1
|
Holliday A, Horner K, Johnson KO, Dagbasi A, Crabtree DR. Appetite-related Gut Hormone Responses to Feeding Across the Life Course. J Endocr Soc 2025; 9:bvae223. [PMID: 39777204 PMCID: PMC11702868 DOI: 10.1210/jendso/bvae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 01/11/2025] Open
Abstract
Appetite-related hormones are secreted from the gut, signaling the presence of nutrients. Such signaling allows for cross-talk between the gut and the appetite-control regions of the brain, influencing appetite and food intake. As nutritional requirements change throughout the life course, it is perhaps unsurprising that appetite and eating behavior are not constant. Changes in appetite-related gut hormones may underpin these alterations in appetite and eating. In this article, we review evidence of how the release of appetite-related gut hormones changes throughout the life course and how this impacts appetite and eating behaviour. We focus on hormones for which there is the strongest evidence of impact on appetite, food intake, and body weight: the anorexigenic glucagon like peptide-1, peptide tyrosine tyrosine, and cholecystokinin, and the orexigenic ghrelin. We consider hormone concentrations, particularly in response to feeding, from the very early days of life, through childhood and adolescence, where responses may reflect energy requirements to support growth and development. We discuss the period of adulthood and midlife, with a particular focus on sex differences and the effect of menstruation, pregnancy, and menopause, as well as the potential influence of appetite-related gut hormones on body composition and weight status. We then discuss recent advancements in our understanding of how unfavorable changes in appetite-related gut hormone responses to feeding in later life may contribute to undernutrition and a detrimental aging trajectory. Finally, we briefly highlight priorities for future research.
Collapse
Affiliation(s)
- Adrian Holliday
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Katy Horner
- Institute of Sport and Health, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Kelsie O Johnson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5RF, UK
| | - Aygul Dagbasi
- Section of Nutrition, Department of Metabolism Digestion and Reproduction, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Daniel R Crabtree
- The Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
2
|
Warner J, Stocker R, Brandt K, Crabtree DR, Ormond L, Stevenson E, Holliday A. Appetite, food intake, and gut hormone responses to glycomacropeptide protein ingestion in older adults: A feasibility, acceptability, and pilot study. Appetite 2024; 200:107509. [PMID: 38795943 DOI: 10.1016/j.appet.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Glycomacropeptide (GMP) has a unique amino acid profile which may make less satiating than other dietary proteins. This study assessed the feasibility and likely acceptability of a leucine-enriched GMP drink and determined appetite response in older adults (OA). Thirteen OA (11f; 70 ± 4 years) were recruited for sensory assessments of a leucine-enriched GMP drink when mixed with water and with fruit smoothie, compared with whey protein isolate (WHEY). Participants also partook in a single focus group exploring acceptability to protein and supplementation. Separately, a counterbalanced, double-blind study with twelve OA (8f; 69 ± 3 years) was conducted to determine appetite and gut hormone responses. Fasting subjective appetite was recorded using visual analogue scales and a fasted venous blood sample was collected (to measures acyl-ghrelin, PYY, GLP-1, and CCK) before participants consumed either: GMP protein (27g + 3g leucine, 350 mL water), WHEY (30g, 350 mL water), or water. Participants rested for 240 min, with appetite measures and blood sampling throughout. An ad libitum pasta-based meal was then consumed. Sensory testing revealed low pleasantness rating for GMP in water vs. WHEY (16 ± 14 vs 31 ± 24, p = 0.016). GMP addition to smoothie reduced pleasantness (26 ± 21 vs. 61 ± 29, p = 0.009) and worsened the aroma (46 ± 15 vs. 69 ± 28, p = 0.014). The focus group revealed uncertainty of protein needs and a scepticism of supplements, with preference for food. Gut hormone response did not differ between GMP and WHEY (nAUC for all gut hormones p > 0.05). There was no difference between conditions for lunch ad libitum intake (549 ± 171 kcal, 512 ± 238 kcal, 460 ± 199 kcal for GMP, WHEY, and water, p = 0.175), or for subjective appetite response. Leucine-enriched GMP was not less satiating than WHEY, and low palatability and scepticism of supplements question the likely acceptability of GMP supplementation. Providing trusted nutritional advice and food enrichment/fortification may be preferred strategies for increasing protein intake in OA.
Collapse
Affiliation(s)
- Jordan Warner
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Rachel Stocker
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Kirsten Brandt
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK; Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | | | | | - Emma Stevenson
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Adrian Holliday
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
3
|
Anjom-Shoae J, Feinle-Bisset C, Horowitz M. Impacts of dietary animal and plant protein on weight and glycemic control in health, obesity and type 2 diabetes: friend or foe? Front Endocrinol (Lausanne) 2024; 15:1412182. [PMID: 39145315 PMCID: PMC11321983 DOI: 10.3389/fendo.2024.1412182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
It is well established that high-protein diets (i.e. ~25-30% of energy intake from protein) provide benefits for achieving weight loss, and subsequent weight maintenance, in individuals with obesity, and improve glycemic control in type 2 diabetes (T2D). These effects may be attributable to the superior satiating property of protein, at least in part, through stimulation of both gastrointestinal (GI) mechanisms by protein, involving GI hormone release and slowing of gastric emptying, as well as post-absorptive mechanisms facilitated by circulating amino acids. In contrast, there is evidence that the beneficial effects of greater protein intake on body weight and glycemia may only be sustained for 6-12 months. While both suboptimal dietary compliance and metabolic adaptation, as well as substantial limitations in the design of longer-term studies are all likely to contribute to this contradiction, the source of dietary protein (i.e. animal vs. plant) has received inappropriately little attention. This issue has been highlighted by outcomes of recent epidemiological studies indicating that long-term consumption of animal-based protein may have adverse effects in relation to the development of obesity and T2D, while plant-based protein showed either protective or neutral effects. This review examines information relating to the effects of dietary protein on appetite, energy intake and postprandial glycemia, and the relevant GI functions, as reported in acute, intermediate- and long-term studies in humans. We also evaluate knowledge relating to the relevance of the dietary protein source, specifically animal or plant, to the prevention, and management, of obesity and T2D.
Collapse
Affiliation(s)
- Javad Anjom-Shoae
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
4
|
Mabilleau G, Bouvard B. Gut hormone analogues and skeletal health in diabetes and obesity: Evidence from preclinical models. Peptides 2024; 177:171228. [PMID: 38657908 DOI: 10.1016/j.peptides.2024.171228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Diabetes mellitus and obesity are rapidly growing worldwide. Aside from metabolic disturbances, these two disorders also affect bone with a higher prevalence of bone fractures. In the last decade, a growing body of evidence suggested that several gut hormones, including ghrelin, gastrin, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-1 and 2 (GLP-1 and GLP-2, respectively) may affect bone physiology. Several gut hormone analogues have been developed for the treatment of type 2 diabetes and obesity, and could represent a new alternative in the therapeutic arsenal against bone fragility. In the present review, a summary of the physiological roles of these gut hormones and their analogues is presented at the cellular level but also in several preclinical models of bone fragility disorders including type 2 diabetes mellitus, especially on bone mineral density, microarchitecture and bone material properties. The present review also summarizes the impact of GLP-1 receptor agonists approved for the treatment of type 2 diabetes mellitus and the more recent dual or triple analogue on bone physiology and strength.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers F-49000, France; CHU Angers, Département de Pathologie Cellulaire et Tissulaire, UF de Pathologie osseuse, Angers F-49933, France.
| | - Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers F-49000, France; CHU Angers, Service de Rhumatologie, Angers F-49933, France
| |
Collapse
|
5
|
Modvig IM, Smits MM, Galsgaard KD, Hjørne AP, Drzazga AK, Rosenkilde MM, Holst JJ. L-valine is a powerful stimulator of GLP-1 secretion in rodents and stimulates secretion through ATP-sensitive potassium channels and voltage-gated calcium channels. Nutr Diabetes 2024; 14:43. [PMID: 38862477 PMCID: PMC11166632 DOI: 10.1038/s41387-024-00303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND We previously reported that, among all the naturally occurring amino acids, L-valine is the most powerful luminal stimulator of glucagon-like peptide 1 (GLP-1) release from the upper part of the rat small intestine. This makes L-valine an interesting target for nutritional-based modulation of GLP-1 secretion. However, the molecular mechanism of L-valine-induced secretion remains unknown. METHODS We aimed to investigate the effect of orally given L-valine in mice and to identify the molecular details of L-valine stimulated GLP-1 release using the isolated perfused rat small intestine and GLUTag cells. In addition, the effect of L-valine on hormone secretion from the distal intestine was investigated using a perfused rat colon. RESULTS Orally given L-valine (1 g/kg) increased plasma levels of active GLP-1 comparably to orally given glucose (2 g/kg) in male mice, supporting that L-valine is a powerful stimulator of GLP-1 release in vivo (P > 0.05). Luminal L-valine (50 mM) strongly stimulated GLP-1 release from the perfused rat small intestine (P < 0.0001), and inhibition of voltage-gated Ca2+-channels with nifedipine (10 μM) inhibited the GLP-1 response (P < 0.01). Depletion of luminal Na+ did not affect L-valine-induced GLP-1 secretion (P > 0.05), suggesting that co-transport of L-valine and Na+ is not important for the depolarization necessary to activate the voltage-gated Ca2+-channels. Administration of the KATP-channel opener diazoxide (250 μM) completely blocked the L-valine induced GLP-1 response (P < 0.05), suggesting that L-valine induced depolarization arises from metabolism and opening of KATP-channels. Similar to the perfused rat small intestine, L-valine tended to stimulate peptide tyrosine-tyrosine (PYY) and GLP-1 release from the perfused rat colon. CONCLUSIONS L-valine is a powerful stimulator of GLP-1 release in rodents. We propose that intracellular metabolism of L-valine leading to closure of KATP-channels and opening of voltage-gated Ca2+-channels are involved in L-valine induced GLP-1 secretion.
Collapse
Affiliation(s)
- Ida Marie Modvig
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark M Smits
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Douglas Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Pii Hjørne
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Katarzyna Drzazga
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Łódź, Poland
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Ee HW, Ramiah SK, Mookiah S, Idrus Z. Effects of medium-chain fatty acids on growth performance, microbial attributes, and fat deposition in broiler chicken. CZECH JOURNAL OF ANIMAL SCIENCE 2024; 69:119-128. [DOI: 10.17221/175/2023-cjas] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Cheon E, Mattes RD. Interindividual variability in appetitive sensations and relationships between appetitive sensations and energy intake. Int J Obes (Lond) 2024; 48:477-485. [PMID: 38135701 PMCID: PMC10978491 DOI: 10.1038/s41366-023-01436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Appetitive sensations (AS) are signals that guide eating behaviors. Marked short-term inter-individual variability in AS has been reported but the long-term stability of individual ratings and their dietary implications are not well characterized. OBJECTIVES This study explored the stability of inter-individual ratings of hunger, fullness and thirst for 17 weeks; determined the relationships between these sensations, eating patterns and energy intake (EI); as well as the associations between ratings and selected individual characteristics (age, gender, BMI). METHODS A 17-week observational study collected hourly appetitive ratings and dietary intake data from 97 (90 completers, 7 partial completers) healthy adults at weeks 1, 9, and 17. RESULTS There were marked and stable inter-individual differences over the 17 weeks for hunger (week 1 vs. week 9, r = 0.72 (p < 0.001); week 1 vs. week 17, r = 0.67 (p < 0.001); week 9 vs. week 17, r = 0.77 (p < 0.001)); fullness (week 1 vs. week 9 r = 0.74 (p < 0.001); week 1 vs. week 17, r = 0.71 (p < 0.001); week 9 vs. week 17, r = 0.81 (p < 0.001)); and thirst (week 1 vs. week 9 r = 0.82 (p < 0.001); week 1 vs. week 17, r = 0.81 (p < 0.001); week 9 vs. week 17, r = 0.88 (p < 0.001)). Cross-correlation functions revealed EI and eating pattern exerted stronger effects on AS than the reverse. However, the absolute effect sizes were small. Path analyses also indicated that there were weak relationships between AS and EI. No robust effects of the studied individual characteristics were observed. CONCLUSION This study found that acute and chronic sensations of hunger, fullness and thirst are relatively stable within individuals but vary markedly between individuals. In addition, the present data indicate AS are poorly associated with dietary patterns or with EI under conditions of relatively stable energy balance.
Collapse
Affiliation(s)
- Eunjin Cheon
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Anderson KC, Hasan F, Grammer EE, Kranz S. Endogenous Ghrelin Levels and Perception of Hunger: A Systematic Review and Meta-Analysis. Adv Nutr 2023; 14:1226-1236. [PMID: 37536563 PMCID: PMC10509419 DOI: 10.1016/j.advnut.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Ghrelin is an orexigenic hormone primarily released by the stomach and has 2 isoforms: acylated ghrelin (AG) and de-acylated ghrelin (DAG), that appear to have different functions in humans. OBJECTIVES To perform a systematic review and meta-analysis of the association between plasma concentrations of total ghrelin (TG), AG, and DAG and perceptions of hunger in healthy adults. METHODS The following criteria were used for inclusion: 1) sample contained adults ≥18 y of age, 2) body mass index [BMI kg/m2] was ≥18.5, 3) ghrelin was sampled through blood, 4) subjective hunger was measured on a validated scale, 5) study reported a Pearson product correlation of ghrelin or had relevant figure(s) for data extraction, 6) participants were healthy with no overt disease, 7) protocols contained no physical activity or weight loss medication that suppressed appetite, 8) interventions were conducted without environmental manipulations. Moderators assessed were age, BMI, percentage of body fat (%BF), macronutrient content of test meals, energy intake (kcals), sex, and ghrelin isoform (AG, DAG, or TG). RESULTS The analysis included 47 studies (110 trials, n = 1799, age: 31.4 ± 12.0 y, BMI: 26.0 ± 4.75 kg/m2) and measured AG (n = 47 trials), DAG (n = 12 trials), and TG (n = 51 trials). The overall model indicated that ghrelin concentrations and perceptions of hunger were moderately correlated (r = 0.43, P < 0.001), and ghrelin isoform significantly moderated this relationship (AG: r = 0.60, P < 0.001; TG: r = 0.215, P = 0.01; DAG: r = 0.53, P = 0.695). Other significant moderators included age (b = -0.02, P = 0.01), BMI (b = -0.03, P = 0.05), %BF (b = -0.03, P = 0.05), energy intake (b = 0.0003, P = 0.04), and percentage of carbohydrates of test meals (b = 0.008, P = 0.05). CONCLUSIONS Ghrelin is associated with perceptions of hunger in humans, and this relationship is strengthened when AG is isolated; thus, AG may have a large impact on hunger signals in various populations. Future research should attempt to understand the role of DAG in hunger sensations.
Collapse
Affiliation(s)
- Kara C Anderson
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, United States
| | - Faten Hasan
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, United States
| | - Emily E Grammer
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, United States
| | - Sibylle Kranz
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
9
|
Atanga R, Singh V, In JG. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int J Mol Sci 2023; 24:ijms24108836. [PMID: 37240181 DOI: 10.3390/ijms24108836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enteroendocrine cells are specialized secretory lineage cells in the small and large intestines that secrete hormones and peptides in response to luminal contents. The various hormones and peptides can act upon neighboring cells and as part of the endocrine system, circulate systemically via immune cells and the enteric nervous system. Locally, enteroendocrine cells have a major role in gastrointestinal motility, nutrient sensing, and glucose metabolism. Targeting the intestinal enteroendocrine cells or mimicking hormone secretion has been an important field of study in obesity and other metabolic diseases. Studies on the importance of these cells in inflammatory and auto-immune diseases have only recently been reported. The rapid global increase in metabolic and inflammatory diseases suggests that increased understanding and novel therapies are needed. This review will focus on the association between enteroendocrine changes and metabolic and inflammatory disease progression and conclude with the future of enteroendocrine cells as potential druggable targets.
Collapse
Affiliation(s)
- Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie G In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Aukan MI, Coutinho S, Pedersen SA, Simpson MR, Martins C. Differences in gastrointestinal hormones and appetite ratings between individuals with and without obesity-A systematic review and meta-analysis. Obes Rev 2023; 24:e13531. [PMID: 36416279 PMCID: PMC10078575 DOI: 10.1111/obr.13531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/26/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
Determining if gastrointestinal (GI) hormone response to food intake differs between individuals with, and without, obesity may improve our understanding of obesity pathophysiology. A systematic review and meta-analysis of studies assessing the concentrations of GI hormones, as well as appetite ratings, following a test meal, in individuals with and without obesity was undertaken. Systematic searches were conducted in the databases MEDLINE, Embase, Cochrane Library, PsycINFO, Web of Science, and ClinicalTrials.gov. A total of 7514 unique articles were retrieved, 115 included in the systematic review, and 70 in the meta-analysis. The meta-analysis compared estimated standardized mean difference in GI hormones' concentration, as well as appetite ratings, between individuals with and without obesity. Basal and postprandial total ghrelin concentrations were lower in individuals with obesity compared with controls, and this was reflected by lower postprandial hunger ratings in the former. Individuals with obesity had a lower postprandial concentration of total peptide YY compared with controls, but no significant differences were found for glucagon-like peptide 1, cholecystokinin, or other appetite ratings. A large methodological and statistical heterogeneity among studies was found. More comprehensive studies are needed to understand if the differences observed are a cause or a consequence of obesity.
Collapse
Affiliation(s)
- Marthe Isaksen Aukan
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Centre of Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Silvia Coutinho
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Public Health Nutrition at the Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo (UiO), Oslo, Norway
| | - Sindre Andre Pedersen
- Library Section for Research Support, Data and Analysis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Melanie Rae Simpson
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.,Clinical Research Unit Central Norway, St. Olavs Hospital, Trondheim, Norway
| | - Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Centre of Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway.,Department of Nutrition Sciences, the University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| |
Collapse
|
11
|
Nasr L, Sacre Y, Attieh R, Mannan H. Association between the Timing of Pre-Workout Macronutrient Intake and Rated Appetite among Resistance-Trained Adults in Jbeil, Lebanon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2399. [PMID: 36767765 PMCID: PMC9915277 DOI: 10.3390/ijerph20032399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Macronutrients play an important role in appetite regulation. In addition, adequate nutrient and energy intake, which may be altered by exercise-induced appetite fluctuations, is required to ensure important training outcomes. However, findings regarding appetite responses to macronutrient consumption before training and to different resistance training intensities remain inconclusive. This study investigated the association of three types of macronutrient intake before different intensities of resistance training with appetite. A purposive cross-sectional design was used to collect data from 280 resistance-trained individuals (mean age 26.4 ± 5.8 years) representing five gyms located in Jbeil, Lebanon, and who completed an online questionnaire. Data collected included socio-demographics, nutritional strategies followed by each respondent, training characteristics, and appetite rating before, during and after exercise using a validated visual analogue scale (VAS). A short-term suppression of appetite was reported during resistance-training, with no significant difference in exercise intensities (p > 0.05). In addition, low-fiber carbohydrate and protein food/beverage content consumed 30-60 min before training had an advantage in appetite suppression. In summary, these findings suggest that resistance training combined with pre-workout consumption of a whole meal was associated with appetite suppression, at least during the short period of exercise. From the perspective of appetite control and energy balance, the critical factor is the quantity and quality of macronutrient food sources, in addition to the timing surrounding training of nutrients ingested.
Collapse
Affiliation(s)
- Lea Nasr
- Faculty of Arts and Sciences, Department of Human Nutrition and Food Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| | - Yonna Sacre
- Faculty of Arts and Sciences, Department of Human Nutrition and Food Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| | - Randa Attieh
- Faculty of Arts and Sciences, Department of Human Nutrition and Food Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| | - Haider Mannan
- Translational Health Research Institute, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
12
|
Geary N, Asarian L, Graf G, Gobbi S, Tobler PN, Rehfeld JF, Leeners B. Increased Meal Size but Reduced Meal-Stimulated Plasma Cholecystokinin Concentrations in Women With Obesity. Endocrinology 2022; 164:6845692. [PMID: 36423205 DOI: 10.1210/endocr/bqac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/26/2022]
Abstract
To better understand the physiological basis of obesity in women, we investigated whether obesity or menstrual cycle phase affects laboratory test-meal size or meal-stimulated plasma cholecystokinin (CCK) concentration. Women with healthy weight (body mass index [BMI] of 18.5-24.9 kg/m2, N = 16) or obesity (BMI 30-39.9 kg/m2, N = 20) were tested once in the late-follicular or peri-ovulatory phase (LF/PO) and once in the mid-luteal phase (ML). Meals of ham sandwiches were offered and blood was sampled. Menstrual cycle phases were verified with participants' reports of menses and measurements of progesterone and luteinizing hormone (LH) concentrations. Women with obesity ate significantly larger meals than women with healthy weight, (mean, 711 [95% CI, 402-1013] kJ, P = 0.001, during the LF/PO and 426 [105-734] kJ, P = 0.027, larger during the ML). Women with healthy weight ate smaller meals during LF/PO than ML (decrease, 510 [192-821 kJ], P = 0.008), but women with obesity did not (decrease, 226 [-87-542] kJ, P = 0.15). CCK concentrations 18 to 30 minutes after meal onset were lower in women with obesity than in women with healthy weight during LF/PO (3.6 [3.1-4.1] vs 6.1 [4.5-7.7] pmol/L; P = 0.004), but not during ML, with a significant interaction effect (1.8 [1.2-2.4] pmol/L, P = 0.048). Women with obesity consumed larger meals than women with healthy weight but displayed reduced meal-stimulated plasma CCK concentrations. These data are consistent with the hypothesis that a defect in CCK secretion compromises satiation in obese women and contributes to the development or maintenance of obesity.
Collapse
Affiliation(s)
- Nori Geary
- Department of Psychiatry, Weill Cornell Medical College, New York, NY 10021, USA†
| | - Lori Asarian
- Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Gwendolyn Graf
- Department of Reproductive Endocrinology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Susanna Gobbi
- Zurich Center for Neuroeconomics, University of Zurich, 8006 Zurich, Switzerland
| | - Philippe N Tobler
- Zurich Center for Neuroeconomics, University of Zurich, 8006 Zurich, Switzerland
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
13
|
Filippello A, Di Mauro S, Scamporrino A, Torrisi SA, Leggio GM, Di Pino A, Scicali R, Di Marco M, Malaguarnera R, Purrello F, Piro S. Molecular Effects of Chronic Exposure to Palmitate in Intestinal Organoids: A New Model to Study Obesity and Diabetes. Int J Mol Sci 2022; 23:ijms23147751. [PMID: 35887100 PMCID: PMC9320247 DOI: 10.3390/ijms23147751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Intestinal cell dysfunctions involved in obesity and associated diabetes could be correlated with impaired intestinal cell development. To date, the molecular mechanisms underlying these dysfunctions have been poorly investigated because of the lack of a good model for studying obesity. The main aim of this study was to investigate the effects of lipotoxicity on intestinal cell differentiation in small intestinal organoid platforms, which are used to analyze the regulation of cell differentiation. Mouse intestinal organoids were grown in the presence/absence of high palmitate concentrations (0.5 mM) for 48 h to simulate lipotoxicity. Palmitate treatment altered the expression of markers involved in the differentiation of enterocytes and goblet cells in the early (Hes1) and late (Muc2) phases of their development, respectively, and it modified enterocytes and goblet cell numbers. Furthermore, the expression of enteroendocrine cell progenitors (Ngn3) and I cells (CCK) markers was also impaired, as well as CCK-positive cell numbers and CCK secretion. Our data indicate, for the first time, that lipotoxicity simultaneously influences the differentiation of specific intestinal cell types in the gut: enterocytes, goblet cells and CCK cells. Through this study, we identified novel targets associated with molecular mechanisms affected by lipotoxicity that could be important for obesity and diabetes therapy.
Collapse
Affiliation(s)
- Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Sebastiano Alfio Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 64, 95123 Catania, Italy; (S.A.T.); (G.M.L.)
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 64, 95123 Catania, Italy; (S.A.T.); (G.M.L.)
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Maurizio Di Marco
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | | | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
- Correspondence: ; Tel.: +39-09-5759-8401
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| |
Collapse
|
14
|
Agah S, Aminianfar A, Hassanzadeh Keshteli A, Bitarafan V, Adibi P, Esmaillzadeh A, Feinle-Bisset C. Association between Dietary Macronutrient Intake and Symptoms in Uninvestigated Dyspepsia: Evidence from a Population-Based, Cross-Sectional Study. Nutrients 2022; 14:nu14132577. [PMID: 35807757 PMCID: PMC9268281 DOI: 10.3390/nu14132577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Limited evidence from laboratory-based studies suggests that specific dietary macronutrients, particularly fat, can induce dyspeptic symptoms. Through a population-based study, we investigated the relationship between dietary macronutrients and dyspeptic symptoms and sought to determine macronutrient intake thresholds to predict or prevent dyspepsia and reduce symptoms in patients with dyspepsia. (2) Methods: A total of 4763 Iranian people were enrolled in this population-based, cross-sectional study. Uninvestigated dyspepsia (UD) and its symptoms, including postprandial fullness, early satiation, and epigastric pain, were evaluated using a modified Persian version of the Rome III criteria. The dietary intakes of participants were evaluated using a validated food−frequency questionnaire. Receiver operating characteristic (ROC) curve analysis was used to calculate threshold intakes of dietary macronutrients to prevent UD in the general population. The analysis was then repeated in those with UD to calculate intake thresholds for reducing UD symptoms. (3) Results: Early satiation occurred in 6.3% (n = 302), postprandial fullness in 8.0% (n = 384) and epigastric pain in 7.8% (n = 371) of participants. The prevalence of UD was 15.2%. Compared with individuals without UD, those with UD had a lower intake of carbohydrates (48.2% vs. 49.1%) and a higher intake of fats (38.3% vs. 37.4%), while protein and energy intakes did not differ. Higher dietary fat and protein intakes were associated with a higher prevalence of postprandial fullness and epigastric pain, respectively. Macronutrient intakes to predict UD in the general population were <49% of energy from carbohydrates, >14.7% from protein, and >37.7% from fats. Carbohydrate, protein, and fat intakes to prevent symptoms among those with UD were calculated to be >48.2%, <14.6%, and <38.6%, respectively. (4) Conclusion: Higher carbohydrate intake and lower fat or protein intakes were associated with a lower likelihood of UD. Prospective studies carefully manipulating dietary macronutrient composition are warranted to investigate the value of dietary changes to improve symptoms in people with UD.
Collapse
Affiliation(s)
- Shahram Agah
- Colorectal Research Centre, Iran University of Medical Sciences, Tehran 1445613131, Iran;
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Azadeh Aminianfar
- Research Centre for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan 8715988141, Iran;
| | - Ammar Hassanzadeh Keshteli
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2P5, Canada;
- Integrative Functional Gastroenterology Research Centre, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Vida Bitarafan
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Centre of Research Excellence in Translating Nutritional Sciences to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Peyman Adibi
- Gastroenterology and Hepatology Research Centre, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 1416634793, Iran
- Obesity and Eating Habits Research Centre, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran
- Department of Community Nutrition, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Correspondence: (A.E.); (C.F.-B.)
| | - Christine Feinle-Bisset
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Centre of Research Excellence in Translating Nutritional Sciences to Good Health, University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (A.E.); (C.F.-B.)
| |
Collapse
|
15
|
Differences in gastrointestinal hormones and appetite ratings among obesity classes. Appetite 2022; 171:105940. [DOI: 10.1016/j.appet.2022.105940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 01/03/2023]
|
16
|
Wang Y, Wu Q, Zhou Q, Chen Y, Lei X, Chen Y, Chen Q. Circulating acyl and des-acyl ghrelin levels in obese adults: a systematic review and meta-analysis. Sci Rep 2022; 12:2679. [PMID: 35177705 PMCID: PMC8854418 DOI: 10.1038/s41598-022-06636-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Ghrelin is the only known orexigenic gut hormone, and its synthesis, secretion and degradation are affected by different metabolic statuses. This meta-analysis aimed to investigate the potential differences in plasma acyl ghrelin (AG) and des-acyl ghrelin (DAG) concentrations between normal weight and obese adults. Systematic literature searches of PubMed, Embase and Web of Science through October 2021 were conducted for articles reporting AG or DAG levels in obesity and normal weight, and 34 studies with 1863 participants who met the eligibility criteria were identified. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated to evaluate group differences in circulating AG and DAG levels. Pooled effect size showed significantly lower levels of baseline AG (SMD: - 0.85; 95% CI: - 1.13 to - 0.57; PSMD < 0.001) and DAG (SMD: - 1.06; 95% CI: - 1.43 to - 0.69; PSMD < 0.001) in obese groups compared with healthy controls, and similar results were observed when subgroup analyses were stratified by the assay technique or storage procedure. Postprandial AG levels in obese subjects were significantly lower than those in controls when stratified by different time points (SMD 30 min: - 0.85, 95% CI: - 1.18 to - 0.53, PSMD < 0.001; SMD 60 min: - 1.00, 95% CI: - 1.37 to - 0.63, PSMD < 0.001; SMD 120 min: - 1.21, 95% CI: - 1.59 to - 0.83, PSMD < 0.001). In healthy subjects, a postprandial decline in AG was observed at 120 min (SMD: - 0.42; 95% CI: - 0.77 to - 0.06; PSMD = 0.021) but not in obese subjects (SMD: - 0.28; 95% CI: - 0.60 to 0.03; PSMD = 0.074). The mean change in AG concentration was similar in both the obese and lean health groups at each time point (ΔSMD30min: 0.31, 95% CI: - 0.35 to 0.97, PSMD = 0.359; ΔSMD60min: 0.17, 95% CI: - 0.12 to 0.46, PSMD = 0.246; ΔSMD120min: 0.21, 95% CI: - 0.13 to 0.54, PSMD = 0.224). This meta-analysis strengthens the clinical evidence supporting the following: lower baseline levels of circulating AG and DAG in obese individuals; declines in postprandial circulating AG levels, both for the healthy and obese individuals; a shorter duration of AG suppression in obese subjects after meal intake. These conclusions have significance for follow-up studies to elucidate the role of various ghrelin forms in energy homeostasis.
Collapse
Affiliation(s)
- Yanmei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China.,Ya'an Polytechnic College, No. 130 Yucai Road, Yucheng District, Yaan, 625000, Sichuan, China
| | - Qianxian Wu
- Ya'an Polytechnic College, No. 130 Yucai Road, Yucheng District, Yaan, 625000, Sichuan, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Yuyu Chen
- Halifa Regional Centre for Education, No. 33 Spectacle Lake Dr, Dartmouth, NS, B3B1X7, Canada
| | - Xingxing Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Yiding Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Jinniu District, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
17
|
Swarnamali H, Jayawardena R, Michail Chourdakis, Ranasinghe P. Is the proportion of per capita fat supply associated with the prevalence of overweight and obesity? an ecological analysis. BMC Nutr 2022; 8:4. [PMID: 35022072 PMCID: PMC8756625 DOI: 10.1186/s40795-021-00496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although it is reported in numerous interventional and observational studies, that a low-fat diet is an effective method to combat overweight and obesity, the relationship at the global population level is not well established. This study aimed to quantify the associations between worldwide per capita fat supply and prevalence of overweight and obesity and further classify this association based on per capita Gross National Income (GNI). METHODS A total of 93 countries from four GNI groups were selected. Country-specific overweight and obesity prevalence data were retrieved from the most recent WHO Global Health Observatory database. Per capita supply of fat and calories were obtained from the United Nations Food and Agricultural Organization database; FAOSTAT, Food Balance Sheet for years 2014-2016. The categorizations of countries were done based on GNI based classification by the World Bank. RESULTS Among the selected countries, the overweight prevalence ranged from 3.9% (India) to 78.8% (Kiribati), while obesity prevalence ranged from 3.6% (Bangladesh) to 46.0% (Kiribati). The highest and the lowest per capita fat supply from total calorie supply were documented in Australia (41.2%) and Madagascar (10.5%) respectively. A significant strong positive correlation was observed between the prevalence of overweight (r = 0.64, p < 0.001) and obesity (r = 0.59, p < 0.001) with per capita fat supply. The lower ends of both trend lines were densely populated by the low- and lower-middle-income countries and the upper ends of both lines were greatly populated by the high-income countries. CONCLUSIONS Per capita fat supply per country is significantly associated with both prevalence of overweight and obesity.
Collapse
Affiliation(s)
- Hasinthi Swarnamali
- Health and Wellness Unit, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Ranil Jayawardena
- Department of Physiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| |
Collapse
|
18
|
Meal-to-meal and day-to-day macronutrient variation in an ad libitum vending food paradigm. Appetite 2022; 171:105944. [PMID: 35074459 PMCID: PMC8842501 DOI: 10.1016/j.appet.2022.105944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Theory posits that macronutrient intake is regulated by protein consumption and adequate intake of protein results in consumption of less carbohydrates and fat. The current study investigates the effect of protein intake on calorie and macronutrient content using an ad libitum vending machine paradigm. METHODS Healthy volunteers (n = 287; 177 m; Age = 36 ± 11; BMI = 32 ± 8) were admitted to our clinical research unit. Macronutrient meal content (grams) and energy intake (Kcal) were quantified by specialized food processing software and collected on an hourly basis over a three-day period using a validated ad libitum vending machine paradigm. Body composition was assessed by DXA. Lagged multi-level models accounting for age, sex, race/ethnicity, fat and fat free mass indices were fitted to examine the impact of prior macronutrient content on subsequent meals. RESULTS Protein intake was associated with decreased energy intake (Kcal; B = -1.67 kcal, p = 0.0048), lower protein and carbohydrate intake (B = -0.08 g, p = 0.0006; B = -0.21 g, p = 0.0003, respectively) at subsequent meals. Daily Macronutrient intake and subsequent intake were positively associated. CONCLUSIONS Dietary protein exhibits a negative regulatory effect on a short-term meal-to-meal rather than day-to-day basis. In the setting of readily available food, protein intake impacts energy intake only over very short time courses.
Collapse
|
19
|
Hajishafiee M, Ullrich SS, Fitzgerald PC, Horowitz M, Lange K, Poppitt SD, Feinle-Bisset C. Suppression of Energy Intake by Intragastric l-Tryptophan in Lean and Obese Men: Relations with Appetite Perceptions and Circulating Cholecystokinin and Tryptophan. J Nutr 2021; 151:2932-2941. [PMID: 34255069 DOI: 10.1093/jn/nxab218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND l-Tryptophan reduces energy intake in healthy men. The underlying mechanisms, including appetite, plasma cholecystokinin (CCK), tryptophan (Trp), and the ratio of Trp to large neutral amino acids (Trp:LNAAs ratio), and whether responses differ in lean and obese individuals, are uncertain. OBJECTIVES We evaluated the effects of intragastric Trp on energy intake (primary outcome) and their potential mechanisms, pre- and postmeal, in lean men and those with obesity. METHODS Twelve lean men [mean ± SD age: 30 ± 3 y; BMI (in kg/m2): 23 ± 1] and 13 men with obesity (mean ± SD age: 31 ± 3 y; BMI: 33 ± 1) received, on 3 separate occasions, in double-blind, randomized order, 3 g ("Trp-3") or 1.5 g ("Trp-1.5") Trp, or control ("C"), intragastrically, 30 min before a buffet-meal. Energy intake from the buffet-meal, hunger, fullness, and plasma CCK and amino acid concentrations were measured in response to Trp alone and for 2 h postmeal. Data were analyzed using maximum likelihood mixed-effects models, with treatment, group, and treatment-by-group interaction as fixed effects. RESULTS Trp alone increased plasma CCK, Trp, and the Trp:LNAAs ratio (all P < 0.001), with no difference between groups. Trp suppressed energy intake (P < 0.001), with no difference between groups (lean, C: 1085 ± 102 kcal, Trp-1.5: 1009 ± 92 kcal, Trp-3: 868 ± 104 kcal; obese, C: 1249 ± 98 kcal, Trp-1.5: 1217 ± 90 kcal, Trp-3: 1012 ± 100 kcal). Postmeal, fullness was greater after Trp-3 than after C and Trp-1.5 (all P < 0.05), and in men with obesity than in lean men (P < 0.05). Plasma Trp and the Trp:LNAAs ratio were greater after Trp-3 and Trp-1.5 than after C (all P < 0.001), and tended to be less in men with obesity than in the lean (P = 0.07) (Trp:LNAAs ratio: lean, C: 1.5 ± 0.2, Trp-1.5: 6.9 ± 0.7, Trp-3: 10.7 ± 1.4; obese, C: 1.4 ± 0.1, Trp-1.5: 4.6 ± 0.7, Trp-3: 7.8 ± 1.3). There were inverse correlations of energy intake with plasma Trp and the Trp:LNAAs ratio in both groups (lean, both r = -0.50, P < 0.01; obese, both r = -0.40, P < 0.05). CONCLUSIONS Intragastric Trp has potent energy intake-suppressant effects, in both lean men and those with obesity, apparently related to the Trp:LNAAs ratio.
Collapse
Affiliation(s)
- Maryam Hajishafiee
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Penelope Ce Fitzgerald
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Kylie Lange
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Christine Feinle-Bisset
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Oral Semaglutide, the First Ingestible Glucagon-Like Peptide-1 Receptor Agonist: Could It Be a Magic Bullet for Type 2 Diabetes? Int J Mol Sci 2021; 22:ijms22189936. [PMID: 34576096 PMCID: PMC8470357 DOI: 10.3390/ijms22189936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal tract secretes gut hormones in response to food consumption, and some of these stimulate insulin secretion. Glucagon-like peptide-1 (GLP-1) is an incretin peptide hormone released from the lower digestive tract that stimulates insulin secretion, suppresses glucagon secretion, and decreases hunger. GLP-1 receptor agonist (GLP-1RA) mimics the action of endogenous GLP-1, consequently reversing hyperglycemia and causing weight reduction, demonstrating its efficacy as an antidiabetic and antiobesity agent. Previously restricted to injection only, the invention of the absorption enhancer sodium N-(8-[2-hydroxybenzoyl]amino) caprylate resulted in the development of oral semaglutide, the first ingestible GLP-1RA. Oral semaglutide demonstrated its efficacy in glycemic management and body weight loss with a low risk of hypoglycemia as a monotherapy and in combination with other hypoglycemic medications in its clinical trial programs named Peptide Innovation for Early Diabetes Treatment. Consistent with other injectable GLP-1RAs, gastrointestinal side effects were often reported. Additionally, cardiovascular safety was established by demonstrating that oral semaglutide was not inferior to a placebo in terms of cardiovascular outcomes. Thus, oral semaglutide represents a novel treatment option that is particularly well-suited for patients with type 2 diabetes and/or obesity.
Collapse
|
21
|
Smith KR, Moran TH. Gastrointestinal peptides in eating-related disorders. Physiol Behav 2021; 238:113456. [PMID: 33989649 PMCID: PMC8462672 DOI: 10.1016/j.physbeh.2021.113456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Food intake is tightly controlled by homeostatic signals sensitive to metabolic need for the regulation of body weight. This review focuses on the peripherally-secreted gastrointestinal peptides (i.e., ghrelin, cholecystokinin, glucagon-like peptide 1, and peptide tyrosine tyrosine) that contribute to the control of appetite and discusses how these peptides or the signals arising from their release are disrupted in eating-related disorders across the weight spectrum, namely anorexia nervosa, bulimia nervosa, and obesity, and whether they are normalized following weight restoration or weight loss treatment. Further, the role of gut peptides in the pathogenesis and treatment response in human weight conditions as identified by rodent models are discussed. Lastly, we review the incretin- and hormone-based pharmacotherapies available for the treatment of obesity and eating-related disorders.
Collapse
Affiliation(s)
- Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
22
|
Lewgood J, Oliveira B, Korzepa M, Forbes SC, Little JP, Breen L, Bailie R, Candow DG. Efficacy of Dietary and Supplementation Interventions for Individuals with Type 2 Diabetes. Nutrients 2021; 13:2378. [PMID: 34371888 PMCID: PMC8308746 DOI: 10.3390/nu13072378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of Type 2 diabetes (T2D) is increasing, which creates a large economic burden. Diet is a critical factor in the treatment and management of T2D; however, there are a large number of dietary approaches and a general lack of consensus regarding the efficacy of each. Therefore, the purpose of this narrative review is twofold: (1) to critically evaluate the effects of various dietary strategies on diabetes management and treatment, such as Mediterranean diet, plant-based diet, low-calorie and very low-calorie diets, intermittent fasting, low-carbohydrate and very low-carbohydrate diets, and low glycemic diets and (2) to examine several purported supplements, such as protein, branched-chain amino acids, creatine, and vitamin D to improve glucose control and body composition. This review can serve as a resource for those wanting to evaluate the evidence supporting the various dietary strategies and supplements that may help manage T2D.
Collapse
Affiliation(s)
- Jessica Lewgood
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S0A2, Canada; (J.L.); (R.B.)
| | - Barbara Oliveira
- Okanagan Campus, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC V1V1V7, Canada; (B.O.); (J.P.L.)
| | - Marie Korzepa
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (M.K.); (L.B.)
| | - Scott C. Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB R7A6A9, Canada;
| | - Jonathan P. Little
- Okanagan Campus, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC V1V1V7, Canada; (B.O.); (J.P.L.)
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (M.K.); (L.B.)
| | - Robert Bailie
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S0A2, Canada; (J.L.); (R.B.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S0A2, Canada; (J.L.); (R.B.)
| |
Collapse
|
23
|
Zhu R, Fogelholm M, Larsen TM, Poppitt SD, Silvestre MP, Vestentoft PS, Jalo E, Navas-Carretero S, Huttunen-Lenz M, Taylor MA, Stratton G, Swindell N, Kaartinen NE, Lam T, Handjieva-Darlenska T, Handjiev S, Schlicht W, Martinez JA, Seimon RV, Sainsbury A, Macdonald IA, Westerterp-Plantenga MS, Brand-Miller J, Raben A. A High-Protein, Low Glycemic Index Diet Suppresses Hunger but Not Weight Regain After Weight Loss: Results From a Large, 3-Years Randomized Trial (PREVIEW). Front Nutr 2021; 8:685648. [PMID: 34141717 PMCID: PMC8203925 DOI: 10.3389/fnut.2021.685648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies have shown an increase in hunger during weight-loss maintenance (WLM) after diet-induced weight loss. Whether a combination of a higher protein, lower glycemic index (GI) diet and physical activity (PA) can counteract this change remains unclear. Aim: To compare the long-term effects of two diets [high protein (HP)-low GI vs. moderate protein (MP)-moderate GI] and two PA programs [high intensity (HI) vs. moderate intensity (MI)] on subjective appetite sensations during WLM after ≥8% weight loss (WL). Methods: Data derived from the 3-years PREVIEW randomized intervention study. An 8-weeks WL phase using a low-energy diet was followed by a 148-weeks randomized WLM phase. For the WLM phase, participants were assigned to one of the four groups: HP-MI, HP-HI, MP-MI, and MP-HI. Available data from 2,223 participants with overweight or obesity (68% women; BMI ≥ 25 kg/m2). Appetite sensations including satiety, hunger, desire to eat, and desire to eat something sweet during the two phases (at 0, 8 weeks and 26, 52, 104, and 156 weeks) were assessed based on the recall of feelings during the previous week using visual analogue scales. Differences in changes in appetite sensations from baseline between the groups were determined using linear mixed models with repeated measures. Results: There was no significant diet × PA interaction. From 52 weeks onwards, decreases in hunger were significantly greater in HP-low GI than MP-moderate GI (P time × diet = 0.018, P dietgroup = 0.021). Although there was no difference in weight regain between the diet groups (P time × diet = 0.630), hunger and satiety ratings correlated with changes in body weight at most timepoints. There were no significant differences in appetite sensations between the two PA groups. Decreases in hunger ratings were greater at 52 and 104 weeks in HP-HI vs. MP-HI, and greater at 104 and 156 weeks in HP-HI vs. MP-MI. Conclusions: This is the first long-term, large-scale randomized intervention to report that a HP-low GI diet was superior in preventing an increase in hunger, but not weight regain, during 3-years WLM compared with a MP-moderate GI diet. Similarly, HP-HI outperformed MP-HI in suppressing hunger. The role of exercise intensity requires further investigation. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT01777893.
Collapse
Affiliation(s)
- Ruixin Zhu
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Fogelholm
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Thomas M Larsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Marta P Silvestre
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand.,Center for Health Technology Services Research, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Pia S Vestentoft
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Elli Jalo
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Santiago Navas-Carretero
- Department of Nutrition, University of Navarra, Pamplona, Spain.,CIBERobn, Instituto de Salud Carlos III, Madrid, Spain.,Precision Nutrition Program, IMDEA Food, Campus de Excelencia Internacional, Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maija Huttunen-Lenz
- Institute for Nursing Science, University of Education Schwäbisch Gmünd, Schwäbisch Gmünd, Germany
| | - Moira A Taylor
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, Nottingham, United Kingdom.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Gareth Stratton
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea, United Kingdom
| | - Nils Swindell
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea, United Kingdom
| | - Niina E Kaartinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tony Lam
- NetUnion sarl, Lausanne, Switzerland
| | | | - Svetoslav Handjiev
- Department of Pharmacology and Toxicology, Medical University of Sofia, Sofia, Bulgaria
| | - Wolfgang Schlicht
- Exercise and Health Sciences, University of Stuttgart, Stuttgart, Germany
| | - J Alfredo Martinez
- Department of Nutrition, University of Navarra, Pamplona, Spain.,CIBERobn, Instituto de Salud Carlos III, Madrid, Spain.,Precision Nutrition Program, IMDEA Food, Campus de Excelencia Internacional, Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Radhika V Seimon
- The Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Amanda Sainsbury
- School of Human Sciences (Exercise and Sports Science), Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| | - Ian A Macdonald
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, MRC/ARUK Centre for Musculoskeletal Ageing Research, ARUK Centre for Sport, Exercise and Osteoarthritis, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Margriet S Westerterp-Plantenga
- Department of Nutrition and Movement Sciences, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jennie Brand-Miller
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
24
|
The Function of Gastrointestinal Hormones in Obesity-Implications for the Regulation of Energy Intake. Nutrients 2021; 13:nu13061839. [PMID: 34072172 PMCID: PMC8226753 DOI: 10.3390/nu13061839] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity and the challenges of prevention prompted researchers to investigate the mechanisms that control food intake. Food ingestion triggers several physiological responses in the digestive system, including the release of gastrointestinal hormones from enteroendocrine cells that are involved in appetite signalling. Disturbed regulation of gut hormone release may affect energy homeostasis and contribute to obesity. In this review, we summarize the changes that occur in the gut hormone balance during the pre- and postprandial state in obesity and the alterations in the diurnal dynamics of their plasma levels. We further discuss how obesity may affect nutrient sensors on enteroendocrine cells that sense the luminal content and provoke alterations in their secretory profile. Gastric bypass surgery elicits one of the most favorable metabolic outcomes in obese patients. We summarize the effect of different strategies to induce weight loss on gut enteroendocrine function. Although the mechanisms underlying obesity are not fully understood, restoring the gut hormone balance in obesity by targeting nutrient sensors or by combination therapy with gut peptide mimetics represents a novel strategy to ameliorate obesity.
Collapse
|
25
|
Modvig IM, Kuhre RE, Jepsen SL, Xu SFS, Engelstoft MS, Egerod KL, Schwartz TW, Ørskov C, Rosenkilde MM, Holst JJ. Amino acids differ in their capacity to stimulate GLP-1 release from the perfused rat small intestine and stimulate secretion by different sensing mechanisms. Am J Physiol Endocrinol Metab 2021; 320:E874-E885. [PMID: 33645250 DOI: 10.1152/ajpendo.00026.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of this study was to explore individual amino acid-stimulated GLP-1 responses and the underlying stimulatory mechanisms, as well as to identify the amino acid-sensing receptors involved in amino acid-stimulated GLP-1 release. Experiments were primarily based on isolated perfused rat small intestines, which have intact epithelial polarization allowing discrimination between luminal and basolateral mechanisms as well as quantitative studies of intestinal absorption and hormone secretion. Expression analysis of amino acid sensors on isolated murine GLP-1 secreting L-cells was assessed by qPCR. We found that l-valine powerfully stimulated GLP-1 secretion but only from the luminal side (2.9-fold increase). When administered from the vascular side, l-arginine and the aromatic amino acids stimulated GLP-1 secretion equally (2.6- to 2.9-fold increases). Expression analysis revealed that Casr expression was enriched in murine GLP-1 secreting L-cells, whereas Gpr35, Gprc6a, Gpr142, Gpr93 (Lpar5), and the umami taste receptor subunits Tas1r3 and Tas1r1 were not. Consistently, activation of GPR35, GPR93, GPR142, and the umami taste receptor with specific agonists or allosteric modulators did not increase GLP-1 secretion (P > 0.05 for all experiments), whereas vascular inhibition of CaSR reduced GLP-1 secretion in response to luminal infusion of mixed amino acids. In conclusion, amino acids differ in their capacity to stimulate GLP-1 secretion. Some amino acids stimulated secretion only from the intestinal lumen, whereas other amino acids exclusively stimulated secretion from the vascular side, indicating that amino acid-stimulated GLP-1 secretion involves both apical and basolateral (postabsorptive) sensing mechanisms. Sensing of absorbed amino acids involves CaSR activation as vascular inhibition of CaSR markedly diminished amino acid stimulated GLP-1 release.NEW & NOTEWORTHY Using isolated perfused rat small intestines, we show that amino acids differ in their mechanisms and capacity of stimulating GLP-1 release. Furthermore, we demonstrate that sensing by GPR142, GPR35, GPR93, and the umami taste receptor (Tas1R1/Tas1R3) are not involved in amino acid stimulated GLP-1 release. In contrast to previous studies, this experimental model allows discrimination between the luminal and the vascular side of the intestine, which is essential when studying mechanisms of amino acid-stimulated GLP-1 secretion.
Collapse
MESH Headings
- Amino Acids/pharmacology
- Animals
- Glucagon-Like Peptide 1/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Perfusion
- Rats
- Rats, Wistar
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Lysophosphatidic Acid/agonists
- Receptors, Lysophosphatidic Acid/metabolism
- Secretory Pathway/drug effects
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Ida Marie Modvig
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Ehrenreich Kuhre
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Lind Jepsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stella Feng Sheng Xu
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maja Storm Engelstoft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Lihme Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thue Walther Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 2021; 138:170492. [PMID: 33422646 DOI: 10.1016/j.peptides.2020.170492] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
In 1973, Gibbs, Young, and Smith showed that exogenous cholecystokinin (CCK) administration reduces food intake in rats. This initial report has led to thousands of studies investigating the physiological role of CCK in regulating feeding behavior. CCK is released from enteroendocrine I cells present along the gastrointestinal (GI) tract. CCK binding to its receptor CCK1R leads to vagal afferent activation providing post-ingestive feedback to the hindbrain. Vagal afferent neurons' (VAN) sensitivity to CCK is modulated by energy status while CCK signaling regulates gene expression of other feeding related signals and receptors expressed by VAN. In addition to its satiation effects, CCK acts all along the GI tract to optimize digestion and nutrient absorption. Diet-induced obesity (DIO) is characterized by reduced sensitivity to CCK and every part of the CCK system is negatively affected by chronic intake of energy-dense foods. EEC have recently been shown to adapt to diet, CCK1R is affected by dietary fats consumption, and the VAN phenotypic flexibility is lost in DIO. Altered endocannabinoid tone, changes in gut microbiota composition, and chronic inflammation are currently being explored as potential mechanisms for diet driven loss in CCK signaling. This review discusses our current understanding of how CCK controls food intake in conditions of leanness and how control is lost in chronic energy excess and obesity, potentially perpetuating excessive intake.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
27
|
Richards P, Thornberry NA, Pinto S. The gut-brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Mol Metab 2021; 46:101175. [PMID: 33548501 PMCID: PMC8085592 DOI: 10.1016/j.molmet.2021.101175] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The gut-brain axis, which mediates bidirectional communication between the gastrointestinal system and central nervous system (CNS), plays a fundamental role in multiple areas of physiology including regulating appetite, metabolism, and gastrointestinal function. The biology of the gut-brain axis is central to the efficacy of glucagon-like peptide-1 (GLP-1)-based therapies, which are now leading treatments for type 2 diabetes (T2DM) and obesity. This success and research to suggest a much broader role of gut-brain circuits in physiology and disease has led to increasing interest in targeting such circuits to discover new therapeutics. However, our current knowledge of this biology is limited, largely because the scientific tools have not been available to enable a detailed mechanistic understanding of gut-brain communication. SCOPE OF REVIEW In this review, we provide an overview of the current understanding of how sensory information from the gastrointestinal system is communicated to the central nervous system, with an emphasis on circuits involved in regulating feeding and metabolism. We then describe how recent technologies are enabling a better understanding of this system at a molecular level and how this information is leading to novel insights into gut-brain communication. We also discuss current therapeutic approaches that leverage the gut-brain axis to treat diabetes, obesity, and related disorders and describe potential novel approaches that have been enabled by recent advances in the field. MAJOR CONCLUSIONS The gut-brain axis is intimately involved in regulating glucose homeostasis and appetite, and this system plays a key role in mediating the efficacy of therapeutics that have had a major impact on treating T2DM and obesity. Research into the gut-brain axis has historically largely focused on studying individual components in this system, but new technologies are now enabling a better understanding of how signals from these components are orchestrated to regulate metabolism. While this work reveals a complexity of signaling even greater than previously appreciated, new insights are already being leveraged to explore fundamentally new approaches to treating metabolic diseases.
Collapse
Affiliation(s)
- Paul Richards
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| | | | - Shirly Pinto
- Kallyope, Inc., 430 East 29th, Street, New York, NY, 10016, USA.
| |
Collapse
|
28
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Ricardo-Silgado ML, McRae A, Acosta A. Role of Enteroendocrine Hormones in Appetite and Glycemia. ACTA ACUST UNITED AC 2021; 23. [PMID: 34179564 DOI: 10.1016/j.obmed.2021.100332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enteroendocrine cells (EECs) are specialized cells that are widely distributed throughout the gastrointestinal tract. EECs sense luminal content and release hormones, such as: ghrelin, cholecystokinin, glucagon like peptide 1, peptide YY, insulin like peptide 5, and oxyntomodulin. These hormones can enter the circulation to act on distant targets or act locally on neighboring cells and neuronal pathways to modulate food digestion, food intake, energy balance and body weight. Obesity, insulin resistance and diabetes are associated with alterations in the levels of enteroendocrine hormones. Evidence also suggests that modified regulation and release of gut hormones are the result of compensatory mechanisms in states of excess adipose tissue and hyperglycemia. This review collects the evidence available detailing pathophysiological alterations in enteroendocrine hormones and their association with appetite, obesity and glycemic control.
Collapse
Affiliation(s)
- Maria Laura Ricardo-Silgado
- Precision Medicine for Obesity Program, and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Alison McRae
- Precision Medicine for Obesity Program, and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Andres Acosta
- Precision Medicine for Obesity Program, and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
30
|
Tallis J, Shelley S, Degens H, Hill C. Age-Related Skeletal Muscle Dysfunction Is Aggravated by Obesity: An Investigation of Contractile Function, Implications and Treatment. Biomolecules 2021; 11:372. [PMID: 33801275 PMCID: PMC8000988 DOI: 10.3390/biom11030372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic and coupled with the unprecedented growth of the world's older adult population, a growing number of individuals are both old and obese. Whilst both ageing and obesity are associated with an increased prevalence of chronic health conditions and a substantial economic burden, evidence suggests that the coincident effects exacerbate negative health outcomes. A significant contributor to such detrimental effects may be the reduction in the contractile performance of skeletal muscle, given that poor muscle function is related to chronic disease, poor quality of life and all-cause mortality. Whilst the effects of ageing and obesity independently on skeletal muscle function have been investigated, the combined effects are yet to be thoroughly explored. Given the importance of skeletal muscle to whole-body health and physical function, the present study sought to provide a review of the literature to: (1) summarise the effect of obesity on the age-induced reduction in skeletal muscle contractile function; (2) understand whether obesity effects on skeletal muscle are similar in young and old muscle; (3) consider the consequences of these changes to whole-body functional performance; (4) outline important future work along with the potential for targeted intervention strategies to mitigate potential detrimental effects.
Collapse
Affiliation(s)
- Jason Tallis
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV15FB, UK;
| | - Sharn Shelley
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV15FB, UK;
| | - Hans Degens
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK;
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Cameron Hill
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK;
| |
Collapse
|
31
|
Macronutrient Sensing in the Oral Cavity and Gastrointestinal Tract: Alimentary Tastes. Nutrients 2021; 13:nu13020667. [PMID: 33669584 PMCID: PMC7922037 DOI: 10.3390/nu13020667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
There are numerous and diverse factors enabling the overconsumption of foods, with the sense of taste being one of these factors. There are four well established basic tastes: sweet, sour, salty, and bitter; all with perceptual independence, salience, and hedonic responses to encourage or discourage consumption. More recently, additional tastes have been added to the basic taste list including umami and fat, but they lack the perceptual independence and salience of the basics. There is also emerging evidence of taste responses to kokumi and carbohydrate. One interesting aspect is the link with the new and emerging tastes to macronutrients, with each macronutrient having two distinct perceptual qualities that, perhaps in combination, provide a holistic perception for each macronutrient: fat has fat taste and mouthfeel; protein has umami and kokumi; carbohydrate has sweet and carbohydrate tastes. These new tastes can be sensed in the oral cavity, but they have more influence post- than pre-ingestion. Umami, fat, kokumi, and carbohydrate tastes have been suggested as an independent category named alimentary. This narrative review will present and discuss evidence for macronutrient sensing throughout the alimentary canal and evidence of how each of the alimentary tastes may influence the consumption of foods.
Collapse
|
32
|
Duca FA, Waise TMZ, Peppler WT, Lam TKT. The metabolic impact of small intestinal nutrient sensing. Nat Commun 2021; 12:903. [PMID: 33568676 PMCID: PMC7876101 DOI: 10.1038/s41467-021-21235-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract maintains energy and glucose homeostasis, in part through nutrient-sensing and subsequent signaling to the brain and other tissues. In this review, we highlight the role of small intestinal nutrient-sensing in metabolic homeostasis, and link high-fat feeding, obesity, and diabetes with perturbations in these gut-brain signaling pathways. We identify how lipids, carbohydrates, and proteins, initiate gut peptide release from the enteroendocrine cells through small intestinal sensing pathways, and how these peptides regulate food intake, glucose tolerance, and hepatic glucose production. Lastly, we highlight how the gut microbiota impact small intestinal nutrient-sensing in normal physiology, and in disease, pharmacological and surgical settings. Emerging evidence indicates that the molecular mechanisms of small intestinal nutrient sensing in metabolic homeostasis have physiological and pathological impact as well as therapeutic potential in obesity and diabetes. The gastrointestinal tract participates in maintaining metabolic homeostasis in part through nutrient-sensing and subsequent gut-brain signalling. Here the authors review the role of small intestinal nutrient-sensing in regulation of energy intake and systemic glucose metabolism, and link high-fat diet, obesity and diabetes with perturbations in these pathways.
Collapse
Affiliation(s)
- Frank A Duca
- BIO5 Institute, University of Arizona, Tucson, AZ, USA. .,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA.
| | - T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Willem T Peppler
- Toronto General Hospital Research Institute, UHN, Toronto, Canada
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, Canada. .,Department of Physiology, University of Toronto, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, Canada. .,Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
33
|
Altered acylated ghrelin response to food intake in congenital generalized lipodystrophy. PLoS One 2021; 16:e0244667. [PMID: 33411809 PMCID: PMC7790291 DOI: 10.1371/journal.pone.0244667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Patients with congenital generalized lipodystrophy (CGL) have very low levels of leptin and are described as having a voracious appetite. However, a direct comparison between CGL and eutrophic individuals is lacking, regarding both appetite parameters and acylated ghrelin, the hormone form that is active in acute food intake stimulation. The objective of the present study was to address whether and in what extent the subjective appetite parameters and acylated ghrelin response to a meal are affected in CGL individuals, in comparison to eutrophic individuals. Additionally, an obese group was included in the study, to allow the comparison between a leptin-resistant and a leptin-deficient condition on these aspects. METHODS Eutrophic controls (EUT, n = 10), obese subjects (OB, n = 10) and CGL (n = 11) were fasted overnight and then received an ad libitum meal. Blood was collected and the visual analogue scale was applied before and 90 minutes after the meal. An additional blood sample was collected at 60 minutes for ghrelin determination. RESULTS The CGL patients showed low fasting levels of leptin and adiponectin, dyslipidemia, and insulin resistance. The caloric intake was similar among the 3 groups. However, both CGL (p = 0.02) and OB (p = 0.04) had shorter satiation times than EUT. The CGL patients also had lower satiety time (p = 0.01) and their sensation of hunger was less attenuated by the meal (p = 0.03). Fasting acylated ghrelin levels were lower in CGL than in EUT (p = 0.003). After the meal, the levels tended to decrease in EUT but not in CGL and OB individuals. CONCLUSION The data indicate that, although not hyperphagic, the CGL patients present appetite disturbances in relation to eutrophic individuals. Their low fasting levels of acylated ghrelin and the absence of the physiological drop after meal intake suggest a role of these disturbances in hunger attenuation and satiety but not in acute satiation.
Collapse
|
34
|
Smith K, Taylor GS, Allerton DM, Brunsgaard LH, Bowden Davies KA, Stevenson EJ, West DJ. The Postprandial Glycaemic and Hormonal Responses Following the Ingestion of a Novel, Ready-to-Drink Shot Containing a Low Dose of Whey Protein in Centrally Obese and Lean Adult Males: A Randomised Controlled Trial. Front Endocrinol (Lausanne) 2021; 12:696977. [PMID: 34220720 PMCID: PMC8253223 DOI: 10.3389/fendo.2021.696977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Elevated postprandial glycaemia [PPG] increases the risk of cardiometabolic complications in insulin-resistant, centrally obese individuals. Therefore, strategies that improve PPG are of importance for this population. Consuming large doses of whey protein [WP] before meals reduces PPG by delaying gastric emptying and stimulating the secretion of the incretin peptides, glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide 1 [GLP-1]. It is unclear if these effects are observed after smaller amounts of WP and what impact central adiposity has on these gastrointestinal processes. METHODS In a randomised-crossover design, 12 lean and 12 centrally obese adult males performed two 240 min mixed-meal tests, ~5-10 d apart. After an overnight fast, participants consumed a novel, ready-to-drink WP shot (15 g) or volume-matched water (100 ml; PLA) 10 min before a mixed-nutrient meal. Gastric emptying was estimated by oral acetaminophen absorbance. Interval blood samples were collected to measure glucose, insulin, GIP, GLP-1, and acetaminophen. RESULTS WP reduced PPG area under the curve [AUC0-60] by 13 and 18.2% in the centrally obese and lean cohorts, respectively (both p <0.001). In both groups, the reduction in PPG was accompanied by a two-three-fold increase in GLP-1 and delayed gastric emptying. Despite similar GLP-1 responses during PLA, GLP-1 secretion during the WP trial was ~27% lower in centrally obese individuals compared to lean (p = 0.001). In lean participants, WP increased the GLP-1ACTIVE/TOTAL ratio comparative to PLA (p = 0.004), indicative of reduced GLP-1 degradation. Conversely, no treatment effects for GLP-1ACTIVE/TOTAL were seen in obese subjects. CONCLUSION Pre-meal ingestion of a novel, ready-to-drink WP shot containing just 15 g of dietary protein reduced PPG in lean and centrally obese males. However, an attenuated GLP-1 response to mealtime WP and increased incretin degradation might impact the efficacy of nutritional strategies utilising the actions of GLP-1 to regulate PPG in centrally obese populations. Whether these defects are caused by an individual's insulin resistance, their obese state, or other obesity-related ailments needs further investigation. CLINICAL TRIAL REGISTRATION ISRCTN.com, identifier [ISRCTN95281775]. https://www.isrctn.com/.
Collapse
Affiliation(s)
- Kieran Smith
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Guy S. Taylor
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dean M. Allerton
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lise Hoej Brunsgaard
- Health and Performance Nutrition, Arla Foods Ingredients Group P/S, Viby J., Denmark
| | - Kelly A. Bowden Davies
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- School of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Emma J. Stevenson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel J. West
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Daniel J. West,
| |
Collapse
|
35
|
Abstract
Energy balance is centrally regulated by the brain through several interacting neuronal systems involving external, peripheral, and central factors within the brain. The hypothalamus integrates these factors and is the key brain area in the regulation of energy balance. In this review, we will explain the structure of the hypothalamus and its role in the regulation of energy balance. An important part of energy balance regulation is the sensing of nutrient status and availability. This review will focus on the sensing of the two main sources of energy by the hypothalamus: glucose and fat. As many common health problems and chronic diseases can be traced back to a disrupted hypothalamic function, we will also discuss hypothalamic sensing of glucose and fats in these pathologies. Finally, we will summarize the current knowledge and discuss how this may be applied clinically and for future research perspectives.
Collapse
|
36
|
Oberoi A, Giezenaar C, Jensen C, Lange K, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Acute effects of whey protein on energy intake, appetite and gastric emptying in younger and older, obese men. Nutr Diabetes 2020; 10:37. [PMID: 33004790 PMCID: PMC7531014 DOI: 10.1038/s41387-020-00139-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Obesity is becoming more prevalent in older people. A management strategy in obese, young adults is to increase dietary protein relative to other macronutrients. It is not clear if this is effective in obese, older individuals. Obesity may be associated with diminished sensitivity to nutrients. We have reported that a 30-g whey protein drink slows gastric emptying more, and suppresses energy intake less, in older, than younger, non-obese men. The aim of this study was to determine the effect of a 30 g whey protein drink on energy intake, GE and glycaemia in obese, older and younger men. METHODS In randomized, double-blind order, 10 younger (age: 27 ± 2 years; BMI: 36 ± 2 kg/m²), and 10 older (72 ± 1 years; 33 ± 1 kg/m²), obese men were studied twice. After an overnight fast, subjects ingested a test drink containing 30 g whey protein (120 kcal) or control (2 kcal). Postprandial gastric emptying (antral area, 2D Ultrasound) and blood glucose concentrations were measured for 180 min. At t = 180 min subjects were given a buffet meal and ad libitum energy intake was assessed. RESULTS Older subjects ate non-significantly less (~20%) that the younger subjects (effect of age, P = 0.16). Whey protein had no effect on subsequent energy intake (kcal) compared to control in either the younger (decrease 3 ± 8%) or older (decrease 2 ± 8%) obese men (age effect P > 0.05, protein effect P = 0.46, age × protein interaction effect P = 0.84). Whey protein slowed gastric emptying, to a similar degree in both age groups (50% emptying time: control vs. protein young men: 255 ± 5 min vs. 40 ± 7 min; older men: 16 ± 5 min vs. 50 ± 8 min; protein effect P = 0.001, age effect P = 0.93, age × protein interaction effect P = 0.13). CONCLUSIONS Our data suggest that obesity may blunt/abolish the age-related effect of whey protein on suppression of energy intake.
Collapse
Affiliation(s)
- Avneet Oberoi
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | | | - Caroline Jensen
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kylie Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Trygve Hausken
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Ian Chapman
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia
| | - Stijn Soenen
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Royal Adelaide Hospital, South-Australia, SA, Australia.
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia.
| |
Collapse
|
37
|
Martins C, Dutton GR, Hunter GR, Gower BA. Revisiting the Compensatory Theory as an explanatory model for relapse in obesity management. Am J Clin Nutr 2020; 112:1170-1179. [PMID: 32936896 PMCID: PMC7657332 DOI: 10.1093/ajcn/nqaa243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Weight regain remains the main challenge in obesity management, and its etiology remains elusive. The aim of the present review was to revise the available evidence regarding the "Compensatory Theory," which is an explanatory model of relapse in obesity treatment, and to propose alternative mechanisms that can contribute to weight regain. It has been proposed, and generally accepted as true, that when a person loses weight the body fights back, with physiological adaptations on both sides of the energy balance equation that try to bring body weight back to its original state: this is the Compensatory Theory. This theory proposes that the increased orexigenic drive to eat and the reduced energy expenditure that follow weight loss are the main drivers of relapse. However, evidence showing a link between these physiological adaptations to weight loss and weight regain is lacking. Here, we propose that the physiological adaptations to weight loss, both at the level of the homeostatic appetite control system and energy expenditure, are in fact a normalization to a lower body weight and not drivers of weight regain. In light of this we explore other potential mechanisms, both physiological and behavioral, that can contribute to the high incidence of relapse in obesity management. More research is needed to clearly ascertain whether the changes in energy expenditure and homeostatic appetite markers seen in reduced-obese individuals are a compensatory mechanism that drives relapse or a normalization towards a lower body weight, and to explore alternative hypotheses that explain relapse in obesity management.
Collapse
Affiliation(s)
| | - Gareth R Dutton
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
38
|
Koliaki C, Liatis S, Dalamaga M, Kokkinos A. The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Curr Obes Rep 2020; 9:255-271. [PMID: 32647952 DOI: 10.1007/s13679-020-00396-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review provides an update on the role of gut hormones and their interactions in the regulation of energy homeostasis, describes gut hormone adaptations in obesity and in response to weight loss, and summarizes the current evidence on the role of gut hormone-based therapies for obesity treatment. RECENT FINDINGS Gut hormones play a key role in regulating eating behaviour, energy and glucose homeostasis. Dysregulated gut hormone responses have been proposed to be pathogenetically involved in the development and perpetuation of obesity. Summarizing the major gut hormone changes in obesity, obese individuals are characterized by blunted postprandial ghrelin suppression, loss of premeal ghrelin peaks, impaired diurnal ghrelin variability and reduced fasting and postprandial levels of anorexigenic peptides. Adaptive alterations of gut hormone levels are implicated in weight regain, thus complicating hypocaloric dietary interventions, and can further explain the profound weight loss and metabolic improvement following bariatric surgery. A plethora of compounds mimicking gut hormone changes after bariatric surgery are currently under investigation, introducing a new era in the pharmacotherapy of obesity. The current trend is to combine different gut hormone receptor agonists and target multiple systems simultaneously, in order to replicate as closely as possible the gut hormone milieu after bariatric surgery and circumvent the counter-regulatory adaptive changes associated with dietary energy restriction. An increasing number of preclinical and early-phase clinical trials reveal the additive benefits obtained with dual or triple gut peptide receptor agonists in reducing body weight and improving glycaemia. Gut hormones act as potent regulators of energy and glucose homeostasis. Therapeutic strategies targeting their levels or receptors emerge as a promising approach to treat patients with obesity and hyperglycaemia.
Collapse
Affiliation(s)
- Chrysi Koliaki
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece.
| | - Stavros Liatis
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| |
Collapse
|
39
|
Enteroendocrine Hormone Secretion and Metabolic Control: Importance of the Region of the Gut Stimulation. Pharmaceutics 2020; 12:pharmaceutics12090790. [PMID: 32825608 PMCID: PMC7559385 DOI: 10.3390/pharmaceutics12090790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is now widely appreciated that gastrointestinal function is central to the regulation of metabolic homeostasis. Following meal ingestion, the delivery of nutrients from the stomach into the small intestine (i.e., gastric emptying) is tightly controlled to optimise their subsequent digestion and absorption. The complex interaction of intraluminal nutrients (and other bioactive compounds, such as bile acids) with the small and large intestine induces the release of an array of gastrointestinal hormones from specialised enteroendocrine cells (EECs) distributed in various regions of the gut, which in turn to regulate gastric emptying, appetite and postprandial glucose metabolism. Stimulation of gastrointestinal hormone secretion, therefore, represents a promising strategy for the management of metabolic disorders, particularly obesity and type 2 diabetes mellitus (T2DM). That EECs are distributed distinctively between the proximal and distal gut suggests that the region of the gut exposed to intraluminal stimuli is of major relevance to the secretion profile of gastrointestinal hormones and associated metabolic responses. This review discusses the process of intestinal digestion and absorption and their impacts on the release of gastrointestinal hormones and the regulation of postprandial metabolism, with an emphasis on the differences between the proximal and distal gut, and implications for the management of obesity and T2DM.
Collapse
|
40
|
Kohanmoo A, Faghih S, Akhlaghi M. Effect of short- and long-term protein consumption on appetite and appetite-regulating gastrointestinal hormones, a systematic review and meta-analysis of randomized controlled trials. Physiol Behav 2020; 226:113123. [PMID: 32768415 DOI: 10.1016/j.physbeh.2020.113123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023]
Abstract
AIM High-protein diets are considered as useful diets for weight loss programs. We collected randomized controlled trials that evaluated the effect of protein on appetite and gastrointestinal hormones involved in appetite regulation. METHODS Trials were included if participants were healthy adults and isocaloric treatments were used in control and treatment arms. Random-effects model was used to calculate mean difference and 95% confidence intervals. RESULTS In total, 49 publications for acute and 19 articles for long-term effect of protein were included. In acute interventions, protein decreased hunger (-7 mm visual analogue scale (VAS), P<0.001), desire to eat (-5 mm, P = 0.045), and prospective food consumption (-5 mm, P = 0.001) and increased fullness (10 mm, P<0.001) and satiety (4 mm, P<0.001). There was also a decrease in ghrelin (-20 pg/ml, P<0.001) and increase in cholecystokinin (30 pg/ml, P<0.001) and glucagon-like peptide-1 (GLP-1) (21 ng/ml, P<0.001), but no change in gastric inhibitory polypeptide and peptide YY was observed. Appetite markers were affected by protein doses < 35 g but ghrelin, cholecystokinin, and GLP-1 changed significantly after doses ≥ 35 g. Long-term ingestion of protein did not affect these outcomes, except for GLP-1 which showed a significant decrease. CONCLUSION Results of this meta-analysis showed that acute ingestion of protein suppresses appetite, decreases ghrelin, and augments cholecystokinin and GLP-1. Results of long-term trials are inconclusive and further trials are required before a clear and sound conclusion on these trials could be made.
Collapse
Affiliation(s)
- Ali Kohanmoo
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Faghih
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Dietary protein and appetite sensations in individuals with overweight and obesity: a systematic review. Eur J Nutr 2020; 59:2317-2332. [PMID: 32648023 DOI: 10.1007/s00394-020-02321-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE This systematic review aimed to synthesize the available evidence on the effects of a high-protein diet on appetite sensations in individuals with overweight and obesity. METHODS Two authors independently conducted literature searches, study selection, design of the method, and quality appraisal. The main inclusion criteria were studies involving protocols that present a protein intake greater than 1.2 g/kg/day or 25% of the total daily energy content compared to a normal protein diet, i.e., 0.8-1.2 g/kg/day or 15%-20% of the total energy content. Studies that evaluated test meals or diet within a period of less than 7 days and participants with diabetes, cancer, or other specific conditions were excluded from this review. The literature search was updated until November 2019 using the main databases available. RESULTS Of a total of 4191 records, ten articles met the inclusion criteria and included a total of 1079 subjects. In six studies, participants experienced enhanced fullness or satiety in response to a high-dietary protein intake, of which four studies had an intervention period of 10-12 weeks. CONCLUSION Our results suggest that among individuals with overweight or obesity, higher dietary protein intake may influence appetite sensations by enhancing fullness or satiety. The low level of evidence, due to the heterogeneity of the protocols and the high risk of bias, highlights the need for further studies to confirm these results.
Collapse
|
42
|
DeBenedictis JN, Nymo S, Ollestad KH, Boyesen GA, Rehfeld JF, Holst JJ, Truby H, Kulseng B, Martins C. Changes in the Homeostatic Appetite System After Weight Loss Reflect a Normalization Toward a Lower Body Weight. J Clin Endocrinol Metab 2020; 105:5821263. [PMID: 32301981 PMCID: PMC7250208 DOI: 10.1210/clinem/dgaa202] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To compare appetite markers in reduced-obese individuals with a nonobese control group. METHODS A total of 34 adults with obesity who lost 17% body weight at week 13 and maintained this weight loss (WL) at 1 year were compared with 33 nonobese controls matched for body composition. Basal and postprandial subjective appetite ratings and appetite-related hormone concentrations (ghrelin, total peptide YY, peptide YY3-36, total and active glucagon-like peptide 1, and cholecystokinin) were measured in all participants and repeated at week 13 and 1 year in the weight-reduced group. RESULTS WL led to a reduction in prospective food consumption and an increase in feelings of hunger, fullness, and ghrelin secretion (basal and postprandial), but these new ratings were no different from those seen in controls. Postprandial concentrations of active glucagon-like peptide 1, total peptide YY, and cholecystokinin were lower in individuals with obesity at all time points compared with controls. CONCLUSION The increased drive to eat (both subjective feelings of hunger and ghrelin concentrations) seen in reduced-obese individuals, both after acute and sustained WL, reflects a normalization toward a lower body weight. Overall, WL does not have a sustained negative impact on satiety peptide secretion, despite a blunted secretion in individuals with obesity compared with nonobese controls.
Collapse
Affiliation(s)
- Julia Nicole DeBenedictis
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siren Nymo
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Clinic of Surgery, Namsos Hospital, Norway
| | - Karoline Haagensli Ollestad
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Guro Akersveen Boyesen
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens Frederik Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Novo Nordisk Foundation, Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helen Truby
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Bard Kulseng
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
| | - Catia Martins
- Obesity Research Group, Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Obesity and Innovation (ObeCe), Clinic of Surgery, St. Olav University Hospital, Trondheim, Norway
- Correspondence and Reprint Requests: Catia Martins, Department of Clinical and Molecular Medicine, NTNU, Forsyningssenteret, Prinsesse Kristinas gate 5, 7030 Trondheim, Norway. E-mail:
| |
Collapse
|
43
|
Abstract
The enteroendocrine system is located in the gastrointestinal (GI) tract, and makes up the largest endocrine system in the human body. Despite that, its roles and functions remain incompletely understood. Gut regulatory peptides are the main products of enteroendocrine cells, and play an integral role in the digestion and absorption of nutrients through their effect on intestinal secretions and gut motility. Several peptides, such as cholecystokinin, polypeptide YY and glucagon-like peptide-1, have traditionally been reported to suppress appetite following food intake, so-called satiety hormones. In this review, we propose that, in the healthy individual, this system to regulate appetite does not play a dominant role in normal food intake regulation, and that there is insufficient evidence to wholly link postprandial endogenous gut peptides with appetite-related behaviours. Instead, or additionally, top-down, hedonic drive and neurocognitive factors may have more of an impact on food intake. In GI disease however, supraphysiological levels of these hormones may have more of an impact on appetite regulation as well as contributing to other unpleasant abdominal symptoms, potentially as part of an innate response to injury. Further work is required to better understand the mechanisms involved in appetite control and unlock the therapeutic potential offered by the enteroendocrine system in GI disease and obesity.
Collapse
|
44
|
Rehfeld JF. Measurement of cholecystokinin in plasma with reference to nutrition related obesity studies. Nutr Res 2020; 76:1-8. [DOI: 10.1016/j.nutres.2020.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
|
45
|
Flechtner-Mors M, Thoma U, Wittmann R, Boehm BO, Mors M, Steinacker JM, Schumann U. The Effect of Potato Protease Inhibitor II on Gastrointestinal Hormones and Satiety in Humans During Weight Reduction. Diabetes Metab Syndr Obes 2020; 13:521-534. [PMID: 32161479 PMCID: PMC7049780 DOI: 10.2147/dmso.s201853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022] Open
Abstract
CONTEXT It is questioned whether the potato protein protease inhibitor II (PI2) reduces appetite and exerts effects on the satiety hormone cholecystokinin (CCK). OBJECTIVE To investigate PI2 impact on gastrointestinal hormones and appetite measures during weight reduction. DESIGN In a randomized, placebo-controlled trial over 20 weeks, fifty-two overweight/obese participants (BMI 25.2-38.0 kg/m2) received a protein-rich diet (30%) adjusted to 500 kcal below their individual daily needs. Subjects ingested a capsule containing either PI2 (150 mg) or placebo twice daily 1 hr before lunch and dinner. At week 0 and week 10 participants joined breakfast test meals to determine CCK, GLP-1, ghrelin, leptin, glucose and insulin concentrations in a time course experimental manner. Appetite sensations were measured on test meal days and in week 4, 9, 14 and 19 using visual analogue scales. RESULTS Weight loss at week 10 and 20 in the PI2 group was 4.3±3.1 kg and 5.6±4.1 kg, in the control group: 4.7±4.0 kg and 6.8±3.7 kg. A significant effect of PI2 on circulating CCK levels was observed at week 10. The other hormones were unaffected by PI2. At week 10, PI2 group subjects showed higher satiety and decreased desire to eat compared to placebo. During study duration, PI2 showed a significant impact on appetite ratings prior to lunch, one hour before dinner and just before dinner. CONCLUSION PI2 increased circulating CCK plasma levels during the diet intervention. Likewise, PI2 modulated appetite sensation from week 4 to 20. The study demonstrated that the PI2 can modulate a key satiety signal.
Collapse
Affiliation(s)
- Marion Flechtner-Mors
- University Medical Center Ulm, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
- Correspondence: Marion Flechtner-Mors Department of Internal Medicine II, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Leimgrubenweg 14, Ulm89075, GermanyTel + 49 731 50045330Fax + 49 731 50045333 Email
| | - Ulrike Thoma
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Regina Wittmann
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Bernhard O Boehm
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- Imperial College London, London, UK
| | - Mona Mors
- University Medical Center Ulm, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Jürgen M Steinacker
- University Medical Center Ulm, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| | - Uwe Schumann
- University Medical Center Ulm, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
46
|
Makaronidis JM, Batterham RL. The role of gut hormones in the pathogenesis and management of obesity. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Elovaris RA, Hutchison AT, Lange K, Horowitz M, Feinle-Bisset C, Luscombe-Marsh ND. Plasma Free Amino Acid Responses to Whey Protein and Their Relationships with Gastric Emptying, Blood Glucose- and Appetite-Regulatory Hormones and Energy Intake in Lean Healthy Men. Nutrients 2019; 11:nu11102465. [PMID: 31618863 PMCID: PMC6835323 DOI: 10.3390/nu11102465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
This study determined the effects of increasing loads of whey protein on plasma amino acid (AA) concentrations, and their relationships with gastric emptying, blood glucose- and appetite-regulatory hormones, blood glucose and energy intake. Eighteen healthy lean men participated in a double-blinded study, in which they consumed, on 3 separate occasions, in randomised order, 450-mL drinks containing either 30 g (L) or 70 g (H) of pure whey protein isolate, or control with 0 g of protein (C). Gastric emptying, serum concentrations of AAs, ghrelin, cholecystokinin (CCK), glucagon-like-peptide 1 (GLP-1), insulin, glucagon and blood glucose were measured before and after the drinks over 180 min. Then energy intake was quantified. All AAs were increased, and 7/20 AAs were increased more by H than L. Incremental areas under the curve (iAUC0-180 min) for CCK, GLP-1, insulin and glucagon were correlated positively with iAUCs of 19/20 AAs (p < 0.05). The strongest correlations were with the branched-chain AAs as well as lysine, tyrosine, methionine, tryptophan, and aspartic acid (all R2 > 0.52, p < 0.05). Blood glucose did not correlate with any AA (all p > 0.05). Ghrelin and energy intake correlated inversely, but only weakly, with 15/20 AAs (all R2 < 0.34, p < 0.05). There is a strong relationship between gluco-regulatory hormones with a number of (predominantly essential) AAs. However, the factors mediating the effects of protein on blood glucose and energy intake are likely to be multifactorial.
Collapse
Affiliation(s)
- Rachel A Elovaris
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Amy T Hutchison
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
- Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia.
| | - Kylie Lange
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Michael Horowitz
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Christine Feinle-Bisset
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
| | - Natalie D Luscombe-Marsh
- Adelaide Medical School and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Nutrition and Health Program, P.O. Box 10097, Adelaide 5000, Australia.
| |
Collapse
|
48
|
Alam I, Almajwal AM, Alam W, Alam I, Ullah N, Abulmeaaty M, Razak S, Khan S, Pawelec G, Paracha PI. The immune-nutrition interplay in aging – facts and controversies. ACTA ACUST UNITED AC 2019. [DOI: 10.3233/nha-170034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Iftikhar Alam
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Human Nutrition & Dietetics, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, Pakistan
- Tübingen Ageing and Tumour Immunology Group, Zentrum für Medizinische Forschung, University of Tübingen, Tübingen, Germany
| | - Ali M. Almajwal
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Wajid Alam
- Oral and Maxillofacial Surgery, Khyber Colleg of Dentistry, KPK, Peshawar, Pakistan
| | - Ibrar Alam
- Department of Biotechnology, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Ullah
- Department of Human Nutrition, The Agriculture University Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mahmoud Abulmeaaty
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, Clinical Nutrition Program, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saleem Khan
- Department of Human Nutrition, The Agriculture University Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Graham Pawelec
- Tübingen Ageing and Tumour Immunology Group, Zentrum für Medizinische Forschung, University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, ON, Canada
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Parvez Iqbal Paracha
- Department of Human Nutrition, The Agriculture University Peshawar, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
49
|
Dietary energy density and appetite: A systematic review and meta-analysis of clinical trials. Nutrition 2019; 69:110551. [PMID: 31525704 DOI: 10.1016/j.nut.2019.110551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
Abstract
Studies have suggested that dietary energy density (DED) may affect weight gain by altering appetite. Although many studies have investigated the effect of DED on appetite, findings are inconsistent and, to our knowledge, there are no systematic reviews and meta-analyses on this topic. Therefore, the aim of this systematic review and meta-analysis was to summarize the effect of DED on appetite. The current meta-analysis revealed changing the DED had no significant effect on hunger but increased fullness. More high-quality randomized controlled trials are needed to investigate the effects of DED on appetite components. We searched titles, abstracts, and keywords of articles indexed in ScienceDirect, MEDLINE, and Google Scholar databases up to July 2018 to identify eligible RCT studies. Random effects model was used to estimate the pooled effect of DED on appetite. Among the 21 studies identified in the systematic literature search, 11 reports were included in the meta-analysis. Based on the Cochrane Collaboration Risk of Bias tool, 6 studies were considered as good quality, two were fair, and three studies were poor. The mean ± standard deviation for energy density, in studies which assessed fullness, was 1.65 ± 1 in high energy dense (HED) diet and 0.93 ± 0.93 in low energy dense (LED) diet. The corresponding values for hunger were 1.67 ± 0.69 and 0.70 ± 0.32, respectively. Compared with a LED diet, consumption of HED increased fullness (weighed mean difference [WMD] 2.95 mm; 95% CI 0.07-5.82, P = 0.044, I2 98.1%) but had no significant effect on hunger (WMD 1.31 mm; 95% CI -7.20 to 9.82, P = 0.763, I2 99.1%). The current meta-analysis revealed changing the DED had no significant effect on hunger but increased fullness. More high-quality RCTs are needed to investigate the effects of DED on appetite components.
Collapse
|
50
|
How Satiating Are the 'Satiety' Peptides: A Problem of Pharmacology versus Physiology in the Development of Novel Foods for Regulation of Food Intake. Nutrients 2019; 11:nu11071517. [PMID: 31277416 PMCID: PMC6682889 DOI: 10.3390/nu11071517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Developing novel foods to suppress energy intake and promote negative energy balance and weight loss has been a long-term but commonly unsuccessful challenge. Targeting regulation of appetite is of interest to public health researchers and industry in the quest to develop ‘functional’ foods, but poor understanding of the underpinning mechanisms regulating food intake has hampered progress. The gastrointestinal (GI) or ‘satiety’ peptides including cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) secreted following a meal, have long been purported as predictive biomarkers of appetite response, including food intake. Whilst peptide infusion drives a clear change in hunger/fullness and eating behaviour, inducing GI-peptide secretion through diet may not, possibly due to modest effects of single meals on peptide levels. We conducted a review of 70 dietary preload (DIET) and peptide infusion (INFUSION) studies in lean healthy adults that reported outcomes of CCK, GLP-1 and PYY. DIET studies were acute preload interventions. INFUSION studies showed that minimum increase required to suppress ad libitum energy intake for CCK, GLP-1 and PYY was 3.6-, 4.0- and 3.1-fold, respectively, achieved through DIET in only 29%, 0% and 8% of interventions. Whether circulating ‘thresholds’ of peptide concentration likely required for behavioural change can be achieved through diet is questionable. As yet, no individual or group of peptides can be measured in blood to reliably predict feelings of hunger and food intake. Developing foods that successfully target enhanced secretion of GI-origin ‘satiety’ peptides for weight loss remains a significant challenge.
Collapse
|