1
|
Stavely R, Rahman AA, Mueller JL, Leavitt AR, Han CY, Pan W, Kaiser KN, Ott LC, Ohkura T, Guyer RA, Burns AJ, Koppes AN, Hotta R, Goldstein AM. Mature enteric neurons have the capacity to reinnervate the intestine with glial cells as their guide. Neuron 2024; 112:3143-3160.e6. [PMID: 39019043 PMCID: PMC11427168 DOI: 10.1016/j.neuron.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/21/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jessica L Mueller
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Abigail R Leavitt
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Y Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kyla N Kaiser
- Northeastern University, Department of Chemical Engineering, 360 Huntington Ave, Boston, MA 02115, USA
| | - Leah C Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan J Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Abigail N Koppes
- Northeastern University, Department of Chemical Engineering, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Amedzrovi Agbesi RJ, El Merhie A, Spencer NJ, Hibberd T, Chevalier NR. Tetrodotoxin-resistant mechanosensitivity and L-type calcium channel-mediated spontaneous calcium activity in enteric neurons. Exp Physiol 2024; 109:1545-1556. [PMID: 38979869 PMCID: PMC11363105 DOI: 10.1113/ep091977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Gut motility undergoes a switch from myogenic to neurogenic control in late embryonic development. Here, we report on the electrical events that underlie this transition in the enteric nervous system, using the GCaMP6f reporter in neural crest cell derivatives. We found that spontaneous calcium activity is tetrodotoxin (TTX) resistant at stage E11.5, but not at E18.5. Motility at E18.5 was characterized by periodic, alternating high- and low-frequency contractions of the circular smooth muscle; this frequency modulation was inhibited by TTX. Calcium imaging at the neurogenic-motility stages E18.5-P3 showed that CaV1.2-positive neurons exhibited spontaneous calcium activity, which was inhibited by nicardipine and 2-aminoethoxydiphenyl borate (2-APB). Our protocol locally prevented muscle tone relaxation, arguing for a direct effect of nicardipine on enteric neurons, rather than indirectly by its relaxing effect on muscle. We demonstrated that the ENS was mechanosensitive from early stages on (E14.5) and that this behaviour was TTX and 2-APB resistant. We extended our results on L-type channel-dependent spontaneous activity and TTX-resistant mechanosensitivity to the adult colon. Our results shed light on the critical transition from myogenic to neurogenic motility in the developing gut, as well as on the intriguing pathways mediating electro-mechanical sensitivity in the enteric nervous system. HIGHLIGHTS: What is the central question of this study? What are the first neural electric events underlying the transition from myogenic to neurogenic motility in the developing gut, what channels do they depend on, and does the enteric nervous system already exhibit mechanosensitivity? What is the main finding and its importance? ENS calcium activity is sensitive to tetrodotoxin at stage E18.5 but not E11.5. Spontaneous electric activity at fetal and adult stages is crucially dependent on L-type calcium channels and IP3R receptors, and the enteric nervous system exhibits a tetrodotoxin-resistant mechanosensitive response. Abstract figure legend Tetrodotoxin-resistant Ca2+ rise induced by mechanical stimulation in the E18.5 mouse duodenum.
Collapse
Affiliation(s)
| | - Amira El Merhie
- Laboratoire Matière et Systèmes Complexes UMR 7057Université Paris Cité/CNRSParisFrance
| | - Nick J. Spencer
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Tim Hibberd
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Nicolas R. Chevalier
- Laboratoire Matière et Systèmes Complexes UMR 7057Université Paris Cité/CNRSParisFrance
| |
Collapse
|
3
|
Parkar N, Spencer NJ, Wiklendt L, Olson T, Young W, Janssen P, McNabb WC, Dalziel JE. Novel insights into mechanisms of inhibition of colonic motility by loperamide. Front Neurosci 2024; 18:1424936. [PMID: 39268036 PMCID: PMC11390470 DOI: 10.3389/fnins.2024.1424936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Background It is well known that opiates slow gastrointestinal (GI) transit, via suppression of enteric cholinergic neurotransmission throughout the GI tract, particularly the large intestine where constipation is commonly induced. It is not clear whether there is uniform suppression of enteric neurotransmission and colonic motility across the full length of the colon. Here, we investigated whether regional changes in colonic motility occur using the peripherally-restricted mu opioid agonist, loperamide to inhibit colonic motor complexes (CMCs) in isolated mouse colon. Methods High-resolution video imaging was performed to monitor colonic wall diameter on isolated whole mouse colon. Regional changes in the effects of loperamide on the pattern generator underlying cyclical CMCs and their propagation across the full length of large intestine were determined. Results The sensitivity of CMCs to loperamide across the length of colon varied significantly. Although there was a dose-dependent inhibition of CMCs with increasing concentrations of loperamide (10 nM - 1 μM), a major observation was that in the mid and distal colon, CMCs were abolished at low doses of loperamide (100 nM), while in the proximal colon, CMCs persisted at the same low concentration, albeit at a significantly slower frequency. Propagation velocity of CMCs was significantly reduced by 46%. The inhibitory effects of loperamide on CMCs were reversed by naloxone (1 μM). Naloxone alone did not change ongoing CMC characteristics. Discussion The results show pronounced differences in the inhibitory action of loperamide across the length of large intestine. The most potent effect of loperamide to retard colonic transit occurred between the proximal colon and mid/distal regions of colon. One of the possibilities as to why this occurs is because the greatest density of mu opioid receptors are located on interneurons responsible for neuro-neuronal transmission underlying CMCs propagation between the proximal and mid/distal colon. The absence of effect of naloxone alone on CMC characteristics suggest that the mu opioid receptor has little ongoing constitutive activity under our recording conditions.
Collapse
Affiliation(s)
- Nabil Parkar
- AgResearch, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
| | - Luke Wiklendt
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, SA, Australia
| | | | - Wayne Young
- AgResearch, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Patrick Janssen
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Julie E Dalziel
- AgResearch, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
4
|
Lefèvre MA, Godefroid Z, Soret R, Pilon N. Enteric glial cell diversification is influenced by spatiotemporal factors and source of neural progenitors in mice. Front Neurosci 2024; 18:1392703. [PMID: 39268038 PMCID: PMC11390640 DOI: 10.3389/fnins.2024.1392703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Previously focused primarily on enteric neurons, studies of the enteric nervous system (ENS) in both health and disease are now broadening to recognize the equally significant role played by enteric glial cells (EGCs). Commensurate to the vast array of gastrointestinal functions they influence, EGCs exhibit considerable diversity in terms of location, morphology, molecular profiles, and functional attributes. However, the mechanisms underlying this diversification of EGCs remain largely unexplored. To begin unraveling the mechanistic complexities of EGC diversity, the current study aimed to examine its spatiotemporal aspects in greater detail, and to assess whether the various sources of enteric neural progenitors contribute differentially to this diversity. Based on established topo-morphological criteria for categorizing EGCs into four main subtypes, our detailed immunofluorescence analyses first revealed that these subtypes emerge sequentially during early postnatal development, in a coordinated manner with the structural changes that occur in the ENS. When combined with genetic cell lineage tracing experiments, our analyses then uncovered a strongly biased contribution by Schwann cell-derived enteric neural progenitors to particular topo-morphological subtypes of EGCs. Taken together, these findings provide a robust foundation for further investigations into the molecular and cellular mechanisms governing EGC diversity.
Collapse
Affiliation(s)
- Marie A Lefèvre
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
- Centre D'excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
| | - Zoé Godefroid
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
- Centre D'excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
- Centre D'excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
- Centre D'excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Dershowitz LB, Garcia HB, Perley AS, Coleman TP, Kaltschmidt JA. Spontaneous enteric nervous system activity generates contractile patterns prior to maturation of gastrointestinal motility. Neurogastroenterol Motil 2024:e14890. [PMID: 39118231 PMCID: PMC11806083 DOI: 10.1111/nmo.14890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/09/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Spontaneous neuronal network activity is essential to the functional maturation of central and peripheral circuits, yet whether this is a feature of enteric nervous system development has yet to be established. Although enteric neurons are known exhibit electrophysiological properties early in embryonic development, no connection has been drawn between this neuronal activity and the development of gastrointestinal (GI) motility patterns. METHODS We use ex vivo GI motility assays with newly developed unbiased computational analyses to identify GI motility patterns across mouse embryonic development. KEY RESULTS We find a previously unknown pattern of neurogenic contractions termed "clustered ripples" that arises spontaneously at embryonic day 16.5, an age earlier than any identified mature GI motility patterns. We further show that these contractions are driven by nicotinic cholinergic signaling. CONCLUSIONS & INFERENCES Clustered ripples are neurogenic contractile activity that arise from spontaneous ENS activity and precede all known forms of neurogenic GI motility. This earliest motility pattern requires nicotinic cholinergic signaling, which may inform pharmacology for enhancing GI motility in preterm infants.
Collapse
Affiliation(s)
- Lori B. Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305 USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305 USA
| | | | - Andrew S. Perley
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Todd P. Coleman
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Julia A. Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305 USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305 USA
| |
Collapse
|
6
|
Rahman AA, Ohkura T, Bhave S, Pan W, Ohishi K, Ott L, Han C, Leavitt A, Stavely R, Burns AJ, Goldstein AM, Hotta R. Enteric neural stem cell transplant restores gut motility in mice with Hirschsprung disease. JCI Insight 2024; 9:e179755. [PMID: 39042470 PMCID: PMC11385093 DOI: 10.1172/jci.insight.179755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
The goal of this study was to determine if transplantation of enteric neural stem cells (ENSCs) can rescue the enteric nervous system, restore gut motility, reduce colonic inflammation, and improve survival in the Ednrb-KO mouse model of Hirschsprung disease (HSCR). ENSCs were isolated from mouse intestine, expanded to form neurospheres, and microinjected into the colons of recipient Ednrb-KO mice. Transplanted ENSCs were identified in recipient colons as cell clusters in "neo-ganglia." Immunohistochemical evaluation demonstrated extensive cell migration away from the sites of cell delivery and across the muscle layers. Electrical field stimulation and optogenetics showed significantly enhanced contractile activity of aganglionic colonic smooth muscle following ENSC transplantation and confirmed functional neuromuscular integration of the transplanted ENSC-derived neurons. ENSC injection also partially restored the colonic migrating motor complex. Histological examination revealed a significant reduction in inflammation in ENSC-transplanted aganglionic recipient colon compared with that of sham-operated mice. Interestingly, mice that received cell transplant also had prolonged survival compared with controls. This study demonstrates that ENSC transplantation can improve outcomes in HSCR by restoring gut motility and reducing the severity of Hirschsprung-associated enterocolitis, the leading cause of death in human HSCR.
Collapse
Affiliation(s)
- Ahmed A Rahman
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kensuke Ohishi
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co. Ltd., Hiroshima, Japan
| | - Leah Ott
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Han
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abigail Leavitt
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan J Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Hung LY, Margolis KG. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat Rev Gastroenterol Hepatol 2024; 21:142-163. [PMID: 38114585 DOI: 10.1038/s41575-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid-compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.
Collapse
Affiliation(s)
- Lin Y Hung
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
- Department of Pediatrics, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Fabà L, Hulshof T, Venrooij KM, Van Hees HJ. Variability in feed intake the first days following weaning impacts gastrointestinal tract development, feeding patterns, and growth performance in nursery pigs. J Anim Sci 2024; 102:skad419. [PMID: 38142125 PMCID: PMC10799316 DOI: 10.1093/jas/skad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
The present study investigated the effects of voluntary feed intake (FI) the first days after weaning on gastrointestinal development and protein fermentation the first week after weaning and growth performance and feeding patterns during the nursery phase. A total of 144 mixed-sex weaned pigs (24 ± 2 d old; 7.2 ± 0.8 kg body weight [BW]) were allocated to 12 pens with 12 pigs/pen. Each pen was equipped with an electronic feeding station for monitoring individual FI during a 40-d study. Pigs were classified based on their cumulative FI over the initial 3 d after weaning (FId1-3) being above or below their pen median FId1-3 (high = 919 ± 244 g or low = 507 ± 222 g FId1-3). Similarly, weaning BW classes (BW0; high = 7.72 ± 0.59 kg or low = 6.62 ± 0.88 kg BW) were created to study interactions with FId1-3. Two female pigs with either a high or a low FId1-3 per pen (n = 24) were selected for sampling at d6 and were used to study gastrointestinal development and fermentation products in the small intestine. Feeding patterns per day, FI, and growth performance were measured individually. Low FId1-3 pigs had lower (P < 0.05) daily FI during d0 to d8, d8 to d15, and d22 to d28, BW on d15, d22, d29, and d40, and average daily gain during d0 to d8, d22 to d29, and d29 to d40 compared to high FId1-3. High FId1-3 pigs increased (P < 0.05) the number of visits to the feeder between d1 to d13 and d31 to d35, and the time spent per visit only for d1 to d4 (P < 0.05). The daily rate of FI (g/min) was higher (P < 0.05) for High FId1-3 pigs on d6, d8, d9, and d10, and again several days later (d20 to d39). In addition, the high FId1-3 × high BW0 interaction improved daily FI during d18 to d40 compared to low FId1-3 × low BW0 class (P < 0.05). For the sampling on d6, low FId1-3 pigs had a lighter small intestine, colon, and pancreas, and reduced villi length, smaller villi surface area, and a lower number of goblet cells size in jejunum (P < 0.05), while concentrations of lactic acid, histamine, and cadaverine in small intestinal content were increased (P < 0.05). In conclusion, pigs with high FId1-3 became faster eaters with higher FI and growth rates toward the second half of the nursery, which was similar and additive for pigs with higher weaning BW. High FId1-3 was also associated with greater development of the gastrointestinal tract and a reduced protein fermentation 1-wk after weaning.
Collapse
Affiliation(s)
- Lluís Fabà
- Trouw Nutrition, Research and Development, Amersfoort, The Netherlands
| | - Tetske G Hulshof
- Trouw Nutrition, Research and Development, Amersfoort, The Netherlands
| | | | - Hubèrt M J Van Hees
- Trouw Nutrition, Research and Development, Amersfoort, The Netherlands
- Faculty of Veterinary Medicine, Department of Veterinary and Biosciences, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Wu Z, Wang Q, Yang F, Wang J, Zhao Y, Perrino BA, Chen J. Functional and Transcriptomic Characterization of Postnatal Maturation of ENS and SIP Syncytium in Mice Colon. Biomolecules 2023; 13:1688. [PMID: 38136560 PMCID: PMC10741935 DOI: 10.3390/biom13121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
The interplay of the enteric nervous system (ENS) and SIP syncytium (smooth muscle cells-interstitial cells of Cajal-PDGFRα+ cells) plays an important role in the regulation of gastrointestinal (GI) motility. This study aimed to investigate the dynamic regulatory mechanisms of the ENS-SIP system on colon motility during postnatal development. Colonic samples of postnatal 1-week-old (PW1), 3-week-old (PW3), and 5-week-old (PW5) mice were characterized by RNA sequencing, qPCR, Western blotting, isometric force recordings (IFR), and colonic motor complex (CMC) force measurements. Our study showed that the transcriptional expression of Pdgfrα, c-Kit, P2ry1, Nos1, and Slc18a3, and the protein expression of nNOS, c-Kit, and ANO1 significantly increased with age from PW1 to PW5. In PW1 and PW3 mice, colonic migrating movement was not fully developed. In PW5 mice, rhythmic CMCs were recorded, similar to the CMC pattern described previously in adult mice. The inhibition of nNOS revealed excitatory and non-propulsive responses which are normally suppressed due to ongoing nitrergic inhibition. During postnatal development, molecular data demonstrated the establishment and expansion of ICC and PDGFRα+ cells, along with nitrergic and cholinergic nerves and purinergic receptors. Our findings are important for understanding the role of the SIP syncytium in generating and establishing CMCs in postnatal, developing murine colons.
Collapse
Affiliation(s)
- Zhihao Wu
- Department of General Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Qianqian Wang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Fan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxuan Wang
- Department of General Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Yuying Zhao
- Department of General Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Brian A. Perrino
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Jie Chen
- Department of General Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| |
Collapse
|
10
|
Abo-Shaban T, Lee CYQ, Hosie S, Balasuriya GK, Mohsenipour M, Johnston LA, Hill-Yardin EL. GutMap: A New Interface for Analysing Regional Motility Patterns in ex vivo Mouse Gastrointestinal Preparations. Bio Protoc 2023; 13:e4831. [PMID: 37817909 PMCID: PMC10560633 DOI: 10.21769/bioprotoc.4831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 10/12/2023] Open
Abstract
Different regions of the gastrointestinal tract have specific functions and thus distinct motility patterns. Motility is primarily regulated by the enteric nervous system (ENS), an intrinsic network of neurons located within the gut wall. Under physiological conditions, the ENS is influenced by the central nervous system (CNS). However, by using ex vivo organ bath experiments, ENS regulation of gut motility can also be studied in the absence of CNS influences. The current technique enables the characterisation of small intestinal, caecal, and colonic motility patterns using an ex vivo organ bath and video imaging protocol. This approach is combined with the novel edge detection script GutMap, available in MATLAB, that functions across Windows and Mac platforms. Dissected intestinal segments are cannulated in an organ bath containing physiological saline with a camera mounted overhead. Video recordings of gut contractions are then converted to spatiotemporal heatmaps and analysed using the GutMap software interface. Using data analysed from the heatmaps, parameters of contractile patterns (including contraction propagation frequency and velocity as well as gut diameter) at baseline and in the presence of drugs/treatments/genetic mutations can be compared. Here, we studied motility patterns of female mice at baseline and in the presence of a nitric oxide synthase inhibitor (Nω-Nitro-L-arginine; NOLA) (nitric oxide being the main inhibitory neurotransmitter of gut motility) to showcase the application of GutMap. This technique is suitable for application to a broad range of animal models of clinical disorders to understand underlying biological pathways contributing to gastrointestinal dysfunction. Key features • Enhanced video imaging analysis of gut contractility in rodents using a novel software interface. • New edge detection algorithm to accurately contour curvatures of the gastrointestinal tract. • Allows for output of high-resolution spatiotemporal heatmaps across Windows and Mac platforms. • Edge detection and analysis method makes motility measurements accessible in different gut regions including the caecum and stomach.
Collapse
Affiliation(s)
- Tanya Abo-Shaban
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Chalystha Y. Q. Lee
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Suzanne Hosie
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Gayathri K. Balasuriya
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
- Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mitra Mohsenipour
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| | - Leigh A. Johnston
- Department of Biomedical Engineering and Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, VIC, Australia
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
11
|
Poon SSB, Hung LY, Wu Q, Parathan P, Yalcinkaya N, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Neonatal antibiotics have long term sex-dependent effects on the enteric nervous system. J Physiol 2022; 600:4303-4323. [PMID: 36082768 PMCID: PMC9826436 DOI: 10.1113/jp282939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 01/12/2023] Open
Abstract
Infants and young children receive the highest exposures to antibiotics globally. Although there is building evidence that early life exposure to antibiotics increases susceptibility to various diseases including gut disorders later in life, the lasting impact of early life antibiotics on the physiology of the gut and its enteric nervous system (ENS) remains unclear. We treated neonatal mice with the antibiotic vancomycin during their first 10 postnatal days, then examined potential lasting effects of the antibiotic treatment on their colons during young adulthood (6 weeks old). We found that neonatal vancomycin treatment disrupted the gut functions of young adult female and male mice differently. Antibiotic-exposed females had significantly longer whole gut transit while antibiotic-treated males had significantly lower faecal weights compared to controls. Both male and female antibiotic-treated mice had greater percentages of faecal water content. Neonatal vancomycin treatment also had sexually dimorphic impacts on the neurochemistry and Ca2+ activity of young adult myenteric and submucosal neurons. Myenteric neurons of male mice were more disrupted than those of females, while opposing changes in submucosal neurons were seen in each sex. Neonatal vancomycin also induced sustained changes in colonic microbiota and lasting depletion of mucosal serotonin (5-HT) levels. Antibiotic impacts on microbiota and mucosal 5-HT were not sex-dependent, but we propose that the responses of the host to these changes are sex-specific. This first demonstration of long-term impacts of neonatal antibiotics on the ENS, gut microbiota and mucosal 5-HT has important implications for gut function and other physiological systems of the host. KEY POINTS: Early life exposure to antibiotics can increase susceptibility to diseases including functional gastrointestinal (GI) disorders later in life. Yet, the lasting impact of this common therapy on the gut and its enteric nervous system (ENS) remains unclear. We investigated the long-term impact of neonatal antibiotic treatment by treating mice with the antibiotic vancomycin during their neonatal period, then examining their colons during young adulthood. Adolescent female mice given neonatal vancomycin treatment had significantly longer whole gut transit times, while adolescent male and female mice treated with neonatal antibiotics had significantly wetter stools. Effects of neonatal vancomycin treatment on the neurochemistry and Ca2+ activity of myenteric and submucosal neurons were sexually dimorphic. Neonatal vancomycin also had lasting effects on the colonic microbiome and mucosal serotonin biosynthesis that were not sex-dependent. Different male and female responses to antibiotic-induced disruptions of the ENS, microbiota and mucosal serotonin biosynthesis can lead to sex-specific impacts on gut function.
Collapse
Affiliation(s)
- Sabrina S. B. Poon
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Lin Y. Hung
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Qinglong Wu
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Pavitha Parathan
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Nazli Yalcinkaya
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Anthony Haag
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Ruth Ann Luna
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Joel C. Bornstein
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Tor C. Savidge
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Jaime P. P. Foong
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
12
|
Koh SD, Drumm BT, Lu H, Kim HJ, Ryoo SB, Kim HU, Lee JY, Rhee PL, Wang Q, Gould TW, Heredia D, Perrino BA, Hwang SJ, Ward SM, Sanders KM. Propulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal. Proc Natl Acad Sci U S A 2022; 119:e2123020119. [PMID: 35446689 PMCID: PMC9170151 DOI: 10.1073/pnas.2123020119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
The peristaltic reflex is a fundamental behavior of the gastrointestinal (GI) tract in which mucosal stimulation activates propulsive contractions. The reflex occurs by stimulation of intrinsic primary afferent neurons with cell bodies in the myenteric plexus and projections to the lamina propria, distribution of information by interneurons, and activation of muscle motor neurons. The current concept is that excitatory cholinergic motor neurons are activated proximal to and inhibitory neurons are activated distal to the stimulus site. We found that atropine reduced, but did not block, colonic migrating motor complexes (CMMCs) in mouse, monkey, and human colons, suggesting a mechanism other than one activated by cholinergic neurons is involved in the generation/propagation of CMMCs. CMMCs were activated after a period of nerve stimulation in colons of each species, suggesting that the propulsive contractions of CMMCs may be due to the poststimulus excitation that follows inhibitory neural responses. Blocking nitrergic neurotransmission inhibited poststimulus excitation in muscle strips and blocked CMMCs in intact colons. Our data demonstrate that poststimulus excitation is due to increased Ca2+ transients in colonic interstitial cells of Cajal (ICC) following cessation of nitrergic, cyclic guanosine monophosphate (cGMP)-dependent inhibitory responses. The increase in Ca2+ transients after nitrergic responses activates a Ca2+-activated Cl− conductance, encoded by Ano1, in ICC. Antagonists of ANO1 channels inhibit poststimulus depolarizations in colonic muscles and CMMCs in intact colons. The poststimulus excitatory responses in ICC are linked to cGMP-inhibited cyclic adenosine monophosphate (cAMP) phosphodiesterase 3a and cAMP-dependent effects. These data suggest alternative mechanisms for generation and propagation of CMMCs in the colon.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Bernard T. Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Hongli Lu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Hyun Jin Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Seung-Bum Ryoo
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Heung-Up Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Ji Yeon Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Poong-Lyul Rhee
- Division of Gastroenterology, Department of Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Gangnam-Gu, Seoul, Korea 135-710
| | - Qianqian Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Thomas W. Gould
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Dante Heredia
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Brian A. Perrino
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557
| |
Collapse
|
13
|
Abstract
Proper innervation of peripheral organs helps to maintain physiological homeostasis and elicit responses to external stimuli. Disruptions to normal function can result in pathophysiological consequences. The establishment of connections and communication between the central nervous system and the peripheral organs is accomplished through the peripheral nervous system. Neuronal connections with target tissues arise from ganglia partitioned throughout the body. Organ innervation is initiated during development with stimuli being conducted through several types of neurons including sympathetic, parasympathetic, and sensory. While the physiological modulation of mature organs by these nerves is largely understood, their role in mammalian development is only beginning to be uncovered. Interactions with cells in target tissues can affect the development and eventual function of several organs, highlighting their significance. This chapter will cover the origin of peripheral neurons, factors mediating organ innervation, and the composition and function of organ-specific nerves during development. This emerging field aims to identify the functional contribution of innervation to development which will inform future investigations of normal and abnormal mammalian organogenesis, as well as contribute to regenerative and organ replacement efforts where nerve-derived signals may have significant implications for the advancement of such studies.
Collapse
Affiliation(s)
- Samuel E Honeycutt
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pierre-Emmanuel Y N'Guetta
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lori L O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
14
|
Feng J, Hibberd TJ, Luo J, Yang P, Xie Z, Travis L, Spencer NJ, Hu H. Modification of Neurogenic Colonic Motor Behaviours by Chemogenetic Ablation of Calretinin Neurons. Front Cell Neurosci 2022; 16:799717. [PMID: 35317196 PMCID: PMC8934436 DOI: 10.3389/fncel.2022.799717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/31/2022] [Indexed: 12/31/2022] Open
Abstract
How the enteric nervous system determines the pacing and propagation direction of neurogenic contractions along the colon remains largely unknown. We used a chemogenetic strategy to ablate enteric neurons expressing calretinin (CAL). Mice expressing human diphtheria toxin receptor (DTR) in CAL neurons were generated by crossing CAL-ires-Cre mice with Cre-dependent ROSA26-DTR mice. Immunohistochemical analysis revealed treatment with diphtheria toxin incurred a 42% reduction in counts of Hu-expressing colonic myenteric neurons (P = 0.036), and 57% loss of CAL neurons (comprising ∼25% of all Hu neurons; P = 0.004) compared to control. As proportions of Hu-expressing neurons, CAL neurons that contained nitric oxide synthase (NOS) were relatively spared (control: 15 ± 2%, CAL-DTR: 13 ± 1%; P = 0.145), while calretinin neurons lacking NOS were significantly reduced (control: 26 ± 2%, CAL-DTR: 18 ± 5%; P = 0.010). Colonic length and pellet sizes were significantly reduced without overt inflammation or changes in ganglionic density. Interestingly, colonic motor complexes (CMCs) persisted with increased frequency (mid-colon interval 111 ± 19 vs. 189 ± 24 s, CAL-DTR vs. control, respectively, P < 0.001), decreased contraction size (mid-colon AUC 26 ± 24 vs. 59 ± 13 gram/seconds, CAL-DTR vs. control, respectively, P < 0.001), and lacked preferential anterograde migration (P < 0.001). The functional effects of modest calretinin neuron ablation, particularly increased neurogenic motor activity frequencies, differ from models that incur general enteric neuron loss, and suggest calretinin neurons may contribute to pacing, force, and polarity of CMCs in the large bowel.
Collapse
Affiliation(s)
- Jing Feng
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tim J. Hibberd
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jialie Luo
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Pu Yang
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zili Xie
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Lee Travis
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Nick J. Spencer
- College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
- *Correspondence: Nick J. Spencer,
| | - Hongzhen Hu
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Hongzhen Hu,
| |
Collapse
|
15
|
Interaction of the Microbiota and the Enteric Nervous System During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:157-163. [PMID: 36587155 DOI: 10.1007/978-3-031-05843-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gastrointestinal tract contains the enteric nervous system within its walls and a large community of microbial symbionts (microbiota) in its lumen. In recent years, studies have shown that these two systems that lie adjacent to each other interact. This review will summarize new data using mouse models demonstrating the concurrent development of the enteric nervous system and microbiota during key pre- and postnatal stages. It will also discuss the possible roles that microbiota play on influencing enteric nervous system development and implications of antibiotic exposure during developmental windows.
Collapse
|
16
|
Spencer NJ, Costa M. Rhythmicity in the Enteric Nervous System of Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:295-306. [PMID: 36587167 DOI: 10.1007/978-3-031-05843-1_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system (ENS) is required for many cyclical patterns of motor activity along different regions of the gastrointestinal (GI) tract. What has remained mysterious is precisely how many thousands of neurons within the ENS are temporally activated to generate cyclical neurogenic contractions of GI-smooth muscle layers. This has been an especially puzzling conundrum, since the ENS consists of an extensive network of small ganglia, with each ganglion consisting of a heterogeneous population of neurons, with diverse cell soma morphologies, neurochemical and biophysical characteristics, and neural connectivity. Neuronal imaging studies of the mouse large intestine have provided major new insights into how the different classes of myenteric neurons are activated during cyclical neurogenic motor patterns, such as the colonic motor complex (CMC). It has been revealed that during CMCs (in the isolated mouse whole colon), large populations of myenteric neurons, across large spatial fields, coordinate their firing, via bursts of fast synaptic inputs at ~2 Hz. This coordinated firing of many thousands of myenteric neurons synchronously over many rows of interconnected ganglia occurs irrespective of the functional class of neuron. Aborally directed propulsion of content along the mouse colon is due, in large part, to polarity of the enteric circuits including the projections of the intrinsic excitatory and inhibitory motor neurons but still involves the fundamental ~2 Hz rhythmic activity of specific classes of enteric neurons. What remains to be determined are the mechanisms that initiate and terminate the patterned firing of large ensembles of enteric neurons during cyclic activity. This remains an exciting challenge for future studies.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, Department of Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
17
|
Ye L, Rawls JF. Microbial influences on gut development and gut-brain communication. Development 2021; 148:dev194936. [PMID: 34758081 PMCID: PMC8627602 DOI: 10.1242/dev.194936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
The developmental programs that build and sustain animal forms also encode the capacity to sense and adapt to the microbial world within which they evolved. This is abundantly apparent in the development of the digestive tract, which typically harbors the densest microbial communities of the body. Here, we review studies in human, mouse, zebrafish and Drosophila that are revealing how the microbiota impacts the development of the gut and its communication with the nervous system, highlighting important implications for human and animal health.
Collapse
|
18
|
Balasuriya GK, Nugapitiya SS, Hill-Yardin EL, Bornstein JC. Nitric Oxide Regulates Estrus Cycle Dependent Colonic Motility in Mice. Front Neurosci 2021; 15:647555. [PMID: 34658750 PMCID: PMC8511480 DOI: 10.3389/fnins.2021.647555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Women are more susceptible to functional bowel disorders than men and the severity of their symptoms such as diarrhea, constipation, abdominal pain and bloating changes over the menstrual cycle, suggesting a role for sex hormones in gastrointestinal function. Nitric oxide (NO) is a major inhibitory neurotransmitter in the gut and blockade of nitric oxide synthase (NOS; responsible for NO synthesis) increases colonic motility in male mice ex vivo. We assessed the effects of NOS inhibition on colonic motility in female mice using video imaging analysis of colonic motor complexes (CMCs). To understand interactions between NO and estrogen in the gut, we also quantified neuronal NOS and estrogen receptor alpha (ERα)-expressing myenteric neurons in estrus and proestrus female mice using immunofluorescence. Mice in estrus had fewer CMCs under control conditions (6 ± 1 per 15 min, n = 22) compared to proestrus (8 ± 1 per 15 min, n = 22, One-way ANOVA, p = 0.041). During proestrus, the NOS antagonist N-nitro-L-arginine (NOLA) increased CMC numbers compared to controls (189 ± 46%). In contrast, NOLA had no significant effect on CMC numbers during estrus. During estrus, we observed more NOS-expressing myenteric neurons (48 ± 2%) than during proestrus (39 ± 1%, n = 3, p = 0.035). Increased nuclear expression of ERα was observed in estrus which coincided with an altered motility response to NOLA in contrast with proestrus when ERα was largely cytoplasmic. In conclusion, we confirm a cyclic and sexually dimorphic effect of NOS activity in female mouse colon, which could be due to genomic effects of estrogens via ERα.
Collapse
Affiliation(s)
- Gayathri K Balasuriya
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Saseema S Nugapitiya
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Elisa L Hill-Yardin
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Spencer NJ, Travis L, Wiklendt L, Costa M, Hibberd TJ, Brookes SJ, Dinning P, Hu H, Wattchow DA, Sorensen J. Long range synchronization within the enteric nervous system underlies propulsion along the large intestine in mice. Commun Biol 2021; 4:955. [PMID: 34376798 PMCID: PMC8355373 DOI: 10.1038/s42003-021-02485-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
How the Enteric Nervous System (ENS) coordinates propulsion of content along the gastrointestinal (GI)-tract has been a major unresolved issue. We reveal a mechanism that explains how ENS activity underlies propulsion of content along the colon. We used a recently developed high-resolution video imaging approach with concurrent electrophysiological recordings from smooth muscle, during fluid propulsion. Recordings showed pulsatile firing of excitatory and inhibitory neuromuscular inputs not only in proximal colon, but also distal colon, long before the propagating contraction invades the distal region. During propulsion, wavelet analysis revealed increased coherence at ~2 Hz over large distances between the proximal and distal regions. Therefore, during propulsion, synchronous firing of descending inhibitory nerve pathways over long ranges aborally acts to suppress smooth muscle from contracting, counteracting the excitatory nerve pathways over this same region of colon. This delays muscle contraction downstream, ahead of the advancing contraction. The mechanism identified is more complex than expected and vastly different from fluid propulsion along other hollow smooth muscle organs; like lymphatic vessels, portal vein, or ureters, that evolved without intrinsic neurons.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| | - Lee Travis
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Lukasz Wiklendt
- Discipline of Gastroenterology, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Simon J Brookes
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| | - Phil Dinning
- Discipline of Gastroenterology, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University, St Louis, MO, USA
| | - David A Wattchow
- Discipline of Surgery, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Julian Sorensen
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
20
|
Margolis KG, Cryan JF, Mayer EA. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021; 160:1486-1501. [PMID: 33493503 PMCID: PMC8634751 DOI: 10.1053/j.gastro.2020.10.066] [Citation(s) in RCA: 465] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
The gut-brain axis plays an important role in maintaining homeostasis. Many intrinsic and extrinsic factors influence signaling along this axis, modulating the function of both the enteric and central nervous systems. More recently the role of the microbiome as an important factor in modulating gut-brain signaling has emerged and the concept of a microbiota-gut-brain axis has been established. In this review, we highlight the role of this axis in modulating enteric and central nervous system function and how this may impact disorders such as irritable bowel syndrome and disorders of mood and affect. We examine the overlapping biological constructs that underpin these disorders with a special emphasis on the neurotransmitter serotonin, which plays a key role in both the gastrointestinal tract and in the brain. Overall, it is clear that although animal studies have shown much promise, more progress is necessary before these findings can be translated for diagnostic and therapeutic benefit in patient populations.
Collapse
Affiliation(s)
- Kara G. Margolis
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Irving Medical Center, New York, NY,Corresponding author:
| | - John F. Cryan
- Department of Anatomy & Neuroscience, University College Cork, Ireland, APC Microbiome Ireland, University College Cork, Ireland
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vachte and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
21
|
Ebselen prevents cigarette smoke-induced gastrointestinal dysfunction in mice. Clin Sci (Lond) 2021; 134:2943-2957. [PMID: 33125061 PMCID: PMC7676466 DOI: 10.1042/cs20200886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
Gastrointestinal (GI) dysfunction is a common comorbidity of chronic obstructive
pulmonary disease (COPD) for which a major cause is cigarette smoking (CS). The
underlying mechanisms and precise effects of CS on gut contractility, however,
are not fully characterised. Therefore, the aim of the present study was to
investigate whether CS impacts GI function and structure in a mouse model of
CS-induced COPD. We also aimed to investigate GI function in the presence of
ebselen, an antioxidant that has shown beneficial effects on lung inflammation
resulting from CS exposure. Mice were exposed to CS for 2 or 6 months. GI
structure was analysed by histology and immunofluorescence. After 2 months of CS
exposure, ex vivo gut motility was analysed using video-imaging
techniques to examine changes in colonic migrating motor complexes (CMMCs). CS
decreased colon length in mice. Mice exposed to CS for 2 months had a higher
frequency of CMMCs and a reduced resting colonic diameter but no change in
enteric neuron numbers. Ten days cessation after 2 months CS reversed CMMC
frequency changes but not the reduced colonic diameter phenotype. Ebselen
treatment reversed the CS-induced reduction in colonic diameter. After 6 months
CS, the number of myenteric nitric-oxide producing neurons was significantly
reduced. This is the first evidence of colonic dysmotility in a mouse model of
CS-induced COPD. Dysmotility after 2 months CS is not due to altered neuron
numbers; however, prolonged CS-exposure significantly reduced enteric neuron
numbers in mice. Further research is needed to assess potential therapeutic
applications of ebselen in GI dysfunction in COPD.
Collapse
|
22
|
Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021; 148:148/3/dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.
Collapse
Affiliation(s)
- Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
23
|
Gonzales J, Le Berre-Scoul C, Dariel A, Bréhéret P, Neunlist M, Boudin H. Semaphorin 3A controls enteric neuron connectivity and is inversely associated with synapsin 1 expression in Hirschsprung disease. Sci Rep 2020; 10:15119. [PMID: 32934297 PMCID: PMC7492427 DOI: 10.1038/s41598-020-71865-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Most of the gut functions are controlled by the enteric nervous system (ENS), a complex network of enteric neurons located throughout the wall of the gastrointestinal tract. The formation of ENS connectivity during the perinatal period critically underlies the establishment of gastrointestinal motility, but the factors involved in this maturation process remain poorly characterized. Here, we examined the role of Semaphorin 3A (Sema3A) on ENS maturation and its potential implication in Hirschsprung disease (HSCR), a developmental disorder of the ENS with impaired colonic motility. We found that Sema3A and its receptor Neuropilin 1 (NRP1) are expressed in the rat gut during the early postnatal period. At the cellular level, NRP1 is expressed by enteric neurons, where it is particularly enriched at growth areas of developing axons. Treatment of primary ENS cultures and gut explants with Sema3A restricts axon elongation and synapse formation. Comparison of the ganglionic colon of HSCR patients to the colon of patients with anorectal malformation shows reduced expression of the synaptic molecule synapsin 1 in HSCR, which is inversely correlated with Sema3A expression. Our study identifies Sema3A as a critical regulator of ENS connectivity and provides a link between altered ENS connectivity and HSCR.
Collapse
Affiliation(s)
- Jacques Gonzales
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Catherine Le Berre-Scoul
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Anne Dariel
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France.,Pediatric Surgery Department, Hôpital Timone-Enfants, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Paul Bréhéret
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Michel Neunlist
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Hélène Boudin
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France.
| |
Collapse
|
24
|
|
25
|
Sahakian L, Filippone RT, Stavely R, Robinson AM, Yan XS, Abalo R, Eri R, Bornstein JC, Kelley MR, Nurgali K. Inhibition of APE1/Ref-1 Redox Signaling Alleviates Intestinal Dysfunction and Damage to Myenteric Neurons in a Mouse Model of Spontaneous Chronic Colitis. Inflamm Bowel Dis 2020; 27:388-406. [PMID: 32618996 PMCID: PMC8287929 DOI: 10.1093/ibd/izaa161] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) associates with damage to the enteric nervous system (ENS), leading to gastrointestinal (GI) dysfunction. Oxidative stress is important for the pathophysiology of inflammation-induced enteric neuropathy and GI dysfunction. Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a dual functioning protein that is an essential regulator of the cellular response to oxidative stress. In this study, we aimed to determine whether an APE1/Ref-1 redox domain inhibitor, APX3330, alleviates inflammation-induced oxidative stress that leads to enteric neuropathy in the Winnie murine model of spontaneous chronic colitis. METHODS Winnie mice received APX3330 or vehicle via intraperitoneal injections over 2 weeks and were compared with C57BL/6 controls. In vivo disease activity and GI transit were evaluated. Ex vivo experiments were performed to assess functional parameters of colonic motility, immune cell infiltration, and changes to the ENS. RESULTS Targeting APE1/Ref-1 redox activity with APX3330 improved disease severity, reduced immune cell infiltration, restored GI function ,and provided neuroprotective effects to the enteric nervous system. Inhibition of APE1/Ref-1 redox signaling leading to reduced mitochondrial superoxide production, oxidative DNA damage, and translocation of high mobility group box 1 protein (HMGB1) was involved in neuroprotective effects of APX3330 in enteric neurons. CONCLUSIONS This study is the first to investigate inhibition of APE1/Ref-1's redox activity via APX3330 in an animal model of chronic intestinal inflammation. Inhibition of the redox function of APE1/Ref-1 is a novel strategy that might lead to a possible application of APX3330 for the treatment of IBD.
Collapse
Affiliation(s)
- Lauren Sahakian
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Rhiannon T Filippone
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ainsley M Robinson
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Xu Sean Yan
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos (URJC), Alcorcón, Madrid, Spain,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System at URJC, Alcorcón, Madrid, Spain
| | - Rajaraman Eri
- University of Tasmania, School of Health Sciences, Launceston, Tasmania, Australia
| | - Joel C Bornstein
- Department of Physiology, Melbourne University, Melbourne, Australia
| | - Mark R Kelley
- Indiana University Simon Comprehensive Cancer Center, Departments of Pediatrics, Biochemistry & Molecular Biology and Pharmacology & Toxicology, Program in Pediatric Molecular Oncology & Experimental Therapeutics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis, USA
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia,Address correspondence to: Kulmira Nurgali, Level 4, Research Labs, Western Centre for Health Research & Education, Sunshine Hospital, 176 Furlong Road, St Albans, 3021, VIC, Australia. E-mail:
| |
Collapse
|
26
|
Hung LY, Parathan P, Boonma P, Wu Q, Wang Y, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Antibiotic exposure postweaning disrupts the neurochemistry and function of enteric neurons mediating colonic motor activity. Am J Physiol Gastrointest Liver Physiol 2020; 318:G1042-G1053. [PMID: 32390463 PMCID: PMC7311661 DOI: 10.1152/ajpgi.00088.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The period during and immediately after weaning is an important developmental window when marked shifts in gut microbiota can regulate the maturation of the enteric nervous system (ENS). Because microbiota-derived signals that modulate ENS development are poorly understood, we examined the physiological impact of the broad spectrum of antibiotic, vancomycin-administered postweaning on colonic motility, neurochemistry of enteric neurons, and neuronal excitability. The functional impact of vancomycin on enteric neurons was investigated by Ca2+ imaging in Wnt1-Cre;R26R-GCaMP3 reporter mice to characterize alterations in the submucosal and the myenteric plexus, which contains the neuronal circuitry controlling gut motility. 16S rDNA sequencing of fecal specimens after oral vancomycin demonstrated significant deviations in microbiota abundance, diversity, and community composition. Vancomycin significantly increased the relative family rank abundance of Akkermansiaceae, Lactobacillaceae, and Enterobacteriaceae at the expense of Lachnospiraceae and Bacteroidaceae. In sharp contrast to neonatal vancomycin exposure, microbiota compositional shifts in weaned animals were associated with slower colonic migrating motor complexes (CMMCs) without mucosal serotonin biosynthesis being altered. The slowing of CMMCs is linked to disruptions in the neurochemistry of the underlying enteric circuitry. This included significant reductions in cholinergic and calbindin+ myenteric neurons, neuronal nitric oxide synthase+ submucosal neurons, neurofilament M+ enteric neurons, and increased proportions of cholinergic submucosal neurons. The antibiotic treatment also increased transmission and responsiveness in myenteric and submucosal neurons that may enhance inhibitory motor pathways, leading to slower CMMCs. Differential vancomycin responses during neonatal and weaning periods in mice highlight the developmental-specific impact of antibiotics on colonic enteric circuitry and motility.
Collapse
Affiliation(s)
- Lin Y. Hung
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Pavitha Parathan
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Prapaporn Boonma
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas,4Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Qinglong Wu
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Yi Wang
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony Haag
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Ruth Ann Luna
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Joel C. Bornstein
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Tor C. Savidge
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Jaime P. P. Foong
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Tan W, Lee G, Chen JH, Huizinga JD. Relationships Between Distention-, Butyrate- and Pellet-Induced Stimulation of Peristalsis in the Mouse Colon. Front Physiol 2020; 11:109. [PMID: 32132933 PMCID: PMC7040375 DOI: 10.3389/fphys.2020.00109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background/Aims Luminal factors such as short-chain fatty acids are increasingly recognized for playing a regulatory role in peristaltic activity. Our objective was to understand the roles of butyrate and propionate in regulating peristaltic activity in relation to distention-induced activities. Methods Butyrate and propionate were perfused intraluminally under varying intraluminal pressures in murine colons bathed in Krebs solution. We used video recording and spatiotemporal maps to examine peristalsis induced by the intrinsic rhythmic colonic motor complex (CMC) as well as pellet-induced peristaltic reflex movements. Results The CMC showed several configurations at different levels of excitation, culminating in long distance contractions (LDCs) which possess a triangular shape in murine colon spatiotemporal maps. Butyrate increased the frequency of CMCs but was a much weaker stimulus than distention and only contributed to significant changes under low distention. Propionate inhibited CMCs by decreasing either their amplitudes or frequencies, but only in low distention conditions. Butyrate did not consistently counteract propionate-induced inhibition likely due to the multiple and distinct mechanisms of action for these signaling molecules in the lumen. Pellet movement occurred through ongoing CMCs as well as pellet induced peristaltic reflex movements and butyrate augmented both types of peristaltic motor patterns to decrease the amount of time required to expel each pellet. Conclusions Butyrate is effective in promoting peristalsis, but only when the level of colonic activity is low such as under conditions of low intraluminal pressure. This suggests that it may play a significant role in patients with poor fiber intake, where there is low mechanical stimulation in the lumen.
Collapse
Affiliation(s)
- Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Grace Lee
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Ji-Hong Chen
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jan D Huizinga
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
28
|
Obata Y, Castaño Á, Boeing S, Bon-Frauches AC, Fung C, Fallesen T, de Agüero MG, Yilmaz B, Lopes R, Huseynova A, Horswell S, Maradana MR, Boesmans W, Vanden Berghe P, Murray AJ, Stockinger B, Macpherson AJ, Pachnis V. Neuronal programming by microbiota regulates intestinal physiology. Nature 2020; 578:284-289. [PMID: 32025031 DOI: 10.1038/s41586-020-1975-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders1. Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility2-5, but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.
Collapse
Affiliation(s)
| | | | | | | | - Candice Fung
- Laboratory of Enteric Neuroscience (LENS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | | | - Mercedes Gomez de Agüero
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | | | | | | | | - Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter Vanden Berghe
- Laboratory of Enteric Neuroscience (LENS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | | | - Andrew J Macpherson
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
29
|
Parsons SP, Huizinga JD. A myogenic motor pattern in mice lacking myenteric interstitial cells of Cajal explained by a second coupled oscillator network. Am J Physiol Gastrointest Liver Physiol 2020; 318:G225-G243. [PMID: 31813235 PMCID: PMC7052571 DOI: 10.1152/ajpgi.00311.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are a network of coupled oscillators in the small intestine that generate rhythmic electrical phase waves leading to corresponding waves of contraction, yet rhythmic action potentials and intercellular calcium waves have been recorded from c-kit-mutant mice that lack the ICC-MP, suggesting that there may be a second pacemaker network. The gap junction blocker carbenoxolone induced a "pinstripe" motor pattern consisting of rhythmic "stripes" of contraction that appeared simultaneously across the intestine with a period of ~4 s. The infinite velocity of these stripes suggested they were generated by a coupled oscillator network, which we call X. In c-kit mutants rhythmic contraction waves with the period of X traveled the length of the intestine, before the induction of the pinstripe pattern by carbenoxolone. Thus X is not the ICC-MP and appears to operate under physiological conditions, a fact that could explain the viability of these mice. Individual stripes consisted of a complex pattern of bands of contraction and distension, and between stripes there could be slide waves and v waves of contraction. We hypothesized that these phenomena result from an interaction between X and the circular muscle that acts as a damped oscillator. A mathematical model of two chains of coupled Fitzhugh-Nagumo systems, representing X and circular muscle, supported this hypothesis. The presence of a second coupled oscillator network in the small intestine underlines the complexity of motor pattern generation in the gut.NEW & NOTEWORTHY Physiological experiments and a mathematical model indicate a coupled oscillator network in the small intestine in addition to the c-kit-expressing myenteric interstitial cells of Cajal. This network interacts with the circular muscle, which itself acts as a system of damped oscillators, to generate physiological contraction waves in c-kit (W) mutant mice.
Collapse
Affiliation(s)
- Sean P. Parsons
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jan D. Huizinga
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Parathan P, Wang Y, Leembruggen AJL, Bornstein JC, Foong JPP. The enteric nervous system undergoes significant chemical and synaptic maturation during adolescence in mice. Dev Biol 2020; 458:75-87. [DOI: 10.1016/j.ydbio.2019.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
|
31
|
West CL, Amin JY, Farhin S, Stanisz AM, Mao YK, Kunze WA. Colonic Motility and Jejunal Vagal Afferent Firing Rates Are Decreased in Aged Adult Male Mice and Can Be Restored by an Aminosterol. Front Neurosci 2019; 13:955. [PMID: 31551703 PMCID: PMC6746984 DOI: 10.3389/fnins.2019.00955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
There is a general decline in gastrointestinal function in old age including decreased intestinal motility, sensory signaling, and afferent sensitivity. There is also increased prevalence of significant constipation in aged populations. We hypothesized this may be linked to reduced colonic motility and alterations in vagal-gut-brain sensory signaling. Using in vitro preparations from young (3 months) and old (18–24 months) male CD1 mice we report functional age-related differences in colonic motility and jejunal mesenteric afferent firing. Furthermore, we tested the effect of the aminosterol squalamine on colonic motility and jejunal vagal firing rate. Old mice had significantly reduced velocity of colonic migrating motor complexes (MMC) by 27% compared to young mice (p = 0.0161). Intraluminal squalamine increased colonic MMC velocity by 31% in old mice (p = 0.0150), which also had significantly reduced mesenteric afferent single-unit firing rates from the jejunum by 51% (p < 0.0001). The jejunal vagal afferent firing rate was reduced in aged mice by 62% (p = 0.0004). While the time to peak response to squalamine was longer in old mice compared to young mice (18.82 ± 1.37 min vs. 12.95 ± 0.99 min; p = 0.0182), it significantly increased vagal afferent firing rate by 36 and 56% in young and old mice, respectively (p = 0.0006, p = 0.0013). Our results show for the first time that the jejunal vagal afferent firing rate is reduced in aged-mice. They also suggest that there is translational potential for the therapeutic use of squalamine in the treatment of age-related constipation and dysmotility.
Collapse
Affiliation(s)
- Christine L West
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Jessica Y Amin
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Sohana Farhin
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Andrew M Stanisz
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Yu-Kang Mao
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Wolfgang A Kunze
- St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
32
|
Seifi M, Swinny JD. Developmental and age-dependent plasticity of GABA A receptors in the mouse colon: Implications in colonic motility and inflammation. Auton Neurosci 2019; 221:102579. [PMID: 31445405 DOI: 10.1016/j.autneu.2019.102579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022]
Abstract
Lifelong functional plasticity of the gastrointestinal (GI) tract is essential for health, yet the underlying molecular mechanisms are poorly understood. The enteric nervous system (ENS) regulates all aspects of the gut function, via a range of neurotransmitter pathways, one of which is the GABA-GABAA receptor (GABAAR) system. We have previously shown that GABAA receptor subunits are differentially expressed within the ENS and are involved in regulating various GI functions. We have also shown that these receptors are involved in mediating stress-induced colonic inflammation. However, the expression and function of intestinal GABAARs, at different ages, is largely unexplored and was the focus of this study. Here we show that the impact of GABAAR activation on colonic contractility changes from early postnatal period through to late adulthood, in an age-dependant manner. We also show that the highest levels of expression for all GABAAR subunits is evident at postnatal day (P) 10 apart from the α3 subunit which increased with age. This increase in the α3 subunit expression in late adulthood (18 months old) is accompanied by an increase in the expression of inflammatory markers within the mouse colon. Finally, we demonstrate that the deletion of the α3 subunit prevents the increase in the expression of colonic inflammatory markers associated with healthy ageing. Collectively, the data provide the first demonstration of the molecular and functional plasticity of the GI GABAAR system over the course of a lifetime, and its possible role in mediating the age-induced colonic inflammation associated with healthy ageing.
Collapse
Affiliation(s)
- Mohsen Seifi
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, UK; School of Sport, Health and Social Scinces, Solent University, SO14 0YN, UK.
| | - Jerome D Swinny
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, UK
| |
Collapse
|
33
|
McQuade RM, Al Thaalibi M, Petersen AC, Abalo R, Bornstein JC, Rybalka E, Nurgali K. Co-treatment With BGP-15 Exacerbates 5-Fluorouracil-Induced Gastrointestinal Dysfunction. Front Neurosci 2019; 13:449. [PMID: 31139044 PMCID: PMC6518025 DOI: 10.3389/fnins.2019.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Gastrointestinal (GI) side-effects of chemotherapy present a constant impediment to efficient and tolerable treatment of cancer. GI symptoms often lead to dose reduction, delays and cessation of treatment. Chemotherapy-induced nausea, bloating, vomiting, constipation, and/or diarrhea can persist up to 10 years post-treatment. We have previously reported that long-term 5-fluorouracil (5-FU) administration results in enteric neuronal loss, acute inflammation and intestinal dysfunction. In this study, we investigated whether the cytoprotectant, BGP-15, has a neuroprotective effect during 5-FU treatment. Balb/c mice received tri-weekly intraperitoneal 5-FU (23 mg/kg/d) administration with and without BGP-15 (15 mg/kg/d) for up to 14 days. GI transit was analyzed via in vivo serial X-ray imaging prior to and following 3, 7, and 14 days of treatment. On day 14, colons were collected for assessment of ex vivo colonic motility, neuronal mitochondrial superoxide, and cytochrome c levels as well as immunohistochemical analysis of myenteric neurons. BGP-15 did not inhibit 5-FU-induced neuronal loss, but significantly increased the number and proportion of choline acetyltransferase (ChAT)-immunoreactive (IR) and neuronal nitric oxide synthase (nNOS)-IR neurons in the myenteric plexus. BGP-15 co-administration significantly increased mitochondrial superoxide production, mitochondrial depolarization and cytochrome c release in myenteric plexus and exacerbated 5-FU-induced colonic inflammation. BGP-15 exacerbated 5-FU-induced colonic dysmotility by reducing the number and proportion of colonic migrating motor complexes and increasing the number and proportion of fragmented contractions and increased fecal water content indicative of diarrhea. Taken together, BGP-15 co-treatment aggravates 5-FU-induced GI side-effects, in contrast with our previous findings that BGP-15 alleviates GI side-effects of oxaliplatin.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Maryam Al Thaalibi
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Aaron C Petersen
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica del Consejo Superior de Investigaciones Científicas, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Emma Rybalka
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, Melbourne, VIC, Australia.,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia.,Head of Enteric Neuropathy Lab, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Hung LY, Boonma P, Unterweger P, Parathan P, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Neonatal Antibiotics Disrupt Motility and Enteric Neural Circuits in Mouse Colon. Cell Mol Gastroenterol Hepatol 2019; 8:298-300.e6. [PMID: 31022477 PMCID: PMC6717783 DOI: 10.1016/j.jcmgh.2019.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Lin Y Hung
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Prapaporn Boonma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas; Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Petra Unterweger
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Pavitha Parathan
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Ruth Ann Luna
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Jaime P P Foong
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
35
|
Leembruggen AJL, Balasuriya GK, Zhang J, Schokman S, Swiderski K, Bornstein JC, Nithianantharajah J, Hill-Yardin EL. Colonic dilation and altered ex vivo gastrointestinal motility in the neuroligin-3 knockout mouse. Autism Res 2019; 13:691-701. [PMID: 31002480 PMCID: PMC7317711 DOI: 10.1002/aur.2109] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
Gastrointestinal (GI) dysfunction is commonly reported by people diagnosed with autism spectrum disorder (ASD; autism) but the cause is unknown. Mutations in genes encoding synaptic proteins including Neuroligin‐3 are associated with autism. Mice lacking Neuroligin‐3 (Nlgn3−/−) have altered brain function, but whether the enteric nervous system (ENS) is altered remains unknown. We assessed for changes in GI structure and function in Nlgn3−/− mice. We found no significant morphological differences in villus height or crypt depth in the jejunum or colon between wildtype (WT) and Nlgn3−/− mice. To determine whether deletion of Nlgn3 affects enteric neurons, we stained for neural markers in the myenteric plexus. Nlgn3−/− mice had similar numbers of neurons expressing the pan‐neuronal marker Hu in the jejunum, proximal mid, and distal colon regions. We also found no differences in the number of neuronal nitric oxide synthase (nNOS+) or calretinin (CalR+) motor neurons and interneurons between WT and Nlgn3−/− mice. We used ex vivo video imaging analysis to assess colonic motility under baseline conditions and observed faster colonic migrating motor complexes (CMMCs) and an increased colonic diameter in Nlgn3−/− mice, although CMMC frequency was unchanged. At baseline, CMMCs were faster in Nlgn3−/− mice compared to WT. Although the numbers of neuronal subsets are conserved in Nlgn3−/− mice, these findings suggest that Neuroligin‐3 modulates inhibitory neural pathways in the ENS and may contribute to mechanisms underlying GI disorders in autism. Autism Res 2020, 13: 691–701. © 2019 The Authors. Autism Research published by International Society for Autism Research published byWiley Periodicals, Inc. Lay Summary People with autism commonly experience gut problems. Many gene mutations associated with autism affect neuronal activity. We studied mice in which the autism‐associated Neuroligin‐3 gene is deleted to determine whether this impacts gut neuronal numbers or motility. We found that although mutant mice had similar gut structure and numbers of neurons in all gut regions examined, they had distended colons and faster colonic muscle contractions. Further work is needed to understand how Neuroligin‐3 affects neuron connectivity in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Gayathri K Balasuriya
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Jinghong Zhang
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Shana Schokman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Kristy Swiderski
- Centre for Muscle Research, Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Elisa L Hill-Yardin
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
36
|
Parsons SP, Huizinga JD. Phase waves and trigger waves: emergent properties of oscillating and excitable networks in the gut. J Physiol 2018; 596:4819-4829. [PMID: 30055053 PMCID: PMC6187044 DOI: 10.1113/jp273425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 12/30/2022] Open
Abstract
The gut is enmeshed by a number of cellular networks, but there is only a limited understanding of how these networks generate the complex patterns of activity that drive gut contractile functions. Here we review two fundamental types of cell behaviour, excitable and oscillating, and the patterns that networks of such cells generate, trigger waves and phase waves, respectively. We use both the language of biophysics and the theory of nonlinear dynamics to define these behaviours and understand how they generate patterns. Based on this we look for evidence of trigger and phase waves in the gut, including some of our recent work on the small intestine.
Collapse
Affiliation(s)
- Sean P. Parsons
- Farncombe Family Digestive Health Research InstituteDepartment of MedicineMcMaster UniversityHamiltonONCanada
| | - Jan D. Huizinga
- Farncombe Family Digestive Health Research InstituteDepartment of MedicineMcMaster UniversityHamiltonONCanada
| |
Collapse
|
37
|
Spencer NJ, Hibberd TJ, Travis L, Wiklendt L, Costa M, Hu H, Brookes SJ, Wattchow DA, Dinning PG, Keating DJ, Sorensen J. Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle. J Neurosci 2018; 38:5507-5522. [PMID: 29807910 PMCID: PMC8174132 DOI: 10.1523/jneurosci.3489-17.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022] Open
Abstract
The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behavior of the intestine. It is well established that the large intestine requires ENS activity to drive propulsive motor behaviors. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high-resolution neuronal imaging with electrophysiology from neighboring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine [also referred to as colonic migrating motor complexes, (CMMCs)] consisted of prolonged bursts of rhythmic depolarizations at a frequency of ∼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (∼7 mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at ∼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the CNS. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs.SIGNIFICANCE STATEMENT How the enteric nervous system (ENS) generates neurogenic contractions of smooth muscle in the gastrointestinal (GI) tract has been a long-standing mystery in vertebrates. It is well known that myogenic pacemaker cells exist in the GI tract [called interstitial cells of Cajal (ICCs)] that generate rhythmic myogenic contractions. However, the mechanisms underlying the generation of rhythmic neurogenic contractions of smooth muscle in the GI tract remains unknown. We developed a high-resolution neuronal imaging method with electrophysiology to address this issue. This technique revealed a novel pattern of rhythmic coordinated neuronal firing in the ENS that has never been identified. Rhythmic neuronal firing in the ENS was found to generate rhythmic neurogenic depolarizations in smooth muscle that underlie contraction of the GI tract.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia,
| | - Timothy J Hibberd
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Lee Travis
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Lukasz Wiklendt
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Marcello Costa
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Simon J Brookes
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - David A Wattchow
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre, Bedford Park 5042, South Australia, Australia, and
| | - Phil G Dinning
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
- Discipline of Surgery and Gastroenterology, Flinders Medical Centre, Bedford Park 5042, South Australia, Australia, and
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | - Julian Sorensen
- Cyber Sensing and Shaping, Cyber and Electronic Warfare Division, Defence, Science and Technology Group, Edinburgh, South Australia 5111, Australia
| |
Collapse
|
38
|
McQuade RM, Stojanovska V, Stavely R, Timpani C, Petersen AC, Abalo R, Bornstein JC, Rybalka E, Nurgali K. Oxaliplatin-induced enteric neuronal loss and intestinal dysfunction is prevented by co-treatment with BGP-15. Br J Pharmacol 2018; 175:656-677. [PMID: 29194564 DOI: 10.1111/bph.14114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Gastrointestinal side effects of chemotherapy are an under-recognized clinical problem, leading to dose reduction, delays and cessation of treatment, presenting a constant challenge for efficient and tolerated anti-cancer treatment. We have found that oxaliplatin treatment results in intestinal dysfunction, oxidative stress and loss of enteric neurons. BGP-15 is a novel cytoprotective compound with potential HSP72 co-inducing and PARP inhibiting properties. In this study, we investigated the potential of BGP-15 to alleviate oxaliplatin-induced enteric neuropathy and intestinal dysfunction. EXPERIMENTAL APPROACH Balb/c mice received oxaliplatin (3 mg·kg-1 ·day-1 ) with and without BGP-15 (15 mg·kg-1 ·day-1 : i.p.) tri-weekly for 14 days. Gastrointestinal transit was analysed via in vivo X-ray imaging, before and after treatment. Colons were collected to assess ex vivo motility, neuronal mitochondrial superoxide and cytochrome c levels and for immunohistochemical analysis of myenteric neurons. KEY RESULTS Oxaliplatin-induced neuronal loss increased the proportion of neuronal NO synthase-immunoreactive neurons and increased levels of mitochondrial superoxide and cytochrome c in the myenteric plexus. These changes were correlated with an increase in PARP-2 immunoreactivity in the colonic mucosa and were attenuated by BGP-15 co-treatment. Significant delays in gastrointestinal transit, intestinal emptying and pellet formation, impaired colonic motor activity, reduced faecal water content and lack of weight gain associated with oxaliplatin treatment were restored to sham levels in mice co-treated with BGP-15. CONCLUSION AND IMPLICATIONS Our results showed that BGP-15 ameliorated oxidative stress, increased enteric neuronal survival and alleviated oxaliplatin-induced intestinal dysfunction, suggesting that BGP-15 may relieve the gastrointestinal side effects of chemotherapy.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Rhian Stavely
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Cara Timpani
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Instituto de Investigación en Ciencias de la Alimentación (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC); Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Joel C Bornstein
- Department of Physiology, Melbourne University, Melbourne, VIC, Australia
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Hibberd TJ, Costa M, Travis L, Brookes SJH, Wattchow DA, Feng J, Hu H, Spencer NJ. Neurogenic and myogenic patterns of electrical activity in isolated intact mouse colon. Neurogastroenterol Motil 2017; 29:1-12. [PMID: 28418103 DOI: 10.1111/nmo.13089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/16/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Relatively little is known about the electrical rhythmicity of the whole colon, where long neural pathways are preserved. METHODS Smooth muscle electrical activity was recorded extracellularly from the serosa of isolated flat-sheet preparations consisting of the whole mouse colon (n=31). KEY RESULTS Two distinct electrical patterns were observed. The first, long intense spike bursts, occurred every 349±256 seconds (0.2±0.2 cpm), firing action potentials for 31±11 seconds at 2.1±0.5 Hz. They were hexamethonium- and tetrodotoxin-sensitive, but persisted in nicardipine as 2 Hz electrical oscillations lacking action potentials. This pattern is called here neurogenic spike bursts. The second pattern, short spike bursts, occurred about every 30 seconds (2.0±0.6 cpm), with action potentials firing at about 1 Hz for 9 seconds (1.0±0.2 Hz, 9±4 seconds). Short spike bursts were hexamethonium- and tetrodotoxin-resistant but nicardipine-sensitive and thus called here myogenic spike bursts. Neurogenic spike bursts transiently delayed myogenic spike bursts, while blocking neurogenic activity enhanced myogenic spike burst durations. External stimuli significantly affected neurogenic but not myogenic spike bursts. Aboral electrical or mechanical stimuli evoked premature neurogenic spike bursts. Circumferential stretch significantly decreased intervals between neurogenic spike bursts. Lesioning the colon down to 10 mm segments significantly increased intervals or abolished neurogenic spike bursts, while myogenic spike bursts persisted. CONCLUSIONS & INFERENCES Distinct neurogenic and myogenic electrical patterns were recorded from mouse colonic muscularis externa. Neurogenic spike bursts likely correlate with neurogenic colonic migrating motor complexes (CMMC) and are highly sensitive to mechanical stimuli. Myogenic spike bursts may correspond to slow myogenic contractions, whose duration can be modulated by enteric neural activity.
Collapse
Affiliation(s)
- T J Hibberd
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - M Costa
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - L Travis
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - S J H Brookes
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D A Wattchow
- Discipline of Surgery & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - J Feng
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - H Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - N J Spencer
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
40
|
McQuade RM, Stojanovska V, Donald EL, Rahman AA, Campelj DG, Abalo R, Rybalka E, Bornstein JC, Nurgali K. Irinotecan-Induced Gastrointestinal Dysfunction Is Associated with Enteric Neuropathy, but Increased Numbers of Cholinergic Myenteric Neurons. Front Physiol 2017. [PMID: 28642718 PMCID: PMC5462962 DOI: 10.3389/fphys.2017.00391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal dysfunction is a common side-effect of chemotherapy leading to dose reductions and treatment delays. These side-effects may persist up to 10 years post-treatment. A topoisomerase I inhibitor, irinotecan (IRI), commonly used for the treatment of colorectal cancer, is associated with severe acute and delayed-onset diarrhea. The long-term effects of IRI may be due to damage to enteric neurons innervating the gastrointestinal tract and controlling its functions. Balb/c mice received intraperitoneal injections of IRI (30 mg/kg−1) 3 times a week for 14 days, sham-treated mice received sterile water (vehicle) injections. In vivo analysis of gastrointestinal transit via serial x-ray imaging, facal water content, assessment of gross morphological damage and immunohistochemical analysis of myenteric neurons were performed at 3, 7 and 14 days following the first injection and at 7 days post-treatment. Ex vivo colonic motility was analyzed at 14 days following the first injection and 7 days post-treatment. Mucosal damage and inflammation were found following both short and long-term treatment with IRI. IRI-induced neuronal loss and increases in the number and proportion of ChAT-IR neurons and the density of VAChT-IR fibers were associated with changes in colonic motility, gastrointestinal transit and fecal water content. These changes persisted in post-treatment mice. Taken together this work has demonstrated for the first time that IRI-induced inflammation, neuronal loss and altered cholinergic expression is associated with the development of IRI-induced long-term gastrointestinal dysfunction and diarrhea.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Elizabeth L Donald
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Dean G Campelj
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia.,Australian Institute of Musculoskeletal Science, Western HealthMelbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica y al Instituto de Investigación en Ciencias de la Alimentación del Consejo Superior de Investigaciones Científicas, Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Universidad Rey Juan CarlosAlcorcón, Spain
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia.,Australian Institute of Musculoskeletal Science, Western HealthMelbourne, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, Melbourne UniversityMelbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| |
Collapse
|
41
|
Donald EL, Stojanovska L, Apostolopoulos V, Nurgali K. Resveratrol alleviates oxidative damage in enteric neurons and associated gastrointestinal dysfunction caused by chemotherapeutic agent oxaliplatin. Maturitas 2017; 105:100-106. [PMID: 28545905 DOI: 10.1016/j.maturitas.2017.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 02/08/2023]
Abstract
Oxaliplatin is a first-line chemotherapeutic agent used for the treatment of colorectal cancer. Its use is associated with severe gastrointestinal (GI) side-effects, associated with oxidative damage and neurotoxicity to the enteric neurons. Resveratrol is a potent anti-oxidant that has been shown to protect against oxidative damage and neurotoxicity in other neurons and could therefore prevent oxaliplatin-induced damage to enteric neurons. We determined whether co-administration of resveratrol with oxaliplatin alleviates enteric neuron toxicity and GI dysfunction in mice. Colons were collected for immunohistochemical analysis of myenteric neurons and assessment of motor activity in organ-bath experiments. Morphological damage to the colonic mucosa and muscles was analysed. Oxaliplatin treatment induced translocation of nitrated proteins into the nuclei of myenteric neurons and significant damage to the mucosal lining, vacuolisation and a decrease in muscle thickness. This damage is linked to motor dysfunction due to inhibition of the amplitude of colonic contractions, leading to chronic constipation. Co-treatment with resveratrol prevented oxaliplatin-induced neurotoxicity, alleviated damage to GI mucosa, crypts and muscle layer, resulting in improved contractility and a decrease in constipation. Resveratrol could be integrated as part of a therapeutic regimen to help alleviate oxaliplatin-induced GI dysfunction.
Collapse
Affiliation(s)
- Elizabeth L Donald
- College of Health and Biomedicine, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Lily Stojanovska
- College of Health and Biomedicine, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia.
| |
Collapse
|
42
|
Nithianantharajah J, Balasuriya GK, Franks AE, Hill-Yardin EL. Using Animal Models to Study the Role of the Gut-Brain Axis in Autism. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2017; 4:28-36. [PMID: 28680792 PMCID: PMC5488132 DOI: 10.1007/s40474-017-0111-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Individuals with autism spectrum disorders (ASD) commonly also suffer from gastrointestinal (GI) dysfunction; however, few animal model studies have systematically examined both ASD and GI dysfunction. In this review, we highlight studies investigating GI dysfunction and alterations in gut microbiota in animal models of ASD with the aim of determining if routinely used microbiology and enteric neurophysiology assays could expand our understanding of the link between the two. RECENT FINDINGS Gut-brain axis research is expanding, and several ASD models demonstrate GI dysfunction. The integration of well-established assays for detecting GI dysfunction into standard behavioural testing batteries is needed. SUMMARY Advances in understanding the role of the gut-brain axis in ASD are emerging; however, we outline standard assays for investigating gut-brain axis function in rodents to strengthen future phenotyping studies. Integrating these findings to the field of animal behaviour is one of the next major challenges in autism research.
Collapse
Affiliation(s)
- Jess Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC 3052 Australia
| | - Gayathri K Balasuriya
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083 Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Plenty Road, Bundoora, Melbourne, VIC 3086 Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083 Australia
- Department of Physiology, The University of Melbourne, Corner of Royal Parade and Grattan St, Parkville, VIC 3010 Australia
| |
Collapse
|
43
|
Grubišić V, Parpura V. Two modes of enteric gliotransmission differentially affect gut physiology. Glia 2017; 65:699-711. [PMID: 28168732 DOI: 10.1002/glia.23121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 11/08/2022]
Abstract
Enteric glia (EG) in the enteric nervous system can modulate neuronally regulated gut functions. Using molecular genetics, we assessed the effects that molecular entities expressed in EG and otherwise mediating two distinct mechanisms of gliotransmitter release, connexin 43 (Cx43) hemichannel vs. Ca2+ -dependent exocytosis, have on gut function. The expression of mutated Cx43G138R (which favors hemichannel, as opposed to gap-junctional activity) in EG increased gut motility in vivo, while a knock-down of Cx43 in EG resulted in the reduction of gut motility. However, inhibition of Ca2+ -dependent exocytosis in EG did not affect gut motility in vivo; rather, it increased the fecal pellet fluid content. Hampering either Cx43 expression or Ca2+ -dependent exocytosis in EG had an effect on colonic migrating motor complexes, mainly decreasing frequency and velocity of contractions ex vivo. Thus, EG can differentially modulate gut reflexes using the above two distinct mechanisms of gliotransmission.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
44
|
Veiga-Fernandes H, Pachnis V. Neuroimmune regulation during intestinal development and homeostasis. Nat Immunol 2017; 18:116-122. [DOI: 10.1038/ni.3634] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022]
|
45
|
Le Berre‐Scoul C, Chevalier J, Oleynikova E, Cossais F, Talon S, Neunlist M, Boudin H. A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development. J Physiol 2017; 595:583-598. [PMID: 27436013 PMCID: PMC5233665 DOI: 10.1113/jp271989] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/07/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Unlike astrocytes in the brain, the potential role of enteric glial cells (EGCs) in the formation of the enteric neuronal circuit is currently unknown. To examine the role of EGCs in the formation of the neuronal network, we developed a novel neuron-enriched culture model from embryonic rat intestine grown in indirect coculture with EGCs. We found that EGCs shape axonal complexity and synapse density in enteric neurons, through purinergic- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor regulating neuronal network maturation. ABSTRACT In the nervous system, the formation of neuronal circuitry results from a complex and coordinated action of intrinsic and extrinsic factors. In the CNS, extrinsic mediators derived from astrocytes have been shown to play a key role in neuronal maturation, including dendritic shaping, axon guidance and synaptogenesis. In the enteric nervous system (ENS), the potential role of enteric glial cells (EGCs) in the maturation of developing enteric neuronal circuit is currently unknown. A major obstacle in addressing this question is the difficulty in obtaining a valuable experimental model in which enteric neurons could be isolated and maintained without EGCs. We adapted a cell culture method previously developed for CNS neurons to establish a neuron-enriched primary culture from embryonic rat intestine which was cultured in indirect coculture with EGCs. We demonstrated that enteric neurons grown in such conditions showed several structural, phenotypic and functional hallmarks of proper development and maturation. However, when neurons were grown without EGCs, the complexity of the axonal arbour and the density of synapses were markedly reduced, suggesting that glial-derived factors contribute strongly to the formation of the neuronal circuitry. We found that these effects played by EGCs were mediated in part through purinergic P2Y1 receptor- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor required for neuronal network maturation.
Collapse
|
46
|
Robinson AM, Rahman AA, Carbone SE, Randall-Demllo S, Filippone R, Bornstein JC, Eri R, Nurgali K. Alterations of colonic function in the Winnie mouse model of spontaneous chronic colitis. Am J Physiol Gastrointest Liver Physiol 2017; 312:G85-G102. [PMID: 27881401 DOI: 10.1152/ajpgi.00210.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/31/2023]
Abstract
UNLABELLED The Winnie mouse, carrying a missense mutation in Muc2, is a model for chronic intestinal inflammation demonstrating symptoms closely resembling inflammatory bowel disease (IBD). Alterations to the immune environment, morphological structure, and innervation of Winnie mouse colon have been identified; however, analyses of intestinal transit and colonic functions have not been conducted. In this study, we investigated in vivo intestinal transit in radiographic studies and in vitro motility of the isolated colon in organ bath experiments. We compared neuromuscular transmission using conventional intracellular recording between distal colon of Winnie and C57BL/6 mice and smooth muscle contractions using force displacement transducers. Chronic inflammation in Winnie mice was confirmed by detection of lipocalin-2 in fecal samples over 4 wk and gross morphological damage to the colon. Colonic transit was faster in Winnie mice. Motility was altered including decreased frequency and increased speed of colonic migrating motor complexes and increased occurrence of short and fragmented contractions. The mechanisms underlying colon dysfunctions in Winnie mice included inhibition of excitatory and fast inhibitory junction potentials, diminished smooth muscle responses to cholinergic and nitrergic stimulation, and increased number of α-smooth muscle actin-immunoreactive cells. We conclude that diminished excitatory responses occur both prejunctionally and postjunctionally and reduced inhibitory purinergic responses are potentially a prejunctional event, while diminished nitrergic inhibitory responses are probably due to a postjunction mechanism in the Winnie mouse colon. Many of these changes are similar to disturbed motor functions in IBD patients indicating that the Winnie mouse is a model highly representative of human IBD. NEW & NOTEWORTHY This is the first study to provide analyses of intestinal transit and whole colon motility in an animal model of spontaneous chronic colitis. We found that cholinergic and purinergic neuromuscular transmission, as well as the smooth muscle cell responses to cholinergic and nitrergic stimulation, is altered in the chronically inflamed Winnie mouse colon. The changes to intestinal transit and colonic function we identified in the Winnie mouse are similar to those seen in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Ainsley M Robinson
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Simona E Carbone
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Sarron Randall-Demllo
- University of Tasmania, School of Health Sciences, Launceston, Tasmania, Australia; and
| | - Rhiannon Filippone
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Joel C Bornstein
- Department of Physiology, Melbourne University, Melbourne, Victoria, Australia
| | - Rajaraman Eri
- University of Tasmania, School of Health Sciences, Launceston, Tasmania, Australia; and
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia;
| |
Collapse
|
47
|
McQuade RM, Stojanovska V, Donald E, Abalo R, Bornstein JC, Nurgali K. Gastrointestinal dysfunction and enteric neurotoxicity following treatment with anticancer chemotherapeutic agent 5-fluorouracil. Neurogastroenterol Motil 2016; 28:1861-1875. [PMID: 27353132 DOI: 10.1111/nmo.12890] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/29/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND The use of the anticancer chemotherapeutic agent 5-fluorouracil (5-FU) is often limited by nausea, vomiting, constipation, and diarrhea; these side-effects persist long after treatment. The effects of 5-FU on enteric neurons have not been studied and may provide insight into the mechanisms underlying 5-FU-induced gastrointestinal dysfunction. METHODS Balb/c mice received intraperitoneal injections of 5-FU (23 mg/kg) 3 times/week for 14 days. Gastrointestinal transit was analysed in vivo prior to and following 3, 7, and 14 days of 5-FU treatment via serial x-ray imaging. Following 14 days of 5-FU administration, colons were collected for assessment of ex vivo colonic motility, gross morphological structure, and immunohistochemical analysis of myenteric neurons. Fecal lipocalin-2 and CD45+ leukocytes in the colon were analysed as markers of intestinal inflammation. KEY RESULTS Short-term administration of 5-FU (3 days) increased gastrointestinal transit, induced acute intestinal inflammation and reduced the proportion of neuronal nitric oxide synthase-immunoreactive neurons. Long-term treatment (7, 14 days) resulted in delayed gastrointestinal transit, inhibition of colonic migrating motor complexes, increased short and fragmented contractions, myenteric neuronal loss and a reduction in the number of ChAT-immunoreactive neurons after the inflammation was resolved. Gross morphological damage to the colon was observed following both short- and long-term 5-FU treatment. CONCLUSIONS & INFERENCES Our results indicate that 5-FU induces accelerated gastrointestinal transit associated with acute intestinal inflammation at day 3 after the start of treatment, which may have led to persistent changes in the ENS observed after days 7 and 14 of treatment contributing to delayed gastrointestinal transit and colonic dysmotility.
Collapse
Affiliation(s)
- R M McQuade
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| | - V Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| | - E Donald
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| | - R Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Instituto de Investigación en Ciencias de la Alimentación (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - J C Bornstein
- Department of Physiology, Melbourne University, Melbourne, VIC, Australia
| | - K Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| |
Collapse
|
48
|
Spencer NJ. Motility patterns in mouse colon: gastrointestinal dysfunction induced by anticancer chemotherapy. Neurogastroenterol Motil 2016; 28:1759-1764. [PMID: 27891756 DOI: 10.1111/nmo.12990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023]
Abstract
Colon cancer is a leading cause of cancer-related death in humans. 5-Fluorouracil (5-FU), a major chemotherapy treatment, has been used for decades to fight numerous types of cancers, including breast, colon, and head and neck carcinomas. Unfortunately, a large proportion of patients treated with 5-FU develop toxicities that include diarrhea, mucositis, neutropenia, and vomiting. While the side effects of 5-FU are well known, the mechanisms underlying the induction of these unpleasant symptoms are poorly understood. The study by McQuade et al. in this issue of Neurogastroenterology & Motility provides important new potential explanations for the gastrointestinal (GI) dysfunction induced by 5-FU. These researchers carefully investigated an overlooked research area in which the symptoms of GI-motility dysfunction maybe due to an effect on the enteric nervous system. McQuade et al. delivered 5-FU treatment to mice and discovered an initial increase in GI transit (associated with acute intestinal inflammation), followed by a slowing in transit. Major differences were noted in characteristics of colonic migrating motor complexes. These effects maybe causally related to deficits in enteric ganglia or neurotransmission. Their study identified specific neurochemical classes of neurons in the myenteric plexus most affected by 5-FU. This is the first study to provide evidence that the functional intrinsic neural pathways within the enteric nervous system are likely impaired by 5-FU, leading to colonic dysmotility. This review will describe major patterns of motor activity in isolated whole mouse colon and how these patterns are modified by anticancer chemotherapy.
Collapse
Affiliation(s)
- N J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
49
|
McQuade RM, Carbone SE, Stojanovska V, Rahman A, Gwynne RM, Robinson AM, Goodman CA, Bornstein JC, Nurgali K. Role of oxidative stress in oxaliplatin-induced enteric neuropathy and colonic dysmotility in mice. Br J Pharmacol 2016; 173:3502-3521. [PMID: 27714760 PMCID: PMC5120153 DOI: 10.1111/bph.13646] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxaliplatin is a platinum-based chemotherapeutic drug used as a first-line therapy for colorectal cancer. However, its use is associated with severe gastrointestinal side-effects resulting in dose limitations and/or cessation of treatment. In this study, we tested whether oxidative stress, caused by chronic oxaliplatin treatment, induces enteric neuronal damage and colonic dysmotility. EXPERIMENTAL APPROACH Oxaliplatin (3 mg·kg-1 per day) was administered in vivo to Balb/c mice intraperitoneally three times a week. The distal colon was collected at day 14 of treatment. Immunohistochemistry was performed in wholemount preparations of submucosal and myenteric ganglia. Neuromuscular transmission was studied by intracellular electrophysiology. Circular muscle tone was studied by force transducers. Colon propulsive activity studied in organ bath experiments and faeces were collected to measure water content. KEY RESULTS Chronic in vivo oxaliplatin treatment resulted in increased formation of reactive oxygen species (O2 -), nitration of proteins, mitochondrial membrane depolarisation resulting in the release of cytochrome c, loss of neurons, increased inducible NOS expression and apoptosis in both the submucosal and myenteric plexuses of the colon. Oxaliplatin treatment enhanced NO-mediated inhibitory junction potentials and altered the response of circular muscles to the NO donor, sodium nitroprusside. It also reduced the frequency of colonic migrating motor complexes and decreased circular muscle tone, effects reversed by the NO synthase inhibitor, Nω-Nitro-L-arginine. CONCLUSION AND IMPLICATIONS Our study is the first to provide evidence that oxidative stress is a key player in enteric neuropathy and colonic dysmotility leading to symptoms of chronic constipation observed in oxaliplatin-treated mice.
Collapse
Affiliation(s)
- Rachel M McQuade
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Simona E Carbone
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vanesa Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Ahmed Rahman
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Rachel M Gwynne
- Department of Physiology, Melbourne University, Melbourne, Australia
| | - Ainsley M Robinson
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Craig A Goodman
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Joel C Bornstein
- Department of Physiology, Melbourne University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| |
Collapse
|
50
|
Obata Y, Pachnis V. The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System. Gastroenterology 2016; 151:836-844. [PMID: 27521479 PMCID: PMC5102499 DOI: 10.1053/j.gastro.2016.07.044] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/22/2022]
Abstract
The gastrointestinal (GI) tract is essential for the absorption of nutrients, induction of mucosal and systemic immune responses, and maintenance of a healthy gut microbiota. Key aspects of gastrointestinal physiology are controlled by the enteric nervous system (ENS), which is composed of neurons and glial cells. The ENS is exposed to and interacts with the outer (microbiota, metabolites, and nutrients) and inner (immune cells and stromal cells) microenvironment of the gut. Although the cellular blueprint of the ENS is mostly in place by birth, the functional maturation of intestinal neural networks is completed within the microenvironment of the postnatal gut, under the influence of gut microbiota and the mucosal immune system. Recent studies have shown the importance of molecular interactions among microbiota, enteric neurons, and immune cells for GI homeostasis. In addition to its role in GI physiology, the ENS has been associated with the pathogenesis of neurodegenerative disorders, such as Parkinson's disease, raising the possibility that microbiota-ENS interactions could offer a viable strategy for influencing the course of brain diseases. Here, we discuss recent advances on the role of microbiota and the immune system on the development and homeostasis of the ENS, a key relay station along the gut-brain axis.
Collapse
|