1
|
Luo W, Cao H, Hu Y, Liu Z, Yang J, Deng P, Huang S, Huang Q, Wei H. Optimizing nutritional strategies in term NEC and perforation infants after intestinal operation: a retrospective study. Sci Rep 2025; 15:5577. [PMID: 39955353 PMCID: PMC11829962 DOI: 10.1038/s41598-025-90366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Necrotizing enterocolitis (NEC) represents a severe condition in infants, with perforation being a particularly critical pathological manifestation. However, there is an absence of guidelines regarding the refeeding of infants recovering from perforation subsequent to NEC. This study aimed to determine the optimal refeeding method for term infants recovering from perforation after NEC. The study encompassed three aspects: the timing of enteral nutrition (EN) resumption, the progression of EN, and the method of EN resumption. Ninety full-term neonates who developed perforation following NEC and underwent surgical intervention were included. These samples were divided into early enteral nutrition (EEN, < 7 days) and late enteral nutrition (LEN, ≥ 7 days) groups based on the timing of EN resumption; faster increase (FI, ≥ 20 ml/kg/d) and slower increase (SI, < 20 ml/kg/d) groups based on the progression of EN; intact protein formula (IPF), special medical formula (SMF, including EHF and AABF), and mixed feeding (MF) groups based on the method of EN resumption. EEN infants had a lower incidence of intestinal stenosis and reoperation (43.5% vs. 77.6%, p = 0.002; 60.9% vs. 82.1%, p = 0.038), and a shorter duration of hospital stay after surgery and parenteral nutrition (PN) than LEN infants (14 days vs. 20 days, p < 0.001; 11 days vs. 17 days, p < 0.001). Faster increasing feed volumes was associated with shorter duration of hospital stay and parenteral nutrition (15 days vs. 20 days, p < 0.001; 14 days vs. 17 days, p < 0.001), but a slower rate of weight gain (0.020 kg vs. 0.129 kg, p < 0.01). The time to repeat NPO in SMF group is shorter than IPF an MF groups (3 days vs. 4 days and 9 days, p = 0.025). Our study demonstrates the beneficial effects of early enteral feeding and fast advancement of feed volumes in term infants with NEC and perforation after surgery, specifically in reducing short-term complications and the duration of hospital stay following surgery and PN. Additionally, this study suggests that IPF and MF significantly contribute to stimulate intestinal adoption recovery.
Collapse
Affiliation(s)
- Wen Luo
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Han Cao
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ya Hu
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhenqiu Liu
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jing Yang
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Pinglan Deng
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shan Huang
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qianjing Huang
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hong Wei
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
2
|
Offersen SM, Henriksen NL, Brunse A. A weighted and cumulative point system for accurate scoring of intestinal pathology in a piglet model of necrotizing enterocolitis. Exp Mol Pathol 2024; 140:104936. [PMID: 39366159 DOI: 10.1016/j.yexmp.2024.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Necrotizing enterocolitis (NEC) is a serious condition in premature infants, in which a portion of the intestine undergoes inflammation and necrosis. The preterm pig develops NEC spontaneously, making it a suitable model for exploring novel NEC treatments. We aimed to revise the intestinal scoring system to more accurately describe the diversity of NEC lesions in the preterm piglet model. We included 333 preterm piglets from four experiments, each delivered via cesarean section. The piglets were fed either a gently processed (GP) or harshly processed (HP) milk formula for 96 h before euthanasia. At necropsy, the gastrointestinal tract was assessed with 1) an established 6-grade score and 2) a descriptive approach focusing on the distribution and severity of hyperemia, hemorrhage, pneumatosis intestinalis (intramural gas), and necrosis. Subsequently, the descriptive registrations were converted into a weighted and cumulative point (WCP) score. Compared to the 6-grade score, the WCP score enabled a greater segregation of severity levels, especially among organs with more prominent NEC lesions. IL-1β in small intestinal lesions and both IL-8 and IL-1β in colon lesions correlated positively with the WCP scale. A histopathological grade system (0-8) was established and revealed mucosal pathology in lesion biopsies, which were not recognized macroscopically. Finally, the WCP score showed a higher NEC-promoting effect of the HP formula compared to the GP formula. The descriptive registrations and extended score range of this revised intestinal scoring system enhance the accuracy of describing NEC lesions in preterm pigs. This approach may increase the efficiency of preclinical NEC experiments.
Collapse
Affiliation(s)
- Simone Margaard Offersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Nicole Lind Henriksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anders Brunse
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
3
|
Aasmul-Olsen K, Akıllıoğlu HG, Christiansen LI, Engholm-Keller K, Brunse A, Stefanova DV, Bjørnshave A, Bechshøft MR, Skovgaard K, Thymann T, Sangild PT, Lund MN, Bering SB. A Gently Processed Skim Milk-Derived Whey Protein Concentrate for Infant Formula: Effects on Gut Development and Immunity in Preterm Pigs. Mol Nutr Food Res 2024; 68:e2300458. [PMID: 38389157 DOI: 10.1002/mnfr.202300458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/15/2023] [Indexed: 02/24/2024]
Abstract
SCOPE Processing of whey protein concentrate (WPC) for infant formulas may induce protein modifications with severe consequences for preterm newborn development. The study investigates how conventional WPC and a gently processed skim milk-derived WPC (SPC) affect gut and immune development after birth. METHODS AND RESULTS Newborn, preterm pigs used as a model of preterm infants were fed formula containing WPC, SPC, extra heat-treated SPC (HT-SPC), or stored HT-SPC (HTS-SPC) for 5 days. SPC contained no protein aggregates and more native lactoferrin, and despite higher Maillard reaction product (MRP) formation, the clinical response and most gut and immune parameters are similar to WPC pigs. SPC feeding negatively impacts intestinal MRP accumulation, mucosa, and bacterial diversity. In contrast, circulating T-cells are decreased and oxidative stress- and inflammation-related genes are upregulated in WPC pigs. Protein aggregation and MRP formation increase in HTS-SPC, leading to reduced antibacterial activity, lactase/maltase ratio, circulating neutrophils, and cytotoxic T-cells besides increased gut MRP accumulation and expression of TNFAIP3. CONCLUSION The gently processed SPC has more native protein, but higher MRP levels than WPC, resulting in similar tolerability but subclinical adverse gut effects in preterm pigs. Additional heat treatment and storage further induce MRP formation, gut inflammation, and intestinal mucosal damage.
Collapse
Affiliation(s)
- Karoline Aasmul-Olsen
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Halise Gül Akıllıoğlu
- Section for Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Line Iadsatian Christiansen
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Kasper Engholm-Keller
- Section for Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Anders Brunse
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Denitsa Vladimirova Stefanova
- Section for Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | | | | | - Kerstin Skovgaard
- Section for Protein Science and Biotherapeutics, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Thomas Thymann
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Per Torp Sangild
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, 2100, Denmark
- Hans Christian Andersen Children's Hospital, Odense, 5000, Denmark
| | - Marianne Nissen Lund
- Section for Ingredient and Dairy Technology, Department of Food Science, University of Copenhagen, Frederiksberg, 1958, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Stine Brandt Bering
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| |
Collapse
|
4
|
Gerrard SD, Yonke JA, Seymour KA, Sunny NE, El-Kadi SW. Feeding medium-chain fatty acid-rich formula causes liver steatosis and alters hepatic metabolism in neonatal pigs. Am J Physiol Gastrointest Liver Physiol 2023; 325:G135-G146. [PMID: 37280515 DOI: 10.1152/ajpgi.00164.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Medium-chain fatty acids (MCFA) and long-chain fatty acids (LCFAs) are often added to enhance the caloric value of infant formulas. Evidence suggests that MCFAs promote growth and are preferred over LCFAs due to greater digestibility and ease of absorption. Our hypothesis was that MCFA supplementation would enhance neonatal pig growth to a greater extent than LCFAs. Neonatal pigs (n = 4) were fed a low-energy control (CONT) or two isocaloric high-energy formulas containing fat either from LCFAs, or MCFAs for 20 days. Pigs fed the LCFAs had greater body weight compared with CONT- and MCFA-fed pigs (P < 0.05). In addition, pigs fed the LCFAs and MCFAs had more body fat than those in the CONT group. Liver and kidney weights as a percentage of body weight were greater (P ≤ 0.05) for pigs fed the MCFAs than those fed the CONT formula, and in those fed LCFAs, liver and kidney weights as a percentage of body weight were intermediate (P ≤ 0.05). Pigs in the CONT and LCFA groups had less liver fat (12%) compared with those in the MCFA (26%) group (P ≤ 0.05). Isolated hepatocytes from these pigs were incubated in media containing [13C]tracers of alanine, glucose, glutamate, and propionate. Our data suggest alanine contribution to pyruvate is less in hepatocytes from LCFA and MCFA pigs than those in the CONT group (P < 0.05). These data suggest that a formula rich in MCFAs caused steatosis compared with an isocaloric LCFA formula. In addition, MCFA feeding can alter hepatocyte metabolism and increase total body fat without increasing lean deposition.NEW & NOTEWORTHY Our data suggest that feeding high-energy MCFA formula resulted in hepatic steatosis compared with isoenergetic LCFA or low-energy formulas. Steatosis coincided with greater laurate, myristate, and palmitate accumulation, suggesting elongation of dietary laurate. Data also suggest that hepatocytes metabolized alanine and glucose to pyruvate, but neither entered the tricarboxylic acid (TCA) cycle. In addition, the contribution of alanine and glucose was greater for the low-energy formulas compared with the high-energy formulas.
Collapse
Affiliation(s)
- Samuel D Gerrard
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Joseph A Yonke
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Kacie A Seymour
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, United States
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States
| | - Samer W El-Kadi
- School of Animal Sciences, Virginia Tech, Blacksburg, Virginia, United States
| |
Collapse
|
5
|
Lyderik KK, Zhang X, Larsen C, Kjeldsen NJ, Pedersen MLM, Hedemann MS, Williams AR, Amdi C, Madsen JG. Effects of Weaning Age and Creep Feed Type on Growth Performance and Gut Maturation in Weaned Piglets. Animals (Basel) 2023; 13:1851. [PMID: 37889763 PMCID: PMC10251834 DOI: 10.3390/ani13111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 10/29/2023] Open
Abstract
The objective was to study the effects of weaning in week 5 (W5) vs. week 4 (W4), as well as liquid (LF) vs. dry feed (DF), on growth performance, disaccharidase activity and nutrient transporter expression after weaning. The experiment included 12,923 pigs fed LF or DF in the pre-weaning period and a subpopulation of 15 pigs from each group, W4DF, W4LF, W5DF and W5LF, which were weighed and euthanized five days after weaning. The proximal part of the small intestine was analyzed for maltase, lactase and sucrase activity and the expression of SGLT-1, GLUT-2 and PepT-1. Pigs fed LF displayed less maltase activity (2100 vs. 2729 U/mg protein, p < 0.05) but an increased expression of SGLT-1 (∆Ct: 5.22 vs. 6.21, p = 0.01). Pigs weaned in W5 were heavier than those weaned in W4 (9.35 vs. 7.11 kg BW, p ≤ 0.05), and pigs fed LF were heavier than those fed DF (8.55 vs. 7.91 kg BW, p ≤ 0.05) five days after weaning in the subpopulation. LF pigs (21.8 kg) were heavier than DF pigs (20.6 kg) (SE 0.108, p < 0.0001), and W4 pigs (21.0 kg) were lighter than W5 pigs (21.5 kg) (SE 0.108, p = 0.01) at nine weeks. LF increased weight gain in the early post-weaning period and at nine weeks, although this was apparently not explained by accelerated gut maturation.
Collapse
Affiliation(s)
- Kimmie Kyed Lyderik
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg, Denmark; (K.K.L.); (X.Z.); (C.L.); (A.R.W.)
| | - Xuwen Zhang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg, Denmark; (K.K.L.); (X.Z.); (C.L.); (A.R.W.)
| | - Christina Larsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg, Denmark; (K.K.L.); (X.Z.); (C.L.); (A.R.W.)
| | | | | | - Mette Skou Hedemann
- Department of Animal and Veterinary Sciences, Faculty of Technical Sciences, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark;
| | - Andrew Richard Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg, Denmark; (K.K.L.); (X.Z.); (C.L.); (A.R.W.)
| | - Charlotte Amdi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg, Denmark; (K.K.L.); (X.Z.); (C.L.); (A.R.W.)
| | - Johannes Gulmann Madsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg, Denmark; (K.K.L.); (X.Z.); (C.L.); (A.R.W.)
| |
Collapse
|
6
|
Ragan MV, Wala SJ, Sajankila N, Duff AF, Wang Y, Volpe SG, Al-Hadidi A, Dumbauld Z, Purayil N, Wickham J, Conces MR, Mihi B, Goodman SD, Bailey MT, Besner GE. Development of a novel definitive scoring system for an enteral feed-only model of necrotizing enterocolitis in piglets. Front Pediatr 2023; 11:1126552. [PMID: 37138566 PMCID: PMC10149862 DOI: 10.3389/fped.2023.1126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Necrotizing enterocolitis (NEC) is a complex inflammatory disorder of the human intestine that most often occurs in premature newborns. Animal models of NEC typically use mice or rats; however, pigs have emerged as a viable alternative given their similar size, intestinal development, and physiology compared to humans. While most piglet NEC models initially administer total parenteral nutrition prior to enteral feeds, here we describe an enteral-feed only piglet model of NEC that recapitulates the microbiome abnormalities present in neonates that develop NEC and introduce a novel multifactorial definitive NEC (D-NEC) scoring system to assess disease severity. Methods Premature piglets were delivered via Caesarean section. Piglets in the colostrum-fed group received bovine colostrum feeds only throughout the experiment. Piglets in the formula-fed group received colostrum for the first 24 h of life, followed by Neocate Junior to induce intestinal injury. The presence of at least 3 of the following 4 criteria were required to diagnose D-NEC: (1) gross injury score ≥4 of 6; (2) histologic injury score ≥3 of 5; (3) a newly developed clinical sickness score ≥5 of 8 within the last 12 h of life; and (4) bacterial translocation to ≥2 internal organs. Quantitative reverse transcription polymerase chain reaction was performed to confirm intestinal inflammation in the small intestine and colon. 16S rRNA sequencing was performed to evaluate the intestinal microbiome. Results Compared to the colostrum-fed group, the formula-fed group had lower survival, higher clinical sickness scores, and more severe gross and histologic intestinal injury. There was significantly increased bacterial translocation, D-NEC, and expression of IL-1α and IL-10 in the colon of formula-fed compared to colostrum-fed piglets. Intestinal microbiome analysis of piglets with D-NEC demonstrated lower microbial diversity and increased Gammaproteobacteria and Enterobacteriaceae. Conclusions We have developed a clinical sickness score and a new multifactorial D-NEC scoring system to accurately evaluate an enteral feed-only piglet model of NEC. Piglets with D-NEC had microbiome changes consistent with those seen in preterm infants with NEC. This model can be used to test future novel therapies to treat and prevent this devastating disease.
Collapse
Affiliation(s)
- Mecklin V. Ragan
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Samantha J. Wala
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Nitin Sajankila
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Audrey F. Duff
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Yijie Wang
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Samuel G. Volpe
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Ameer Al-Hadidi
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Zachary Dumbauld
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Nanditha Purayil
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joseph Wickham
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Miriam R. Conces
- Department of Pathology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Belgacem Mihi
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Gail E. Besner
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
7
|
Bautista GM, Cera AJ, Chaaban H, McElroy SJ. State-of-the-art review and update of in vivo models of necrotizing enterocolitis. Front Pediatr 2023; 11:1161342. [PMID: 37082706 PMCID: PMC10112335 DOI: 10.3389/fped.2023.1161342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/13/2023] [Indexed: 04/22/2023] Open
Abstract
NEC remains one of the most common causes of mortality and morbidity in preterm infants. Animal models of necrotizing enterocolitis (NEC) have been crucial in improving our understanding of this devastating disease and identifying biochemical pathways with therapeutic potential. The pathogenesis of NEC remains incompletely understood, with no specific entity that unifies all infants that develop NEC. Therefore, investigators rely on animal models to manipulate variables and provide a means to test interventions, making them valuable tools to enhance our understanding and prevent and treat NEC. The advancements in molecular analytic tools, genetic manipulation, and imaging modalities and the emergence of scientific collaborations have given rise to unique perspectives and disease correlates, creating novel pathways of investigation. A critical review and understanding of the current phenotypic considerations of the highly relevant animal models of NEC are crucial to developing novel therapeutic and preventative strategies for NEC.
Collapse
Affiliation(s)
- Geoanna M. Bautista
- Department of Pediatrics, Division of Neonatology, University of California, Davis, Sacramento, CA, United States
| | - Anjali J. Cera
- Department of Pediatrics, Division of Neonatology, University of California, Davis, Sacramento, CA, United States
| | - Hala Chaaban
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Steven J. McElroy
- Department of Pediatrics, Division of Neonatology, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
8
|
Wang K, Tao GZ, Salimi-Jazi F, Lin PY, Sun Z, Liu B, Sinclair T, Mostaghimi M, Dunn J, Sylvester KG. Butyrate induces development-dependent necrotizing enterocolitis-like intestinal epithelial injury via necroptosis. Pediatr Res 2023; 93:801-809. [PMID: 36202969 DOI: 10.1038/s41390-022-02333-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 03/05/2023]
Abstract
BACKGROUND The accumulation of short-chain fatty acids (SCFAs) from bacterial fermentation may adversely affect the under-developed gut as observed in premature newborns at risk for necrotizing enterocolitis (NEC). This study explores the mechanism by which specific SCFA fermentation products may injure the premature newborn intestine mucosa leading to NEC-like intestinal cell injury. METHODS Intraluminal injections of sodium butyrate were administered to 14- and 28-day-old mice, whose small intestine and stool were harvested for analysis. Human intestinal epithelial stem cells (hIESCs) and differentiated enterocytes from preterm and term infants were treated with sodium butyrate at varying concentrations. Necrosulfonamide (NSA) and necrostatin-1 (Nec-1) were used to determine the protective effects of necroptosis inhibitors on butyrate-induced cell injury. RESULTS The more severe intestinal epithelial injury was observed in younger mice upon exposure to butyrate (p = 0.02). Enterocytes from preterm newborns demonstrated a significant increase in sensitivity to butyrate-induced cell injury compared to term newborn enterocytes (p = 0.068, hIESCs; p = 0.038, differentiated cells). NSA and Nec-1 significantly inhibited the cell death induced by butyrate. CONCLUSIONS Butyrate induces developmental stage-dependent intestinal injury that resembles NEC. A primary mechanism of cell injury in NEC is necroptosis. Necroptosis inhibition may represent a potential preventive or therapeutic strategy for NEC. IMPACT Butyrate induces developmental stage-dependent intestinal injury that resembles NEC. A primary mechanism of cell injury caused by butyrate in NEC is necroptosis. Necroptosis inhibitors proved effective at significantly ameliorating the enteral toxicity of butyrate and thereby suggest a novel mechanism and approach to the prevention and treatment of NEC in premature newborns.
Collapse
Affiliation(s)
- Kewei Wang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, 110001, Shenyang, Liaoning Province, China
| | - Guo-Zhong Tao
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | | | - Po-Yu Lin
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhen Sun
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Liu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiffany Sinclair
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mirko Mostaghimi
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - James Dunn
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Karl G Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Metabolic Health Center, Stanford University School of Medicine and Stanford Healthcare, Stanford, CA, USA.
| |
Collapse
|
9
|
Trevisi P, Negrini C, Correa F, Virdis S, Laghi L, Marcello M, Conte G, Mazzoni M, Luise D. Insight into the long-term impact of birth weight on intestinal development, microbial settlement, and the metabolism of weaned piglets. J Anim Sci 2023; 101:skad395. [PMID: 38064718 PMCID: PMC10963063 DOI: 10.1093/jas/skad395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Infant mortality of low birth body weight (LBBW) piglets can reach 10% and is mainly due to gut and immune system immaturity which can lead to a higher risk in the long term. This study aimed to assess the impact of birth body weight (BBW) on piglet metabolism, gut status, and microbial profile from weaning to 21 d postweaning. At birth, 32 piglets were selected for their BBW and inserted into the normal BBW (NBBW:1.38 ± 0.09 g) or the LBBW (0.92 ± 0.07 g) group. The piglets were weighed weekly from weaning (d0) to d21. At d9 and d21, 8 piglets/group were slaughtered to obtain the distal jejunum for morphology, immunohistochemistry, and gene expression analysis, colon content for microbiota and short-chain fatty acid (SCFA) analysis, and intestinal content for pH measurement. Blood was collected for metabolomic, haptoglobin (Hp), and reactive oxygen metabolite (ROM) analysis. The LBBW group had a lower body weight (BW) throughout the study (P < 0.01), a lower average daily gain from d9-d21 (P = 0.002), and lower feed intake (P = 0.02). The LBBW piglets had lower Hp at d9 (P = 0.03), higher ROMs at d21 (P = 0.06), and a net alteration of the amino acid (AA) metabolism at d9 and d21. A higher expression of NFKB2 was observed in the LBBW piglets at d9 (P = 0.003) and d21 (P < 0.001). MYD88 expression was enhanced in NBBW piglets at d9 (P < 0.001). The LBBW piglets had a lower villus height, absorptive mucosal surface (P = 0.01), and villus height:crypt depth ratio (P = 0.02), and a greater number of T-lymphocytes in both the epithelium and the crypts (P < 0.001) at d21. At d21, the LBBW piglets had higher lactic acid, acetate, butyrate, and valerate, and also higher SCFA in the colon (P < 0.05). The LBBW piglets had a higher Shannon index (P = 0.01) at d9 and a higher abundance of SCFA-fermenting bacteria. In conclusion, the present study confirmed that LBBW could impact the gut mucosal structure, immunity, and inflammatory and oxidative status, leading to an altered AA metabolism, and delaying the recovery from weaning.
Collapse
Affiliation(s)
- Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Clara Negrini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Sara Virdis
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Mele Marcello
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Ferraris L, Balvay A, Bellet D, Delannoy J, Maudet C, Larcher T, Rozé JC, Philippe C, Meylheuc T, Butel MJ, Rabot S, Aires J. Neonatal necrotizing enterocolitis: Clostridium butyricum and Clostridium neonatale fermentation metabolism and enteropathogenicity. Gut Microbes 2023; 15:2172666. [PMID: 36801067 PMCID: PMC9980464 DOI: 10.1080/19490976.2023.2172666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Bacterial colonization in the gut plays a pivotal role in neonatal necrotizing enterocolitis (NEC) development, but the relationship between bacteria and NEC remains unclear. In this study, we aimed to elucidate whether bacterial butyrate end-fermentation metabolites participate in the development of NEC lesions and confirm the enteropathogenicity of Clostridium butyricum and Clostridium neonatale in NEC. First, we produced C.butyricum and C.neonatale strains impaired in butyrate production by genetically inactivating the hbd gene encoding β-hydroxybutyryl-CoA dehydrogenase that produces end-fermentation metabolites. Second, we evaluated the enteropathogenicty of the hbd-knockout strains in a gnotobiotic quail model of NEC. The analyses showed that animals harboring these strains had significantly fewer and less intense intestinal lesions than those harboring the respective wild-type strains. In the absence of specific biological markers of NEC, the data provide original and new mechanistic insights into the disease pathophysiology, a necessary step for developing potential novel therapies.
Collapse
Affiliation(s)
- Laurent Ferraris
- Université Paris Cité, INSERM, UMR-S 1139, 3PHM, Paris, France,FHU PREMA « Fighting prematurity, Paris, France
| | - Aurélie Balvay
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Deborah Bellet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Johanne Delannoy
- Université Paris Cité, INSERM, UMR-S 1139, 3PHM, Paris, France,FHU PREMA « Fighting prematurity, Paris, France
| | - Claire Maudet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Jean-Christophe Rozé
- INRAE, UMR 1280, Physiologie des Adaptations Nutritionnelles (PhAN), Université hospitalière de Nantes, Nantes, France
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Thierry Meylheuc
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-José Butel
- Université Paris Cité, INSERM, UMR-S 1139, 3PHM, Paris, France,FHU PREMA « Fighting prematurity, Paris, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Julio Aires
- Université Paris Cité, INSERM, UMR-S 1139, 3PHM, Paris, France,FHU PREMA « Fighting prematurity, Paris, France,CONTACT Julio Aires Université Paris Cité, INSERM, UMR-S 1139, 3PHM, F-75006Paris, France
| |
Collapse
|
11
|
Jiang Q, Li T, Chen W, Huo Y, Mou X, Zhao W. Microbial regulation of offspring diseases mediated by maternal-associated microbial metabolites. Front Microbiol 2022; 13:955297. [PMID: 36406399 PMCID: PMC9672376 DOI: 10.3389/fmicb.2022.955297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The microbiota plays a crucial role in individuals’ early and long-term health. Previous studies indicated that the microbial regulation of health may start before birth. As the in utero environment is (nearly) sterile, the regulation is probably be originated from maternal microbiota and mediated by their metabolites transferred across the placenta. After the birth, various metabolites are continuously delivered to offspring through human milk feeding. Meanwhile, some components, for example, human milk oligosaccharides, in human milk can only be fermented by microbes, which brings beneficial effects on offspring health. Hence, we speculated that human milk-derived metabolites may also play roles in microbial regulation. However, reports between maternal-associated microbial metabolites and offspring diseases are still lacking and sparsely distributed in several fields. Also, the definition of the maternal-associated microbial metabolite is still unclear. Thus, it would be beneficial to comb through the current knowledge of these metabolites related to diseases for assisting our goals of early prediction, early diagnosis, early prevention, or early treatment through actions only on mothers. Therefore, this review aims to present studies showing how researchers came to the path of investigating these metabolites and then to present studies linking them to the development of offspring asthma, type 1 diabetes mellitus, food allergy, neonatal necrotizing enterocolitis, or autism spectrum disorder. Potential English articles were collected from PubMed by searching terms of disease(s), maternal, and a list of microbial metabolites. Articles published within 5 years were preferred.
Collapse
Affiliation(s)
- Qingru Jiang
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tian Li
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei Chen
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yingfang Huo
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiangyu Mou
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xiangyu Mou,
| | - Wenjing Zhao
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Wenjing Zhao,
| |
Collapse
|
12
|
Inflammatory Bowel Disease and Customized Nutritional Intervention Focusing on Gut Microbiome Balance. Nutrients 2022; 14:nu14194117. [PMID: 36235770 PMCID: PMC9572914 DOI: 10.3390/nu14194117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents a chronic relapsing–remitting condition affecting the gastrointestinal system. The specific triggering IBD elements remain unknown: genetic variability, environmental factors, and alterations in the host immune system seem to be involved. An unbalanced diet and subsequent gut dysbiosis are risk factors, too. This review focuses on the description of the impact of pro- and anti-inflammatory food components on IBD, the role of different selected regimes (such as Crohn’s Disease Exclusion Diet, Immunoglobulin Exclusion Diet, Specific Carbohydrate Diet, LOFFLEX Diet, Low FODMAPs Diet, Mediterranean Diet) in the IBD management, and their effects on the gut microbiota (GM) composition and balance. The purpose is to investigate the potential positive action on IBD inflammation, which is associated with the exclusion or addition of certain foods or nutrients, to more consciously customize the nutritional intervention, taking also into account GM fluctuations during both disease flare-up and remission.
Collapse
|
13
|
Liu C, Zhan S, Tian Z, Li N, Li T, Wu D, Zeng Z, Zhuang X. Food Additives Associated with Gut Microbiota Alterations in Inflammatory Bowel Disease: Friends or Enemies? Nutrients 2022; 14:nu14153049. [PMID: 35893902 PMCID: PMC9330785 DOI: 10.3390/nu14153049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
During the 21st century, the incidence and prevalence of inflammatory bowel disease (IBD) is rising globally. Despite the pathogenesis of IBD remaining largely unclear, the interactions between environmental exposure, host genetics and immune response contribute to the occurrence and development of this disease. Growing evidence implicates that food additives might be closely related to IBD, but the involved molecular mechanisms are still poorly understood. Food additives may be categorized as distinct types in accordance with their function and property, including artificial sweeteners, preservatives, food colorant, emulsifiers, stabilizers, thickeners and so on. Various kinds of food additives play a role in modifying the interaction between gut microbiota and intestinal inflammation. Therefore, this review comprehensively synthesizes the current evidence on the interplay between different food additives and gut microbiome alterations, and further elucidates the potential mechanisms of food additives–associated microbiota changes involved in IBD.
Collapse
Affiliation(s)
- Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Zhenyi Tian
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Tong Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Dongxuan Wu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
- Correspondence: (Z.Z.); (X.Z.)
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
- Correspondence: (Z.Z.); (X.Z.)
| |
Collapse
|
14
|
Grenda T, Grenda A, Domaradzki P, Krawczyk P, Kwiatek K. Probiotic Potential of Clostridium spp.-Advantages and Doubts. Curr Issues Mol Biol 2022; 44:3118-3130. [PMID: 35877439 PMCID: PMC9315758 DOI: 10.3390/cimb44070215] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridium spp. is a large genus of obligate anaerobes and is an extremely heterogeneous group of bacteria that can be classified into 19 clusters. Genetic analyses based on the next-generation sequencing of 16S rRNA genes and metagenome analyses conducted on human feces, mucosal biopsies, and luminal content have shown that the three main groups of strict extremophile anaerobes present in the intestines are Clostridium cluster IV (also known as the Clostridium leptum group), Clostridium cluster XIVa (also known as the Clostridium coccoides group) and Bacteroides. In addition to the mentioned clusters, some C. butyricum strains are also considered beneficial for human health. Moreover, this bacterium has been widely used as a probiotic in Asia (particularly in Japan, Korea, and China). The mentioned commensal Clostridia are involved in the regulation and maintenance of all intestinal functions. In the literature, the development processes of new therapies are described based on commensal Clostridia activity. In addition, some Clostridia are associated with pathogenic processes. Some C. butyricum strains detected in stool samples are involved in botulism cases and have also been implicated in severe diseases such as infant botulism and necrotizing enterocolitis in preterm neonates. The aim of this study is to review reports on the possibility of using Clostridium strains as probiotics, consider their positive impact on human health, and identify the risks associated with the expression of their pathogenic properties.
Collapse
Affiliation(s)
- Tomasz Grenda
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland;
- Correspondence: ; Tel.: +48-81-889-3191
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-950 Lublin, Poland; (A.G.); (P.K.)
| | - Piotr Domaradzki
- Department of Commodity Science and Animal Raw Materials Processing, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, Jaczewskiego 8, 20-950 Lublin, Poland; (A.G.); (P.K.)
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feeding Stuffs, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland;
| |
Collapse
|
15
|
Rai N, Kim M, Tagkopoulos I. Understanding the Formation and Mechanism of Anticipatory Responses in Escherichia coli. Int J Mol Sci 2022; 23:ijms23115985. [PMID: 35682665 PMCID: PMC9181292 DOI: 10.3390/ijms23115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Microorganisms often live in complex habitats, where changes in the environment are predictable, providing an opportunity for microorganisms to learn, anticipate the upcoming environmental changes and prepare in advance for better survival and growth. One such environment is the mammalian intestine, where the abundance of different carbon sources is spatially distributed. In this study, we identified seven spatially distributed carbon sources in the mammalian intestine and tested whether Escherichia coli exhibits phenotypes that are consistent with an anticipatory response given their spatial order and abundance within the mammalian intestine. Through RNA-Seq and RT-PCR validation measurements, we found that there was a 67% match in the expression patterns between the measured phenotypes and what would otherwise be expected in the case of anticipatory behavior, while 83% and 0% were in agreement with the homeostatic and random response, respectively. To understand the genetic and phenotypic basis of the discrepancies between the expected and measured anticipatory responses, we thoroughly investigated the discrepancy in D-galactose treatment and the expression of maltose operon in E. coli. Here, the expected anticipatory response, based on the spatial distribution of D-galactose and D-maltose, was that D-galactose should upregulate the maltose operon, but it was the opposite in experimental validation. We performed whole genome random mutagenesis and screening and identified E. coli strains with positive expression of maltose operon in D-galactose. Targeted Sanger sequencing and mutation repair identified that the mutations in the promoter region of malT and in the coding region of the crp gene were the factors responsible for the reversion in the association. Further, to identify why positive association in the D-galactose treatment and the expression of the maltose operon did not evolve naturally, fitness measurements were performed. Fitness experiments demonstrated that the fitness of E. coli strains with a positive association in the D-galactose treatment and the expression of the maltose operon was 12% to 20% lower than that of the wild type strain.
Collapse
Affiliation(s)
- Navneet Rai
- UC Davis Genome Center, University of California-Davis, Davis, CA 95616, USA; (N.R.); (M.K.)
- Department of Computer Science, University of California-Davis, Davis, CA 95616, USA
| | - Minseung Kim
- UC Davis Genome Center, University of California-Davis, Davis, CA 95616, USA; (N.R.); (M.K.)
- Department of Computer Science, University of California-Davis, Davis, CA 95616, USA
| | - Ilias Tagkopoulos
- UC Davis Genome Center, University of California-Davis, Davis, CA 95616, USA; (N.R.); (M.K.)
- Department of Computer Science, University of California-Davis, Davis, CA 95616, USA
- USDA/NSF AI Institute for Next Generation Food Systems (AIFS), University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
16
|
Food Additives, a Key Environmental Factor in the Development of IBD through Gut Dysbiosis. Microorganisms 2022; 10:microorganisms10010167. [PMID: 35056616 PMCID: PMC8780106 DOI: 10.3390/microorganisms10010167] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Diet is a key environmental factor in inflammatory bowel disease (IBD) and, at the same time, represents one of the most promising therapies for IBD. Our daily diet often contains food additives present in numerous processed foods and even in dietary supplements. Recently, researchers and national authorities have been paying much attention to their toxicity and effects on gut microbiota and health. This review aims to gather the latest data focusing on the potential role of food additives in the pathogenesis of IBDs through gut microbiota modulation. Some artificial emulsifiers and sweeteners can induce the dysbiosis associated with an alteration of the intestinal barrier, an activation of chronic inflammation, and abnormal immune response accelerating the onset of IBD. Even if most of these results are retrieved from in vivo and in vitro studies, many artificial food additives can represent a potential hidden driver of gut chronic inflammation through gut microbiota alterations, especially in a population with IBD predisposition. In this context, pending the confirmation of these results by large human studies, it would be advisable that IBD patients avoid the consumption of processed food containing artificial food additives and follow a personalized nutritional therapy prescribed by a clinical nutritionist.
Collapse
|
17
|
Jang KB, Duarte ME, Purvis JM, Kim SW. Impacts of weaning age on dietary needs of whey permeate for pigs at 7 to 11 kg body weight. J Anim Sci Biotechnol 2021; 12:111. [PMID: 34782016 PMCID: PMC8594115 DOI: 10.1186/s40104-021-00637-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background Whey permeate is an effective lactose source for nursery pigs and the most benefits are obtained when pigs are at 7 to 11 kg BW. Altering weaning ages could cause different length of early-weaner phases until 7 kg BW and thus it would influence the dietary need of whey permeate during 7 to 11 kg BW of pigs. This study aimed to evaluate if weaning ages would affect the dietary needs of whey permeate for optimum growth performance of pigs at 7 to 11 kg BW. Methods A total of 1,632 pigs were weaned at d 21 (d 21.2 ± 1.3) or d 25 (d 24.6 ± 1.1) after birth. All pigs had a common early-weaner feeds until they reached 7 kg BW. When pigs reached 7 kg BW within a weaning age group, they were allotted in a randomized complete block design (2 × 4 factorial). Two factors were weaning age groups (21 and 25 d of age) and varying whey permeate levels (7.50%, 11.25%, 15.00%, and 18.75%). Data were analyzed using the GLM and NLIN procedures of SAS for slope-ratio and broken-line analyses to determine the growth response to whey permeate and optimal daily whey permeate intake for the growth of the pigs weaned at different ages. Results Pigs weaned at 21 d of age had a common diet for 11 d to reach 7 kg BW whereas pigs weaned at 25 d of age needed 2 d. The G:F of pigs weaned at 25 d of age responded to increased daily whey permeate intake greater (P < 0.05) than pigs weaned at 21 d of age. Breakpoints were obtained (P < 0.05) at 88 and 60 g/d daily whey permeate intake or 17.0% and 14.4% of whey permeate for G:F of pigs weaned at 21 and 25 d of age, respectively. Conclusion Pigs weaned at an older age with a short early-weaner phase had a greater growth response to whey permeate intake compared with pigs weaned at a younger age with a long early-weaner phase. Altering weaning ages affected dietary needs of whey permeate for optimum growth performance of pigs from 7 to 11 kg BW.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
18
|
Phillips-Farfán B, Gómez-Chávez F, Medina-Torres EA, Vargas-Villavicencio JA, Carvajal-Aguilera K, Camacho L. Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. Int J Mol Sci 2021; 22:ijms22158162. [PMID: 34360926 PMCID: PMC8348731 DOI: 10.3390/ijms22158162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The microbiota regulates immunological development during early human life, with long-term effects on health and disease. Microbial products include short-chain fatty acids (SCFAs), formyl peptides (FPs), polysaccharide A (PSA), polyamines (PAs), sphingolipids (SLPs) and aryl hydrocarbon receptor (AhR) ligands. Anti-inflammatory SCFAs are produced by Actinobacteria, Bacteroidetes, Firmicutes, Spirochaetes and Verrucomicrobia by undigested-carbohydrate fermentation. Thus, fiber amount and type determine their occurrence. FPs bind receptors from the pattern recognition family, those from commensal bacteria induce a different response than those from pathogens. PSA is a capsular polysaccharide from B. fragilis stimulating immunoregulatory protein expression, promoting IL-2, STAT1 and STAT4 gene expression, affecting cytokine production and response modulation. PAs interact with neonatal immunity, contribute to gut maturation, modulate the gut–brain axis and regulate host immunity. SLPs are composed of a sphingoid attached to a fatty acid. Prokaryotic SLPs are mostly found in anaerobes. SLPs are involved in proliferation, apoptosis and immune regulation as signaling molecules. The AhR is a transcription factor regulating development, reproduction and metabolism. AhR binds many ligands due to its promiscuous binding site. It participates in immune tolerance, involving lymphocytes and antigen-presenting cells during early development in exposed humans.
Collapse
Affiliation(s)
- Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (F.G.-C.); (J.A.V.-V.)
- Cátedras CONACyT-Instituto Nacional de Pediatría, México City 04530, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | | | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Luz Camacho
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
- Correspondence:
| |
Collapse
|
19
|
Buddington RK, Yakimkova T, Adebiyi A, Chizhikov VV, Iskusnykh IY, Buddington KK. Organ Growth and Intestinal Functions of Preterm Pigs Fed Low and High Protein Formulas With or Without Supplemental Leucine or Hydroxymethylbutyrate as Growth Promoters. Front Nutr 2021; 8:687703. [PMID: 34150831 PMCID: PMC8211743 DOI: 10.3389/fnut.2021.687703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023] Open
Abstract
The goal of enteral nutritional support for infants born preterm or small for gestational age (SGA) is to achieve normal growth and development. Yet, this is difficult to achieve because of intestinal immaturity. Our objective was to determine if birth weight, protein intake, and the growth promoters leucine (10 g/L) or calcium-ß-hydroxy-ß-methylbutryate (HMB; 1.1 g/L) would affect trajectories of intestinal growth and functions and weights of other organs. Preterm pigs were delivered at gestational day 105 (91% of term) and fed for 6 or 7 days isocaloric formulas that differed in protein content (50 g or 100 g protein/L), with and without the growth promoters leucine or HMB. For comparative purposes organ weights were measured within 12 h after delivery for six term pigs of low and six of average birth weights. The responses of intestinal growth and total intestinal brush border membrane carbohydrases to protein level and supplemental leucine were of greater magnitude for preterm pigs of lower birth weight. Forskolin stimulated chloride secretion in the proximal small intestine was lower for pigs fed the low protein milk replacers. Capacities of the entire small intestine to transport glucose (mmol/kg-day) were not responsive to protein level, leucine, or HMB, and did not differ between small and large pigs. Relative organ weights of the small and average weight term pigs were similar, but some differed from those of the preterm pigs suggesting preterm birth and the standards of care used for this study altered the trajectories of development for the intestine and other organs. Although leucine is an effective generalized growth promoter that enhances gut development of small preterm pigs, it does not mitigate compromised neurodevelopment. Our findings using preterm pigs as a relevant preclinical model indicate nutrition support strategies can influence development of some gastrointestinal tract characteristics and the growth of other organs.
Collapse
Affiliation(s)
| | - Taisiya Yakimkova
- College of Health Studies, University of Memphis, Memphis, TN, United States
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Karyl K Buddington
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
| |
Collapse
|
20
|
de Lange IH, van Gorp C, Eeftinck Schattenkerk LD, van Gemert WG, Derikx JPM, Wolfs TGAM. Enteral Feeding Interventions in the Prevention of Necrotizing Enterocolitis: A Systematic Review of Experimental and Clinical Studies. Nutrients 2021; 13:1726. [PMID: 34069699 PMCID: PMC8161173 DOI: 10.3390/nu13051726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC), which is characterized by severe intestinal inflammation and in advanced stages necrosis, is a gastrointestinal emergency in the neonate with high mortality and morbidity. Despite advancing medical care, effective prevention strategies remain sparse. Factors contributing to the complex pathogenesis of NEC include immaturity of the intestinal immune defense, barrier function, motility and local circulatory regulation and abnormal microbial colonization. Interestingly, enteral feeding is regarded as an important modifiable factor influencing NEC pathogenesis. Moreover, breast milk, which forms the currently most effective prevention strategy, contains many bioactive components that are known to support neonatal immune development and promote healthy gut colonization. This systematic review describes the effect of different enteral feeding interventions on the prevention of NEC incidence and severity and the effect on pathophysiological mechanisms of NEC, in both experimental NEC models and clinical NEC. Besides, pathophysiological mechanisms involved in human NEC development are briefly described to give context for the findings of altered pathophysiological mechanisms of NEC by enteral feeding interventions.
Collapse
Affiliation(s)
- Ilse H. de Lange
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Charlotte van Gorp
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Laurens D. Eeftinck Schattenkerk
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Wim G. van Gemert
- European Surgical Center Aachen/Maastricht, Department of Pediatric Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), 6202 AZ Maastricht, The Netherlands; (I.H.d.L.); (W.G.v.G.)
- Department of Surgery, School for Nutrition, Toxicology and Metabolism (NUTRIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Joep P. M. Derikx
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam and Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.D.E.S.); (J.P.M.D.)
| | - Tim G. A. M. Wolfs
- Department of Pediatrics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6202 AZ Maastricht, The Netherlands;
- Department of Biomedical Engineering (BMT), School for Cardiovascular Diseases (CARIM), Maastricht University, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
21
|
Su Q, Liu Q. Factors Affecting Gut Microbiome in Daily Diet. Front Nutr 2021; 8:644138. [PMID: 34041257 PMCID: PMC8141808 DOI: 10.3389/fnut.2021.644138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
There is a growing recognition that a good diet can help people maintain mental and physical health, while a bad one will cause the disorder of body function, and even lead to several diseases. A lot of attentions have been devoted to analyze every possible health-related factor in the daily diet, including food ingredients, additives, and cooking process. With the support of high-throughput sequencing technology, there is accumulating evidence gradually clarifying that most of these factors are mainly through the interactions with gut microbiome to trigger downstream effects. The gut microbiome may be able to act as a very sensitive mirror in response to human daily diet. A complex network of interactions among diet, gut microbiome, and health has been gradually depicted, but it is rarely discussed from a more comprehensive perspective. To this end, this review summarized the latest updates in diet-gut microbiome interactions, analyzed most identified factors involved in this process, showed the possibility of maintaining health or alleviating diseases by diet intervention, aiming to help people choose a suitable recipe more accurately.
Collapse
Affiliation(s)
| | - Qin Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Food and Food Groups in Inflammatory Bowel Disease (IBD): The Design of the Groningen Anti-Inflammatory Diet (GrAID). Nutrients 2021; 13:nu13041067. [PMID: 33806061 PMCID: PMC8064481 DOI: 10.3390/nu13041067] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Diet plays a pivotal role in the onset and course of inflammatory bowel disease (IBD). Patients are keen to know what to eat to reduce symptoms and flares, but dietary guidelines are lacking. To advice patients, an overview of the current evidence on food (group) level is needed. This narrative review studies the effects of food (groups) on the onset and course of IBD and if not available the effects in healthy subjects or animal and in vitro IBD models. Based on this evidence the Groningen anti-inflammatory diet (GrAID) was designed and compared on food (group) level to other existing IBD diets. Although on several foods conflicting results were found, this review provides patients a good overview. Based on this evidence, the GrAID consists of lean meat, eggs, fish, plain dairy (such as milk, yoghurt, kefir and hard cheeses), fruit, vegetables, legumes, wheat, coffee, tea and honey. Red meat, other dairy products and sugar should be limited. Canned and processed foods, alcohol and sweetened beverages should be avoided. This comprehensive review focuses on anti-inflammatory properties of foods providing IBD patients with the best evidence on which foods they should eat or avoid to reduce flares. This was used to design the GrAID.
Collapse
|
23
|
Yakah W, Singh P, Brown J, Stoll B, Burrin D, Premkumar MH, Otu HH, Gu X, Dillon ST, Libermann TA, Freedman SD, Martin CR. Parenteral lipid emulsions induce unique ileal fatty acid and metabolomic profiles but do not increase the risk of necrotizing enterocolitis in preterm pigs. Am J Physiol Gastrointest Liver Physiol 2021; 320:G227-G239. [PMID: 33236951 PMCID: PMC7948117 DOI: 10.1152/ajpgi.00311.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is a manifestation of maladaptive intestinal responses in preterm infants centrally medicated by unattenuated inflammation. Early in the postnatal period, preterm infants develop a deficit in arachidonic and docosahexaenoic acid, both potent regulators of inflammation. We hypothesized that the fatty acid composition of parenteral lipid emulsions uniquely induces blood and intestinal fatty acid profiles which, in turn, modifies the risk of NEC development. Forty-two preterm pigs were randomized to receive one of three lipid emulsions containing 100% soybean oil (SO), 15% fish oil (MO15), or 100% fish oil (FO100) with enteral feedings over an 8-day protocol. Blood and distal ileum tissue were collected for fatty acid analysis. The distal ileum underwent histologic, proteomic, and metabolomic analyses. Eight pigs [3/14 SO (21%), 3/14 MO15 (21%), and 2/14 FO100 (14%)] developed NEC. No differences in NEC risk were evident between groups despite differences in induced fatty acid profiles in blood and ileal tissue. Metabolomic analysis of NEC versus no NEC tissue revealed differences in tryptophan metabolism and arachidonic acid-containing glycerophospholipids. Proteomic analysis demonstrated no differences by lipid group; however, 15 proteins differentiated NEC versus no NEC in the domains of tissue injury, glucose uptake, and chemokine signaling. Exposure to parenteral lipid emulsions induces unique intestinal fatty acid and metabolomic profiles; however, these profiles are not linked to a difference in NEC development. Metabolomic and proteomic analyses of NEC versus no NEC intestinal tissue provide mechanistic insights into the pathogenesis of NEC in preterm infants.NEW & NOTEWORTHY Exposure to parenteral lipid emulsions induces unique intestinal fatty acid and metabolomic profiles; however, these profiles are not linked to a difference in NEC risk in preterm pigs. Metabolomic and proteomic analyses provide mechanistic insights into NEC pathogenesis. Compared with healthy ileal tissue, metabolites in tryptophan metabolism and arachidonic acid-containing glycerophospholipids are increased in NEC tissue. Proteomic analysis differentiates NEC versus no NEC in the domains of tissue injury, glucose uptake, and chemokine signaling.
Collapse
Affiliation(s)
- William Yakah
- 1Department of Neonatology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Pratibha Singh
- 2Division of Gastroenterology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Joanne Brown
- 2Division of Gastroenterology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Barbara Stoll
- 3United States Department of Agriculture-Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Doug Burrin
- 3United States Department of Agriculture-Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Muralidhar H. Premkumar
- 4Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hasan H. Otu
- 5Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Xuesong Gu
- 6Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Simon T. Dillon
- 6Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Towia A. Libermann
- 6Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Steven D. Freedman
- 2Division of Gastroenterology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,7Division of Translational Research Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Camilia R. Martin
- 1Department of Neonatology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,7Division of Translational Research Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Moschino L, Duci M, Fascetti Leon F, Bonadies L, Priante E, Baraldi E, Verlato G. Optimizing Nutritional Strategies to Prevent Necrotizing Enterocolitis and Growth Failure after Bowel Resection. Nutrients 2021; 13:nu13020340. [PMID: 33498880 PMCID: PMC7910892 DOI: 10.3390/nu13020340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Necrotizing enterocolitis (NEC), the first cause of short bowel syndrome (SBS) in the neonate, is a serious neonatal gastrointestinal disease with an incidence of up to 11% in preterm newborns less than 1500 g of birth weight. The rate of severe NEC requiring surgery remains high, and it is estimated between 20–50%. Newborns who develop SBS need prolonged parenteral nutrition (PN), experience nutrient deficiency, failure to thrive and are at risk of neurodevelopmental impairment. Prevention of NEC is therefore mandatory to avoid SBS and its associated morbidities. In this regard, nutritional practices seem to play a key role in early life. Individualized medical and surgical therapies, as well as intestinal rehabilitation programs, are fundamental in the achievement of enteral autonomy in infants with acquired SBS. In this descriptive review, we describe the most recent evidence on nutritional practices to prevent NEC, the available tools to early detect it, the surgical management to limit bowel resection and the best nutrition to sustain growth and intestinal function.
Collapse
MESH Headings
- Enterocolitis, Necrotizing/complications
- Enterocolitis, Necrotizing/diagnosis
- Enterocolitis, Necrotizing/prevention & control
- Enterocolitis, Necrotizing/surgery
- Failure to Thrive/prevention & control
- Humans
- Infant
- Infant Nutritional Physiological Phenomena
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/prevention & control
- Infant, Premature, Diseases/surgery
- Intestines/surgery
- Short Bowel Syndrome/etiology
- Short Bowel Syndrome/prevention & control
Collapse
Affiliation(s)
- Laura Moschino
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital of Padova, 35128 Padova, Italy; (L.M.); (L.B.); (E.P.); (E.B.)
| | - Miriam Duci
- Pediatric Surgery Unit, Department of Women’s and Children’s Health, University Hospital of Padova, 35128 Padova, Italy; (M.D.); (F.F.L.)
| | - Francesco Fascetti Leon
- Pediatric Surgery Unit, Department of Women’s and Children’s Health, University Hospital of Padova, 35128 Padova, Italy; (M.D.); (F.F.L.)
| | - Luca Bonadies
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital of Padova, 35128 Padova, Italy; (L.M.); (L.B.); (E.P.); (E.B.)
| | - Elena Priante
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital of Padova, 35128 Padova, Italy; (L.M.); (L.B.); (E.P.); (E.B.)
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital of Padova, 35128 Padova, Italy; (L.M.); (L.B.); (E.P.); (E.B.)
| | - Giovanna Verlato
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, University Hospital of Padova, 35128 Padova, Italy; (L.M.); (L.B.); (E.P.); (E.B.)
- Correspondence: ; Tel.: +39-0498211428
| |
Collapse
|
25
|
Bæk O, Cilieborg MS, Nguyen DN, Bering SB, Thymann T, Sangild PT. Sex-Specific Survival, Growth, Immunity and Organ Development in Preterm Pigs as Models for Immature Newborns. Front Pediatr 2021; 9:626101. [PMID: 33643975 PMCID: PMC7905020 DOI: 10.3389/fped.2021.626101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background: After very preterm birth, male infants show higher mortality than females, with higher incidence of lung immaturity, neurological deficits, infections, and growth failure. In modern pig production, piglets dying in the perinatal period (up to 20%) often show signs of immature organs, but sex-specific effects are not clear. Using preterm pigs as model for immature infants and piglets, we hypothesized that neonatal survival and initial growth and immune development depend on sex. Methods: Using data from a series of previous intervention trials with similar delivery and rearing procedures, we established three cohorts of preterm pigs (90% gestation), reared for 5, 9, or 19 days before sample collection (total n = 1,938 piglets from 109 litters). Partly overlapping endpoints among experiments allowed for multiple comparisons between males and females for data on mortality, body and organ growth, gut, immunity, and brain function. Results: Within the first 2 days, males showed higher mortality than females (18 vs. 8%, P < 0.001), but less severe immune response to gram-positive infection. No effect of sex was observed for thermoregulation or plasma cortisol. Later, infection resistance did not differ between sexes, but growth rate was reduced for body (up to -40%) and kidneys (-6%) in males, with higher leucocyte counts (+15%) and lower CD4 T cell fraction (-5%) on day 9 and lower monocyte counts (-18%, day 19, all P < 0.05). Gut structure, function and necrotizing enterocolitis (NEC) incidence were similar between groups, but intestinal weight (-3%) and brush-border enzyme activities were reduced at day 5 (lactase, DPP IV, -8%) in males. Remaining values for blood biochemistry, hematology, bone density, regional brain weights, and visual memory (tested in a T maze) were similar. Conclusion: Following preterm birth, male pigs show higher mortality and slower growth than females, despite limited differences in organ growth, gut, immune, and brain functions. Neonatal intensive care procedures may be particularly important for compromised newborns of the male sex. Preterm pigs can serve as good models to study the interactions of sex- and maturation-specific survival and physiological adaptation in mammals.
Collapse
Affiliation(s)
- Ole Bæk
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Malene Skovsted Cilieborg
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stine Brandt Bering
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.,Department of Pediatrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
26
|
Navis M, Schwebel L, Soendergaard Kappel S, Muncan V, Sangild PT, Abrahamse E, Aunsholt L, Thymann T, van Elburg RM, Renes IB. Mildly Pasteurized Whey Protein Promotes Gut Tolerance in Immature Piglets Compared with Extensively Heated Whey Protein. Nutrients 2020; 12:nu12113391. [PMID: 33158188 PMCID: PMC7694243 DOI: 10.3390/nu12113391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022] Open
Abstract
Human milk is the optimal diet for infant development, but infant milk formula (IMF) must be available as an alternative. To develop high-quality IMF, bovine milk processing is required to ensure microbial safety and to obtain a protein composition that mimics human milk. However, processing can impact the quality of milk proteins, which can influence gastro-intestinal (GI) tolerance by changing digestion, transit time and/or absorption. The aim of this study was to evaluate the impact of structural changes of proteins due to thermal processing on gastro-intestinal tolerance in the immature GI tract. Preterm and near-term piglets received enteral nutrition based on whey protein concentrate (WPC) either mildly pasteurized (MP-WPC) or extensively heated (EH-WPC). Clinical symptoms, transit time and gastric residuals were evaluated. In addition, protein coagulation and protein composition of coagulates formed during in vitro digestion were analyzed in more detail. Characterization of MP-WPC and EH-WPC revealed that mild pasteurization maintained protein nativity and reduced aggregation of β-lactoglobulin and α-lactalbumin, relative to EH-WPC. Mild pasteurization reduced the formation of coagulates during digestion, resulting in reduced gastric residual volume and increased intestinal tract content. In addition, preterm piglets receiving MP-WPC showed reduced mucosal bacterial adherence in the proximal small intestine. Finally, in vitro digestion studies revealed less protein coagulation and lower levels of β-lactoglobulin and α-lactalbumin in the coagulates of MP-WPC compared with EH-WPC. In conclusion, minimal heat treatment of WPC compared with extensive heating promoted GI tolerance in immature piglets, implying that minimal heated WPC could improve the GI tolerance of milk formulas in infants.
Collapse
Affiliation(s)
- Marit Navis
- Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.N.); (V.M.)
| | - Lauriane Schwebel
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.S.); (E.A.)
| | - Susanne Soendergaard Kappel
- Department of Veterinary and Animal Sciences, Comparative Pediatrics & Nutrition, University of Copenhagen, DK-1870 Copenhagen, Denmark; (S.S.K.); (P.T.S.); (L.A.); (T.T.)
- Department of Neonatology, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Vanesa Muncan
- Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.N.); (V.M.)
| | - Per Torp Sangild
- Department of Veterinary and Animal Sciences, Comparative Pediatrics & Nutrition, University of Copenhagen, DK-1870 Copenhagen, Denmark; (S.S.K.); (P.T.S.); (L.A.); (T.T.)
- Department of Neonatology, Rigshospitalet, DK-2100 Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, DK-5000 Odense, Denmark
| | - Evan Abrahamse
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.S.); (E.A.)
- Laboratory of Food Chemistry, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Lise Aunsholt
- Department of Veterinary and Animal Sciences, Comparative Pediatrics & Nutrition, University of Copenhagen, DK-1870 Copenhagen, Denmark; (S.S.K.); (P.T.S.); (L.A.); (T.T.)
- Department of Neonatology, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Thomas Thymann
- Department of Veterinary and Animal Sciences, Comparative Pediatrics & Nutrition, University of Copenhagen, DK-1870 Copenhagen, Denmark; (S.S.K.); (P.T.S.); (L.A.); (T.T.)
| | - Ruurd M. van Elburg
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Ingrid B. Renes
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.S.); (E.A.)
- Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-302095000
| |
Collapse
|
27
|
Singh P, Sanchez-Fernandez LL, Ramiro-Cortijo D, Ochoa-Allemant P, Perides G, Liu Y, Medina-Morales E, Yakah W, Freedman SD, Martin CR. Maltodextrin-induced intestinal injury in a neonatal mouse model. Dis Model Mech 2020; 13:dmm044776. [PMID: 32753526 PMCID: PMC7473650 DOI: 10.1242/dmm.044776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Prematurity and enteral feedings are major risk factors for intestinal injury leading to necrotizing enterocolitis (NEC). An immature digestive system can lead to maldigestion of macronutrients and increased vulnerability to intestinal injury. The aim of this study was to test in neonatal mice the effect of maltodextrin, a complex carbohydrate, on the risk of intestinal injury. The goal was to develop a robust and highly reproducible murine model of intestinal injury that allows insight into the pathogenesis and therapeutic interventions of nutrient-driven intestinal injury. Five- to 6-day-old C57BL/6 mice were assigned to the following groups: dam fed (D); D+hypoxia+Klebsiella pneumoniae; maltodextrin-dominant human infant formula (M) only; M+hypoxia; and M+hypoxia+K. pneumoniae. The mice in all M groups were gavage fed five times a day for 4 days. Mice were exposed to hypoxia twice a day for 10 min prior to the first and last feedings, and K. pneumoniae was added to feedings as per group assignment. Mice in all M groups demonstrated reduced body weight, increased small intestinal dilatation and increased intestinal injury scores. Maltodextrin-dominant infant formula with hypoxia led to intestinal injury in neonatal mice accompanied by loss of villi, increased MUC2 production, altered expression of tight junction proteins, enhanced intestinal permeability, increased cell death and higher levels of intestinal inflammatory mediators. This robust and highly reproducible model allows for further interrogation of the effects of nutrients on pathogenic factors leading to intestinal injury and NEC in preterm infants.This article has an associated First Person interview with the first author of the paper.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cytokines/metabolism
- Disease Models, Animal
- Enterocolitis, Necrotizing/chemically induced
- Enterocolitis, Necrotizing/metabolism
- Enterocolitis, Necrotizing/microbiology
- Enterocolitis, Necrotizing/pathology
- Goblet Cells/metabolism
- Goblet Cells/microbiology
- Goblet Cells/pathology
- Hypoxia/complications
- Inflammation Mediators/metabolism
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/pathology
- Intestine, Small/metabolism
- Intestine, Small/microbiology
- Intestine, Small/pathology
- Klebsiella pneumoniae/pathogenicity
- Mice, Inbred C57BL
- Microvilli/pathology
- Mucin-2/metabolism
- Permeability
- Polysaccharides
- Tight Junction Proteins/metabolism
Collapse
Affiliation(s)
- Pratibha Singh
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lady Leidy Sanchez-Fernandez
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - David Ramiro-Cortijo
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Ochoa-Allemant
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - George Perides
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Liu
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Esli Medina-Morales
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - William Yakah
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Steven D Freedman
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Camilia R Martin
- Division of Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
Burrin D, Sangild PT, Stoll B, Thymann T, Buddington R, Marini J, Olutoye O, Shulman RJ. Translational Advances in Pediatric Nutrition and Gastroenterology: New Insights from Pig Models. Annu Rev Anim Biosci 2020; 8:321-354. [PMID: 32069436 DOI: 10.1146/annurev-animal-020518-115142] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pigs are increasingly important animals for modeling human pediatric nutrition and gastroenterology and complementing mechanistic studies in rodents. The comparative advantages in size and physiology of the neonatal pig have led to new translational and clinically relevant models of important diseases of the gastrointestinal tract and liver in premature infants. Studies in pigs have established the essential roles of prematurity, microbial colonization, and enteral nutrition in the pathogenesis of necrotizing enterocolitis. Studies in neonatal pigs have demonstrated the intestinal trophic effects of akey gut hormone, glucagon-like peptide 2 (GLP-2), and its role in the intestinal adaptation process and efficacy in the treatment of short bowel syndrome. Further, pigs have been instrumental in elucidating the physiology of parenteral nutrition-associated liver disease and the means by which phytosterols, fibroblast growth factor 19, and a new generation of lipid emulsions may modify disease. The premature pig will continue to be a valuable model in the development of optimal infant diets (donor human milk, colostrum), specific milk bioactives (arginine, growth factors), gut microbiota modifiers (pre-, pro-, and antibiotics), pharmaceutical drugs (GLP-2 analogs, FXR agonists), and novel diagnostic tools (near-infrared spectroscopy) to prevent and treat these pediatric diseases.
Collapse
Affiliation(s)
- Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, University of Copenhagen, DK-1870 Frederiksberg C., Copenhagen, Denmark
| | - Barbara Stoll
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, University of Copenhagen, DK-1870 Frederiksberg C., Copenhagen, Denmark
| | - Randal Buddington
- College of Nursing, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Juan Marini
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA; .,Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Oluyinka Olutoye
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robert J Shulman
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
29
|
Beneficial Effect of Mildly Pasteurized Whey Protein on Intestinal Integrity and Innate Defense in Preterm and Near-Term Piglets. Nutrients 2020; 12:nu12041125. [PMID: 32316586 PMCID: PMC7230795 DOI: 10.3390/nu12041125] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background. The human digestive tract is structurally mature at birth, yet maturation of gut functions such as digestion and mucosal barrier continues for the next 1–2 years. Human milk and infant milk formulas (IMF) seem to impact maturation of these gut functions differently, which is at least partially related to high temperature processing of IMF causing loss of bioactive proteins and formation of advanced glycation end products (AGEs). Both loss of protein bioactivity and formation of AGEs depend on heating temperature and time. The aim of this study was to investigate the impact of mildly pasteurized whey protein concentrate (MP-WPC) compared to extensively heated WPC (EH-WPC) on gut maturation in a piglet model hypersensitive to enteral nutrition. Methods. WPC was obtained by cold filtration and mildly pasteurized (73 °C, 30 s) or extensively heat treated (73 °C, 30 s + 80 °C, 6 min). Preterm (~90% gestation) and near-term piglets (~96% gestation) received enteral nutrition based on MP-WPC or EH-WPC for five days. Macroscopic and histologic lesions in the gastro-intestinal tract were evaluated and intestinal responses were further assessed by RT-qPCR, immunohistochemistry and enzyme activity analysis. Results. A diet based on MP-WPC limited epithelial intestinal damage and improved colonic integrity compared to EH-WPC. MP-WPC dampened colonic IL1-β, IL-8 and TNF-α expression and lowered T-cell influx in both preterm and near-term piglets. Anti-microbial defense as measured by neutrophil influx in the colon was only observed in near-term piglets, correlated with histological damage and was reduced by MP-WPC. Moreover, MP-WPC stimulated iALP activity in the colonic epithelium and increased differentiation into enteroendocrine cells compared to EH-WPC. Conclusions. Compared to extensively heated WPC, a formula based on mildly pasteurized WPC limits gut inflammation and stimulates gut maturation in preterm and near-term piglets and might therefore also be beneficial for preterm and (near) term infants.
Collapse
|
30
|
Kappel SS, Sangild PT, Hilsted L, Hartmann B, Thymann T, Aunsholt L. Gastric Residual to Predict Necrotizing Enterocolitis in Preterm Piglets As Models for Infants. JPEN J Parenter Enteral Nutr 2020; 45:87-93. [PMID: 32100882 DOI: 10.1002/jpen.1814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a serious intestinal inflammatory disease in preterm infants. High volume of gastric residual (GR) after oral feedings is often used as a predictor of NEC, but evidence is limited. Using NEC-sensitive preterm piglets as models, we hypothesized that GR mass and related plasma biomarkers predict early onset of NEC. METHODS In total, 258 newborn preterm piglets were fed bovine milk-based formulas for 5 days. At euthanasia, the stomach, small intestine, and colon were evaluated for NEC lesions. Mass, acidity, gastrin, and bile acid levels were determined for GR content, together with gastrin, glucagon-like peptide 2 (GLP-2), and gastric inhibitory polypeptide (GIP) levels in plasma. RESULTS In total, 48% of piglets had NEC lesions in the small intestine and/or colon. These piglets had higher GR mass (+32%, P < 0.001) and lower gastric bile acid concentrations (-22%, P < 0.05) than piglets without NEC lesions. The positive and negative predictive values for these markers were 34%-61%. Gastric acidity, gastrin, GLP-2, and GIP levels were similar for piglets with and without NEC lesions. CONCLUSION Elevated GR mass correlates positively with NEC lesions but may be a poor predictor of NEC, even when combined with other biomarkers. More knowledge about gastric emptying and gut transit in preterm neonates is required to understand how GR volume and composition relate to morbidities, such as NEC, in preterm neonates.
Collapse
Affiliation(s)
- Susanne Soendergaard Kappel
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Linda Hilsted
- Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lise Aunsholt
- Department of Neonatology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
31
|
Li Y, Pan X, Nguyen DN, Ren S, Moodley A, Sangild PT. Bovine Colostrum Before or After Formula Feeding Improves Systemic Immune Protection and Gut Function in Newborn Preterm Pigs. Front Immunol 2020; 10:3062. [PMID: 32082298 PMCID: PMC7002359 DOI: 10.3389/fimmu.2019.03062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: Maternal milk is often absent or in limited supply just after preterm birth. Many preterm infants are therefore fed infant formula as their first enteral feed despite an increased risk of feeding intolerance, necrotizing enterocolitis (NEC), and infection. Using preterm pigs as a model for preterm infants, we hypothesized that bovine colostrum given before or after formula feeding would alleviate formula-induced detrimental effects during the first days after preterm birth. Methods: A total of 74 preterm pigs received gradually increasing volumes of formula (F) or bovine colostrum (C) until day 5, when they were euthanized or transitioned to either C or F for another 4 days, resulting in six groups: C or F until day 5 (C5, F5, n = 11 each), C or F until day 9 (CC, FF n = 12–13 each), C followed by F (CF, n = 14), and F followed by C (FC, n = 13). Results: Systemically, colostrum feeding stimulated circulating neutrophil recruitment on day 5 (C5 vs. F5, P < 0.05). Relative to initial formula feeding, initial colostrum feeding promoted the development of systemic immune protection as indicated by a decreased T-helper cell population and an increased regulatory T-cell population (CC + CF vs. FC + FF, P < 0.01). In the gut, colostrum feeding improved intestinal parameters such as villus heights, enzymes, hexose absorption, colonic goblet cell density, and decreased the incidence of severe NEC (27 vs. 64%), diarrhea (16 vs. 49%), and gut permeability on day 5, coupled with lowered expression of LBP, MYD88, IL8, HIF1A, and CASP3 (C5 vs. F5, all P < 0.05). On day 9, the incidence of severe NEC was similarly low across groups (15–21%), but diarrhea resistance and intestinal parameters were further improved by colostrum feeding, relative to exclusive formula feeding (CC, CF, or FC vs. FF, respectively, all P < 0.05). The expression of MYD88 and CASP3 remained downregulated by exclusive colostrum feeding (CC vs. FF, P < 0.01) and colostrum before or after formula feeding down regulated HIF1A and CASP3 expression marginally. Conclusion: Colostrum feeding ameliorated detrimental effects of formula feeding on systemic immunity and gut health in preterm newborns, especially when given immediately after birth.
Collapse
Affiliation(s)
- Yanqi Li
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shuqiang Ren
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arshnee Moodley
- Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.,Department of Paediatrics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
32
|
Laudisi F, Stolfi C, Monteleone G. Impact of Food Additives on Gut Homeostasis. Nutrients 2019; 11:nu11102334. [PMID: 31581570 PMCID: PMC6835893 DOI: 10.3390/nu11102334] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/22/2022] Open
Abstract
In physiological conditions, the gut is heavily infiltrated with various subsets of inflammatory cells, whose activity is tightly controlled by counter-regulatory mechanisms. Defects in such mechanisms can favour the development of chronic intestinal disorders, such as Crohn’s disease (CD) and ulcerative colitis (UC), the principal forms of inflammatory bowel diseases (IBD) in humans, as well as systemic disorders. Over the last years, the frequency of intestinal and systemic immune-inflammatory disorders has increased in previously low incidence areas, likely due to the Westernization of lifestyles, including dietary habits. The Western diet is characterized by high consumption of proteins, saturated fats and sweets, as well as by a broad use of food additives (e.g., emulsifiers, bulking agents), which are used to preserve and enhance food quality. Accumulating evidence suggests that food additives can perturb gut homeostasis, thereby contributing to promote tissue-damaging inflammatory responses. For instance, mice given the emulsifiers carboxymethylcellulose and polysorbate 80 develop dysbiosis with overgrowth of mucus-degrading bacteria. Such an effect triggers colitis in animals deficient in either interleukin-10, a cytokine exerting anti-inflammatory and regulatory functions, or Toll-like receptor 5, a receptor recognizing the bacterial flagellin. Similarly, the polysaccharide maltodextrin induces endoplasmic reticulum stress in intestinal goblet cells, thereby impairing mucus release and increasing host susceptibility to colitis. In this review, we report and discuss the current knowledge about the impact of food additives on gut homeostasis and their potential contribution to the development of inflammatory disorders.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
33
|
Sood A, Ahuja V, Kedia S, Midha V, Mahajan R, Mehta V, Sudhakar R, Singh A, Kumar A, Puri AS, Tantry BV, Thapa BR, Goswami B, Behera BN, Ye BD, Bansal D, Desai D, Pai G, Yattoo GN, Makharia G, Wijewantha HS, Venkataraman J, Shenoy KT, Dwivedi M, Sahu MK, Bajaj M, Abdullah M, Singh N, Singh N, Abraham P, Khosla R, Tandon R, Misra SP, Nijhawan S, Sinha SK, Bopana S, Krishnaswamy S, Joshi S, Singh SP, Bhatia S, Gupta S, Bhatia S, Ghoshal UC. Diet and inflammatory bowel disease: The Asian Working Group guidelines. Indian J Gastroenterol 2019; 38:220-246. [PMID: 31352652 PMCID: PMC6675761 DOI: 10.1007/s12664-019-00976-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION These Asian Working Group guidelines on diet in inflammatory bowel disease (IBD) present a multidisciplinary focus on clinical nutrition in IBD in Asian countries. METHODOLOGY The guidelines are based on evidence from existing published literature; however, if objective data were lacking or inconclusive, expert opinion was considered. The conclusions and 38 recommendations have been subject to full peer review and a Delphi process in which uniformly positive responses (agree or strongly agree) were required. RESULTS Diet has an important role in IBD pathogenesis, and an increase in the incidence of IBD in Asian countries has paralleled changes in the dietary patterns. The present consensus endeavors to address the following topics in relation to IBD: (i) role of diet in the pathogenesis; (ii) diet as a therapy; (iii) malnutrition and nutritional assessment of the patients; (iv) dietary recommendations; (v) nutritional rehabilitation; and (vi) nutrition in special situations like surgery, pregnancy, and lactation. CONCLUSIONS Available objective data to guide nutritional support and primary nutritional therapy in IBD are presented as 38 recommendations.
Collapse
Affiliation(s)
- Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India.
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 023, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 023, India
| | - Vandana Midha
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Ramit Mahajan
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Varun Mehta
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Ritu Sudhakar
- Department of Dietetics, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Arshdeep Singh
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Ajay Kumar
- BLK Super Speciality Hospital, New Delhi, 110 005, India
| | | | | | - Babu Ram Thapa
- Department of Gastroenterology Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Bhabhadev Goswami
- Department of Gastroenterology, Gauhati Medical College, Guwahati, 781 032, India
| | - Banchha Nidhi Behera
- Department of Dietetics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, Seoul, South Korea
| | - Deepak Bansal
- Consultant Gastroenterology, Bathinda, 151 001, India
| | - Devendra Desai
- P. D. Hinduja Hospital and Medical Research Centre, Mumbai, 400 016, India
| | - Ganesh Pai
- Department of Gastroenterology, Kasturba Medical College, Manipal, 576 104, India
| | | | - Govind Makharia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 023, India
| | | | | | - K T Shenoy
- Department of Gastroenterology, Sree Gokulum Medical College and Research Foundation, Trivandrum, 695 011, India
| | - Manisha Dwivedi
- Department of Gastroenterology, Moti Lal Nehru Medical College, Allahabad, 211 001, India
| | - Manoj Kumar Sahu
- Department of Gastroenterology, IMS and Sum Hospital, Bhubaneswar, 756 001, India
| | | | - Murdani Abdullah
- Department of Internal Medicine, Faculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Namrata Singh
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110 023, India
| | - Neelanjana Singh
- Dietician, Pushpawati Singhania Research Institute, New Delhi, 110 001, India
| | - Philip Abraham
- P D Hinduja Hospital and Medical Research Centre, Veer Savarkar Marg, Cadel Road, Mahim, Mumbai, 400 016, India
| | - Rajiv Khosla
- Max Super Speciality Hospital, Saket, New Delhi, 110 017, India
| | - Rakesh Tandon
- Pushpawati Singhania Research Institute, New Delhi, 110 001, India
| | - S P Misra
- Department of Gastroenterology, Moti Lal Nehru Medical College, Allahabad, 211 001, India
| | - Sandeep Nijhawan
- Department of Gastroenterology, SMS Medical College, Jaipur, 302 004, India
| | - Saroj Kant Sinha
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Sawan Bopana
- Fortis Hospital, Vasant Kunj, New Delhi, 110 070, India
| | | | - Shilpa Joshi
- Dietician, Mumbai Diet and Health Centre, Mumbai, 400 001, India
| | - Shivram Prasad Singh
- Department of Gastroenterology, Sriram Chandra Bhanj Medical College and Hospital, Cuttack, 753 001, India
| | - Shobna Bhatia
- Department of Gastroenterology, King Edward Memorial Hospital, Mumbai, 400 012, India
| | - Sudhir Gupta
- Shubham Gastroenterology Centre, Nagpur, 440 001, India
| | - Sumit Bhatia
- Consultant Gastroenterology, Medanta The Medicity, Gurgaon, 122 001, India
| | - Uday Chand Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India
| |
Collapse
|
34
|
Schönherr-Hellec S, Aires J. Clostridia and necrotizing enterocolitis in preterm neonates. Anaerobe 2019; 58:6-12. [PMID: 30980889 DOI: 10.1016/j.anaerobe.2019.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Necrotizing enterocolitis (NEC) is the most severe life threatening gastrointestinal disease among preterm neonates. NEC continues to account for substantial morbidity and mortality in neonatal intensive care units worldwide. Although its pathogenesis remains incompletely elucidated, NEC is recognized as a multifactorial disease involving intestinal unbalanced inflammatory response, feeding strategies, and bacterial colonization. Epidemiological studies, clinical signs, and animal models support the participation of anaerobic bacteria, particularly clostridia species, in NEC development. Colonization by clostridia seems particularly deleterious. The present review is the opportunity to propose an update on the role of clostridia and NEC.
Collapse
Affiliation(s)
| | - J Aires
- EA 4065, Faculty of Pharmacy, Paris Descartes University, Paris, France.
| |
Collapse
|
35
|
Ren S, Hui Y, Obelitz-Ryom K, Brandt AB, Kot W, Nielsen DS, Thymann T, Sangild PT, Nguyen DN. Neonatal gut and immune maturation is determined more by postnatal age than by postconceptional age in moderately preterm pigs. Am J Physiol Gastrointest Liver Physiol 2018; 315:G855-G867. [PMID: 30118350 DOI: 10.1152/ajpgi.00169.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Preterm infants have immature organ functions that predispose them to gut and immune disorders. Developmental delays at preterm birth may affect various organs differently at term-corrected age. We hypothesized that gut and immune maturation in moderately preterm neonates depends more on birth and postnatal factors than on advancing postconceptional age (PCA). Using preterm pigs as models, we investigated how gut and immune parameters develop until term-corrected age and how these differ from those in term counterparts. Preterm ( n = 43, 106 days of gestation) and term pigs ( n = 41, 116 days of gestation) were delivered by caesarean section and euthanized at birth ( day 1) or postnatal day 11 (term-corrected age for preterm pigs) using identical rearing conditions. Relative to term pigs, preterm pigs had lower blood oxygenation, glucose, and cortisol levels, lower gut lactase activity, villus height, and goblet cell density, and lower blood neutrophil, helper T, and cytotoxic T cell numbers at birth. Despite slower growth in preterm pigs, most intestinal and immune parameters increased markedly after birth in both groups. However, some parameters remained negatively affected by preterm birth until postnatal day 11 (goblet cells, gut permeability, and cytotoxic T cells). The colon microbiota showed limited differences between preterm and term pigs at this time. At the same PCA, preterm 11-day-old pigs had higher blood leukocyte numbers and gut enzyme activities but lower villus height and blood cytotoxic T cell numbers relative to newborn term pigs. Birth and postnatal factors, not advancing PCA, are key determinants of gut and immune maturation in moderately preterm neonates. NEW & NOTEWORTHY Postnatally, preterm infants are often considered to reach a physiological maturation similar to that in term infants when they reach term-corrected postconceptional age (PCA). Using preterm pigs as models, we show that PCA may be a poor measure of gut and immune maturation because environmental triggers (regardless of PCA at birth) are critical. Possibly, PCA is only relevant to evaluate physiological maturation of organs that develop relatively independent of the external environment (e.g., the brain).
Collapse
Affiliation(s)
- Shuqiang Ren
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Yan Hui
- Department of Food Science, University of Copenhagen , Copenhagen , Denmark
| | - Karina Obelitz-Ryom
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Anne B Brandt
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Witold Kot
- Department of Environmental Sciences, Aarhus University , Aarhus , Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen , Copenhagen , Denmark
| | - Thomas Thymann
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Per T Sangild
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen , Denmark
| | - Duc Ninh Nguyen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
36
|
Laudisi F, Di Fusco D, Dinallo V, Stolfi C, Di Grazia A, Marafini I, Colantoni A, Ortenzi A, Alteri C, Guerrieri F, Mavilio M, Ceccherini-Silberstein F, Federici M, MacDonald TT, Monteleone I, Monteleone G. The Food Additive Maltodextrin Promotes Endoplasmic Reticulum Stress-Driven Mucus Depletion and Exacerbates Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 2018; 7:457-473. [PMID: 30765332 PMCID: PMC6369223 DOI: 10.1016/j.jcmgh.2018.09.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Food additives, such as emulsifiers, stabilizers, or bulking agents, are present in the Western diet and their consumption is increasing. However, little is known about their potential effects on intestinal homeostasis. In this study we examined the effect of some of these food additives on gut inflammation. METHODS Mice were given drinking water containing maltodextrin (MDX), propylene glycol, or animal gelatin, and then challenged with dextran sulfate sodium or indomethacin. In parallel, mice fed a MDX-enriched diet were given the endoplasmic reticulum (ER) stress inhibitor tauroursodeoxycholic acid (TUDCA). Transcriptomic analysis, real-time polymerase chain reaction, mucin-2 expression, phosphorylated p38 mitogen-activated protein (MAP) kinase quantification, and H&E staining was performed on colonic tissues. Mucosa-associated microbiota composition was characterized by 16S ribosomal RNA sequencing. For the in vitro experiments, murine intestinal crypts and the human mucus-secreting HT29-methotrexate treated cell line were stimulated with MDX in the presence or absence of TUDCA or a p38 MAP kinase inhibitor. RESULTS Diets enriched in MDX, but not propylene glycol or animal gelatin, exacerbated intestinal inflammation in both models. Analysis of the mechanisms underlying the detrimental effect of MDX showed up-regulation of inositol requiring protein 1β, a sensor of ER stress, in goblet cells, and a reduction of mucin-2 expression with no significant change in mucosa-associated microbiota. Stimulation of murine intestinal crypts and HT29-methotrexate treated cell line cells with MDX induced inositol requiring protein 1β via a p38 MAP kinase-dependent mechanism. Treatment of mice with TUDCA prevented mucin-2 depletion and attenuated colitis in MDX-fed mice. CONCLUSIONS MDX increases ER stress in gut epithelial cells with the downstream effect of reducing mucus production and enhancing colitis susceptibility.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Alteri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Guerrieri
- Center for Life NanoScience at Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy,Center for Atherosclerosis, Policlinico Tor Vergata, Rome, Italy
| | - Thomas Thornton MacDonald
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy,Correspondence Address correspondence to: Giovanni Monteleone, MD, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy. fax: (39) 06-72596391.
| |
Collapse
|
37
|
Roy SK, Meng Q, Sadowitz BD, Kollisch-Singule M, Yepuri N, Satalin J, Gatto LA, Nieman GF, Cooney RN, Clark D. Enteral administration of bacteria fermented formula in newborn piglets: A high fidelity model for necrotizing enterocolitis (NEC). PLoS One 2018; 13:e0201172. [PMID: 30036384 PMCID: PMC6056052 DOI: 10.1371/journal.pone.0201172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022] Open
Abstract
Objective To develop an animal model which replicates neonatal NEC and characterizes the importance of bacterial fermentation of formula and short chain fatty acids (SCFAs) in its pathogenesis. Background NEC is a severe form of intestinal inflammation in preterm neonates and current models do not reproduce the human condition. Methods Three groups of newborn piglets: Formula alone (FO), Bacteria alone (E.coli: BO) and E.coli-fermented formula (FF) were anesthetized, instrumented and underwent post-pyloric injection of formula, bacteria or fermented-formula. SCFA levels were measured by gas chromatography-mass spectrometry. At 6 h bowel appearance was assessed, histologic and molecular analysis of intestine were performed. Gut inflammation (p65 NF-κB, TLR4, TNF-α, IL-1β), apoptosis (cleaved caspase-3, BAX, apoptosis) and tight junction proteins (claudin-2, occludin) were measured. Results SCFAs were increased in FF. Small bowel from FF piglet’s demonstrated inflammation, coagulative necrosis and pneumatosis resembling human NEC. Histologic gut injury (injury score, mast cell activation) were increased by Bacteria, but more severe in FF piglets. Intestinal expression of p65 NF-κB, NF-κB activation, TNF-α and IL-1β were increased in BO and markedly increased in the FF group (P<0.05 vs. FO). Intestine from Bacteria piglets demonstrated increased apoptotic index, pro-apoptotic protein expression and decreased tight junction proteins. These changes were more severe in FF piglets. Conclusions Our piglet model demonstrates the findings of NEC in human neonates: systemic acidosis, intestinal inflammation, pneumatosis and portal venous gas. Bacteria alone can initiate intestinal inflammation, injury and apoptosis, but bacterial fermentation of formula generates SCFAs which contribute to the pathogenesis of NEC.
Collapse
Affiliation(s)
- Shreyas K. Roy
- SUNY Upstate Medical University, Department of Surgery, Syracuse, New York, United States of America
| | - Qinghe Meng
- SUNY Upstate Medical University, Department of Surgery, Syracuse, New York, United States of America
| | - Benjamin D. Sadowitz
- SUNY Upstate Medical University, Department of Surgery, Syracuse, New York, United States of America
| | - Michaela Kollisch-Singule
- SUNY Upstate Medical University, Department of Surgery, Syracuse, New York, United States of America
| | - Natesh Yepuri
- SUNY Upstate Medical University, Department of Surgery, Syracuse, New York, United States of America
| | - Joshua Satalin
- SUNY Upstate Medical University, Department of Surgery, Syracuse, New York, United States of America
| | - Louis A. Gatto
- SUNY Cortland, Department of Biology, Cortland, New York, United States of America
| | - Gary F. Nieman
- SUNY Upstate Medical University, Department of Surgery, Syracuse, New York, United States of America
| | - Robert N. Cooney
- SUNY Upstate Medical University, Department of Surgery, Syracuse, New York, United States of America
- * E-mail:
| | - David Clark
- Albany Medical Center, Department of Pediatrics, Albany, New York, United States of America
| |
Collapse
|
38
|
Call L, Stoll B, Oosterloo B, Ajami N, Sheikh F, Wittke A, Waworuntu R, Berg B, Petrosino J, Olutoye O, Burrin D. Metabolomic signatures distinguish the impact of formula carbohydrates on disease outcome in a preterm piglet model of NEC. MICROBIOME 2018; 6:111. [PMID: 29921329 PMCID: PMC6009052 DOI: 10.1186/s40168-018-0498-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Major risk factors for necrotizing enterocolitis (NEC) include premature birth and formula feeding in the context of microbial colonization of the gastrointestinal tract. We previously showed that feeding formula composed of lactose vs. corn syrup solids protects against NEC in preterm pigs; however, the microbial and metabolic effects of these different carbohydrates used in infant formula has not been explored. OBJECTIVE Our objective was to characterize the effects of lactose- and corn syrup solid-based formulas on the metabolic and microbial profiles of preterm piglets and to determine whether unique metabolomic or microbiome signatures correlate with severity or incidence of NEC. DESIGN/METHODS Preterm piglets (103 days gestation) were given total parenteral nutrition (2 days) followed by gradual (5 days) advancement of enteral feeding of formulas matched in nutrient content but containing either lactose (LAC), corn syrup solids (CSS), or 1:1 mix (MIX). Gut contents and mucosal samples were collected and analyzed for microbial profiles by sequencing the V4 region of the 16S rRNA gene. Metabolomic profiles of cecal contents and plasma were analyzed by LC/GC mass spectrometry. RESULTS NEC incidence was 14, 50, and 44% in the LAC, MIX, and CSS groups, respectively. The dominant classes of bacteria were Bacilli, Clostridia, and Gammaproteobacteria. The number of observed OTUs was lowest in colon contents of CSS-fed pigs. CSS-based formula was associated with higher Bacilli and lower Clostridium from clusters XIVa and XI in the colon. NEC was associated with decreased Gammaproteobacteria in the stomach and increased Clostridium sensu stricto in the ileum. Plasma from NEC piglets was enriched with metabolites of purine metabolism, aromatic amino acid metabolism, and bile acids. Markers of glycolysis, e.g., lactate, were increased in the cecal contents of CSS-fed pigs and in plasma of pigs which developed NEC. CONCLUSIONS Feeding formula containing lactose is not completely protective against NEC, yet selects for greater microbial richness associated with changes in Bacilli and Clostridium and lower NEC incidence. We conclude that feeding preterm piglets a corn syrup solid vs. lactose-based formula increases the incidence of NEC and produces distinct metabolomic signatures despite modest changes in microbiome profiles.
Collapse
Affiliation(s)
- Lee Call
- Department Pediatric Gastroenterology, Hepatology, and Nutrition, USDA-ARS Children’s Nutrition Research Center, 1100 Bates Ave, Houston, TX 77030 USA
| | - Barbara Stoll
- Department Pediatric Gastroenterology, Hepatology, and Nutrition, USDA-ARS Children’s Nutrition Research Center, 1100 Bates Ave, Houston, TX 77030 USA
| | - Berthe Oosterloo
- Department Pediatric Gastroenterology, Hepatology, and Nutrition, USDA-ARS Children’s Nutrition Research Center, 1100 Bates Ave, Houston, TX 77030 USA
| | - Nadim Ajami
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, One Baylor Plaza, MS BCM385, Houston, TX 77030 USA
| | - Fariha Sheikh
- Division of Pediatric Surgery, Baylor College of Medicine, 6701 Fannin St, Suite 1210, Houston, TX 77030 USA
| | - Anja Wittke
- Mead Johnson Pediatric Nutrition Institute, 2400 W Lloyd Expressway, Evansville, IN 47712 USA
| | - Rosaline Waworuntu
- Mead Johnson Pediatric Nutrition Institute, 2400 W Lloyd Expressway, Evansville, IN 47712 USA
| | - Brian Berg
- Mead Johnson Pediatric Nutrition Institute, 2400 W Lloyd Expressway, Evansville, IN 47712 USA
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, One Baylor Plaza, MS BCM385, Houston, TX 77030 USA
| | - Oluyinka Olutoye
- Division of Pediatric Surgery, Baylor College of Medicine, 6701 Fannin St, Suite 1210, Houston, TX 77030 USA
| | - Douglas Burrin
- Department Pediatric Gastroenterology, Hepatology, and Nutrition, USDA-ARS Children’s Nutrition Research Center, 1100 Bates Ave, Houston, TX 77030 USA
| |
Collapse
|
39
|
The Risk of Necrotizing Enterocolitis Differs Among Preterm Pigs Fed Formulas With Either Lactose or Maltodextrin. J Pediatr Gastroenterol Nutr 2018; 66:e61-e66. [PMID: 28806296 DOI: 10.1097/mpg.0000000000001707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES When breast milk is unavailable for preterm infants, formulas are needed that won't increase the risk of necrotizing enterocolitis (NEC). Adding novel ingredients to formula to reduce NEC has not been effective clinically. Instead, we tested the prediction that NEC can be reduced by removing the maltodextrin now included in preterm formulas. METHODS The preterm pig model of spontaneous NEC was used to evaluate growth, health, and intestinal responses to 6 to 7 days of feeding formulas that were identical except for the source of carbohydrate; either 100% lactose or maltodextrin; colostrum was used as the control. RESULTS Formula with maltodextrin resulted in a 50% incidence of NEC with 30% mortality. The lactose formula and colostrum resulted in a 0% incidence of NEC. Growth was highest for pigs fed the formula with lactose, intermediate with maltodextrin, and minimal when bovine colostrum was fed (P < 0.05). Although the small intestine was larger when colostrum was fed (P < 0.05), because rates of glucose uptake were lower (P < 0.05), total small intestine capacities to transport glucose were similar for healthy pigs in all 3 groups. CONCLUSIONS If lactose-based formulas reduce NEC clinically, the transition of preterm infants to enteral feeding can be accelerated, improving growth and development, and shortening reliance on parenteral nutrition. Although colostrum protects against NEC, chronic feeding does not promote body weight gain after preterm birth. The preterm pig can be used for preclinical studies that evaluate the mechanisms by which carbohydrates and other ingredients influence growth, development, health, and risk of NEC.
Collapse
|
40
|
van Goudoever JB, van den Akker CH. Mimicking Own Mother's Milk for Preterms: Are We Getting Closer? J Pediatr Gastroenterol Nutr 2018; 66:1-2. [PMID: 28891832 DOI: 10.1097/mpg.0000000000001713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Johannes B van Goudoever
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center
- Department of Pediatrics, VU University Medical Center, Amsterdam The Netherlands
| | | |
Collapse
|
41
|
Bioactive Whey Protein Concentrate and Lactose Stimulate Gut Function in Formula-fed Preterm Pigs. J Pediatr Gastroenterol Nutr 2018; 66:128-134. [PMID: 28753186 DOI: 10.1097/mpg.0000000000001699] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Formula feeding is associated with compromised intestinal health in preterm neonates compared with maternal milk, but the mechanisms behind this are unclear. We hypothesized that the use of maltodextrin and whey protein concentrates (WPCs) with reduced bioactivity owing to thermal processing are important factors. METHOD Ninety-two cesarean-delivered preterm pigs were fed increasing doses of formulas for 5 days (24-120 mL · kg · day). In experiment 1, 4 groups of pigs (n = 15-16) were fed lactose- or maltodextrin-dominant formulas (lactose/maltodextrin ratios 3:1 or 1:3, respectively), containing WPC with either high or low levels of IgG (WPC1 or WPC2, respectively). In experiment 2, 2 groups of pigs (n = 15-16) were fed lactose-dominant formulas with either a bioactive WPC (BioWPC, produced by reduced thermal-processing) or a conventional WPC (ConWPC). RESULTS In experiment 1, pigs fed formula with WPC1 had higher villi, hexose absorption, and lactase activity in small intestine, relative to WPC2, but predominantly with the lactose-dominant formula (all P < 0.05). In experiment 2, the BioWPC product had higher bioactivity, as indicated by higher IgG, lactoferrin, and TGF-β2 levels, and better enterocyte proliferation in vitro. Pigs fed the BioWPC formula showed better feeding tolerance and higher intestinal villi and lactase activity (all P < 0.05). The BioWPC formula-fed pigs also had greater physical activity (P < 0.05 on day 4) and tended to show improved hexose absorption and decreased gut permeability (both P ≤ 0.09). CONCLUSIONS Infant formulas containing lactose as the main carbohydrate, and WPC with reduced thermal processing, may support gut maturation and health in sensitive, preterm neonates.
Collapse
|
42
|
Embleton ND, Zalewski SP. How to feed a baby recovering from necrotising enterocolitis when maternal milk is not available. Arch Dis Child Fetal Neonatal Ed 2017; 102:F543-F546. [PMID: 28780499 DOI: 10.1136/archdischild-2016-311964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 11/03/2022]
Abstract
Necrotising enterocolitis (NEC) is a devastating disease with significant mortality and serious adverse outcomes in at least 50% including short gut and poor neurodevelopment. Research and management are complicated by a lack of robust clinical markers, and without histological confirmation, there is a risk of both underdiagnosis and overdiagnosis. Interunit variations in the thresholds for surgical referral, laparotomy and postmortem rates mean the actual incidence is difficult to determine, especially because the histological term 'NEC' is used in practice to describe a heterogeneous clinical syndrome. In this article, we discuss issues relating to choice of milk feed type following a clinical diagnosis of 'NEC' where mother's own milk is not available. We review common clinical concerns relating to feeding following NEC and the rationale for modifications of the macronutrient composition and quality of formula milk.
Collapse
Affiliation(s)
- Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Foundation Trust & Newcastle University, Newcastle upon Tyne, UK
| | - Stefan P Zalewski
- Newcastle Neonatal Service, Newcastle Hospitals NHS Foundation Trust & Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
43
|
A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Supplementation with Lactobacillus paracasei or Pediococcus pentosaceus does not prevent diarrhoea in neonatal pigs infected with Escherichia coli F18. Br J Nutr 2017; 118:109-120. [PMID: 28720151 DOI: 10.1017/s000711451700160x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infectious diarrhoea is a worldwide problem in newborns. Optimal bacterial colonisation may enhance gut maturation and protect against pathogenic bacteria after birth. We hypothesised that lactic acid bacteria (LAB) administration prevents pathogen-induced diarrhoea in formula-fed newborns. Newborn caesarean-delivered, colostrum-deprived term piglets on parenteral nutrition for the first 15 h, were used as models for sensitive newborn infants. A commercially available probiotic strain, Lactobacillus paracasei F19 (LAP, 2·6×108 colony-forming units (CFU)/kg per d) and a novel LAB isolate, Pediococcus pentosaceus (PEP, 1·3×1010 CFU/kg per d), were administered for 5 d with or without inoculation of the porcine pathogen, Escherichia coli F18 (F18, 1010 CFU/d). This resulted in six treatment groups: Controls (n 9), LAP (n 10), PEP (n 10), F18 (n 10), F18-LAP (n 10) and F18-PEP (n 10). The pathogen challenge increased diarrhoea and density of F18 in the intestinal mucosa (P<0·05). LAB supplementation further increased the diarrhoea score, relative to F18 alone (P<0·01). Intestinal structure and permeability were similar among groups, whereas brush border enzymes were affected in variable intestinal regions with decreased activities in most cases after F18 and LAB inoculation. Bacterial density in colon mucosa increased after F18 inoculation (P<0·05) but was unaffected by LAB supplementation. In colon contents, acetic and butyric acids were increased by PEP (P<0·05). The LAB used in this study failed to reduce E. coli-induced diarrhoea in sensitive newborn pigs. In vulnerable newborns there may be a delicate balance among bacterial composition and load, diet and the host. Caution may be required when administering LAB to compromised newborns suffering from enteric infections.
Collapse
|
45
|
Pieper R, Vahjen W, Zentek J. Intestinal lactose and mineral concentration affect the microbial ecophysiology along the gastrointestinal tract of formula-fed neonatal piglets. J Anim Sci 2017; 94:3786-3795. [PMID: 27898903 DOI: 10.2527/jas.2016-0459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hyperprolificacy in modern pig breeds has led to increased use of artificial rearing and formula feeding of neonatal piglets, which may change their intestinal bacterial ecophysiology. Here, newborn piglets ( = 8 per group) were fed a bovine milk-based formula (FO) or allowed to suckle their mothers (sow milk [SM]) for 2 wk, and digesta samples from the stomach, jejunum, and colon were subsequently analyzed for enzyme activities, bacterial metabolites, and 16S rRNA transcripts of bacterial groups by quantitative real-time PCR. Jejunal lactase activity was lower and lactose concentration was greater in the jejunum and colon in the FO group compared with the SM group ( < 0.05). In the stomach, FO-fed pigs had a lower copy number of 16S rRNA transcripts for all analyzed bacterial groups ( < 0.05) except for the // group. In the jejunum, 16S rRNA transcripts of lactic acid bacteria and clostridial cluster I were lower ( < 0.05) in FO-fed pigs. In turn, transcript abundance of the group and clostridial cluster I was greater in FO-fed pigs in the colon ( < 0.05). In FO-fed piglets, concentrations of and lactate and total and individual short-chain fatty acids were higher in the colon ( < 0.05). Multivariate redundancy analysis revealed that the concentration of minerals (ash, Ca, Mg, K, Na, Mn, and Zn) were associated with reduced bacterial abundance and activity in the upper gastrointestinal tract, whereas lactose had the most pronounced effect on the colon microbiota. The present study revealed that, apart from lactose, the mineral concentration modifies the microbial communities in the gastrointestinal tract of FO-fed piglets.
Collapse
|
46
|
Chang HY, Chen JH, Chang JH, Lin HC, Lin CY, Peng CC. Multiple strains probiotics appear to be the most effective probiotics in the prevention of necrotizing enterocolitis and mortality: An updated meta-analysis. PLoS One 2017; 12:e0171579. [PMID: 28182644 PMCID: PMC5300201 DOI: 10.1371/journal.pone.0171579] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/22/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Some oral probiotics have been shown to prevent necrotizing enterocolitis (NEC) and decrease mortality effectively in preterm very low birth weight (PVLBW) infants. However, it is unclear whether a single probiotic or a mixture of probiotics is most effective for the prevention of NEC. OBJECTIVE A meta-analysis was conducted by reviewing the most up to date literature to investigate whether multiple strains probiotics are more effective than a single strain in reducing NEC and death in PVLBW infants. DATA SOURCES Relevant studies were identified by searches of the MEDLINE, EMBASE, and Cochrane CENTRAL databases, from 2001 to 2016. DATA EXTRACTION AND SYNTHESIS The inclusion criteria were randomized controlled trials of any enteral probiotic supplementation that was initiated within the first 7 days and continued for at least 14 days in preterm infants (≤ 34 weeks' gestation) and/or those of a birth weight ≤1500 g. RESULTS A total of 25 trials (n = 7345 infants) were eligible for inclusion in the meta-analysis using a fixed-effects model. Multiple strains probiotics were associated with a marked reduction in the incidence of NEC, with a pooled OR of 0.36 (95% CI, 0.24-0.53; P < .00001). Single strain probiotic using Lactobacillus species had a borderline effect in reducing NEC (OR of 0.60; 95% CI 0.36-1.0; P = .05), but not mortality. Multiple strains probiotics had a greater effectiveness in reducing mortality and were associated with a pooled OR of 0.58 (95% CI, 0.43-0.79; P = .0006). Trials using single strain of Bifidobacterium species and Saccharomyces boulardii did not reveal any beneficial effects in terms of reducing NEC or mortality. CONCLUSION This updated report found that multiple strains probiotics appear to be the most feasible and effective strategy for the prevention of NEC and reduction of mortality in PVLBW neonates. Further clinical trials should focus on which probiotic combinations are most effective.
Collapse
MESH Headings
- Enterocolitis, Necrotizing/epidemiology
- Enterocolitis, Necrotizing/microbiology
- Enterocolitis, Necrotizing/mortality
- Enterocolitis, Necrotizing/prevention & control
- Humans
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/epidemiology
- Infant, Premature, Diseases/microbiology
- Infant, Premature, Diseases/mortality
- Infant, Premature, Diseases/prevention & control
- Infant, Very Low Birth Weight
- Probiotics/administration & dosage
- Probiotics/classification
- Probiotics/therapeutic use
- Randomized Controlled Trials as Topic
Collapse
Affiliation(s)
- Hung-Yang Chang
- Department of Pediatrics, MacKay Children’s Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Jin-Hua Chen
- School of Public Health and Biostatistics Center, Taipei Medical University, Taipei, Taiwan
| | - Jui-Hsing Chang
- Department of Pediatrics, MacKay Children’s Hospital, Taipei, Taiwan
| | - Hung-Chih Lin
- Department of Pediatrics, Children’s Hospital and School of Chinese Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| | - Chien-Yu Lin
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu city, Taiwan
| | - Chun-Chih Peng
- Department of Pediatrics, MacKay Children’s Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
47
|
Støy ACF, Heegaard PMH, Skovgaard K, Bering SB, Bjerre M, Sangild PT. Increased Intestinal Inflammation and Digestive Dysfunction in Preterm Pigs with Severe Necrotizing Enterocolitis. Neonatology 2017; 111:289-296. [PMID: 28013313 DOI: 10.1159/000452614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND The risk factors for necrotizing enterocolitis (NEC) are well known, but the factors involved in the different NEC presentations remain unclear. OBJECTIVES We hypothesized that digestive dysfunction and intestinal inflammation are mainly affected by severe NEC lesions. METHODS In 48 preterm pigs, the association between the macroscopic NEC score (range 1-6) and the expression of 48 genes related to inflammation, morphological, and digestive parameters in the distal small intestine was investigated. RESULTS Only severe NEC cases (score of 5-6) were associated with the upregulation of genes involved in inflammation (CCL2, CCL3, CD14, CD163, CXCL8, HP, IL1B, IL1RN, IL6,IL10, NFKBIA, PTGS2 and TNFAIP3) compared to pigs that appeared healthy (score of 1-2) or showed mild NEC (score of 3-4). Pigs with a score of 5-6 had higher intestinal tissue IL-1β levels and a lower mucosal mass, villus height, and aminopeptidase N activity compared to pigs with a score of 1-4, and lower crypts and activities of lactase, dipeptidylpeptidase IV, and aminopeptidase A than pigs with a score of 1-2. CONCLUSIONS The expression of a range of inflammation-related genes was increased only in pigs with severe NEC, concomitant with morphological changes and decreased hydrolase activity. A severe inflammatory response and digestive dysfunction are associated mainly with severe NEC. Still, it remains difficult to separate the initial causes of NEC and the later intestinal consequences of NEC in both infants and experimental models.
Collapse
Affiliation(s)
- Ann Cathrine F Støy
- National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | | | | | | | | | | |
Collapse
|
48
|
Li Y, Juhl SM, Ye X, Shen RL, Iyore EO, Dai Y, Sangild PT, Greisen GO. A Stepwise, Pilot Study of Bovine Colostrum to Supplement the First Enteral Feeding in Preterm Infants (Precolos): Study Protocol and Initial Results. Front Pediatr 2017; 5:42. [PMID: 28316968 PMCID: PMC5334325 DOI: 10.3389/fped.2017.00042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
STUDY PROTOCOL The optimal feeding for preterm infants during the first weeks is still debated, especially when mother's own milk is lacking or limited. Intact bovine colostrum (BC) contains high amounts of protein, growth factors, and immuno-regulatory components that may benefit protein intake and gut maturation. We designed a pilot study to investigate the feasibility and tolerability of BC as the first nutrition for preterm infants. The study was designed into three phases (A, B, and C) and recruited infants with birth weights of 1,000-1,800 g (China) or gestational ages (GAs) of 27 + 0 to 32 + 6 weeks (Denmark). In phase A, three infants were recruited consecutively to receive BC as a supplement to standard feeding. In phase B, seven infants were recruited in parallel. In phase C (not yet complete), 40 infants will be randomized to BC or standard feeding. Feeding intolerance, growth, time to full enteral feeding, serious infections/NEC, plasma amino acid profile, blood biochemistry, and intestinal functions are assessed. This paper presents the study protocol and results from phases A and B. RESULTS Seven Danish and five Chinese infants received 22 ± 11 and 22 ± 6 ml·kg-1·day-1 BC for a mean of 7 ± 3 and 7 ± 1 days which provided 1.81 ± 0.89 and 1.83 ± 0.52 g·kg-1·day-1 protein, respectively. Growth rates until 37 weeks or discharge were in the normal range (11.8 ± 0.9 and 12.9 ± 2.7 g·kg-1·day-1 in Denmark and China, respectively). No clinical adverse effects were observed. Five infants showed a transient hypertyrosinemia on day 7 of life. DISCUSSION AND CONCLUSION The three-phased study design was used to proceed with caution as this is the first trial to investigate intact BC as the first feed for preterm infants. BC supplementation appeared well tolerated and resulted in high enteral protein intake. Based on the safety evaluation of phases A and B, the randomized phase C has been initiated. When complete, the Precolos trial will document whether it is feasible to use BC as a novel, bioactive milk diet for preterm infants. Our trial paves the way for a larger randomized controlled trial on using BC as the first feed for preterm infants with insufficient access to mother's own milk.
Collapse
Affiliation(s)
- Yanqi Li
- Section of Comparative Pediatrics and Nutrition, University of Copenhagen , Frederiksberg , Denmark
| | - Sandra M Juhl
- Department of Neonatology, Rigshospitalet , Copenhagen , Denmark
| | - Xuqiang Ye
- Department of Neonatology, Foshan Women's and Children's Hospital , Foshan , China
| | - René L Shen
- Section of Comparative Pediatrics and Nutrition, University of Copenhagen , Frederiksberg , Denmark
| | | | - Yiheng Dai
- Department of Neonatology, Foshan Women's and Children's Hospital , Foshan , China
| | - Per T Sangild
- Section of Comparative Pediatrics and Nutrition, University of Copenhagen, Frederiksberg, Denmark; Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Gorm O Greisen
- Department of Neonatology, Rigshospitalet , Copenhagen , Denmark
| |
Collapse
|
49
|
Eaton S, Rees CM, Hall NJ. Current Research on the Epidemiology, Pathogenesis, and Management of Necrotizing Enterocolitis. Neonatology 2017; 111:423-430. [PMID: 28538238 DOI: 10.1159/000458462] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite decades of research on necrotizing enterocolitis, we still do not fully understand the pathogenesis of the disease, or how to prevent or how to treat it. However, as a result of recent significant advances in the microbiology, molecular biology, and cell biology of the intestine of preterm infants and infants with necrotizing enterocolitis, there is some hope that research into this devastating disease will yield some important translation into effective prevention, more rapid diagnosis, and novel therapies.
Collapse
|
50
|
Pieper R, Scharek-Tedin L, Zetzsche A, Röhe I, Kröger S, Vahjen W, Zentek J. Bovine milk-based formula leads to early maturation-like morphological, immunological, and functional changes in the jejunum of neonatal piglets. J Anim Sci 2016; 94:989-99. [PMID: 27065261 DOI: 10.2527/jas.2015-9942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Artificial rearing and formula feeding is coming more into the focus due to increasing litter sizes and limited nursing capacity of sows. The formula composition is important to effectively support the development of the gut and prevent intestinal dysfunction in neonatal piglets. In this study, newborn piglets ( = 8 per group) were fed a bovine milk-based formula (FO), containing skimmed milk and whey as the sole protein and carbohydrate sources, or were suckled by the sow (sow milk [SM]). After 2 wk, tissue from the jejunum was analyzed for structural (i.e., morphometry) and functional (i.e., disaccharidase activity, glucose transport, permeability toward macromolecules, and immune cell presence) changes and concomitant expression of related genes. Formula-fed piglets had more liquid feces ( < 0.05) over the entire experimental period. Although FO contained twice as much lactose (46% on a DM basis) as SM (21%) and no maltose or starch, the lactase activity was lower ( < 0.05) and glucose transport capacity was higher ( < 0.05) in FO-fed pigs. The relative proportion of intraepithelial natural killer cells and proinflammatory cytokine gene expression (, , and ) was higher in FO-fed pigs ( < 0.05). Piglets fed FO had deeper crypts, larger villus area, and higher expression of caspase 3 and proliferating cell nuclear antigen ( < 0.05). Epithelial permeability toward fluorescein isothiocyanate-dextran was higher and expression of claudin-4 was lower in FO-fed piglets ( < 0.05). The data suggest an early response to bovine milk-based compounds in the FO accompanied with early onset of functional maturation and impaired barrier function. Whether lactose, absence of species-specific protective factors, or antigenicity of foreign proteins lead to to the observed intestinal reactions requires further clarification.
Collapse
|