1
|
Lu X, Zhang M, Ma Y, Li G, Zhao X, Qian W. Protective effect of Limosilactobacillus reuteri-fermented yogurt on mouse intestinal barrier injury induced by enterotoxigenic Escherichia coli. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7494-7505. [PMID: 37411001 DOI: 10.1002/jsfa.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is a pathogen that causes traveler's diarrhea, for which an effective vaccine is lacking. Previous studies showed that Limosilactobacillus reuteri could inhibit E. coli, effectively increase the expression of its tight junction protein, and reduce the adhesion of ETEC to the intestinal epithelial Caco-2 cell line. In this study, three kinds of yogurt with different starter cultures were first prepared: Lm. reuteri yogurt (fermented by Lm. reuteri alone), traditional yogurt (fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus at a ratio of 1:1) and mixed yogurt (fermented by Lm. reuteri, S. thermophilus and L. delbrueckii subsp. bulgaricus at a ratio of 1:1:1). The physiological properties, oxidative stress, intestinal barrier function, tight junction protein, pathological conditions and intestinal microbiota composition were investigated. RESULTS The data showed that Lm. reuteri-fermented yogurt pregavage could effectively alleviate the intestinal barrier impairment caused by ETEC in mice. It alleviated intestinal villus shortening and inflammatory cell infiltration, decreased plasma diamine oxidase concentration and increased claudin-1 and occludin expression in the jejunum of ETEC-infected mice. In addition, Lm. reuteri-fermented yogurt significantly reduced the ETEC load in fecal samples, reversed the increase in Pseudomonadota abundance and decreased Bacteroidota abundance caused by ETEC infection. Furthermore, the composition of the intestinal microbiota could maintain a stable state similar to that in healthy mice. CONCLUSION These findings indicate that Lm. reuteri-fermented yogurt could alleviate intestinal barrier damage, inhibit ETEC growth and maintain the stability of the intestinal microbiota during ETEC infection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi Lu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Mingxin Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yuzhe Ma
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guohua Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Weisheng Qian
- Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Khan R, Jori C, Ansari MM, Ahmad A, Nadeem A, Siddiqui N, Sultana S. α-Terpineol Mitigates Dextran Sulfate Sodium-Induced Colitis in Rats by Attenuating Inflammation and Apoptosis. ACS OMEGA 2023; 8:29794-29802. [PMID: 37599911 PMCID: PMC10433518 DOI: 10.1021/acsomega.3c04317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
Ulcerative colitis (UC) is one of the major inflammatory disorders of the gastrointestinal tract. α-Terpineol (αTL) is naturally present in several plants, and it belongs to the monoterpenes category. αTL possesses various pharmacological properties such as antioxidant, antibacterial, antifungal, anticancer, and antiulcer activities. Importantly, αTL has been reported to possess potent anti-inflammatory effects also. In this study, we hypothesize that αTL may have protective effects against dextran sodium sulfate (DSS)-induced colitis in Wistar rats. Animals were randomly allocated to 3 groups of 6 rats each. In group III, αTL was administered at a dose of 50 mg/kg b. wt. orally from days 1 to 14, while in groups II and III, 4% DSS in drinking water was given to rats ad libitum from the 7th to 14th days. After 24 h of the last dose of αTL, all animals were euthanized. αTL administration reduced the DSS-induced colonic disease activity index, tissue damage, and goblet cell disintegration. αTL suppressed the orchestration of mast cells in the inflamed colon, enhanced the immunostaining of NF-kB-p65, COX-2, iNOS, p53, caspase-9, and cleaved caspase-3, and suppressed the immunostaining of connexin-43, survivin, and Bcl-2. The activities of caspases-9 and -3 were reduced significantly by αTL pretreatment, as also confirmed by calorimetric assays. Moreover, αTL significantly attenuated the nitric oxide level and myeloperoxidase activity. Histological results further support the fact that αTL reduced DSS-induced colonic damage and reduced inflammatory cell infiltration. Overall, our findings suggest that αTL has strong protective effects against DSS-induced colitis by mitigating inflammatory and apoptotic responses.
Collapse
Affiliation(s)
- Rehan Khan
- Chemical
Biology Unit, Institute of Nano Science
and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Chandrashekhar Jori
- Chemical
Biology Unit, Institute of Nano Science
and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Md. Meraj Ansari
- Centre
for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and
Research, S.A.S Nagar,
Sector 67, Mohali 160062, Punjab, India
| | - Anas Ahmad
- Julia
McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology,
Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases
and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ahmed Nadeem
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nahid Siddiqui
- Amity
Institute of Biotechnology, Amity University, Noida 201303, India
| | - Sarwat Sultana
- Department
of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
3
|
Khoshavi Najafabadi F, Sadraei H, Mehranfard N, Ghasemi M. Motor Dysfunction of Gastric Antral Smooth Muscle in Diabetic Rats: Contribution of ATP-Dependent Potassium Channels. Adv Biomed Res 2023; 12:199. [PMID: 37694236 PMCID: PMC10492619 DOI: 10.4103/abr.abr_44_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 09/12/2023] Open
Abstract
Background The goal of the current research was to further elucidate the role of adenosine triphosphate (ATP)-sensitive potassium (KATP) channels in the motility and contractility force of gastric smooth muscle of diabetic rats. Materials and Methods Male Wistar rats (190-230 g) were grouped into control and streptozotocin (STZ)-induced diabetes (55 mg/kg) rats. Thirty days later, gastric muscle contractility was measured using a myograph and a force transducer of antral segments immersed in a tissue bath. Gastric emptying response was measured through feeding of standard pellet. Furthermore, the expression of KATP channel subunits in antral smooth muscle was determined by western blot technique. Results The amplitude of KCl-evoked twitch contractions of diabetic antral strips was about 25% more than control (P < 0.05). Application of minoxidil, a KATP channel opener, dose dependently decreased the force of twitch contractions in both normal and diabetic antral strips. Application of 10 μM glibenclamide, a KATP channel blocker, did not antagonize the minoxidil-induced relaxation of antral strips. Diabetic gastric emptying was faster than normal, although not significant. Despite the relaxant effect of minoxidil on gastric emptying rate in normal rats (P < 0.05), this effect was not observed in diabetic rats. Also, glibenclamide increased gastric emptying and antagonized minoxidil-induced relaxation in normal rats (P < 0.05). Furthermore, the expression of KATP Kir6.1 and SUR2B subunits was substantially reduced in antral smooth muscle in diabetic condition (P < 0.01). Conclusion These results propose that KATP channels may contribute to the development of gastric motility disorders in diabetes.
Collapse
Affiliation(s)
- Fatameh Khoshavi Najafabadi
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Sadraei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Sadraei H, Ghasemi M, Saranji S. Evaluation of spasmolytic effects of naringenin on ileum contraction and intestinal charcoal meal transit: Involvement of ATP-sensitive K+ channels. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Naringenin is a flavonoid constituent of many herbal plants, including citreous fruits. Biological studies have suggested various therapeutic effects for naringenin, including protective effects on gastrointestinal (GI) motility. The present study was performed to investigate the involvement of ATP-sensitive K+ channels on the effect of naringenin in rat ileum motility. Methods: Ileum contractions were induced by either KCl or acetylcholine (ACh) in vitro. Inhibitory concentration-response curves were constructed for naringenin and diazoxide after exposure of rat isolated ileum to KCl (20mM) or ACh (500nM). The relaxant effects of naringenin and diazoxide were also examined in the presence of glibenclamide. Furthermore, oral effects of diazoxide (25 mg/kg) and naringenin (25, 50 mg/kg) were also assessed on the intestinal charcoal meal transit in mice (n=10) in the absence and presence of glibenclamide (50 mg/kg). Results: Diazoxide and naringenin in a concentration-dependent manner inhibited ileum contractions induced by low bath concentration of KCl (20mM). However, both drugs had no effect on contractions induced by a high concentration of KCl (160mM). The inhibitory effects of diazoxide and naringenin were blocked by glibenclamide. Oral administration of diazoxide and naringenin significantly reduced the intestinal transit of charcoal meal. The delay in the intestinal transit was blocked by the oral dose of glibenclamide. The effect of naringenin on the rat intestinal strip pre-contracted with the KCl was relatively similar to that of ATP-sensitive K+ channel opener (diazoxide). Conclusion: This research supports that ATP-sensitive K+ channels are involved in the rat small intestinal smooth muscles relaxation induced by naringenin.
Collapse
Affiliation(s)
- Hassan Sadraei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salman Saranji
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Yu T, Zhang L, Wang Y, Shen X, Lin L, Tang Y. Effect of visfatin on K ATP channel upregulation in colonic smooth muscle cells in diabetic colon dysmotility. Aging (Albany NY) 2022; 14:1292-1306. [PMID: 35113808 PMCID: PMC8876906 DOI: 10.18632/aging.203871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The mechanisms of diabetes-related gastrointestinal dysmotility remains unclear. This study aimed to investigate the effect and mechanisms of proinflammatory adipokine visfatin (VF) in the contractile dysfunction of diabetic rat colonic smooth muscle. Twenty Sprague-Dawley rats were randomly divided into control and type 2 diabetes mellitus groups. VF levels in the serum and colonic muscle tissues were tested, the time of the bead ejection and contractility of colonic smooth muscle strips were measured, and the expression of ATP-sensitive potassium (KATP) channels in the colonic muscle tissues was analyzed. In vitro, we tested VF's effects on intracellular reactive oxygen species (ROS) levels, NF-κB's nuclear transcription, KATP channel expression, intracellular Ca2+ concentrations, and myosin light chain (MLC) phosphorylation in colonic smooth muscle cells (CSMCs). The effects of NAC (ROS inhibitor) and BAY 11-7082 (NF-κB inhibitor) on KATP expression were also tested. Diabetic rats showed elevated VF levels in serum and colonic muscle tissues, a delayed distal colon ejection response time, weakened contractility of colonic smooth muscle strips, and increased KATP channel expression in colonic muscle tissues. VF significantly inhibited the contractility of colonic smooth muscle strips from normal rats. In cultured CSMCs, VF caused ROS overload, increased NF-κB nuclear transcription activity and increased expression of Kir6.1, eventually reducing intracellular Ca2+ levels and MLC phosphorylation. NAC and BAY 11-7082 inhibited the VF-induced Kir6.1 upregulation. In conclusion, VF may cause contractile dysfunction of CSMCs by upregulating the expression of the Kir6.1 subunit of KATP channels via the ROS/NF-κB pathway and interfering with Ca2+ signaling.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lin Zhang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210029, Jiangsu Province, China
| | - Yan Wang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiaoxue Shen
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yurong Tang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
6
|
Wang B, Murakami Y, Ono M, Fujikawa S, Matsuyama H, Unno T, Naitou K, Tanahashi Y. Muscarinic suppression of ATP-sensitive K + channels mediated by the M 3/G q/11/phospholipase C pathway contributes to mouse ileal smooth muscle contractions. Am J Physiol Gastrointest Liver Physiol 2018; 315:G618-G630. [PMID: 30001145 DOI: 10.1152/ajpgi.00069.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ATP-sensitive K+ (KATP) channels are expressed in gastrointestinal smooth muscles, and their activity is regulated by muscarinic receptor stimulation. However, the physiological significance and mechanisms of muscarinic regulation of KATP channels are not fully understood. We examined the effects of the KATP channel opener cromakalim and the KATP channel blocker glibenclamide on electrical activity of single mouse ileal myocytes and on mechanical activity in ileal segment preparations. To explore muscarinic regulation of KATP channel activity and its underlying mechanisms, the effect of carbachol (CCh) on cromakalim-induced KATP channel currents ( IKATP) was studied in myocytes of M2 or M3 muscarinic receptor-knockout (KO) and wild-type (WT) mice. Cromakalim (10 µM) induced membrane hyperpolarization in single myocytes and relaxation in segment preparations from WT mice, whereas glibenclamide (10 µM) caused membrane depolarization and contraction. CCh (100 µM) induced sustained suppression of IKATP in cells from both WT and M2KO mice. However, CCh had a minimal effect on IKATP in M3KO and M2/M3 double-KO cells. The Gq/11 inhibitor YM-254890 (10 μM) and PLC inhibitor U73122 (1 μM), but not the PKC inhibitor calphostin C (1 μM), markedly decreased CCh-induced suppression of IKATP in WT cells. These results indicated that KATP channels are constitutively active and contribute to the setting of resting membrane potential in mouse ileal smooth muscles. M3 receptors inhibit the activity of these channels via a Gq/11/PLC-dependent but PKC-independent pathways, thereby contributing to membrane depolarization and contraction of smooth muscles. NEW & NOTEWORTHY We systematically investigated the regulation of ATP-sensitive K+ channels by muscarinic receptors expressed on mouse ileal smooth muscles. We found that M3 receptors inhibit the activity of ATP-sensitive K+ channels via a Gq/11/PLC-dependent, but PKC-independent, pathway. This muscarinic suppression of ATP-sensitive K+ channels contributes to membrane depolarization and contraction of smooth muscles.
Collapse
Affiliation(s)
- Ban Wang
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University , Kyoto , Japan
| | - Yuri Murakami
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University , Kyoto , Japan
| | - Maiki Ono
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University , Kyoto , Japan
| | - Saki Fujikawa
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University , Kyoto , Japan
| | - Hayato Matsuyama
- Laboratory of Pharmacology, Department of Veterinary Medicine, Gifu University , Gifu , Japan
| | - Toshihiro Unno
- Laboratory of Pharmacology, Department of Veterinary Medicine, Gifu University , Gifu , Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University , Kagoshima , Japan
| | - Yasuyuki Tanahashi
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University , Kyoto , Japan
| |
Collapse
|
7
|
Ocal I, Yilmaz MB, Kocaturk-Sel S, Tufan T, Erkoc MA, Comertpay G, Oksuz H, Barc ED. ATP sensitive K + channel subunits (Kir6.1, Kir6.2) are the candidate mediators regulating ameliorating effects of pulsed magnetic field on aortic contractility in diabetic rats. Bioelectromagnetics 2018; 39:299-311. [PMID: 29446477 DOI: 10.1002/bem.22111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/13/2017] [Indexed: 11/11/2022]
Abstract
Diabetes mellitus is a metabolic disease that causes increased morbidity and mortality in developed and developing countries. With recent advancements in technology, alternative treatment methods have begun to be investigated in the world. This study aims to evaluate the effect of pulsed magnetic field (PMF) on vascular complications and contractile activities of aortic rings along with Kir6.1 and Kir6.2 subunit expressions of ATP-sensitive potassium channels (KATP ) in aortas of controlled-diabetic and non-controlled diabetic rats. Controlled-diabetic and non-controlled diabetic adult male Wistar rats were exposed to PMF for a period of 6 weeks according to the PMF application protocol (1 h/day; intensity: 1.5 mT; consecutive frequency: 1, 10, 20, and 40 Hz). After PMF exposure, body weight and blood glucose levels were measured. Then, thoracic aorta tissue was extracted for relaxation-contraction and Kir6.1 and Kir6.2 expression experiments. Blood plasma glucose levels, body weight, and aortic ring contraction percentage decreased in controlled-diabetic rats but increased in non-controlled diabetic rats. PMF therapy repressed Kir6.1 mRNA expression in non-controlled diabetic rats but not in controlled diabetic rats. Conversely, Kir6.2 mRNA expressions were repressed both in controlled diabetic and non-controlled diabetic rats by PMF. Our findings suggest that the positive therapeutic effects of PMF may act through (KATP ) subunits and may frequently occur in insulin-free conditions. Bioelectromagnetics. 39:299-311, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isil Ocal
- Faculty of Medicine, Department of Biophysics, Cukurova University, Adana, Turkey
| | - Mehmet B Yilmaz
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Sabriye Kocaturk-Sel
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Turan Tufan
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Mehmet A Erkoc
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Gamze Comertpay
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Hale Oksuz
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Esma D Barc
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| |
Collapse
|
8
|
ATP-sensitive K + channels maintain resting membrane potential in interstitial cells of Cajal from the mouse colon. Eur J Pharmacol 2017; 809:98-104. [PMID: 28511870 DOI: 10.1016/j.ejphar.2017.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022]
Abstract
To investigate the role of ATP-sensitive K+(KATP) channels on pacemaker activity in interstitial cells of Cajal (ICC), whole-cell patch clamping, RT-PCR, and intracellular Ca2+([Ca2+]i) imaging were performed in cultured colonic ICC. Pinacidil (a K+ channel opener) hyperpolarized the membrane and inhibited the generation of pacemaker potential, and this effect was reversed by glibenclamide (a KATP channel blocker). RT-PCR showed that Kir 6.1 and SUR2B were expressed in Ano-1 positive colonic ICC. Glibenclamide depolarized the membrane and increased pacemaker potential frequency. However, 5-hydroxydecanoic acid (a mitochondrial KATP channel blocker) had no effects on pacemaker potentials. Phorbol 12-myristate 13-acetate (PMA; a protein kinase C activator) blocked the pinacidil-induced effects, and PMA alone depolarized the membrane and increased pacemaker potential frequency. Cell-permeable 8-bromo-cyclic AMP also increased pacemaker potential frequency. Recordings of spontaneous intracellular Ca2+([Ca2+]i) oscillations showed that glibenclamide increased the frequency of [Ca2+]i oscillations. In small intestinal ICC, glibenclamide alone did not alter the generation of pacemaker potentials, and Kir 6.2 and SUR2B were expressed in Ano-1 positive ICC. Therefore, KATP channels in colonic ICC are activated in resting state and play an important role in maintaining resting membrane potential.
Collapse
|
9
|
Li S, Lei Y, Chen JD. Roles of ATP sensitive potassium channel in modulating gastric tone and accommodation in dogs. Scand J Gastroenterol 2017; 52:515-522. [PMID: 28270043 DOI: 10.1080/00365521.2017.1289238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The ATP sensitive potassium (KATP) channel plays an important role in the regulation of resting membrane potential and membrane excitability. The role of the KATP channel in modulating gastric motility is unclear. The aim of this study was to investigate the role and mechanism of the KATP channel in modulating gastric tone and accommodation in dogs. MATERIALS AND METHODS Gastric volume under a constant pressure reflecting gastric tone was measured using a barostat device in dogs equipped with a gastric cannula. Gastric accommodation was evaluated by the difference in gastric volume before and after a liquid meal. The roles of cholinergic and nitrergic pathways in the inhibitory effect of pinacidil (a KATP opener) were assessed. RESULTS 1) Pinacidil dose-dependently decreased gastric tone at a dosage of 30 (p = 0.628), 100 (p = 0.013) and 300 μg kg-1 (p < 0.001). 2) Glibenclamide, a KATP blocker, completely blocked the inhibitory effect of pinacidil on gastric tone. 3) Atropine did not block the inhibitory effect of pinacidil on gastric tone but Nω-Nitro-L-arginine methyl ester markedly attenuated the inhibitory effect of pinacidil (p = 0.004). 4) Glibenclamide significantly reduced gastric accommodation (p < 0.001) while pinacidil had no effects on gastric accommodation. 5) Glibenclamide significantly reduced nitric oxide donor sodium nitroprusside-induced gastric relaxation. CONCLUSIONS These findings indicate that the KATP channel plays an important role in modulating gastric tone and accommodation in dogs. The inhibitory effect of pinacidil on gastric tone was through the nitrergic pathway as well as acting directly on smooth muscle cells.
Collapse
Affiliation(s)
- Shiying Li
- a Veterans Research and Education Foundation, VA Medical Center , Oklahoma City , OK , USA.,b Division of Gastroenterology and Hepatology , Johns Hopkins University , Baltimore , MD , USA
| | - Yong Lei
- a Veterans Research and Education Foundation, VA Medical Center , Oklahoma City , OK , USA
| | - Jiande Dz Chen
- a Veterans Research and Education Foundation, VA Medical Center , Oklahoma City , OK , USA.,b Division of Gastroenterology and Hepatology , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
10
|
Abstract
Voltage-gated ion channels are key regulators of cell excitability. There is significant evidence that these channels are subject to modulation by redox status of the cells. Here we review the post-translational modifications of ion channels that occur in colonic inflammation. The redox mechanisms involve tyrosine nitration, covalent modification of cysteine residues and sulfhydration by hydrogen sulfide in experimental colitis. In the setting of colonic inflammation, modifications of cysteine and tyrosine are likely to occur at several sites within the same channel complex. In this review we describe alterations in channel function due to specific modifications of tyrosine and cysteine residues by reactive nitrogen, oxygen and hydrogen-sulfide resulting in altered motility.
Collapse
Affiliation(s)
- Hamid I Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, McGuire Hall Rm# 317, Richmond, VA 23298, USA Country.
| | | |
Collapse
|
11
|
Tomuschat C, O'Donnell AM, Coyle D, Dreher N, Kelly D, Puri P. Altered expression of ATP-sensitive K(+) channels in Hirschsprung's disease. J Pediatr Surg 2016; 51:948-52. [PMID: 27001456 DOI: 10.1016/j.jpedsurg.2016.02.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE Hirschsprung's disease-associated enterocolitis (HAEC) is the most common cause of morbidity and mortality in Hirschsprung's disease (HSCR). Altered intestinal epithelial barrier function has been suggested to play a role in the causation of HAEC. In rodent experimental models of colitis, a decreased expression of K(ATP) channels (Subunits: Kir6.1/6.2 and SUR1/2) is reported. We designed this study to determine if K(ATP) channels exist within the human colon and to investigate the expression of different subunits in Hirschsprung's disease. METHODS We investigated Kir6.1, Kir6.2, SUR1, and SUR2 expression in ganglionic and aganglionic bowel of HD patients (n=5) and controls (n=5). Western blotting and confocal immunofluorescence were performed. MAIN RESULTS Western blot analysis revealed that Kir6.1, Kir6.2, SUR1, and SUR2 are strongly expressed in the normal human colon. Kir6.1, Kir6.2, SUR1, and SUR2 expression was significantly decreased in the aganglionic bowel compared to ganglionic bowel and controls. Kir6.1 and SUR1 expression were also significantly decreased in the ganglionic bowel of HSCR patients compared to controls. CONCLUSION We demonstrate for the first time the existence of K(ATP) channels in the human colon. The decreased K(ATP) channel expression in HSCR specimens suggests that an altered K(ATP) expression may interfere with intestinal epithelium barrier function and predispose to HAEC.
Collapse
Affiliation(s)
- Christian Tomuschat
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Anne Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - David Coyle
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Nickolas Dreher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Danielle Kelly
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; School of Medicine and Medical Science and Conway Institute of Biomedical Research, University College, Dublin, Ireland.
| |
Collapse
|
12
|
Magalhães D, Cabral JM, Soares-da-Silva P, Magro F. Role of epithelial ion transports in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2016; 310:G460-76. [PMID: 26744474 DOI: 10.1152/ajpgi.00369.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder with a complex pathogenesis. Diarrhea is a highly prevalent and often debilitating symptom of IBD patients that results, at least in part, from an intestinal hydroelectrolytic imbalance. Evidence suggests that reduced electrolyte absorption is more relevant than increased secretion to this disequilibrium. This systematic review analyses and integrates the current evidence on the roles of epithelial Na(+)-K(+)-ATPase (NKA), Na(+)/H(+) exchangers (NHEs), epithelial Na(+) channels (ENaC), and K(+) channels (KC) in IBD-associated diarrhea. NKA is the key driving force of the transepithelial ionic transport and its activity is decreased in IBD. In addition, the downregulation of apical NHE and ENaC and the upregulation of apical large-conductance KC all contribute to the IBD-associated diarrhea by lowering sodium absorption and/or increasing potassium secretion.
Collapse
Affiliation(s)
- Diogo Magalhães
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - José Miguel Cabral
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Patrício Soares-da-Silva
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Fernando Magro
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal; and MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Ujike A, Otsuguro KI, Miyamoto R, Yamaguchi S, Ito S. Bidirectional effects of hydrogen sulfide via ATP-sensitive K+ channels and transient receptor potential A1 channels in RIN14B cells. Eur J Pharmacol 2015; 764:463-470. [DOI: 10.1016/j.ejphar.2015.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022]
|
14
|
Radulovic M, Anand P, Korsten MA, Gong B. Targeting Ion Channels: An Important Therapeutic Implication in Gastrointestinal Dysmotility in Patients With Spinal Cord Injury. J Neurogastroenterol Motil 2015; 21:494-502. [PMID: 26424038 PMCID: PMC4622131 DOI: 10.5056/jnm15061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/10/2015] [Accepted: 07/06/2015] [Indexed: 01/04/2023] Open
Abstract
Gastrointestinal (GI) dysmotility is a severe, and common complication in patients with spinal cord injury (SCI). Current therapeutic methods using acetylcholine analogs or laxative agents have unwanted side effects, besides often fail to have desired effect. Various ion channels such as ATP-sensitive potassium (KATP) channel, calcium ions (Ca2+)-activated potassium ions (K+) channels, voltage-sensitive Ca2+ channels and chloride ion (Cl−) channels are abundantly expressed in GI tissues, and play an important role in regulating GI motility. The release of neurotransmitters from the enteric nerve terminal, innervating GI interstitial cells of Cajal (ICC), and smooth muscle cells (SMC), causes inactivation of K+ and Cl− channels, increasing Ca2+ influx into cytoplasm, resulting in membrane depolarization and smooth muscle contraction. Thus, agents directly regulating ion channels activity either in ICC or in SMC may affect GI peristalsis and would be potential therapeutic target for the treatment of GI dysmotility with SCI.
Collapse
Affiliation(s)
- Miroslav Radulovic
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,National Center of Excellence for the Medical Consequences of SCI, James J Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - Preeti Anand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark A Korsten
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,National Center of Excellence for the Medical Consequences of SCI, James J Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - Bing Gong
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Kim H, Suh J, Lee Y, Lee T, Hong J. Modeling the contractile characteristics of smooth muscle from the porcine small intestine. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1057614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
16
|
Lee JY, Ko EJ, Ahn KD, Kim S, Rhee PL. The role of K⁺ conductances in regulating membrane excitability in human gastric corpus smooth muscle. Am J Physiol Gastrointest Liver Physiol 2015; 308:G625-33. [PMID: 25591864 PMCID: PMC4385896 DOI: 10.1152/ajpgi.00220.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/12/2015] [Indexed: 01/31/2023]
Abstract
Changes in resting membrane potential (RMP) regulate membrane excitability. K(+) conductance(s) are one of the main factors in regulating RMP. The functional role of K(+) conductances has not been studied the in human gastric corpus smooth muscles (HGCS). To examine the role of K(+) channels in regulation of RMP in HGCS we employed microelectrode recordings, patch-clamp, and molecular approaches. Tetraethylammonium and charybdotoxin did not affect the RMP, suggesting that BK channels are not involved in regulating RMP. Apamin, a selective small conductance Ca(2+)-activated K(+) channel (SK) blocker, did not show a significant effect on the membrane excitability. 4-Aminopyridine, a Kv channel blocker, caused depolarization and increased the duration of slow wave potentials. 4-Aminopyridine also inhibited a delayed rectifying K(+) current in isolated smooth muscle cells. End-product RT-PCR gel detected Kv1.2 and Kv1.5 in human gastric corpus muscles. Glibenclamide, an ATP-sensitive K(+) channel (KATP) blocker, did not induce depolarization, but nicorandil, a KATP opener, hyperpolarized HGCS, suggesting that KATP are expressed but not basally activated. Kir6.2 transcript, a pore-forming subunit of KATP was expressed in HGCS. A low concentration of Ba(2+), a Kir blocker, induced strong depolarization. Interestingly, Ba(2+)-sensitive currents were minimally expressed in isolated smooth muscle cells under whole-cell patch configuration. KCNJ2 (Kir2.1) transcript was expressed in HGCS. Unique K(+) conductances regulate the RMP in HGCS. Delayed and inwardly rectifying K(+) channels are the main candidates in regulating membrane excitability in HGCS. With the development of cell dispersion techniques of interstitial cells, the cell-specific functional significance will require further analysis.
Collapse
Affiliation(s)
| | - Eun-ju Ko
- 2Samsung Biomedical Research Institute and
| | - Ki Duck Ahn
- 3Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Kim
- 3Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | |
Collapse
|
17
|
Kang M, Hashimoto A, Gade A, Akbarali HI. Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex. Am J Physiol Gastrointest Liver Physiol 2015; 308:G532-9. [PMID: 25552582 PMCID: PMC4360042 DOI: 10.1152/ajpgi.00281.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hydrogen sulfide (H₂S) is an endogenous gaseous mediator affecting many physiological and pathophysiological conditions. Enhanced expression of H2S and reactive nitrogen/oxygen species (RNS/ROS) during inflammation alters cellular excitability via modulation of ion channel function. Sulfhydration of cysteine residues and tyrosine nitration are the posttranslational modifications induced by H₂S and RNS, respectively. The objective of this study was to define the interaction between tyrosine nitration and cysteine sulfhydration within the ATP-sensitive K(+) (KATP) channel complex, a significant target in experimental colitis. A modified biotin switch assay was performed to determine sulfhydration of the KATP channel subunits, Kir6.1, sulphonylurea 2B (SUR2B), and nitrotyrosine measured by immunoblot. NaHS (a donor of H₂S) significantly enhanced sulfhydration of SUR2B but not Kir6.1 subunit. 3-Morpholinosydnonimine (SIN-1) (a donor of peroxynitrite) induced nitration of Kir6.1 subunit but not SUR2B. Pretreatment with NaHS reduced the nitration of Kir6.1 by SIN-1 in Chinese hamster ovary cells cotransfected with the two subunits, as well as in enteric glia. Two specific mutations within SUR2B, C24S, and C1455S prevented sulfhydration by NaHS, and these mutations prevented NaHS-induced reduction in tyrosine nitration of Kir6.1. NaHS also reversed peroxynitrite-induced inhibition of smooth muscle contraction. These studies suggest that posttranslational modifications of the two subunits of the KATP channel interact to alter channel function. The studies described herein demonstrate a unique mechanism by which sulfhydration of one subunit modifies tyrosine nitration of another subunit within the same channel complex. This interaction provides a mechanistic insight on the protective effects of H₂S in inflammation.
Collapse
Affiliation(s)
- Minho Kang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Atsushi Hashimoto
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Aravind Gade
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
18
|
Rajagopal S, Nalli AD, Kumar DP, Bhattacharya S, Hu W, Mahavadi S, Grider JR, Murthy KS. Cytokine-induced S-nitrosylation of soluble guanylyl cyclase and expression of phosphodiesterase 1A contribute to dysfunction of longitudinal smooth muscle relaxation. J Pharmacol Exp Ther 2014; 352:509-18. [PMID: 25550199 DOI: 10.1124/jpet.114.221929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The effect of proinflammatory cytokines on the expression and activity of soluble guanylyl cyclase (sGC) and cGMP-phosphodiesterases (PDEs) was determined in intestinal longitudinal smooth muscle. In control muscle cells, cGMP levels are regulated via activation of sGC and PDE5; the activity of the latter is regulated via feedback phosphorylation by cGMP-dependent protein kinase. In muscle cells isolated from muscle strips cultured with interleukin-1β (IL-1β) or tumor necrosis factor α (TNF-α) or obtained from the colon of TNBS (2,4,6-trinitrobenzene sulfonic acid)-treated mice, expression of inducible nitric oxide synthase (iNOS) was induced and sGC was S-nitrosylated, resulting in attenuation of nitric oxide (NO)-induced sGC activity and cGMP formation. The effect of cytokines on sGC S-nitrosylation and activity was blocked by the iNOS inhibitor 1400W [N-([3-(aminomethyl)phenyl]methyl)ethanimidamide dihydrochloride]. The effect of cytokines on cGMP levels measured in the absence of IBMX (3-isobutyl-1-methylxanthine), however, was partly reversed by 1400W or PDE1 inhibitor vinpocetine and completely reversed by a combination of 1400W and vinpocetine. Expression of PDE1A was induced and was accompanied by an increase in PDE1A activity in muscle cells isolated from muscle strips cultured with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice; the effect of cytokines on PDE1 expression and activity was blocked by MG132 (benzyl N-[(2S)-4-methyl-1-[[(2S)-4-methyl-1-[[(2S)-4-methyl-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]carbamate), an inhibitor of nuclear factor κB activity. NO-induced muscle relaxation was inhibited in longitudinal muscle cells isolated from muscle strips cultured with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice, and this inhibition was completely reversed by the combination of both 1400W and vinpocetine. Inhibition of smooth muscle relaxation during inflammation reflects the combined effects of decreased sGC activity via S-nitrosylation and increased cGMP hydrolysis via PDE1 expression.
Collapse
Affiliation(s)
- Senthilkumar Rajagopal
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ancy D Nalli
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Divya P Kumar
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sayak Bhattacharya
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Wenhui Hu
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - John R Grider
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S Murthy
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
19
|
Yamane S, Kanno T, Nakamura H, Fujino H, Murayama T. Hydrogen sulfide-mediated regulation of contractility in the mouse ileum with electrical stimulation: roles of L-cysteine, cystathionine β-synthase, and K+ channels. Eur J Pharmacol 2014; 740:112-20. [PMID: 25008073 DOI: 10.1016/j.ejphar.2014.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/20/2023]
Abstract
Hydrogen sulfide (H2S) is considered to be a signaling molecule. The precise mechanisms underlying H2S-related events, including the producing enzymes and target molecules in gastrointestinal tissues, have not been elucidated in detail. We herein examined the involvement of H2S in contractions induced by repeated electrical stimulations (ES). ES-induced contractions were neurotoxin-sensitive and increased by aminooxyacetic acid, an inhibitor of cystathionine β-synthase (CBS) and cystathionine γ-lyase, but not by D,L-propargylglycine, a selective inhibitor of cystathionine γ-lyase, in an ES trial-dependent manner. ES-induced contractions were markedly decreased in the presence of L-cysteine. This response was inhibited by aminooxyacetic acid and an antioxidant, and accelerated by L-methionine, an activator of CBS. The existence of CBS was confirmed. NaHS transiently inhibited ES- and acetylcholine-induced contractions, and sustainably decreased basal tone for at least 20 min after its addition. The treatment with glibenclamide, an ATP-sensitive K+ channel blocker, reduced both the L-cysteine response and NaHS-induced inhibition of contractions. The NaHS-induced decrease in basal tone was inhibited by apamin, a small conductance Ca2+-activated K+ channel blocker. These results suggest that H2S may be endogenously produced via CBS in ES-activated enteric neurons, and regulates contractility via multiple K+ channels in the ileum.
Collapse
Affiliation(s)
- Satoshi Yamane
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Toshio Kanno
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Hiromichi Fujino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
20
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
21
|
Lei Q, Pan XQ, Chang S, Malkowicz SB, Guzzo TJ, Malykhina AP. Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel. J Physiol 2014; 592:3013-30. [PMID: 24801307 DOI: 10.1113/jphysiol.2014.271718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mechanisms of mechanosensitivity underlying the response of the human bladder to stretch are poorly understood. Animal data suggest that stretch-activated two-pore-domain (K2P) K(+) channels play a critical role in bladder relaxation during the filling phase. The objective of this study was to characterize the expression and function of stretch-activated K2P channels in the human bladder and to clarify their physiological role in bladder mechanosensitivity. Gene and protein analysis of the K2P channels TREK-1, TREK-2 and TRAAK in the human bladder revealed that TREK-1 is the predominantly expressed member of the mechano-gated subfamily of K2P channels. Immunohistochemical labelling of bladder wall identified higher levels of expression of TREK-1 in detrusor smooth muscle cells in comparison to bladder mucosa. Functional characterization and biophysical properties of the predominantly expressed member of the K2P family, the TREK-1 channel, were evaluated by in vitro organ bath studies and the patch-clamp technique. Electrophysiological recordings from single smooth muscle cells confirmed direct activation of TREK-1 channels by mechanical stretch and negative pressure applied to the cell membrane. Inhibition of TREK-1 channels in the human detrusor significantly delayed relaxation of the stretched bladder smooth muscle strips and triggered small-amplitude spontaneous contractions. Application of negative pressure to cell-attached patches (-20 mmHg) caused a 19-fold increase in the open probability (NPo) of human TREK-1 channels. l-Methionine (1 mm), a specific TREK-1 inhibitor, dramatically decreased the NPo of TREK-1 channels from 0.045 ± 0.003 to 0.008 ± 0.001 (n = 8, P ≤ 0.01). Subsequent addition of arachidonic acid (10 μm), a channel opener, increased the open probability of methionine-inhibited unitary currents up to 0.43 ± 0.05 at 0 mV (n = 9, P ≤ 0.05). The results of our study provide direct evidence that the response of the human detrusor to mechanical stretch is regulated by activation of mechano-gated TREK-1 channels. Impaired mechanosensation and mechanotransduction associated with the changes in stretch-activated K2P channels may underlie myogenic bladder dysfunction in humans.
Collapse
Affiliation(s)
- Qi Lei
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Xiao-Qing Pan
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | | | - S Bruce Malkowicz
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Thomas J Guzzo
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA
| |
Collapse
|
22
|
Nalli AD, Kumar DP, Mahavadi S, Al-Shboul O, Alkahtani R, Kuemmerle JF, Grider JR, Murthy KS. Hypercontractility of intestinal longitudinal smooth muscle induced by cytokines is mediated by the nuclear factor-κB/AMP-activated kinase/myosin light chain kinase pathway. J Pharmacol Exp Ther 2014; 350:89-98. [PMID: 24769544 DOI: 10.1124/jpet.113.212522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent studies have identified AMP-activated kinase (AMPK) as a target of Ca(2+)/calmodulin-dependent kinase kinase (CaMKKβ) and a negative regulator of myosin light-chain (MLC) kinase (MLCK). The present study examined whether a change in expression or activity of AMPK is responsible for hypercontractility of intestinal longitudinal muscle during inflammation or in response to proinflammatory cytokines. In mouse colonic longitudinal muscle cells, acetylcholine (ACh) stimulated AMPK and MLCK phosphorylation and activity and induced MLC20 phosphorylation and muscle contraction. Blockade of CaMKKβ with STO609 (7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid acetate) inhibited AMPK and MLCK phosphorylation and augmented MLCK activity, MLC20 phosphorylation, and smooth muscle cell contraction. In muscle cells isolated from the colon of TNBS (2,4,6-trinitrobenzenesulfonic acid)-treated mice or from strips treated with interleukin-1β or tumor necrosis factor-α, nuclear factor κB was activated as indicated by an increase in p65 phosphorylation and IκBα degradation, and AMPK was phosphorylated at a cAMP-dependent protein kinase (PKA)-specific site (Ser(485)) that is distinct from the stimulatory CaMKKβ site (Thr(172)), resulting in attenuation of ACh-stimulated AMPK activity and augmentation of MLCK activity and muscle cell contraction. Inhibition of nuclear factor-κB activity with MG-132 (carbobenzoxy-L-leucyl-L-leucyl-L-leucinal Z-LLL-CHO) or PKA activity with myristoylated PKA inhibitor 14-22 amide blocked phosphorylation of AMPK at Ser(485) and restored MLCK activity and muscle cell contraction to control levels. The results imply that PKA released from IκBα complex phosphorylated AMPK at a PKA-specific site and inhibited its activity, thereby relieving the inhibitory effect of AMPK on MLCK and increasing MLCK activity and muscle cell contraction. We conclude that hypercontractility of intestinal longitudinal muscle induced by inflammation or proinflammatory cytokines is mediated by nuclear factor κB/PKA-dependent inhibition of AMPK and activation of MLCK.
Collapse
Affiliation(s)
- Ancy D Nalli
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Divya P Kumar
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Othman Al-Shboul
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Reem Alkahtani
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - John F Kuemmerle
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - John R Grider
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S Murthy
- Department of Physiology and Biophysics, Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
23
|
Al-Shboul O, Nalli AD, Kumar DP, Zhou R, Mahavadi S, Kuemmerle JF, Grider JR, Murthy KS. Jun kinase-induced overexpression of leukemia-associated Rho GEF (LARG) mediates sustained hypercontraction of longitudinal smooth muscle in inflammation. Am J Physiol Cell Physiol 2014; 306:C1129-41. [PMID: 24740538 DOI: 10.1152/ajpcell.00021.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The signaling pathways mediating sustained contraction of mouse colonic longitudinal smooth muscle and the mechanisms involved in hypercontractility of this muscle layer in response to cytokines and TNBS-induced colitis have not been fully explored. In control longitudinal smooth muscle cells, ACh acting via m3 receptors activated sequentially Gα12, RhoGEF (LARG), and the RhoA/Rho kinase pathway. There was abundant expression of MYPT1, minimal expression of CPI-17, and a notable absence of a PKC/CPI-17 pathway. LARG expression was increased in longitudinal muscle cells isolated from muscle strips cultured for 24 h with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice. The increase in LARG expression was accompanied by a significant increase in ACh-stimulated Rho kinase and ZIP kinase activities, and sustained muscle contraction. The increase in LARG expression, Rho kinase and ZIP kinase activities, and sustained muscle contraction was abolished in cells pretreated with the Jun kinase inhibitor, SP600125. Expression of the MLCP activator, telokin, and MLCP activity were also decreased in longitudinal muscle cells from TNBS-treated mice or from strips treated with IL-1β or TNF-α. In contrast, previous studies had shown that sustained contraction in circular smooth muscle is mediated by sequential activation of Gα13, p115RhoGEF, and dual RhoA-dependent pathways involving phosphorylation of MYPT1 and CPI-17. In colonic circular smooth muscle cells isolated from TNBS-treated mice or from strips treated with IL-1β or TNF-α, CPI-17 expression and sustained muscle contraction were decreased. The disparate changes in the two muscle layers contribute to intestinal dysmotility during inflammation.
Collapse
Affiliation(s)
- Othman Al-Shboul
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ancy D Nalli
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Divya P Kumar
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ruizhe Zhou
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - John F Kuemmerle
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - John R Grider
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S Murthy
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
24
|
Alkahtani R, Mahavadi S, Al-Shboul O, Alsharari S, Grider JR, Murthy KS. Changes in the expression of smooth muscle contractile proteins in TNBS- and DSS-induced colitis in mice. Inflammation 2013; 36:1304-15. [PMID: 23794034 PMCID: PMC3823744 DOI: 10.1007/s10753-013-9669-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thin filament-associated proteins such as calponin, caldesmon, tropomyosin, and smoothelin are thought to regulate acto-myosin interaction and thus, muscle contraction. However, the effect of inflammation on the expression of thin filament-associated proteins is not known. The aim of the present study is to determine the changes in the expression of calponin, caldesmon, tropomyosin, and smoothelin in colonic smooth muscle from trinitrobenzene sulphonic acid (TNBS)- and dextran sodium sulphate (DSS)-induced colitis in mice. Expression of h-caldesmon, h2-calponin, α-tropomyosin, and smoothelin-A was measured by qRT-PCR and Western blot. Contraction in response to acetylcholine in dispersed muscle cells was measured by scanning micrometry. mRNA and protein expression of α-actin, h2-calponin, h-caldesmon, smoothelin, and α-tropomyosin in colonic muscle strips from mice with TNBS- or DSS-induced colitis was significantly increased compared to control animals. Contraction in response to acetylcholine was significantly decreased in muscle cells isolated from inflamed regions of TNBS- or DSS-treated mice compared to control mice. Our results show that increase in the expression of thin filament-associated contractile proteins, which inhibit acto-myosin interaction, could contribute to decrease in smooth muscle contraction in inflammation.
Collapse
Affiliation(s)
- Reem Alkahtani
- Department of Physiology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Othman Al-Shboul
- Department of Physiology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Shakir Alsharari
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia
| | - John R. Grider
- Department of Physiology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S. Murthy
- Department of Physiology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
25
|
Mathias R, von der Weid PY. Involvement of the NO-cGMP-K(ATP) channel pathway in the mesenteric lymphatic pump dysfunction observed in the guinea pig model of TNBS-induced ileitis. Am J Physiol Gastrointest Liver Physiol 2013; 304:G623-34. [PMID: 23275612 DOI: 10.1152/ajpgi.00392.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesenteric lymphatic vessels actively transport lymph, immune cells, fat, and other macromolecules from the intestine via a rhythmical contraction-relaxation process called lymphatic pumping. We have previously demonstrated that mesenteric lymphatic pumping was compromised in the guinea pig model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced ileitis, corroborating clinical and experimental observations of a dilated and/or obstructed phenotype of these vessels in inflammatory bowel disease. Many mediators released during the inflammatory process have been shown to alter lymphatic contractile activity. Among them, nitric oxide (NO), an inflammatory mediator abundantly released during intestinal inflammation, decreases the frequency of lymphatic contractions through activation of ATP-sensitive potassium (K(ATP)) channels. The objective of this study was to investigate the role of NO and K(ATP) channels in the lymphatic dysfunction observed in the guinea pig model of TNBS-induced ileitis. Using quantitative real-time PCR, we demonstrated that expression of Kir6.1, SUR2B, and inducible NO synthase (iNOS) mRNAs was significantly upregulated in TNBS-treated animals. Pharmacological studies performed on isolated, luminally perfused mesenteric lymphatic vessels showed that the K(ATP) channels blocker glibenclamide, the selective iNOS inhibitor 1400W, and the guanylyl cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) significantly improved lymphatic pumping in quiescent lymphatic vessels from TNBS-treated animals. Membrane potential measurement with intracellular microelectrodes revealed that vessels from TNBS-treated animals were hyperpolarized compared with their sham counterpart and that the hyperpolarization was significantly attenuated in the presence of glibenclamide and ODQ. Our findings suggest that NO and K(ATP) play a major role in the lymphatic contractile dysfunction that occurred as a consequence of the intestinal inflammation caused by TNBS.
Collapse
Affiliation(s)
- Ryan Mathias
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
26
|
Liu Y, Luo H, Liang C, Xia H, Xu W, Chen J, Chen M. Actions of hydrogen sulfide and ATP-sensitive potassium channels on colonic hypermotility in a rat model of chronic stress. PLoS One 2013; 8:e55853. [PMID: 23405222 PMCID: PMC3566119 DOI: 10.1371/journal.pone.0055853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 01/03/2013] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the potential role of hydrogen sulphide (H(2)S) and ATP-sensitive potassium (K(ATP)) channels in chronic stress-induced colonic hypermotility. METHODS Male Wistar rats were submitted daily to 1 h of water avoidance stress (WAS) or sham WAS (SWAS) for 10 consecutive days. Organ bath recordings, H(2)S production, immunohistochemistry and western blotting were performed on rat colonic samples to investigate the role of endogenous H(2)S in repeated WAS-induced hypermotility. Organ bath recordings and western blotting were used to detect the role of K(ATP) channels in repeated WAS. RESULTS Repeated WAS increased the number of fecal pellets per hour and the area under the curve of the spontaneous contractions of colonic strips, and decreased the endogenous production of H(2)S and the expression of H(2)S-producing enzymes in the colon devoid of mucosa and submucosa. Inhibitors of H(2)S-producing enzymes increased the contractile activity of colonic strips in the SWAS rats. NaHS concentration-dependently inhibited the spontaneous contractions of the strips and the NaHS IC(50) for the WAS rats was significantly lower than that for the SWAS rats. The inhibitory effect of NaHS was significantly reduced by glybenclamide. Repeated WAS treatment resulted in up-regulation of Kir6.1 and SUR2B of K(ATP) channels in the colon devoid of mucosa and submucosa. CONCLUSION The colonic hypermotility induced by repeated WAS may be associated with the decreased production of endogenous H(2)S. The increased expression of the subunits of K(ATP) channels in colonic smooth muscle cells may be a defensive response to repeated WAS. H(2)S donor may have potential clinical utility in treating chronic stress-induced colonic hypermotility.
Collapse
Affiliation(s)
- Ying Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Gastroenterology, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- * E-mail:
| | - Chengbo Liang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjuan Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jihong Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Gade AR, Kang M, Akbarali HI. Hydrogen sulfide as an allosteric modulator of ATP-sensitive potassium channels in colonic inflammation. Mol Pharmacol 2013; 83:294-306. [PMID: 23115325 PMCID: PMC3533476 DOI: 10.1124/mol.112.081596] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/31/2012] [Indexed: 12/16/2022] Open
Abstract
The ATP-sensitive potassium channel (K(ATP)) in mouse colonic smooth muscle cell is a complex containing a pore-forming subunit (Kir6.1) and a sulfonylurea receptor subunit (SUR2B). These channels contribute to the cellular excitability of smooth muscle cells and hence regulate the motility patterns in the colon. Whole-cell voltage-clamp techniques were used to study the alterations in K(ATP) channels in smooth muscle cells in experimental colitis. Colonic inflammation was induced in BALB/C mice after intracolonic administration of trinitrobenzene sulfonic acid. K(ATP) currents were measured at a holding potential of -60 mV in high K(+) external solution. The concentration response to levcromakalim (LEVC), a K(ATP) channel opener, was significantly shifted to the left in the inflamed smooth-muscle cells. Both the potency and maximal currents induced by LEVC were enhanced in inflammation. The EC(50) values in control were 6259 nM (n = 10) and 422 nM (n = 8) in inflamed colon, and the maximal currents were 9.9 ± 0.71 pA/pF (60 μM) in control and 39.7 ± 8.8 pA/pF (3 μM) after inflammation. As was seen with LEVC, the potency and efficacy of sodium hydrogen sulfide (NaHS) (10-1000 μM) on K(ATP) currents were significantly greater in inflamed colon compared with controls. In control cells, pretreatment with 100 µM NaHS shifted the EC(50) for LEV-induced currents from 2838 (n = 6) to 154 (n = 8) nM. Sulfhydration of sulfonylurea receptor 2B (SUR2B) was induced by NaHS and colonic inflammation. These data suggest that sulfhydration of SUR2B induces allosteric modulation of K(ATP) currents in colonic inflammation.
Collapse
Affiliation(s)
- Aravind R Gade
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0524, USA
| | | | | |
Collapse
|
28
|
Cheon GJ, Cui Y, Yeon DS, Kwon SC, Park BG. Mechanisms of motility change on trinitrobenzenesulfonic Acid-induced colonic inflammation in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:437-46. [PMID: 23269907 PMCID: PMC3526749 DOI: 10.4196/kjpp.2012.16.6.437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/17/2012] [Accepted: 10/31/2012] [Indexed: 01/02/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease (IBD) characterized by recurrent episodes of colonic inflammation and tissue degeneration in human or animal models. The contractile force generated by the smooth muscle is significantly attenuated, resulting in altered motility leading to diarrhea or constipation in IBD. The aim of this study is to clarify the altered contractility of circular and longitudinal smooth muscle layers in proximal colon of trinitrobenzen sulfonic acid (TNBS)-induced colitis mouse. Colitis was induced by direct injection of TNBS (120 mg/kg, 50% ethanol) in proximal colon of ICR mouse using a 30 G needle anesthetized with ketamin (50 mg/kg), whereas animals in the control group were injected of 50% ethanol alone. In TNBS-induced colitis, the wall of the proximal colon is diffusely thickened with loss of haustration, and showed mucosal and mucular edema with inflammatory infiltration. The colonic inflammation is significantly induced the reduction of colonic contractile activity including spontaneous contractile activity, depolarization-induced contractility, and muscarinic acetylcholine receptor-mediated contractile response in circular muscle layer compared to the longitudinal muscle layer. The inward rectification of currents, especially, important to Ca(2+) and Na(+) influx-induced depolarization and contraction, was markedly reduced in the TNBS-induced colitis compared to the control. The muscarinic acetylcholine-mediated contractile responses were significantly attenuated in the circular and longitudinal smooth muscle strips induced by the reduction of membrane expression of canonical transient receptor potential (TRPC) channel isoforms from the proximal colon of the TNBS-induced colitis mouse than the control.
Collapse
Affiliation(s)
- Gab Jin Cheon
- Department of Gastroenterology, Gangneung Asan Medical Center, Gangneung 210-701, Korea
| | | | | | | | | |
Collapse
|
29
|
Abstract
The tunica muscularis of the gastrointestinal (GI) tract contains two layers of smooth muscle cells (SMC) oriented perpendicular to each other. SMC express a variety of voltage-dependent and voltage-independent ionic conductance(s) that develop membrane potential and control excitability. Resting membrane potentials (RMP) vary through the GI tract but generally are within the range of -80 to -40 mV. RMP sets the 'gain' of smooth muscle and regulates openings of voltage-dependent Ca(2+) channels. A variety of K(+) channels contribute to setting RMP of SMC. In most regions, RMP is considerably less negative than the K(+) equilibrium potential, due to a finely tuned balance between background K(+) channels and non-selective cation channels (NSCC). Variations in expression patterns and openings of K(+) channels and NSCC account for differences of the RMP in different regions of the GI tract. Smooth muscle excitability is also regulated by interstitial cells (interstitial cells of Cajal (ICC) and PDGFRα(+) cells) that express additional conductances and are electrically coupled to SMC. Thus, 'myogenic' activity results from the integrated behavior of the SMC/ICC/PDGFRα(+) cell (SIP) syncytium. Inputs from excitatory and inhibitory motor neurons are required to produce the complex motor patterns of the gut. Motor neurons innervate three cell types in the SIP, and receptors, second messenger pathways, and ion channels in these cells mediate postjunctional responses. Studies of isolated SIP cells have begun to unravel the mechanisms responsible for neural responses. This review discusses ion channels that set and regulate RMP of SIP cells and how neurotransmitters regulate membrane potential.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89558, USA.
| | | | | |
Collapse
|
30
|
Abdrakhmanova GR, Kang M, Imad Damaj M, Akbarali HI. Nicotine suppresses hyperexcitability of colonic sensory neurons and visceral hypersensivity in mouse model of colonic inflammation. Am J Physiol Gastrointest Liver Physiol 2012; 302:G740-7. [PMID: 22241859 PMCID: PMC3330777 DOI: 10.1152/ajpgi.00411.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, we reported that nicotine in vitro at a low 1-μM concentration suppresses hyperexcitability of colonic dorsal root ganglia (DRG; L(1)-L(2)) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation (1). Here we show that multiple action potential firing in colonic DRG neurons persisted at least for 3 wk post-DSS administration while the inflammatory signs were diminished. Similar to that in DSS-induced acute colitis, bath-applied nicotine (1 μM) gradually reduced regenerative multiple-spike action potentials in colonic DRG neurons to a single action potential in 3 wk post-DSS neurons. Nicotine (1 μM) shifted the activation curve for tetrodotoxin (TTX)-resistant sodium currents in inflamed colonic DRG neurons (voltage of half-activation changed from -37 to -32 mV) but did not affect TTX-sensitive currents in control colonic DRG neurons. Further, subcutaneous nicotine administration (2 mg/kg b.i.d.) in DSS-treated C57Bl/J6 male mice resulted in suppression of hyperexcitability of colonic DRG (L(1)-L(2)) neurons and the number of abdominal constrictions in response to intraperitoneal injection of 0.6% acetic acid. Collectively, the data suggest that neuronal nicotinic acetylcholine receptor-mediated suppression of hyperexcitability of colonic DRG neurons attenuates reduction of visceral hypersensitivity in DSS mouse model of colonic inflammation.
Collapse
Affiliation(s)
- Galya R. Abdrakhmanova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Minho Kang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
31
|
Abstract
BACKGROUND Gastrointestinal inflammation significantly affects the electrical excitability of smooth muscle cells. Considerable progress over the last few years have been made to establish the mechanisms by which ion channel function is altered in the setting of gastrointestinal inflammation. Details have begun to emerge on the molecular basis by which ion channel function may be regulated in smooth muscle following inflammation. These include changes in protein and gene expression of the smooth muscle isoform of L-type Ca(2+) channels and ATP-sensitive K(+) channels. Recent attention has also focused on post-translational modifications as a primary means of altering ion channel function in the absence of changes in protein/gene expression. Protein phosphorylation of serine/theronine or tyrosine residues, cysteine thiol modifications, and tyrosine nitration are potential mechanisms affected by oxidative/nitrosative stress that alter the gating kinetics of ion channels. Collectively, these findings suggest that inflammation results in electrical remodeling of smooth muscle cells in addition to structural remodeling. PURPOSE The purpose of this review is to synthesize our current understanding regarding molecular mechanisms that result in altered ion channel function during gastrointestinal inflammation and to address potential areas that can lead to targeted new therapies.
Collapse
Affiliation(s)
- H I Akbarali
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, VCU Program in Enteric Neuromuscular Sciences (VPENS), Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
32
|
Abdrakhmanova GR, AlSharari S, Kang M, Damaj MI, Akbarali HI. {alpha}7-nAChR-mediated suppression of hyperexcitability of colonic dorsal root ganglia neurons in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2010; 299:G761-8. [PMID: 20595621 PMCID: PMC2950695 DOI: 10.1152/ajpgi.00175.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Controlled clinical trials of nicotine transdermal patch for treatment of ulcerative colitis have been shown to improve histological and global clinical scores of colitis. Here we report that nicotine (1 microM) suppresses in vitro hyperexcitability of colonic dorsal root ganglia (DRG) (L(1)-L(2)) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation. Nicotine gradually reduced regenerative multiple-spike action potentials in colitis mice to a single action potential. Nicotine's effect on hyperexcitability of inflamed neurons was blocked in the presence of an alpha(7)-nicotinic acetylcholine receptor (nAChR) antagonist, methyllicaconitine, while choline, the alpha(7)-nAChR agonist, induced a similar effect to that of nicotine. Consistent with these findings, nicotine failed to suppress hyperexcitability in colonic DRG neurons from DSS-treated alpha(7) knockout mice. Furthermore, colonic DRG neurons from DSS-treated alpha(7) knockout mice were characterized by lower rheobase (10 +/- 5 vs. 77 +/- 13 pA, respectively) and current threshold (28 +/- 4 vs. 103 +/- 8 pA, respectively) levels than DSS-treated C57BL/J6 mice. An interesting observation of this study is that 8 of 12 colonic DRG (L(1)-L(2)) neurons from control alpha(7) knockout mice exhibited multiple-spike action potential firing while no wild-type neurons did. Overall, our findings suggest that nicotine at low 1 microM concentration suppresses in vitro hyperexcitability of inflamed colonic DRG neurons in a mouse model of acute colonic inflammation via activation of alpha(7)-nAChRs.
Collapse
Affiliation(s)
- Galya R. Abdrakhmanova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Shakir AlSharari
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Minho Kang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
33
|
Ross GR, Kang M, Akbarali HI. Colonic inflammation alters Src kinase-dependent gating properties of single Ca2+ channels via tyrosine nitration. Am J Physiol Gastrointest Liver Physiol 2010; 298:G976-84. [PMID: 20378833 PMCID: PMC3061627 DOI: 10.1152/ajpgi.00056.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitration of L-type calcium channels during colonic inflammation impairs phosphorylation by the tyrosine kinase, Src kinase. This results in decreased calcium currents. The purpose of this study was to determine the mechanism of the downregulation of Ca2+ currents in colonic inflammation. In whole cell voltage clamp of mouse single smooth muscle cells, long-duration depolarization produced noninactivating calcium currents that were significantly reduced by the Src kinase inhibitor, protein phosphatase 2 (PP2). Unitary Ba2+ currents were recorded upon repolarization from positive potentials in cell-attached patches of smooth muscle and hCa(v)1.2b-transfected cells to assess the properties of the single channels attributed to the noninactivating open state. Repolarization to -40 mV from 0 mV resulted in single-channel events with conductance of approximately 23 pS. The ensemble average of the tail currents from 1,000 sweeps was 337 +/- 27 fA in control and 218 +/- 49 fA (P < 0.05) in inflamed cells. Neither open-probability nor open-time constants were significantly different between control and inflamed cells. However, the transition to the open state measured as channel availability was significantly reduced from 19 +/- 3% to 6.4 +/- 1%. Similarly, peak ensemble average current and channel availability were significantly reduced by PP2 and treatment with peroxynitrite in control cells. Mutation of COOH-terminal tyrosine residues in hCa(v)1.2b Chinese hamster ovarian cells also decreased peak ensemble average tail currents and availability. The present findings suggest that the transition of Ca2+ channels to the noninactivating open state is Src kinase dependent. Tyrosine nitration prevents Src-mediated transitions, leading to decreased calcium currents.
Collapse
Affiliation(s)
- Gracious R. Ross
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, and VCU Program in Enteric Neuromuscular Sciences (VPENS), Richmond, Virginia
| | - Minho Kang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, and VCU Program in Enteric Neuromuscular Sciences (VPENS), Richmond, Virginia
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, and VCU Program in Enteric Neuromuscular Sciences (VPENS), Richmond, Virginia
| |
Collapse
|
34
|
Shi W, Cui N, Wu Z, Yang Y, Zhang S, Gai H, Zhu D, Jiang C. Lipopolysaccharides up-regulate Kir6.1/SUR2B channel expression and enhance vascular KATP channel activity via NF-kappaB-dependent signaling. J Biol Chem 2010; 285:3021-9. [PMID: 19959479 PMCID: PMC2823456 DOI: 10.1074/jbc.m109.058313] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/01/2009] [Indexed: 12/31/2022] Open
Abstract
Sepsis is a severe medical condition causing a large number of deaths worldwide. Recent studies indicate that the septic susceptibility is attributable to the vascular ATP-sensitive K(+) (K(ATP)) channel. However, the mechanisms underlying the channel modulation in sepsis are still unclear. Here we show evidence for the modulation of vascular K(ATP) channel by septic pathogen lipopolysaccharides (LPS). In isolated mesenteric arterial rings, phenylephrine (PE) produced concentration-dependent vasoconstriction that was relaxed by pinacidil, a selective K(ATP) channel opener. The PE response was disrupted with a LPS treatment. In acutely dissociated aortic smooth myocytes the LPS treatment augmented K(ATP) channel activity, and hyperpolarized the cells. Quantitative PCR analysis showed that LPS raised Kir6.1 and SUR2B transcripts in a concentration-dependent manner, which was suppressed by transcriptional inhibition. Consistently, the same LPS treatment did not affect Kir6.1/SUR2B channels in a heterologous expression system. The LPS effect on Kir6.1 and SUR2B expression was abolished in the presence of NF-kappaB inhibitors. Several other Toll-like receptor ligands also stimulated Kir6.1 and SUR2B expression to a similar degree as LPS. Thus, the effect of LPS on vasodilation involves up-regulation of K(ATP) channel expression, in which the NF-kappaB-dependent signaling plays an important role.
Collapse
Affiliation(s)
- Weiwei Shi
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303 and
| | - Ningren Cui
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303 and
| | - Zhongying Wu
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303 and
| | - Yang Yang
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303 and
| | - Shuang Zhang
- the School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hongyu Gai
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303 and
| | - Daling Zhu
- the School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Chun Jiang
- From the Department of Biology, Georgia State University, Atlanta, Georgia 30303 and
| |
Collapse
|
35
|
Kang M, Ross GR, Akbarali HI. The effect of tyrosine nitration of L-type Ca2+ channels on excitation-transcription coupling in colonic inflammation. Br J Pharmacol 2010; 159:1226-35. [PMID: 20128810 DOI: 10.1111/j.1476-5381.2009.00599.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Excitation-transcriptional coupling involves communication between plasma membrane ion channels and gene expression in the nucleus. Calcium influx through L-type Ca(2+) channels induces phosphorylation of the transcription factor, cyclic-AMP response element binding protein (CREB) and downstream activation of the cyclic-AMP response element (CRE) promoter regions. Tyrosine nitration of Ca(2+) channels attenuates interactions with c-Src kinase, decreasing Ca(2+) channel currents and smooth muscle contraction during colonic inflammation. In this study we examined the effect of tyrosine nitration and colonic inflammation on Ca(2+) channel mediated phosphorylation of CREB and CRE activation. EXPERIMENTAL APPROACH CREB and phospho-CREB were detected by Western blots and CRE activation measured by dual luciferase assay. Chinese hamster ovary (CHO) cells were transfected with hCa(v)1.2b and hCa(v)1.2b c-terminal mutants. Colonic inflammation was induced by intracolonic instillation of 2,4,6 trinitrobenzene sulphonic acid in mouse colon. KEY RESULTS In hCa(v)1.2b transfected CHO cells and in native colonic smooth muscle, depolarization with 80 mM KCl induced CREB phosphorylation (pCREB). Treatment with peroxynitrite inhibited KCl-induced pCREB. Following experimental colitis, KCl-induced CREB phosphorylation was abolished in smooth muscle, concomitant with tyrosine nitration of Ca(2+) channels. Depolarization increased CRE activation in hCa(v)1.2b CHO cells by 2.35 fold which was blocked by nifedipine and by protein nitration of Ca(2+) channels with peroxynitrite. The Src-kinase inhibitor, PP2, blocked depolarization-induced CRE activation. Mutation of the C-terminus tyrosine residue, Y2134F, but not Y1861F, blocked CRE activation. CONCLUSIONS AND IMPLICATIONS Post-translational modification of Ca(2+) channels due to tyrosine nitration modified excitation-transcriptional coupling in colonic inflammation.
Collapse
Affiliation(s)
- M Kang
- Department of Pharmacology and Toxicology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
36
|
Abstract
Transcripts of more than 30 different K(+) channels have been detected in the respiratory epithelium lining airways and alveoli. These channels belong to the 3 main classes of K(+) channels, i.e. i) voltage-dependent or calcium-activated, 6 transmembrane segments (TM), ii) 2-pores 4-TM and iii) inward-rectified 2-TM channels. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is not well understood. Surprisingly, relatively few studies are focused on K(+) channel function in lung epithelial physiology. Nevertheless, several studies have shown that KvLQT1, KCa and K(ATP) K(+) channels play a crucial role in ion and fluid transport, contributing to the control of airway and alveolar surface liquid composition and volume. K(+) channels are involved in other key functions, such as O(2) sensing or the capacity of the respiratory epithelia to repair after injury. This mini-review aims to discuss potential functions of lung K(+) channels.
Collapse
Affiliation(s)
- Olivier Bardou
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Hôtel-Dieu, 3840, St-Urbain, Montréal, Québec, H2W 1T8 Canada
| | | | | |
Collapse
|
37
|
Bardou O, Trinh NTN, Brochiero E. Molecular diversity and function of K+ channels in airway and alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 296:L145-55. [PMID: 19060226 DOI: 10.1152/ajplung.90525.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple K(+) channels are expressed in the respiratory epithelium lining airways and alveoli. Of the three main classes [1) voltage-dependent or Ca(2+)-activated, 6-transmembrane domains (TMD), 2) 2-pores 4-TMD, and 3) inward-rectified 2-TMD K(+) channels], almost 40 different transcripts have already been detected in the lung. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is intriguing. As detailed in the present review, K(+) channels are located at both the apical and basolateral membranes in the respiratory epithelium, where they mediate K(+) currents of diverse electrophysiological and regulatory properties. The main recognized function of K(+) channels is to control membrane potential and to maintain the driving force for transepithelial ion and liquid transport. In this manner, KvLQT1, KCa and K(ATP) channels, for example, contribute to the control of airway and alveolar surface liquid composition and volume. Thus, K(+) channel activation has been identified as a potential therapeutic strategy for the resolution of pathologies characterized by ion transport dysfunction. K(+) channels are also involved in other key functions in lung physiology, such as oxygen-sensing, inflammatory responses and respiratory epithelia repair after injury. The purpose of this review is to summarize and discuss what is presently known about the molecular identity of lung K(+) channels with emphasis on their role in lung epithelial physiology.
Collapse
Affiliation(s)
- Olivier Bardou
- Centre de recherche du CHUM, Hôtel-Dieu, 3840, Saint-Urbain, Montréal, Québec H2W 1T8, Canada
| | | | | |
Collapse
|
38
|
Fan LH, Tian HY, Ma AQ, Hu Z, Huo JH, Cao YX. Altered ATP-sensitive potassium channels may underscore obesity-triggered increase in blood pressure. Acta Pharmacol Sin 2008; 29:1167-74. [PMID: 18817620 DOI: 10.1111/j.1745-7254.2008.00810.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
AIM To determine whether ATP-sensitive potassium channels are altered in VSMC from arotas and mesenteric arteries of obese rat, and their association with obesity-triggered increase in blood pressure. METHODS Obesity was induced by 24 weeks of high-fat diet feeding in male Sprague-Dawley rats. Control rats were fed with standard laboratory rat chow. Blood pressure and body weight of these rats were measured every 4 weeks. At the end of 24 weeks, K(ATP) channelmediated relaxation responses in the aortas and mesenteric arteries, K(ATP) channel current, and gene expression were examined, respectively. RESULTS Blood pressure and body weight were increased in rats fed with high-fat diet. K(ATP) channelmediated relaxation responses, currents, and K(ATP) expression in VSMC of both aortas and mesenteric arteries were inhibited in these rats. CONCLUSION Altered ATP-sensitive potassium channels in obese rats may underscore obesity-triggered increase in blood pressure.
Collapse
Affiliation(s)
- Li-hong Fan
- Department of Cardiology, The First Affiliated Hospital of Xi-an Jiaotong University School of Medicine, Xi-an 710061, China
| | | | | | | | | | | |
Collapse
|
39
|
Qin C, Malykhina AP, Akbarali HI, Greenwood-Van Meerveld B, Foreman RD. Acute colitis enhances responsiveness of lumbosacral spinal neurons to colorectal distension in rats. Dig Dis Sci 2008; 53:141-8. [PMID: 17486448 DOI: 10.1007/s10620-007-9835-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 03/23/2007] [Indexed: 12/30/2022]
Abstract
Aim of this study was to examine excitability and responsiveness of lumbosacral spinal neurons to colorectal distension (CRD) in rats with colitis induced by dextran sulphate sodium (DSS). Extracellular potentials of single L6-S2 spinal neurons were recorded in pentobarbital anesthetized and paralyzed rats. Results showed that 40/154 (26%) and 53/156 (34%) neurons responded to noxious CRD (80 mmHg, 20 s) in DSS-treated and control animals, respectively. Neurons with long-lasting and low-threshold excitatory responses to CRD were more frequently encountered in DSS-treated than in control groups (P < 0.05). The mean maximal excitatory responses of neurons to noxious CRD in DSS-treated animals were significantly greater and the duration of responses was longer than those in control animals (P < 0.05). It was suggested that lumbosacral spinal neurons with colorectal input had increased excitability and responsiveness following colitis, which might play an important role in development of colonic hypersensitivity and viscerosomatic referred pain.
Collapse
Affiliation(s)
- C Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | | | | | | | |
Collapse
|
40
|
Ross GR, Kang M, Shirwany N, Malykhina AP, Drozd M, Akbarali HI. Nitrotyrosylation of Ca2+ Channels Prevents c-Src Kinase Regulation of Colonic Smooth Muscle Contractility in Experimental Colitis. J Pharmacol Exp Ther 2007; 322:948-56. [PMID: 17551092 DOI: 10.1124/jpet.107.123075] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Basal levels of c-Src kinase are known to regulate smooth muscle Ca(2+) channels. Colonic inflammation results in attenuated Ca(2+) currents and muscle contraction. Here, we examined the regulation of calcium influx-dependent contractility by c-Src kinase in experimental colitis. Ca(2+)-influx induced contractions were measured by isometric tension recordings of mouse colonic longitudinal muscle strips depolarized by high K(+). The E(max) to CaCl(2) was significantly less in inflamed tissues (38.4 +/- 7.6%) than controls, indicative of reduced Ca(2+) influx. PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine], a selective Src kinase inhibitor, significantly reduced the contractile amplitude and shifted the pD(2) from 3.88 to 2.44 in controls, whereas it was ineffective in inflamed tissues (3.66 versus 3.43). After pretreatment with a SIN-1 (3-morpholinosydnonimine)/peroxynitrite combination, the maximal contraction to CaCl(2) was reduced by 46 +/- 7% in controls but unaffected in inflamed tissues (13 +/- 11%). Peroxynitrite also prevented the inhibitory effect of PP2 in control tissues. In colonic single smooth muscle cells, PP2 inhibited Ca(2+) currents by 84.1 +/- 3.9% in normal but only 36.2 +/- 13% in inflamed tissues. Neither the Ca(2+) channel Ca(v)1.2b, gene expression, nor the c-Src kinase activity was altered by inflammation. Western blot analysis showed no change in the Ca(2+) channel protein expression but increased nitrotyrosylated-Ca(2+) channel proteins during inflammation. These data suggest that post-translational modification of Ca(2+) channels during inflammation, possibly nitrotyrosylation, prevents c-Src kinase regulation resulting in decreased Ca(2+) influx.
Collapse
Affiliation(s)
- Gracious R Ross
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 E. Clay Street, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
41
|
Sato K, Ohkura S, Kitahara Y, Ohama T, Hori M, Sato M, Kobayashi S, Sasaki Y, Hayashi T, Nasu T, Ozaki H. Involvement of CPI-17 downregulation in the dysmotility of the colon from dextran sodium sulphate-induced experimental colitis in a mouse model. Neurogastroenterol Motil 2007; 19:504-14. [PMID: 17564632 DOI: 10.1111/j.1365-2982.2007.00911.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism of gastrointestinal dysmotility in inflammatory bowel disease has not been clarified. In this study, we examined the mechanism involved in the inflamed distal colon isolated from a mouse model of dextran sodium sulphate-induced ulcerative colitis (DSS-treated mouse). Although substance P-induced contraction was not changed, carbachol-induced contraction was reduced in the DSS-treated mouse colon. Pre-incubation with the NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA) or the cyclooxygenase inhibitor indomethacin did not reverse the carbachol-induced contraction in the DSS-treated mouse colon. In semi-quantitative reverse transcription-polymerase chain reaction experiments and Western blot analysis, muscarinic M3 receptor expressions were not changed. The Ca2+ -sensitization of contractile elements induced by carbachol with GTP or GTPgammaS was reduced in the beta-escin-permeabilized DSS-treated mouse colon. Although the expression of proteins such as rhoA, ROCK1, ROCK2 or MYPT1 in smooth muscles was not changed, the expression of CPI-17, the functional protein involved in smooth muscle Ca2+ -sensitization, was significantly decreased in the DSS-treated mouse colon. These results suggest that the suppression of carbachol-induced contraction in mice with colitis is attributable at least partially to the increased activity of myosin phosphatase following the downregulation of CPI-17.
Collapse
Affiliation(s)
- K Sato
- Department of Veterinary Pharmacology, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ohama T, Hori M, Momotani E, Iwakura Y, Guo F, Kishi H, Kobayashi S, Ozaki H. Intestinal inflammation downregulates smooth muscle CPI-17 through induction of TNF-alpha and causes motility disorders. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1429-38. [PMID: 17307724 DOI: 10.1152/ajpgi.00315.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Motility disorders are frequently observed in intestinal inflammation. We previously reported that in vitro treatment of intestinal smooth muscle tissue with IL-1beta decreases the expression of CPI-17, an endogenous inhibitory protein of smooth muscle serine/threonine protein phosphatase, thereby inhibiting contraction. The present study was performed to examine the pathophysiological importance of CPI-17 expression in the motility disorders by using an in vivo model of intestinal inflammation and to define the regulatory mechanism of CPI-17 expression by proinflammatory cytokines. After the induction of acute ileitis with 2,4,6,-trinitrobenzensulfonic acid, CPI-17 expression declined in a time-dependent manner. This decrease in CPI-17 expression was parallel with the reduction of cholinergic agonist-induced contraction of smooth muscle strips and sensitivity of permeabilized smooth muscle fibers to Ca(2+). Among the various proinflammatory cytokines tested, TNF-alpha and IL-1beta were observed to directly inhibit CPI-17 expression and contraction in cultured rat intestinal tissue. Moreover, both TNF-alpha and IL-1beta inhibited CPI-17 expression and contraction of smooth muscle tissue isolated from wild-type and IL-1alpha/beta double-knockout mice. However, IL-1beta treatment failed to inhibit CPI-17 expression and contraction in TNF-alpha knockout mice. In beta-escin-permeabilized ileal tissues, pretreatment with anti-phosphorylated CPI-17 antibody inhibited the carbachol-induced Ca(2+) sensitization in the presence of GTP. These findings suggest that CPI-17 was downregulated during intestinal inflammation and that TNF-alpha plays a central role in this process. Downregulation of CPI-17 may play a role in motility impairments in inflammation.
Collapse
Affiliation(s)
- Takashi Ohama
- Dept. of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The Univ. of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kiyosue M, Fujisawa M, Kinoshita K, Hori M, Ozaki H. Different susceptibilities of spontaneous rhythmicity and myogenic contractility to intestinal muscularis inflammation in the hapten-induced colitis. Neurogastroenterol Motil 2006; 18:1019-30. [PMID: 17040413 DOI: 10.1111/j.1365-2982.2006.00841.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We examined the time-dependent changes in the immunoreactivity of the smooth muscle region and the accompanying motility disorder in a hapten-induced rat model of colitis. Histological analysis and myeloperoxidase (MPO) activity indicated that inflammatory cells infiltrated into the muscle layer at 2 days after 2,4,6-trinitrobenzenesulphonic acid (TNBS) treatment. The infiltrated immune cells then gradually decreased in number, but were still present at 14 days. The expression of proinflammatory cytokine mRNAs (TNF-alpha, IL-1beta and IL-6) and proteins in the muscle layer was increased at 2 days, then began to decrease, returning to control levels at 14 days. The frequency of spontaneous rhythmicity was suppressed at 2 and 7 days, and returned to control levels at 14 days. Consistent with these observations, the immunoreactivity of the interstitial cells of Cajal network was disrupted at 2 and 7 days, which then gradually reformed at 14 days. On the other hand, the myogenic contractions induced by high K(+) and carbachol were decreased at 2 days, and were still inhibited at 14 days. These results suggest that spontaneous rhythmicity dysfunction may improve more rapidly than myogenic contractility dysfunction in a hapten-induced rat model of colitis.
Collapse
Affiliation(s)
- M Kiyosue
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
44
|
Hori M, Fujisawa M, Ozaki H. [Muscularis inflammation and motility disorder in enteritis]. Nihon Yakurigaku Zasshi 2006; 128:72-7. [PMID: 16943640 DOI: 10.1254/fpj.128.72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
|
45
|
Ozaki H, Hori M, Kinoshita K, Ohama T. Intestinal dysmotility in inflammatory bowel disease: mechanisms of the reduced activity of smooth muscle contraction. Inflammopharmacology 2006; 13:103-11. [PMID: 16259732 DOI: 10.1163/156856005774423773] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation suppresses intestinal motility, which secondarily induces abnormal growth of intestinal flora. Disturbance of this flora plays a role in the pathogenesis of mucosal inflammation, which in turn aggravates the intestinal dysmotility. Therefore, it is important to know the mechanism of alteration in motor function in the inflamed intestine. Recent studies have shown molecular mechanisms responsible for the motility disorder in the inflamed gut. These include an increase in the activity of myosin light-chain phosphatase and an alteration of ion channel activity in smooth muscle cells.
Collapse
Affiliation(s)
- Hiroshi Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
46
|
Peeters PJ, Aerssens J, de Hoogt R, Stanisz A, Göhlmann HW, Hillsley K, Meulemans A, Grundy D, Stead RH, Coulie B. Molecular profiling of murine sensory neurons in the nodose and dorsal root ganglia labeled from the peritoneal cavity. Physiol Genomics 2006; 24:252-63. [PMID: 16303873 DOI: 10.1152/physiolgenomics.00169.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Vagal afferent neurons are thought to convey primarily physiological information, whereas spinal afferents transmit noxious signals from the viscera to the central nervous system. To elucidate molecular identities for these different properties, we compared gene expression profiles of neurons located in nodose ganglia (NG) and dorsal root ganglia (DRG) in mice. Intraperitoneal administration of Alexa Fluor-488-conjugated cholera toxin B allowed enrichment for neurons projecting to the viscera. Fluorescent neurons in DRG (from T10 to T13) and NG were isolated using laser-capture microdissection. Gene expression profiles of these afferent neurons, obtained by microarray hybridization, were analyzed using multivariate spectral map analysis, significance analysis of microarrays (SAM) algorithm, and fold-difference filtering. A total of 1,996 genes were differentially expressed in DRG vs. NG, including 41 G protein-coupled receptors and 60 ion channels. Expression profiles obtained on laser-captured neurons were contrasted to those obtained on whole ganglia, demonstrating striking differences and the need for microdissection when studying visceral sensory neurons because of dilution of the signal by somatic sensory neurons. Furthermore, we provide a detailed catalog of all adrenergic and cholinergic, GABA, glutamate, serotonin, and dopamine receptors; voltage-gated potassium, sodium, and calcium channels; and transient receptor potential cation channels present in afferents projecting to the peritoneal cavity. Our genome-wide expression profiling data provide novel insight into molecular signatures that underlie both functional differences and similarities between NG and DRG sensory neurons. Moreover, these findings will offer novel insight into mode of action of pharmacological agents modulating visceral sensation.
Collapse
Affiliation(s)
- Pieter J Peeters
- Department of Internal Medicine, Johnson and Johnson Pharmaceutical Research and Development, Beerse, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gomez-Pinilla PJ, Morales S, Camello-Almaraz C, Moreno R, Pozo MJ, Camello PJ. Changes in guinea pig gallbladder smooth muscle Ca2+ homeostasis by acute acalculous cholecystitis. Am J Physiol Gastrointest Liver Physiol 2006; 290:G14-22. [PMID: 16109842 DOI: 10.1152/ajpgi.00284.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Impaired smooth muscle contractility is a hallmark of acute acalculous cholecystitis. Although free cytosolic Ca2+ ([Ca2+]i) is a critical step in smooth muscle contraction, possible alterations in Ca2+ homeostasis by cholecystitis have not been elucidated. Our aim was to elucidate changes in the Ca2+ signaling pathways induced by this gallbladder dysfunction. [Ca2+]i was determined by epifluorescence microscopy in fura 2-loaded isolated gallbladder smooth muscle cells, and isometric tension was recorded from gallbladder muscle strips. F-actin content was quantified by confocal microscopy. Ca2+ responses to the inositol trisphosphate (InsP3) mobilizing agonist CCK and to caffeine, an activator of the ryanodine receptors, were impaired in cholecystitic cells. This impairment was not the result of a decrease in the size of the releasable pool. Inflammation also inhibited Ca2+ influx through L-type Ca2+ channels and capacitative Ca2+ entry induced by depletion of intracellular Ca2+ pools. In addition, the pharmacological phenotype of these channels was altered in cholecystitic cells. Inflammation impaired contractility further than Ca2+ signal attenuation, which could be related to the decrease in F-actin that was detected in cholecystitic smooth muscle cells. These findings indicate that cholecystitis decreases both Ca2+ release and Ca2+ influx in gallbladder smooth muscle, but a loss in the sensitivity of the contractile machinery to Ca2+ may also be responsible for the impairment in gallbladder contractility.
Collapse
|
48
|
Qin C, Malykhina AP, Akbarali HI, Foreman RD. Cross-organ sensitization of lumbosacral spinal neurons receiving urinary bladder input in rats with inflamed colon. Gastroenterology 2005; 129:1967-78. [PMID: 16344065 DOI: 10.1053/j.gastro.2005.09.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 08/17/2005] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Clinical studies show that patients with irritable bowel syndrome and colonic diseases frequently experience sensory and motor dysfunctions of the urinary bladder. The aim of this study was to investigate the spinal neuronal mechanisms responsible for potential cross talk between these visceral organs. METHODS Colonic inflammation was induced by dextran sulfate sodium (5%) in drinking water for 7-12 days (n = 12); another group of rats without dextran sulfate sodium (n = 12) was used as control. Extracellular potentials of single L6 to S2 spinal neurons were recorded in pentobarbital-anesthetized and paralyzed rats with dextran sulfate sodium-induced colitis or normal colon. Urinary bladder distention (0.5-2.0 mL; 20 seconds) was produced with saline inflation, and colorectal distention was induced by inflation of an air balloon (80 mm Hg; 20 seconds). RESULTS A total of 58 of 153 (38%) and 55 of 152 (36%) spinal neurons responded to urinary bladder distention in dextran sulfate sodium-treated and control animals, respectively. The mean background activity of neurons excited by urinary bladder distention in rats with dextran sulfate sodium-induced colitis was significantly higher than in the control group. The threshold volume for excitatory responses to urinary bladder distention in rats with inflamed colon (0.024 +/- 0.09 mL; n = 30) was significantly lower than for control rats (0.062 +/- 0.016 mL; n = 31; P < .05). The stimulus-response curves of excitatory responses to graded urinary bladder distention were significantly increased for both viscerovisceral (urinary bladder distention and colorectal distention) convergent neurons and urinary bladder distention-receptive neurons in rats with colitis compared with control animals. CONCLUSIONS Acute colitis sensitized lumbosacral spinal neurons receiving input from the urinary bladder. Thus, spinal neuronal hyperexcitability may be involved in central cross-organ sensitization of visceral nociception between the colon and urinary bladder.
Collapse
Affiliation(s)
- Chao Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | | | |
Collapse
|
49
|
Rehn M, Hild D, Diener M. Upregulation of cyclooxygenase-2 and thromboxane A2 production mediate the action of tumor necrosis factor-alpha in isolated rat myenteric ganglia. Am J Physiol Gastrointest Liver Physiol 2005; 289:G586-91. [PMID: 16093422 DOI: 10.1152/ajpgi.00020.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intact myenteric ganglia from 4- to 10-day-old rats were isolated from the small intestine. The preparations were cultured overnight, and drugs were applied within this time frame (20 h). Whole cell patch-clamp technique was used to measure basal membrane potential and carbachol-induced depolarization at neurons within these ganglia. Pretreatment with TNF-alpha (100 ng/ml) hyperpolarized the membrane (from -31.0 +/- 2.7 mV under control conditions to -61.2 +/- 3.2 mV in the presence of the cytokine) and potentiated the depolarization induced by carbachol (from 5.2 +/- 0.7 mV under control conditions to 27.5 +/- 2.0 mV in the presence of the cytokine). These effects were mimicked by carbocyclic thromboxane A2 (10(-6) mol/l), a stable thromboxane A2 agonist. The TNF-alpha action was inhibited by 1-benzylimidazole (2 x 10(-4) mol/l), a thromboxane synthase inhibitor, and BAY U 3405 (5 x 10(-4) mol/l), an inhibitor of thromboxane receptors. Measurements of thromboxane production in the supernatant of the culture revealed an increased concentration of thromboxane B2, the stable metabolite of thromboxane A2, after exposure to TNF-alpha. Immuncytochemical staining for cyclooxygenase-2 (COX-2) and the neuronal marker microtubule-associating protein-2 revealed an upregulation of COX-2 in myenteric neurons after exposure to the cytokine. These results demonstrate the involvement of COX-2 and the subsequent production of thromboxane A2 in the presence of TNF-alpha.
Collapse
Affiliation(s)
- Matthias Rehn
- Institute for Veterinary Physiology, University of Giessen, Giessen, Germany
| | | | | |
Collapse
|
50
|
Kang M, Morsy N, Jin X, Lupu F, Akbarali HI. Protein and gene expression of Ca2+ channel isoforms in murine colon: effect of inflammation. Pflugers Arch 2005; 449:288-97. [PMID: 15452714 DOI: 10.1007/s00424-004-1339-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
L-Type voltage-dependent Ca2+ channels (L-VDCC) mediate calcium influx in response to membrane depolarization and regulate intracellular processes such as contraction, secretion, neurotransmission, and gene expression. Colonic inflammation significantly attenuates calcium currents in smooth muscle; however, the basis for this remains unclear. In this study we examined the protein and mRNA expression of two isoforms of Ca(v)1.2, encoded by either exon la or 1b. Both isoforms were detected by Western blots, immunohistochemistry and RT-PCR in smooth muscle cells. Neither the protein nor mRNA expression measured by real-time PCR of either isoforms was affected in colonic myocytes from dextran sulfate sodium-treated mice. In whole-cell voltage-clamp experiments, the amplitude of the calcium currents were decreased by almost 70% by inflammation. The calcium channel currents were attenuated by 50 +/- 3% by the c-src kinase specific inhibitor, PP2, in control cells but only 19 +/- 7% in cells from inflamed mice. These studies suggest that decreased calcium channel currents following colonic inflammation are not due to decreased expression but may result from altered regulation by the non-receptor cellular tyrosine kinase, c-src kinase.
Collapse
Affiliation(s)
- Minho Kang
- Department of Physiology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|