via the TXNIP/HIF-1α Pathway. Nutrients 2022; 14:nu14132591. [PMID: 35807771 PMCID: PMC9268286 DOI: 10.3390/nu14132591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is one of the most common causes of hospitalization for gastrointestinal diseases, with high morbidity and mortality. Endoplasmic reticulum stress (ERS) and Gasdermin D (GSDMD) mediate AP, but little is known about their mutual influence on AP. Diosgenin has excellent anti-inflammatory and antioxidant effects. This study investigated whether Diosgenin derivative D (Drug D) inhibits L-arginine-induced acute pancreatitis through meditating GSDMD in the endoplasmic reticulum (ER). Our studies were conducted in a mouse model of L-arginine-induced AP as well as in an in vitro model on mouse pancreatic acinar cells. The GSDMD accumulation in ER was found in this study, which caused ERS of acinar cells. GSDMD inhibitor Disulfiram (DSF) notably decreased the expression of GSDMD in ER and TXNIP/HIF-1α signaling. The molecular docking study indicated that there was a potential interaction between Drug D and GSDMD. Our results showed that Drug D significantly inhibited necrosis of acinar cells dose-dependently, and we also found that Drug D alleviated pancreatic necrosis and systemic inflammation by inhibiting the GSDMD accumulation in the ER of acinar cells via the TXNIP/HIF-1α pathway. Furthermore, the level of p-IRE1α (a marker of ERS) was also down-regulated by Drug D in a dose-dependent manner in AP. We also found that Drug D alleviated TXNIP up-regulation and oxidative stress in AP. Moreover, our results revealed that GSDMD-/- mitigated AP by inhibiting TXNIP/HIF-1α. Therefore, Drug D, which is extracted from Dioscorea zingiberensis, may inhibit L-arginine-induced AP by meditating GSDMD in the ER by the TXNIP /HIF-1α pathway.
Collapse
|
21
|
Jia W, Xu L, Xu W, Yang M, Zhang Y. Application of nanotechnology in the diagnosis and treatment of acute pancreatitis. NANOSCALE ADVANCES 2022; 4:1949-1961. [PMID: 36133408 PMCID: PMC9419146 DOI: 10.1039/d2na00020b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/16/2022] [Indexed: 06/16/2023]
Abstract
Acute pancreatitis (AP) is a common digestive system disease. The severity of AP ranges from mild edema in the pancreas to severe systemic inflammatory responses leading to peripancreatic/pancreatic necrosis, multi-organ failure and death. Improving the sensitivity of AP diagnosis and developing alternatives to traditional methods to treat AP have gained the attention of researchers. With the continuous rise of nanotechnology, it is being widely used in daily life, biomedicine, chemical energy and many other fields. Studies have demonstrated the effectiveness of nanotechnology in the diagnosis and treatment of AP. Nanotechnology has the advantages of simplicity, rapidity and sensitivity in detecting biomarkers of AP, as well as enhancing imaging, which helps in the early diagnosis of AP. On the other hand, nanoparticles (NPs) have oxidative stress inhibiting and anti-inflammatory effects, and can also be loaded with drugs as well as being used in anti-infection therapy, providing a new approach for the treatment of AP. In this article, we elaborate and summarize on the potential of nanoparticles for diagnostic and therapeutic applications in AP from the current reported literature and experimental results to provide useful guidelines for further research on the application of nanotechnology.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - LinFeng Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100730 China
| | - YeWei Zhang
- Medical School, Southeast University Nanjing 210009 China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
22
|
Peng C, Tu G, Yu L, Wu P, Zhang X, Li Z, Li Z, Yu X. Murine Chronic Pancreatitis Model Induced by Partial Ligation of the Pancreatic Duct Encapsulates the Profile of Macrophage in Human Chronic Pancreatitis. Front Immunol 2022; 13:840887. [PMID: 35432336 PMCID: PMC9011002 DOI: 10.3389/fimmu.2022.840887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are an integral part of the pathogenesis of pancreatitis. Studies applying the mouse model of pancreatitis induced by partial ligation of the pancreatic duct to explore the pancreatic immune microenvironment are still lacking. The aim of the present study is to explore the macrophage profile and associated regulatory mechanisms in mouse pancreatitis, as well as the correlation with human chronic pancreatitis (CP). In the present study, the mouse model of pancreatitis was induced by partial ligation of the pancreatic duct. Mice in the acute phase were sacrificed at 0, 4, 8, 16, 32, 72 h after ligation, while mice in the chronic phase were sacrificed at 7, 14, 21, 28 days after ligation. We found that the pancreatic pathological score, expression of TNF-α and IL-6 were elevated over time and peaked at 72h in the acute phase, while in the chronic phase, the degree of pancreatic fibrosis peaked at day 21 after ligation. Pancreatic M1 macrophages and pyroptotic macrophages showed a decreasing trend over time, whereas M2 macrophages gradually rose and peaked at day 21. IL-4 is involved in the development of CP and is mainly derived from pancreatic stellate cells (PSCs). The murine pancreatitis model constructed by partial ligation of the pancreatic duct, especially the CP model, can ideally simulate human CP caused by obstructive etiologies in terms of morphological alterations and immune microenvironment characteristics.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guangping Tu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Yu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Wu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianlin Zhang
- Department of General Surgery, Renhe Hospital, Three Gorges University, Yichang, China
| | - Zheng Li
- Department of General Surgery, Renhe Hospital, Three Gorges University, Yichang, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao Yu, ; Zhiqiang Li,
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao Yu, ; Zhiqiang Li,
| |
Collapse
|
23
|
Wang L, Xu T, Wang R, Wang X, Wu D. Hypertriglyceridemia Acute Pancreatitis: Animal Experiment Research. Dig Dis Sci 2022; 67:761-772. [PMID: 33939144 DOI: 10.1007/s10620-021-06928-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/26/2021] [Indexed: 12/09/2022]
Abstract
In recent years, the number of acute pancreatitis cases caused by hypertriglyceridemia has increased gradually, which has caught the attention of the medical community. However, because the exact mechanism of hypertriglyceridemic acute pancreatitis (HTG-AP) is not clear, treatment and prevention in clinical practice face enormous challenges. Animal models are useful for elucidating the pathogenesis of diseases and developing and testing novel interventions. Therefore, animal experiments have become the key research means for us to understand and treat this disease. We searched almost all HTG-AP animal models by collecting many studies and finally collated common animals such as rats, mice and included some rare animals that are not commonly used, summarizing the methods to model spontaneous pancreatitis and induce pancreatitis. We sorted them on the basis of three aspects, including the selection of different animals, analyzed the characteristics of different animals, different approaches to establish hypertriglyceridemic pancreatitis and their relative advantages and disadvantages, and introduced the applications of these models in studies of pathogenesis and drug therapy. We hope this review can provide relevant comparisons and analyses for researchers who intend to carry out animal experiments and will help researchers to select and establish more suitable animal experimental models according to their own experimental design.
Collapse
Affiliation(s)
- Lu Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ting Xu
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruifeng Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xiaobing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Yang J, Tang X, Wu Q, Ren P, Yan Y. A Severe Acute Pancreatitis Mouse Model Transited from Mild Symptoms Induced by a “Two-Hit” Strategy with L-Arginine. Life (Basel) 2022; 12:life12010126. [PMID: 35054519 PMCID: PMC8779052 DOI: 10.3390/life12010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 01/17/2023] Open
Abstract
To develop a severe acute pancreatitis (SAP) model transited from mild symptoms, we investigated a “two-hit” strategy with L-arginine in mice. The mice were intraperitoneally injected with ice-cold L-arginine (4 g/kg) twice at an interval of 1 h on the first day and subjected to the repeated operation 72 h afterwards. The results showed the “two-hit” strategy resulted in the destructive damage and extensive necrosis of acinar cells in the pancreas compared with the “one-hit” model. Meanwhile, excessive levels of pro-inflammatory mediators, namely IL-6 and TNF-α, were released in the serum. Remarkably, additional deleterious effects on multiple organs were observed, including high intestinal permeability, kidney injury, and severe acute lung injury. Therefore, we confirmed that the SAP animal model triggered by a “two-hit” strategy with L-arginine was successfully established, providing a solid foundation for a deeper understanding of SAP initiation and therapy research to prevent worsening of the disease.
Collapse
|
25
|
Song YD, Liu YY, Li DJ, Yang SJ, Wang QF, Liu YN, Li MK, Mei CP, Cui HN, Chen SY, Zhu CJ. Galangin ameliorates severe acute pancreatitis in mice by activating the nuclear factor E2-related factor 2/heme oxygenase 1 pathway. Biomed Pharmacother 2021; 144:112293. [PMID: 34634559 DOI: 10.1016/j.biopha.2021.112293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis (AP) is a common serious acute condition of the digestive system that remains a clinical challenge. Severe acute pancreatitis (SAP) in particular is characterized by high morbidity and mortality. The present study was designed to investigate the protective effect of Galangin (Gal), a natural flavonol obtained from lesser galangal, on L-arginine-induced SAP in mice and in AR42J cells. Amylase and lipase activities were measured and the histopathology of the pancreas, lung, and kidney was evaluated. Inflammation and oxidative stress were assessed using ELISA, western blotting, RT-PCR, and immunohistochemistry. Gal was shown to reduce proinflammatory cytokine production and reactive oxygen species (ROS) generation in vivo and in vitro. L-arginine treatment reduced the expression of components of the nuclear factor E2-related factor 2 (Nrf2) signaling pathway and the downstream protein heme oxygenase-1 (HO-1) in mice, whereas Gal increased their expression. Furthermore, the Nrf2/HO-1 pathway inhibitor brusatol prevented the anti-inflammatory and antioxidant effects of Gal in mice with SAP. Taken together, our results imply that Gal has protective effects in L-arginine-induced SAP that are induced by the upregulation of the Nrf2/HO-1 pathway, which has anti-inflammatory and antioxidant effects. Thus, Gal may represent a promising treatment for SAP.
Collapse
Affiliation(s)
- Yao-Dong Song
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Yan-Yan Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - De-Jian Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Shu-Jun Yang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Qiao-Fang Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Yan-Na Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Meng-Ke Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Chao-Peng Mei
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - Hu-Ning Cui
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China
| | - San-Yang Chen
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China.
| | - Chang-Ju Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Panccreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Medical Key Laboratory of Emergency and Trauma Research, China.
| |
Collapse
|
26
|
Palathingal Bava E, George J, Tarique M, Iyer S, Sahay P, Gomez Aguilar B, Edwards DB, Giri B, Sethi V, Jain T, Sharma P, Vaish U, C Jacob HK, Ferrantella A, Maynard CL, Saluja AK, Dawra RK, Dudeja V. Pirfenidone increases IL10 and improves acute pancreatitis in multiple clinically relevant murine models. JCI Insight 2021; 7:141108. [PMID: 34847076 PMCID: PMC8855813 DOI: 10.1172/jci.insight.141108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Abstract
Despite decades of research there is no specific therapy for Acute Pancreatitis (AP). In the current study, we have evaluated the efficacy of pirfenidone, an anti-inflammatory and anti-fibrotic agent which is FDA-approved for treatment of idiopathic pulmonary fibrosis (IPF), in ameliorating local and systemic injury in AP. Our results suggest that treatment with pirfenidone in therapeutic settings (i.e. after initiation of injury), even when administered at the peak of injury, reduces severity of local and systemic injury and inflammation in multiple models of AP. In-vitro evaluation suggests that pirfenidone decreases cytokine release from acini and macrophages and disrupts acinar-macrophage crosstalk. Therapeutic pirfenidone treatment increases IL-10 secretion from macrophages preceding changes in histology and modulates the immune phenotype of inflammatory cells with decreased levels of inflammatory cytokines. Antibody-mediated IL-10 depletion, use of IL-10 Knock Out mice, and macrophage depletion experiments confirmed the role of IL-10 and macrophages in its mechanism of action, as pirfenidone was unable to reduce severity of AP in these scenarios. Since pirfenidone is FDA approved for IPF, a trial evaluating the efficacy of pirfenidone in patients with moderate to severe AP can be initiated expeditiously.Key Words: Acute Pancreatitis, Pirfenidone, Interleukin-10, L-arginine pancreatitis, Systemic inflammation, lung injury.
Collapse
Affiliation(s)
- Ejas Palathingal Bava
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, United States of America
| | - John George
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, United States of America
| | - Mohammad Tarique
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, United States of America
| | - Srikanth Iyer
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, United States of America
| | - Preeti Sahay
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, United States of America
| | - Beatriz Gomez Aguilar
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, United States of America
| | - Dujon B Edwards
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, United States of America
| | - Bhuwan Giri
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, United States of America
| | - Vrishketan Sethi
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, United States of America
| | - Tejeshwar Jain
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, United States of America
| | - Prateek Sharma
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, United States of America
| | - Utpreksha Vaish
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, United States of America
| | - Harrys K C Jacob
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, United States of America
| | - Anthony Ferrantella
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, United States of America
| | - Craig L Maynard
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, United States of America
| | - Ashok K Saluja
- Department of Surgery, University of Miami, Miami, United States of America
| | - Rajinder K Dawra
- Department of Surgery and Sylvester Comprehensive Cancer Center, University of Miami, Miami, United States of America
| | - Vikas Dudeja
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, United States of America
| |
Collapse
|
27
|
Zhu CJ, Yang WG, Li DJ, Song YD, Chen SY, Wang QF, Liu YN, Zhang Y, Cheng B, Wu ZW, Cui ZC. Calycosin attenuates severe acute pancreatitis-associated acute lung injury by curtailing high mobility group box 1 - induced inflammation. World J Gastroenterol 2021; 27:7669-7686. [PMID: 34908806 PMCID: PMC8641048 DOI: 10.3748/wjg.v27.i44.7669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a common and life-threatening complication of severe acute pancreatitis (SAP). There are currently limited effective treatment options for SAP and associated ALI. Calycosin (Cal), a bioactive constituent extracted from the medicinal herb Radix Astragali exhibits potent anti-inflammatory properties, but its effect on SAP and associated ALI has yet to be determined.
AIM To identify the roles of Cal in SAP-ALI and the underlying mechanism.
METHODS SAP was induced via two intraperitoneal injections of L-arg (4 g/kg) and Cal (25 or 50 mg/kg) were injected 1 h prior to the first L-arg challenge. Mice were sacrificed 72 h after the induction of SAP and associated ALI was examined histologically and biochemically. An in vitro model of lipopolysaccharide (LPS)-induced ALI was established using A549 cells. Immunofluorescence analysis and western blot were evaluated in cells. Molecular docking analyses were conducted to examine the interaction of Cal with HMGB1.
RESULTS Cal treatment substantially reduced the serum amylase levels and alleviated histopathological injury associated with SAP and ALI. Neutrophil infiltration and lung tissue levels of neutrophil mediator myeloperoxidase were reduced in line with protective effects of Cal against ALI in SAP. Cal treatment also attenuated the serum levels and mRNA expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, IL-1β, HMGB1 and chemokine (CXC motif) ligand 1 in lung tissue. Immunofluorescence and western blot analyses showed that Cal treatment markedly suppressed the expression of HMGB1 and phosphorylated nuclear factor-kappa B (NF-κB) p65 in lung tissues and an in vitro model of LPS-induced ALI in A549 cells suggesting a role for HGMB1 in the pathogenesis of ALI. Furthermore, molecular docking analysis provided evidence for the direct interaction of Cal with HGMB1.
CONCLUSION Cal protects mice against L-arg-induced SAP and associated ALI by attenuating local and systemic neutrophil infiltration and inflammatory response via inhibition of HGMB1 and the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chang-Ju Zhu
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wan-Guang Yang
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - De-Jian Li
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yao-Dong Song
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - San-Yang Chen
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qiao-Fang Wang
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yan-Na Liu
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yan Zhang
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bo Cheng
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhong-Wei Wu
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zong-Chao Cui
- Henan Medical Key Laboratory of Emergency and Trauma Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
28
|
Tarasiuk A, Talar M, Bulak K, Fichna J. Ghee Butter from Bovine Colostrum Reduces Inflammation in the Mouse Model of Acute Pancreatitis with Potential Involvement of Free Fatty Acid Receptors. Nutrients 2021; 13:3271. [PMID: 34579147 PMCID: PMC8468552 DOI: 10.3390/nu13093271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease that causes severe tissue damage. Ghee butter from bovine colostrum (GBBC) is a clarified butter produced by heating milk fat to 40 °C and separating the precipitating protein. As colostrum mainly contains fatty acids (FAs), immunoglobulins, maternal immune cells, and cytokines, we hypothesized that it may exert anti-inflammatory effects. We investigated the effects of GBBC on experimental AP in mice. Two intraperitoneal (ip) injections of L-arginine (8%) were given 1 h apart to generate the AP murine model. After 12 h from the first L-arginine injection, mice were divided into the following experimental groups: AP mice treated with GBBC (oral gavage (po) every 12 h) and non-treated AP mice (po vehicle every 12 h). Control animals received vehicle only. At 72 h, mice were euthanized. Histopathological examination along with myeloperoxidase (MPO) and amylase/lipase activity assays were performed. In a separate set of experiments, FFAR1 and FFAR4 antagonists were used to verify the involvement of respective receptors. Administration of GBBC decreased MPO activity in the pancreas and lungs along with the microscopical severity of AP in mice. Moreover, treatment with GBBC normalized pancreatic enzyme activity. FFAR1 and FFAR4 antagonists tended to reverse the anti-inflammatory effect of GBBC in mouse AP. Our results suggest that GBBC displays anti-inflammatory effects in the mouse model of AP, with the putative involvement of FFARs. This is the first study to show the anti-inflammatory potential of a nutritional supplement derived from GBBC.
Collapse
Affiliation(s)
- Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.T.); (M.T.)
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.T.); (M.T.)
| | - Kamila Bulak
- Department of Pathomorphology and Forensic Veterinary Medicine, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612 Lublin, Poland;
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.T.); (M.T.)
| |
Collapse
|
29
|
Bai J, Bai J, Yang M. Interleukin-22 Attenuates Acute Pancreatitis-Associated Intestinal Mucosa Injury in Mice via STAT3 Activation. Gut Liver 2021; 15:771-781. [PMID: 33495423 PMCID: PMC8444107 DOI: 10.5009/gnl20210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 11/04/2022] Open
Abstract
Background/Aims Interleukin-22 (IL-22) is an important cytokine maintaining homeostasis at barrier surfaces. In this study, the role of IL-22 in acute pancreatitis-associated intestinal injury was further explored. Methods Severe acute pancreatitis (SAP) was induced by administration of L-arginine in Balb/c mice at different time gradients. Histopathological examinations were made in both the pancreas and small intestine. Furthermore, recombinant murine IL-22 (rIL-22) was administrated to L-arginine-induced SAP mice by intraperitoneal injection. The mRNA levels of IL-22R1, Reg-IIIβ, Reg-IIIγ, Bcl-2, and Bcl-xL were detected in the small intestine by real-time polymerase chain reaction, and protein levels of total and phosphorylated STAT3 were assessed via Western blot. Results Compared with normal control group, 72 hours of L-arginine exposure induced the most characteristic histopathological changes of SAP, evidenced by pathological changes and serum amylase levels. Meanwhile, significant pancreatitis-associated intestinal mucosa injury was also observed. The gene expression levels of antimicrobial proteins Reg-IIIβ, Reg-IIIγ and anti-apoptosis proteins Bcl-2, Bcl-xL were downregulated in small intestine. Furthermore, Larginine- induced SAP was attenuated by rIL-22 treatment. Importantly, pancreatitis-associated intestinal mucosa injury was also ameliorated, reflected by improved pathological changes and significant increase in gene expression levels of Reg-IIIβ, Reg-IIIγ, Bcl-2 and Bcl-xL. Consistently, serum amylase levels and mortality were decreased in mice treated with rIL-22. Mechanistically, the upregulated expressions of these protective genes were achieved by activating STAT3. Conclusions Exogenous rIL-22 attenuates L-arginine-induced acute pancreatitis and intestinal mucosa injury in mice, via activating STAT3 signaling pathway and enhancing the expression of antimicrobial peptides and antiapoptotic genes.
Collapse
Affiliation(s)
- Jinxia Bai
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jinyun Bai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Meng Yang
- Dayi Primary Education Group, Shanghai, China
| |
Collapse
|
30
|
Tarasiuk A, Bulak K, Talar M, Fichna J. Chlorogenic acid reduces inflammation in murine model of acute pancreatitis. Pharmacol Rep 2021; 73:1448-1456. [PMID: 34383255 PMCID: PMC8460566 DOI: 10.1007/s43440-021-00320-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 10/28/2022]
Abstract
BACKGROUND The pathogenesis of acute pancreatitis (AP) initiation and progression is still unknown, and effective treatment is limited to supportive care. Many phytochemicals have the potential to alleviate AP symptoms and may be a useful and effective supplement to standard AP treatment. The objective of the study was to examine the potential role of chlorogenic acid (CGA), a polyphenol known for anti-inflammatory effect, in the treatment of experimental AP in mice. METHODS Two intraperitoneal (ip) injections of L-arginine (dosage 400 mg/100 g BW) were given 1 h apart to generate the AP murine model. Mice were separated into two experimental groups after 12 h from the first L-arginine injection: AP mice treated with CGA (oral gavage (po) every 12 h; 20 mg/kg BW) and non-treated AP mice (po vehicle, 5% dimethyl sulfoxide every 12 h). Every 12 h, control mice were given an equivalent volume of vehicle. At 72 h, mice were slaughtered. Histology, as well as myeloperoxidase (MPO) and amylase activity assays, were performed on pancreatic tissues. RESULTS In murine mouse model of AP po administration of CGA decreased MPO vs. AP (40.40 ± 2.10 U vs. 7.39 ± 0.34; p < 0.001) as well as amylase activity vs. AP (1444 ± 56 mU/mL vs. 3340 ± 144 mU/mL, Fig. 2B; p < 0.001). When comparing CGA mice to AP mice, histological research demonstrated that the severity of AP was reduced following CGA treatment. CONCLUSIONS The current study found that CGA might have anti-inflammatory effect on L-arginine-induced pancreatitis. Dietary intervention with CGA may be advised as a supportive treatment for AP, according to our findings.
Collapse
Affiliation(s)
- Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kamila Bulak
- Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
31
|
Kim S, Lim Y, Lee SY, Yoon HN, Yi H, Jang KH, Ku NO. Keratin 8 mutations in transgenic mice predispose to lung injury. J Cell Sci 2021; 134:jcs250167. [PMID: 34342355 DOI: 10.1242/jcs.250167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
Keratin 8 (K8) is the cytoskeletal intermediate filament protein of simple-type epithelia. Mutations in K8 predispose the affected individual and transgenic mouse to liver disease. However, the role of K8 in the lung has not been reported in mutant transgenic mouse models. Here, we investigated the susceptibility of two different transgenic mice expressing K8 Gly62-Cys (Gly62 replaced with Cys) or Ser74-Ala (Ser74 replaced with Ala) to lung injury. The mutant transgenic mice were highly susceptible to two independent acute and chronic lung injuries compared with control mice. Both K8 Gly62-Cys mice and K8 Ser74-Ala mice showed markedly increased mouse lethality (∼74% mutant mice versus ∼34% control mice) and more severe lung damage, with increased inflammation and apoptosis, under L-arginine-mediated acute lung injury. Moreover, the K8 Ser74-Ala mice had more severe lung damage, with extensive hemorrhage and prominent fibrosis, under bleomycin-induced chronic lung injury. Our study provides the first direct evidence that K8 mutations predispose to lung injury in transgenic mice.
Collapse
Affiliation(s)
- Sujin Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Younglan Lim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - So-Young Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Han-Na Yoon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Hayan Yi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Kwi-Hoon Jang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
- Department of Bio-Convergence ISED, Underwood International College, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
32
|
Betulinic Acid Ameliorates the Severity of Acute Pancreatitis via Inhibition of the NF-κB Signaling Pathway in Mice. Int J Mol Sci 2021; 22:ijms22136871. [PMID: 34206763 PMCID: PMC8268208 DOI: 10.3390/ijms22136871] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disorder, involving acinar cell death and the release of inflammatory cytokines. Currently, there are limited effective therapeutic agents for AP. Betulinic acid (BA) is a pentacyclic triterpenoid extracted from Betula platyphylla that has been shown to have anti-inflammatory effects. In this study, we aimed to investigate the effects of BA on AP and elucidate the potential underlying mechanisms. AP was induced in mice through six intraperitoneal injections of cerulein. After the last cerulein injection, the mice were sacrificed. Our results revealed that pre- and post-treatment with BA significantly reduced the severity of pancreatitis, as evidenced by a decrease in histological damage in the pancreas and lung, serum amylase and lipase activity and pancreatic myeloperoxidase activity. Furthermore, BA pretreatment reduced proinflammatory cytokine production, augmentation of chemokines, and infiltration of macrophages and neutrophils in the pancreas of AP mice. In addition, mice that were pretreated with BA showed a reduction in Iκ-Bα degradation and nuclear factor-kappa B (NF-κB) binding activity in the pancreas. Moreover, BA reduced the production of proinflammatory cytokines and NF-κB activation in pancreatic acinar cells (PACs). These findings suggest that BA may have prophylactic and therapeutic effects on AP via inhibition of the NF-κB signaling pathway.
Collapse
|
33
|
Yang X, Yao L, Fu X, Mukherjee R, Xia Q, Jakubowska MA, Ferdek PE, Huang W. Experimental Acute Pancreatitis Models: History, Current Status, and Role in Translational Research. Front Physiol 2020; 11:614591. [PMID: 33424638 PMCID: PMC7786374 DOI: 10.3389/fphys.2020.614591] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis is a potentially severe inflammatory disease that may be associated with a substantial morbidity and mortality. Currently there is no specific treatment for the disease, which indicates an ongoing demand for research into its pathogenesis and development of new therapeutic strategies. Due to the unpredictable course of acute pancreatitis and relatively concealed anatomical site in the retro-peritoneum, research on the human pancreas remains challenging. As a result, for over the last 100 years studies on the pathogenesis of this disease have heavily relied on animal models. This review aims to summarize different animal models of acute pancreatitis from the past to present and discuss their main characteristics and applications. It identifies key studies that have enhanced our current understanding of the pathogenesis of acute pancreatitis and highlights the instrumental role of animal models in translational research for developing novel therapies.
Collapse
Affiliation(s)
- Xinmin Yang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals National Health Service Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Qing Xia
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wei Huang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Bam R, Daryaei I, Abou-Elkacem L, Vilches-Moure JG, Meuillet EJ, Lutz A, Marinelli ER, Unger EC, Gambhir SS, Paulmurugan R. Toward the Clinical Development and Validation of a Thy1-Targeted Ultrasound Contrast Agent for the Early Detection of Pancreatic Ductal Adenocarcinoma. Invest Radiol 2020; 55:711-721. [PMID: 32569010 PMCID: PMC7541735 DOI: 10.1097/rli.0000000000000697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early detection of pancreatic ductal adenocarcinoma (PDAC) represents the most significant step toward the treatment of this aggressive lethal disease. Previously, we engineered a preclinical Thy1-targeted microbubble (MBThy1) contrast agent that specifically recognizes Thy1 antigen overexpressed in the vasculature of murine PDAC tissues by ultrasound (US) imaging. In this study, we adopted a single-chain variable fragment (scFv) site-specific bioconjugation approach to construct clinically translatable MBThy1-scFv and test for its efficacy in vivo in murine PDAC imaging, and functionally evaluated the binding specificity of scFv ligand to human Thy1 in patient PDAC tissues ex vivo. MATERIALS AND METHODS We recombinantly expressed the Thy1-scFv with a carboxy-terminus cysteine residue to facilitate its thioether conjugation to the PEGylated MBs presenting with maleimide functional groups. After the scFv-MB conjugations, we tested binding activity of the MBThy1-scFv to MS1 cells overexpressing human Thy1 (MS1Thy1) under liquid shear stress conditions in vitro using a flow chamber setup at 0.6 mL/min flow rate, corresponding to a wall shear stress rate of 100 seconds, similar to that in tumor capillaries. For in vivo Thy1 US molecular imaging, MBThy1-scFv was tested in the transgenic mouse model (C57BL/6J - Pdx1-Cre; KRas; Ink4a/Arf) of PDAC and in control mice (C57BL/6J) with L-arginine-induced pancreatitis or normal pancreas. To facilitate its clinical feasibility, we further produced Thy1-scFv without the bacterial fusion tags and confirmed its recognition of human Thy1 in cell lines by flow cytometry and in patient PDAC frozen tissue sections of different clinical grades by immunofluorescence staining. RESULTS Under shear stress flow conditions in vitro, MBThy1-scFv bound to MS1Thy1 cells at significantly higher numbers (3.0 ± 0.8 MB/cell; P < 0.01) compared with MBNontargeted (0.5 ± 0.5 MB/cell). In vivo, MBThy1-scFv (5.3 ± 1.9 arbitrary units [a.u.]) but not the MBNontargeted (1.2 ± 1.0 a.u.) produced high US molecular imaging signal (4.4-fold vs MBNontargeted; n = 8; P < 0.01) in the transgenic mice with spontaneous PDAC tumors (2-6 mm). Imaging signal from mice with L-arginine-induced pancreatitis (n = 8) or normal pancreas (n = 3) were not significantly different between the two MB constructs and were significantly lower than PDAC Thy1 molecular signal. Clinical-grade scFv conjugated to Alexa Fluor 647 dye recognized MS1Thy1 cells but not the parental wild-type cells as evaluated by flow cytometry. More importantly, scFv showed highly specific binding to VEGFR2-positive vasculature and fibroblast-like stromal components surrounding the ducts of human PDAC tissues as evaluated by confocal microscopy. CONCLUSIONS Our findings summarize the development and validation of a clinically relevant Thy1-targeted US contrast agent for the early detection of human PDAC by US molecular imaging.
Collapse
Affiliation(s)
- Rakesh Bam
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | | | - Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | | | | | - Amelie Lutz
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | | | | | - Sanjiv S. Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA
| |
Collapse
|
35
|
Diagnostic Value of Serum Amylase Levels Indicating Computed Tomography-Defined Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis: A Prospective Multicenter Observational Study. Pancreas 2020; 49:955-959. [PMID: 32658080 DOI: 10.1097/mpa.0000000000001606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis involves persistent serum amylase levels of 3 times or more the standard upper limit. However, these criteria were mostly based on retrospective studies and not necessarily supported by diagnostic imaging. Our prospective study aimed to investigate cutoff serum amylase levels suggesting post-ERCP pancreatitis using computed tomography as the criterion standard. METHODS We prospectively followed 2078 cases. Computed tomography was performed in patients whose serum amylase levels exceeded the institutional upper limit 12 to 24 hours after ERCP. Two expert radiologists blindly assessed the images and judged the presence or absence of pancreatitis. Correlations between serum amylase levels with pancreatitis were investigated using receiver operating characteristic analysis. RESULTS Amylase levels increased in 416 (23.2%) of 1789 cases included, and 350 cases were analyzed using computed tomography. Post-endoscopic retrograde cholangiopancreatography pancreatitis was diagnosed in 12.0% (214/1789). The cutoff amylase levels for judging pancreatitis after 12 to 24 hours was 2.75 times higher than the institutional upper limit, with an area under the curve of 0.77. CONCLUSIONS The appropriate cutoff serum amylase level for judging post-ERCP pancreatitis at 12 to 24 hours after ERCP was 2.75 times higher than the institutional upper limit. These results may clarify the definition of post-ERCP pancreatitis.
Collapse
|
36
|
Gui F, Zhang Y, Wan J, Zhan X, Yao Y, Li Y, Haddock AN, Shi J, Guo J, Chen J, Zhu X, Edenfield BH, Zhuang L, Hu C, Wang Y, Mukhopadhyay D, Radisky ES, Zhang L, Lugea A, Pandol SJ, Bi Y, Ji B. Trypsin activity governs increased susceptibility to pancreatitis in mice expressing human PRSS1R122H. J Clin Invest 2020; 130:189-202. [PMID: 31550238 DOI: 10.1172/jci130172] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
Currently, an effective targeted therapy for pancreatitis is lacking. Hereditary pancreatitis (HP) is a heritable, autosomal-dominant disorder with recurrent acute pancreatitis (AP) progressing to chronic pancreatitis (CP) and a markedly increased risk of pancreatic cancer. In 1996, mutations in PRSS1 were linked to the development of HP. Here, we developed a mouse model by inserting a full-length human PRSS1R122H gene, the most commonly mutated gene in human HP, into mice. Expression of PRSS1R122H protein in the pancreas markedly increased stress signaling pathways and exacerbated AP. After the attack of AP, all PRSS1R122H mice had disease progression to CP, with similar histologic features as those observed in human HP. By comparing PRSS1R122H mice with PRSS1WT mice, as well as enzymatically inactivated Dead-PRSS1R122H mice, we unraveled that increased trypsin activity is the mechanism for R122H mutation to sensitize mice to the development of pancreatitis. We further discovered that trypsin inhibition, in combination with anticoagulation therapy, synergistically prevented progression to CP in PRSS1R122H mice. These animal models help us better understand the complex nature of this disease and provide powerful tools for developing and testing novel therapeutics for human pancreatitis.
Collapse
Affiliation(s)
- Fu Gui
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuebo Zhang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jianhua Wan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Xianbao Zhan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yao Yao
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yinghua Li
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ashley N Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ji Shi
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jia Guo
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Xiaohui Zhu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Lu Zhuang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Cheng Hu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ying Wang
- Department of Biochemistry and Molecular Biology
| | | | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Aurelia Lugea
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yan Bi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
37
|
Ye X, Han X, Li B, Dai J, Wu Z, He Y, Wen L, Hu G. Dopamine D2 receptor activator quinpirole protects against trypsinogen activation during acute pancreatitis via upregulating HSP70. Am J Physiol Gastrointest Liver Physiol 2020; 318:G1000-G1012. [PMID: 32308041 DOI: 10.1152/ajpgi.00354.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Trypsinogen activation is the hallmark of acute pancreatitis (AP) independent of intra-acinar NF-κB activation and inflammation. We previously found that dopamine (DA) receptor 2 (DRD2) activation controls inflammation during AP via PP2A-dependent NF-κB activation. In this study, we sought to examine whether DRD2 signaling mediates trypsinogen activation and the underlying mechanisms. Pancreatic acinar cells were stimulated with cholecystokinin-8 in vitro. AP was induced by intraperitoneal injections of caerulein and LPS or l-arginine. Pancreatitis severity was assessed biochemically and histologically. We found that activation of DRD2 by quinpirole, a potent DRD2 agonist, resulted in the reduction of trypsinogen activation and the upregulation of HSP70 in vitro and in vivo. Mechanistically, we found that quinpirole induced dephosphorylation of heat shock factor 1 (HSF1), a master transcription factor of HSP70, leading to increased nuclear translocation of HSF1 in a PP2A-dependent pathway. Furthermore, DRD2 activation restored lysosomal pH and, therefore, maintained lysosomal cathepsin B activity in a HSP70-dependent manner. VER155008, a potent HSP70 antagonist, abolished the protective effects observed with DRD2 activation in vitro and in two experimental models of AP. Our data showed that besides controlling NF-κB activation, DRD2 activation prevented trypsinogen activation during acute pancreatitis via PP2A-dependent upregulation of HSP70 and further support that DRD2 agonist could be a promising therapeutic strategy for treating AP.NEW & NOTEWORTHY The current study demonstrated that activation of DRD2 by quinpirole protects against trypsinogen activation in the in vitro and in vivo setting of acute pancreatitis by upregulating HSP70 and restoring lysosomal degradation via a PP2A-dependent manner, therefore leading to reduced pancreatic injury. These findings provide a new mechanistic insight on the protective effect of DRD2 activation in acute pancreatitis.
Collapse
Affiliation(s)
- Xin Ye
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan He
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Shen S, Li B, Dai J, Wu Z, He Y, Wen L, Wang X, Hu G. BRD4 Inhibition Protects Against Acute Pancreatitis Through Restoring Impaired Autophagic Flux. Front Pharmacol 2020; 11:618. [PMID: 32457617 PMCID: PMC7227015 DOI: 10.3389/fphar.2020.00618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Impaired autophagy has been shown to play a critical role in experimental and human acute pancreatitis (AP). However, the mechanism for transcriptional regulation of autophagy remains largely unknown. In this study, we aim to explore the role of BRD4 (bromodomain-containing protein 4), a transcriptional repressor of autophagy, during AP. Changes in pancreatic BRD4 expression and the effect of BRD4 inhibition were measured in mice with AP (induced by caerulein and ethanol and palmitoleic acid) and in isolated pancreatic acinar cells stimulated with cholecystokinin (CCK). Pancreatitis severity was evaluated by serum amylase and pancreatic histopathology. The autophagic flux, the fusion of autophagosome and lysosome, and lysosomal degradation were evaluated. Sirtuin 1 (SIRT1) expression and the effect of SIRT1 inhibition were assessed. We found that pancreatic BRD4 expression was upregulated during various models of AP. BRD4 inhibition reduced CCK-stimulated pancreatic acinar cell injury and pro-inflammatory expression in vitro and protected against two models of experimental AP. Mechanistically, BRD4 inhibition restored impaired autophagic flux via promoting autophagosome-lysosome fusion and lysosomal degradation. BRD4 inhibition also upregulated SIRT1 and inhibition of SIRT1 reversed the effects of BRD4 inhibition on autophagic flux. Our data suggest that BRD4 is a potential therapeutic target for treating AP.
Collapse
Affiliation(s)
- Shuangjun Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan He
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Animal models to study the role of pulmonary intravascular macrophages in spontaneous and induced acute pancreatitis. Cell Tissue Res 2020; 380:207-222. [DOI: 10.1007/s00441-020-03211-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
|
40
|
Han X, Ni J, Wu Z, Wu J, Li B, Ye X, Dai J, Chen C, Xue J, Wan R, Wen L, Wang X, Hu G. Myeloid-specific dopamine D 2 receptor signalling controls inflammation in acute pancreatitis via inhibiting M1 macrophage. Br J Pharmacol 2020; 177:2991-3008. [PMID: 32060901 DOI: 10.1111/bph.15026] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/17/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Macrophage infiltration and activation is a critical step during acute pancreatitis (AP). We have shown that pancreas-specific D2 receptor signalling protects against AP severity. As it is unclear to what extent myeloid-specific D2 receptor mediates AP, we investigated the role of myeloid-specific D2 receptor signalling in AP. EXPERIMENTAL APPROACH Using wild-type and LysM+/cre D2 fl/fl mice, AP was induced by l-arginine, caerulein and LPS. Murine bone marrow-derived macrophages and human peripheral blood mononuclear cells (PBMCs) were isolated, cultured and then induced to M1 phenotype. AP severity was assessed by measurements of serum amylase and lipase and histological grading. Macrophage phenotype was assessed by flow cytometry and qRT-PCR. NADPH oxidase-induced oxidative stress and NF-κB and NLRP3 inflammasome signalling pathways were also evaluated. KEY RESULTS We found that dopaminergic system was activated and dopamine reduced inflammatory cytokine expression in M1-polarized macrophages from human PBMCs. Dopaminergic synthesis was also activated, but D2 receptor expression was down-regulated in M1-polarized macrophages from murine bone marrows. During AP, myeloid-specific D2 receptor deletion worsened pancreatic injury, systematic inflammation and promoted macrophages to M1 phenotype. Furthermore, M1 macrophages from LysM+/cre D2 fl/fl mice exhibited increased NADPH oxidase-induced oxidative stress and enhanced NF-κB and NLRP3 inflammasome activation. D2 receptor activation inhibited M1 macrophage polarization, oxidative stress-induced NF-κB and NLRP3 inflammasome activation. CONCLUSION AND IMPLICATIONS Our data for the first time showed that myeloid-specific D2 receptor signalling controls pancreatic injury and systemic inflammation via inhibiting M1 macrophage, suggesting D2 receptor activation might serve as therapeutic target for AP.
Collapse
Affiliation(s)
- Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianghong Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ye
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Zhang L, Liu S, Liu H, Yang C, Jiang A, Wei H, Sun D, Cai Z, Zheng Y. Versatile cationic liposomes for RIP3 overexpression in colon cancer therapy and RIP3 downregulation in acute pancreatitis therapy. J Drug Target 2020; 28:627-642. [PMID: 31868032 DOI: 10.1080/1061186x.2019.1708370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Because the induction of strong host antitumor responses plays a very important role in antitumor therapy, identifying effective approaches to elicit immunogenic cell death could have important implications. RIP3-dependent necroptotic cancer cells have been reported to release damage-associated molecular patterns and enhance antitumor immunity. In this study, hyaluronic acid-conjugated cationic liposomes (DOTAP/DOPE/PEG-DSPE/CHOL) (HA-P-LP) were prepared as a vector for mRIP3-pDNA overexpression in tumours. Compared with standard cationic liposomes, this vector markedly increased cellular gene internalisation in vitro, enhanced the tumour-targeting effect in vivo and exhibited a significant antitumor effect in combination with adjuvant chloroquine. Considering the dramatic increase in RIP3 under the pathological condition of pancreatitis and the correlation between pancreatitis and necroptosis, non-HA-conjugated liposomes with the same formulation loaded with shRNA mRIP3-pDNA effectively controlled the disease by decreasing the serum amylase concentration and inflammatory cell infiltration. The versatile cationic liposomes loaded with plasmids with opposing functions in this study provide a new concept and method for both tumour therapy and pancreatitis therapy.
Collapse
Affiliation(s)
- Lijing Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Simeng Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Huimin Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Chengli Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Ailing Jiang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Heng Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Dan Sun
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| | - Zheng Cai
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Sichuan, Chengdu, China
| |
Collapse
|
42
|
Son A, Ahuja M, Schwartz DM, Varga A, Swaim W, Kang N, Maleth J, Shin DM, Muallem S. Ca 2+ Influx Channel Inhibitor SARAF Protects Mice From Acute Pancreatitis. Gastroenterology 2019; 157:1660-1672.e2. [PMID: 31493399 DOI: 10.1053/j.gastro.2019.08.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pancreatitis is characterized by increased influx of Ca2+ into acinar cells, by unknown mechanisms. Inhibitors of Ca2+ influx channels could be effective in treating acute pancreatitis, but these have deleterious side effects that can result in death. We investigated the expression patterns and functions of acinar cell Ca2+ channels and factors that regulate them during development of acute pancreatitis, along with changes in the channel inactivator store-operated calcium entry-associated regulatory factor (SARAF). We investigated whether SARAF is a target for treatment of acute pancreatitis and its status in human with pancreatitis. METHODS We generated mice that expressed SARAF tagged with hemagglutinin, using CRISPR/Cas9 gene editing, and isolated acinar cells. We also performed studies with Saraf-/- mice, Sarafzf/zf mice, mice without disruption of Saraf (control mice), and mice that overexpress fluorescently labeled SARAF in acinar cells. We analyzed interactions between stromal interaction molecule 1 (STIM1) and SARAF in HEK cells stimulated with carbachol using fluorescence resonance energy transfer microscopy and immunoprecipitation. Mice were given injections of caerulein or L-arginine to induce pancreatitis. Pancreatic tissues and blood samples were collected and levels of serum amylase, trypsin, tissue damage, inflammatory mediators, and inflammatory cells were measured. We performed quantitative polymerase chain reaction analyses of pancreatic tissues from 6 organ donors without pancreatic disease (controls) and 8 patients with alcohol-associated pancreatitis. RESULTS Pancreatic levels of Ca2+ influx channels or STIM1 did not differ significantly between acinar cells from mice with vs. without pancreatitis. By contrast, pancreatic levels of Saraf messenger RNA and SARAF protein initially markedly increased but then decreased during cell stimulation or injection of mice with caerulein, resulting in excessive Ca2+ influx. STIM1 interacted stably with SARAF following stimulation of HEK or mouse acinar cells with physiologic levels of carbachol, but only transiently following stimulation with pathologic levels of carbachol, leading to excessive Ca2+ influx. We observed reduced levels of SARAF messenger RNA in pancreatic tissues from patients with pancreatitis, compared with controls. SARAF knockout mice developed more severe pancreatitis than control mice after administration of caerulein or L-arginine, and pancreatic acinar cells from these mice had significant increases in Ca2+ influx. Conversely, overexpression of SARAF in acini reduced Ca2+ influx, eliminated inflammation, and reduced severity of acute pancreatitis. CONCLUSIONS In mice with pancreatitis, SARAF initially increases but is then degraded, resulting in excessive, pathological Ca2+ influx by acinar cells. SARAF knockout mice develop more severe pancreatitis than control mice, whereas mice that express SARAF from a transgene in acinar cells develop less-severe pancreatitis. SARAF therefore appears to prevent pancreatic damage during development of acute pancreatitis. Strategies to stabilize or restore SARAF to acinar cells might be developed for treatment of pancreatitis.
Collapse
Affiliation(s)
- Aran Son
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Daniella M Schwartz
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Arpad Varga
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, First Department of Medicine, University of Szeged, Szeged, Hungary
| | - William Swaim
- NIDCR imaging core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Namju Kang
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jozsef Maleth
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea.
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
43
|
El-Kashef DH, Shaaban AA, El-Agamy DS. Protective role of pirfenidone against experimentally-induced pancreatitis. Pharmacol Rep 2019; 71:774-781. [PMID: 31376587 DOI: 10.1016/j.pharep.2019.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/02/2019] [Accepted: 04/08/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Pirfenidone (PFD) is an orally active antifibrotic agent that has anti-inflammatory activity in diverse animal models. Its effect against acute pancreatitis (AP) has not been elucidated. Hence, the present investigation was carried out to assess the potential protective role of PFD against l-arginine-induced AP in mice. METHODS AP was induced in adult male Swiss albino mice via intraperitoneal injections of l-arginine (4 g/kg, twice each 1 h apart). PFD (250 mg/kg, orally) was administered one day before and on the day of l-arginine challenge. Twenty-four hours after l-arginine injection, the severity of AP was evaluated using biochemical and histological analyses. Indices of oxidative stress, inflammation and apoptosis were evaluated using ELISA and immunohistochemistry (IHC). RESULTS PFD suppressed the development of l-arginine-induced AP as revealed by the improvement of histopathological lesions of pancreatic specimen and the significant reduction of serum amylase and lipase levels. Notably, PFD reduced the lipid peroxidation and enhanced the antioxidants such as reduced glutathione (GSH) and superoxide dismutase (SOD) in pancreatic tissue. Importantly, PFD suppressed AP-associated elevation of inflammatory cytokines along with depression of nuclear factor kappa-B (NF-κB) immuno-expression in pancreatic tissue. Lastly, PFD efficiently ameliorated AP-induced elevation of the pro-apoptotic protein (Bax) and increased AP-induced reduction of the anti-apoptotic protein (Bcl2). CONCLUSIONS PFD protected against l-arginine-induced AP in mice through anti-oxidative, anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia.
| |
Collapse
|
44
|
Choi JW, Shin JY, Jo IJ, Kim DG, Song HJ, Yoon CS, Oh H, Kim YC, Bae GS, Park SJ. 8α-Hydroxypinoresinol isolated from Nardostachys jatamansi ameliorates cerulein-induced acute pancreatitis through inhibition of NF-κB activation. Mol Immunol 2019; 114:620-628. [PMID: 31542607 DOI: 10.1016/j.molimm.2019.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
Acute pancreatitis (AP) is a severe inflammatory condition of the pancreas, with no specific treatment available. We have previously reported that Nardostachys jatamansi (NJ) ameliorates cerulein-induced AP. However, the specific compound responsible for this inhibitory effect has not been identified. Therefore, in the present study, we focused on a single compound, 8α-hydroxypinoresinol (HP), from NJ. The aim of this study was to determine the effect of HP on the development of pancreatitis in mice and to explore the underlying mechanism(s). AP was induced by the injection of cerulein (50 μg/kg/h) for 6 h. HP (0.5, 5 or 10 mg/kg, i.p.) was administered 1 h prior to and 1, 3 or 5 h after the first cerulein injection, with vehicle- and DMSO-treated groups as controls. Blood samples were collected to determine serum levels of amylase, lipase, and cytokines. The pancreas was removed for morphological examination, myeloperoxidase (MPO) assays, cytokine assays, and assessment of nuclear factor (NF)-κB activation. The lungs were removed for morphological examination and MPO assays. Administration of HP dramatically improved pancreatic damage and pancreatitis-associated lung damage and also reduced amylase and lipase activities in serum. Moreover, administration of HP reduced the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the pancreas and serum during AP. In addition, the administration of HP inhibited degradation of inhibitory κ-Bα (Iκ-Bα), NF-κB p65 translocation into nucleus and NF-κB binding activity in the pancreas. Our results suggest that HP exerted therapeutic effects on pancreatitis and these beneficial effects may be due to the inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Ji-Won Choi
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Joon Yeon Shin
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Il-Joo Jo
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea; Division of Beauty Sciences, School of Natural sciences, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Dong-Gu Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Chi-Su Yoon
- Korea Research Institute of Bioscience & Biotechnology, Yeongudanjiro 30, Cheongju, Chungbuk 28116, South Korea
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea
| | - Gi-Sang Bae
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea; Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea.
| | - Sung-Joo Park
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea; Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, South Korea.
| |
Collapse
|
45
|
McEachron KR, Skube ME, Yang Y, Hodges JS, Wilhelm J, Beilman G, Chinnakotla S, Schwarzenberg SJ, Bellin MD. Utility of arginine stimulation testing in preoperative assessment of children undergoing total pancreatectomy with islet autotransplantation. Clin Transplant 2019; 33:e13647. [PMID: 31230395 DOI: 10.1111/ctr.13647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Metabolic outcomes after total pancreatectomy with islet autotransplantation (TPIAT) are influenced by the islet mass transplanted. Preclinical and clinical studies indicate that insulin and C-peptide levels measured after intravenous administration of the beta cell secretagogue arginine can be used to estimate the available islet mass. We sought to determine if preoperative arginine stimulation test (AST) results predicted transplanted islet mass and metabolic outcomes in pediatric patients undergoing TPIAT. We evaluated the association of preoperative C-peptide and insulin responses to AST with islet isolation metrics using linear regression, and with postoperative insulin independence using logistic regression. Twenty-six TPIAT patients underwent preoperative AST from 2015 to 2018. The acute C-peptide response to arginine (ACRarg) was correlated with isolated islet equivalents (IEQ; r = 0.59, P = 0.002) and islet number (IPN; r = 0.48, P = 0.013). The acute insulin response to arginine (AIRarg) was not significantly correlated with IEQ (r = 0.38, P = 0.095) or IPN (r = 0.41, P = 0.071). Neither ACRarg nor AIRarg was associated with insulin use at 6 months postoperatively. Preoperative C-peptide response to arginine correlates with islet mass available for transplant in pediatric TPIAT patients. AST represents an additional tool before autotransplant to provide counseling on likely islet mass and to inform quality improvements of islet isolation techniques.
Collapse
Affiliation(s)
- Kendall R McEachron
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mariya E Skube
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Yi Yang
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - James S Hodges
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota
| | - Joshua Wilhelm
- University of Minnesota Schulze Diabetes Institute, Minneapolis, Minnesota
| | - Gregory Beilman
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Srinath Chinnakotla
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Sarah J Schwarzenberg
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Melena D Bellin
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
46
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
47
|
Abstract
Pancreatitis is a major risk factor for the development of pancreatic cancer. In genetically engineered mouse models, induction of pancreatic inflammation dramatically accelerates oncogenic KRas-induced fibrosis, precancerous PanIN formation, and tumorigenesis. Here we describe simple methods of secretagogue-induced experimental acute and chronic pancreatitis, the most commonly used pancreatitis models, and their applications in pancreatic cancer research. Additionally, the preparation of primary pancreatic acinar cells is introduced. Primary acinar cells can be used to study the early events of pancreatic inflammation and pancreatic acinar-to-ductal (ADM) metaplasia.
Collapse
|
48
|
Zhan X, Wan J, Zhang G, Song L, Gui F, Zhang Y, Li Y, Guo J, Dawra RK, Saluja AK, Haddock AN, Zhang L, Bi Y, Ji B. Elevated intracellular trypsin exacerbates acute pancreatitis and chronic pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 2019; 316:G816-G825. [PMID: 30943050 PMCID: PMC6620583 DOI: 10.1152/ajpgi.00004.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/31/2023]
Abstract
Intra-acinar trypsinogen activation occurs in the earliest stages of pancreatitis and is believed to play important roles in pancreatitis pathogenesis. However, the exact role of intra-acinar trypsin activity in pancreatitis remains elusive. Here, we aimed to examine the specific effects of intra-acinar trypsin activity on the development of pancreatitis using a transgenic mouse model. This transgenic mouse model allowed for the conditional expression of a mutant trypsinogen that can be activated specifically inside pancreatic acinar cells. We found that expression of this active mutated trypsin had no significant effect on triggering spontaneous pancreatitis. Instead, several protective compensatory mechanisms, including SPINK1 and heat shock proteins, were upregulated. Notably, these transgenic mice developed much more severe acute pancreatitis, compared with control mice, when challenged with caerulein. Elevated tissue edema, serum amylase, inflammatory cell infiltration and acinar cell apoptosis were dramatically associated with increased trypsin activity. Furthermore, chronic pathological changes were observed in the pancreas of all transgenic mice, including inflammatory cell infiltration, parenchymal atrophy and cell loss, fibrosis, and fatty replacement. These changes were not observed in control mice treated with caerulein. The alterations in pancreata from transgenic mice mimicked the histological changes common to human chronic pancreatitis. Taken together, we provided in vivo evidence that increased intra-acinar activation of trypsinogen plays an important role in the initiation and progression of both acute and chronic pancreatitis. NEW & NOTEWORTHY Trypsinogen is activated early in pancreatitis. However, the roles of trypsin in the development of pancreatitis have not been fully addressed. Using a genetic approach, we showed trypsin activity is critical for the severity of both acute and chronic pancreatitis.
Collapse
Affiliation(s)
- Xianbao Zhan
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
- Department of Oncology, Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Jianhua Wan
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Guowei Zhang
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Lele Song
- Department of Oncology, Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Fu Gui
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Yuebo Zhang
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Yinghua Li
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Jia Guo
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Rajinder K Dawra
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami , Miami, Florida
| | - Ashok K Saluja
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami , Miami, Florida
| | - Ashley N Haddock
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| | - Lizhi Zhang
- Department of Pathology, Mayo Clinic , Rochester, Minnesota
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic , Jacksonville, Florida
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic , Jacksonville, Florida
| |
Collapse
|
49
|
Saluja A, Dudeja V, Dawra R, Sah RP. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology 2019; 156:1979-1993. [PMID: 30776339 DOI: 10.1053/j.gastro.2019.01.268] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Premature activation of digestive enzymes in the pancreas has been linked to development of pancreatitis for more than a century. Recent development of novel models to study the role of pathologic enzyme activation has led to advances in our understanding of the mechanisms of pancreatic injury. Colocalization of zymogen and lysosomal fraction occurs early after pancreatitis-causing stimulus. Cathepsin B activates trypsinogen in these colocalized organelles. Active trypsin increases permeability of these organelles resulting in leakage of cathepsin B into the cytosol leading to acinar cell death. Although trypsin-mediated cell death leads to pancreatic injury in early stages of pancreatitis, multiple parallel mechanisms, including activation of inflammatory cascades, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction in the acinar cells are now recognized to be important in driving the profound systemic inflammatory response and extensive pancreatic injury seen in acute pancreatitis. Chymotrypsin, another acinar protease, has recently been shown be play critical role in clearance of pathologically activated trypsin protecting against pancreatic injury. Mutations in trypsin and other genes thought to be associated with pathologic enzyme activation (such as serine protease inhibitor 1) have been found in familial forms of pancreatitis. Sustained intra-acinar activation of nuclear factor κB pathway seems to be key pathogenic mechanism in chronic pancreatitis. Better understanding of these mechanisms will hopefully allow us to improve treatment strategies in acute and chronic pancreatitis.
Collapse
|
50
|
Vrolyk V, Schneberger D, Le K, Wobeser BK, Singh B. Mouse model to study pulmonary intravascular macrophage recruitment and lung inflammation in acute necrotizing pancreatitis. Cell Tissue Res 2019; 378:97-111. [DOI: 10.1007/s00441-019-03023-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
|