1
|
Gleeson JP, Chaudhary N, Fein KC, Doerfler R, Hredzak-Showalter P, Whitehead KA. Profiling of mature-stage human breast milk cells identifies six unique lactocyte subpopulations. SCIENCE ADVANCES 2022; 8:eabm6865. [PMID: 35767604 PMCID: PMC9242445 DOI: 10.1126/sciadv.abm6865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Breast milk is chock-full of nutrients, immunological factors, and cells that aid infant development. Maternal cells are the least studied breast milk component, and their unique properties are difficult to identify using traditional techniques. Here, we characterized the cells in mature-stage breast milk from healthy donors at the protein, gene, and transcriptome levels. Holistic analysis of flow cytometry, quantitative polymerase chain reaction, and single-cell RNA sequencing data identified the predominant cell population as epithelial with smaller populations of macrophages and T cells. Two percent of epithelial cells expressed four stem cell markers: SOX2, TRA-1-60, NANOG, and SSEA4. Furthermore, milk contained six distinct epithelial lactocyte subpopulations, including three previously unidentified subpopulations programmed toward mucosal defense and intestinal development. Pseudotime analysis delineated the differentiation pathways of epithelial progenitors. Together, these data define healthy human maternal breast milk cells and provide a basis for their application in maternal and infant medicine.
Collapse
Affiliation(s)
- John P. Gleeson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Katherine C. Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rose Doerfler
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Zhang HZ, Chae DS, Kim SW. ASC and SVF Cells Synergistically Induce Neovascularization in Ischemic Hindlimb Following Cotransplantation. Int J Mol Sci 2021; 23:ijms23010185. [PMID: 35008610 PMCID: PMC8745515 DOI: 10.3390/ijms23010185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/29/2023] Open
Abstract
Previously, we reported the angio-vasculogenic properties of human stromal vascular fraction (SVF) and adipose tissue-derived mesenchymal stem cells (ASCs). In this study, we investigated whether the combination of ASCs and SVF cells exhibited synergistic angiogenic properties. We conducted quantitative (q)RT-PCR, Matrigel plug, tube formation assays, and in vivo therapeutic assays using an ischemic hind limb mouse model. Immunohistochemical analysis was also conducted. qRT-PCR results revealed that FGF-2 was highly upregulated in ASCs compared with SVF, while PDGF-b and VEGF-A were highly upregulated in SVF. Conditioned medium from mixed cultures of ASCs and SVF (A+S) cells showed higher Matrigel tube formation and endothelial cell proliferation in vitro. A+S cell transplantation into ischemic mouse hind limbs strongly prevented limb loss and augmented blood perfusion compared with SVF cell transplantation. Transplanted A+S cells also showed high capillary density, cell proliferation, angiogenic cytokines, and anti-apoptotic potential in vivo compared with transplanted SVF. Our data indicate that A+S cell transplantation results in synergistic angiogenic therapeutic effects. Accordingly, A+S cell injection could be an alternative therapeutic strategy for treating ischemic diseases.
Collapse
Affiliation(s)
- Hong Zhe Zhang
- Department of Cardiology, College of Medicine, Dong-A University, Busan 49201, Korea;
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
- Correspondence: (D.-S.C.); (S.-W.K.); Tel.: +82-32-290-3150 (D.-S.C.); +82-32-290-2616 (S.-W.K.); Fax: +82-32-290-3879 (D.-S.C.); +82-32-290-2620 (S.-W.K.)
| | - Sung-Whan Kim
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung 25601, Korea
- Correspondence: (D.-S.C.); (S.-W.K.); Tel.: +82-32-290-3150 (D.-S.C.); +82-32-290-2616 (S.-W.K.); Fax: +82-32-290-3879 (D.-S.C.); +82-32-290-2620 (S.-W.K.)
| |
Collapse
|
3
|
Enhancing esophageal repair with bioactive bilayer mesh containing FGF. Sci Rep 2021; 11:19203. [PMID: 34584186 PMCID: PMC8478899 DOI: 10.1038/s41598-021-98840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/09/2021] [Indexed: 11/08/2022] Open
Abstract
We aimed to prepare a bioactive and biodegradable bilayer mesh formed by fibroblast growth factor (FGF) loaded gelatin film layer, and poly ε-caprolactone (PCL) film layer, and to investigate its treatment efficacy on esophageal anastomosis. It is envisaged that the bioactive mesh in in vivo model would improve tissue healing in rats. The full thickness semicircular defects of 0.5 × 0.5 cm2 were created in anterior walls of abdominal esophagus. The control group had abdominal esophagus isolated with distal esophageal blunt dissection, and sham group had primary anastomosis. In the test groups, the defects were covered with bilayer polymeric meshes containing FGF (5 μg/2 cm2), or not. All rats were sacrificed for histopathology investigation after 7 or 28 days of operation. The groups are coded as FGF(-)-7th day, FGF(+)-7th day, and FGF(+)-28th day, based on their content and operation day. Highest burst pressures were obtained for FGF(+)-7th day, and FGF(+)-28th day groups (p < 0.005) and decreased inflammation grades were observed. Submucosal and muscular collagen deposition scores were markedly increased in these groups compared to sham and FGF(-)-7th day groups having no FGF (p = 0.002, p = 0.001, respectively). It was proved that FGF loaded bioactive bilayer mesh provided effective repair, reinforcement and tissue healing of esophageal defects.
Collapse
|
4
|
Somal A, Bhat IA, Pandey S, Ansari MM, Indu B, Panda BSK, Bharti MK, Chandra V, Saikumar G, Sharma GT. Comparative analysis of the immunomodulatory potential of caprine fetal adnexa derived mesenchymal stem cells. Mol Biol Rep 2021; 48:3913-3923. [PMID: 34050503 DOI: 10.1007/s11033-021-06383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
The caprine mesenchymal stem cells (MSCs) derived from fetal adnexa are highly proliferative. These cells possess tri-lineage differentiation potential and express MSC surface antigens and pluripotency markers with a wound-healing potential. This present study was conducted to compare the immunomodulatory potential of caprine MSCs derived from the fetal adnexa. Mid-gestation caprine uteri (2-3 months) were collected from the abattoir to isolate MSCs from amniotic fluid (cAF), amniotic sac (cAS), Wharton's jelly (cWJ) and cord blood (cCB), which were expanded and characterized at the 3rd passage. These MSCs were then stimulated with inflammatory cytokines (IFN-γ and TNF-α) to assess the percentage of inhibition produced on peripheral blood mononuclear cells (PBMCs) proliferation. The percentage of inhibition on activated PBMCs proliferation produced by cWJ MSCs and cAS MSCs was significantly higher than cCB and cAF MSCs. The relative mRNA expression profile and immunofluorescent localization of different immunomodulatory cytokines and growth factors were conducted upon stimulation. The mRNA expression profile of a set of different cytokines and growth factors in each caprine fetal adnexa MSCs were modulated. Indoleamine 2, 3 dioxygenase appeared to be the major immunomodulator in cWJ, cAF, and cCB MSCs whereas inducible nitric oxide synthase in cAS MSCs. This study suggests that caprine MSCs derived from fetal adnexa display variable immunomodulatory potential, which appears to be modulated by different molecules among sources.
Collapse
Affiliation(s)
- Anjali Somal
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Irfan A Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Sriti Pandey
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Mohd Matin Ansari
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | | | - Bibhudatta S K Panda
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Mukesh Kumar Bharti
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - G Saikumar
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - G Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India.
| |
Collapse
|
5
|
Colon Fibroblasts and Inflammation: Sparring Partners in Colorectal Cancer Initiation? Cancers (Basel) 2021; 13:cancers13081749. [PMID: 33916891 PMCID: PMC8067599 DOI: 10.3390/cancers13081749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cause of cancer-related death. Patients suffering inflammatory bowel disease have an increased risk of CRC. It is admitted that CRC found its origin within crypts of the colon mucosa, which host the intestinal stem cells (ISCs) responsible of the tissue renewal. ISC behavior is controlled by the fibroblasts that surround the crypt. During inflammation, the signals delivered by fibroblasts are altered, leading to stem cells’ dysregulation, possibly turning them into cancer-initiating cells. Here, we reviewed the interplays between the fibroblast and the ISCs, possibly leading to the initiation of CRC due to chronic inflammation. Abstract Colorectal cancer (CRC) is the third most common cause of cancer-related death. Significant improvements in CRC treatment have been made for the last 20 years, on one hand thanks to a better detection, allowing surgical resection of the incriminated area, and on the other hand, thanks to a better knowledge of CRC’s development allowing the improvement of drug strategies. Despite this crucial progress, CRC remains a public health issue. The current model for CRC initiation and progression is based on accumulation of sequential known genetic mutations in the colon epithelial cells’ genome leading to a loss of control over proliferation and survival. However, increasing evidence reveals that CRC initiation is more complex. Indeed, chronic inflammatory contexts, such as inflammatory bowel diseases, have been shown to increase the risk for CRC development in mice and humans. In this manuscript, we review whether colon fibroblasts can go from the main regulators of the ISC homeostasis, regulating not only the renewal process but also the epithelial cells’ differentiation occurring along the colon crypt, to the main player in the initiation of the colorectal cancer process due to chronic inflammation.
Collapse
|
6
|
SenthilKumar G, Fisher MM, Skiba JH, Miller MC, Brennan SR, Kaushik S, Bradley ST, Longhurst CA, Buehler D, Nickel KP, Iyer G, Kimple RJ, Baschnagel AM. FGFR Inhibition Enhances Sensitivity to Radiation in Non-Small Cell Lung Cancer. Mol Cancer Ther 2020; 19:1255-1265. [PMID: 32371583 DOI: 10.1158/1535-7163.mct-19-0931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022]
Abstract
FGFRs are commonly altered in non-small cell lung cancer (NSCLC). FGFRs activate multiple pathways including RAS/RAF/MAPK, PI3K/AKT, and STAT, which may play a role in the cellular response to radiation. We investigated the effects of combining the selective FGFR 1-3 tyrosine kinase inhibitor AZD4547 with radiation in cell line and xenograft models of NSCLC. NSCLC cell lines were assessed with proliferation, clonogenic survival, apoptosis, autophagy, cell cycle, and DNA damage signaling and repair assays. In vivo xenografts and IHC were used to confirm in vitro results. NSCLC cell lines demonstrated varying degrees of FGFR protein and mRNA expression. In vitro clonogenic survival assays showed radiosensitization with AZD4547 in two NSCLC cell lines. In these two cell lines, an increase in apoptosis and autophagy was observed with combined radiation and AZD4547. The addition of AZD4547 to radiation did not significantly affect γH2AX foci formation. Enhanced xenograft tumor growth delay was observed with the combination of radiation and AZD4547 compared with radiation or drug alone. IHC results revealed inhibition of pMAPK and pS6 and demonstrated an increase in apoptosis in the radiation plus AZD4547 group. This study demonstrates that FGFR inhibition by AZD4547 enhances the response of radiation in FGFR-expressing NSCLC in vitro and in vivo model systems. These results support further investigation of combining FGFR inhibition with radiation as a clinical therapeutic strategy.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael M Fisher
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Justin H Skiba
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Margot C Miller
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean R Brennan
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Saakshi Kaushik
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Samantha T Bradley
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Colin A Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kwangok P Nickel
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Andrew M Baschnagel
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
7
|
Fisher MM, SenthilKumar G, Hu R, Goldstein S, Ong IM, Miller MC, Brennan SR, Kaushik S, Abel L, Nickel KP, Iyer G, Harari PM, Kimple RJ, Baschnagel AM. Fibroblast Growth Factor Receptors as Targets for Radiosensitization in Head and Neck Squamous Cell Carcinomas. Int J Radiat Oncol Biol Phys 2020; 107:793-803. [PMID: 32298810 DOI: 10.1016/j.ijrobp.2020.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE We examined the capacity of the pan-fibroblast growth factor receptor (FGFR) inhibitor AZD4547 to augment radiation response across a panel of head and neck squamous cell carcinoma (HNSCC) cell lines and xenografts. METHODS AND MATERIALS FGFR1, FGFR2, and FGFR3 RNA in situ hybridization expression was assessed in a cohort of HNSCC patient samples, cell lines, and patient-derived xenografts (PDXs). In vitro effects of AZD4547 and radiation on cell survival, FGFR signaling, apoptosis, autophagy, cell cycle, and DNA damage repair were evaluated. Reverse phase protein array was used to identify differentially phosphorylated proteins in cells treated with AZD4547. In vivo tumor responses were evaluated in cell lines and PDX models. RESULTS FGFR1, FGFR2, and FGFR3 RNA in situ hybridization were expressed in 41%, 81%, and 89% of 107 oropharynx patient samples. Sensitivity to AZD4547 did not directly correlate with FGFR protein or RNA expression. In sensitive cell lines, AZD4547 inhibited p-MAPK in a time-dependent manner. Significant radiosensitization with AZD4547 was observed in cell lines that were sensitive to AZD4547. The mechanism underlying these effects appears to be multifactorial, involving inhibition of the MTOR pathway and subsequent enhancement of autophagy and activation of apoptotic pathways. Significant tumor growth delay was observed when AZD4547 was combined with radiation compared with radiation or drug alone in an FGFR-expressing HNSCC cell line xenograft and PDX. CONCLUSIONS These findings suggest that AZD4547 can augment the response of radiation in FGFR-expressing HNSCC in vivo model systems. FGFR1 and FGFR2 may prove worthy targets for radiosensitization in HNSCC clinical investigations.
Collapse
Affiliation(s)
- Michael M Fisher
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gopika SenthilKumar
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Steve Goldstein
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Margot C Miller
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Sean R Brennan
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Saakshi Kaushik
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Lindsey Abel
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Kwangok P Nickel
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Andrew M Baschnagel
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
8
|
Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, Enyati N, Pasia G, Maesincee D, Ocon V, Abdulridha M, Longo VD. Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Rep 2019; 26:2704-2719.e6. [PMID: 30840892 PMCID: PMC6528490 DOI: 10.1016/j.celrep.2019.02.019] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/01/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Dietary interventions are potentially effective therapies for inflammatory bowel diseases (IBDs). We tested the effect of 4-day fasting-mimicking diet (FMD) cycles on a chronic dextran sodium sulfate (DSS)-induced murine model resulting in symptoms and pathology associated with IBD. These FMD cycles reduced intestinal inflammation, increased stem cell number, stimulated protective gut microbiota, and reversed intestinal pathology caused by DSS, whereas water-only fasting increased regenerative and reduced inflammatory markers without reversing pathology. Transplants of Lactobacillus or fecal microbiota from DSS- and FMD-treated mice reversed DSS-induced colon shortening, reduced inflammation, and increased colonic stem cells. In a clinical trial, three FMD cycles reduced markers associated with systemic inflammation. The effect of FMD cycles on microbiota composition, immune cell profile, intestinal stem cell levels and the reversal of pathology associated with IBD in mice, and the anti-inflammatory effects demonstrated in a clinical trial show promise for FMD cycles to ameliorate IBD-associated inflammation in humans.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Inyoung Choi
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Min Wei
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Gerardo Navarrete
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Esra Guen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Sebastian Brandhorst
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Nobel Enyati
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA
| | - Gab Pasia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Daral Maesincee
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Vanessa Ocon
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Maya Abdulridha
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano 20139, Italy.
| |
Collapse
|
9
|
Abstract
Unwanted radiological or nuclear exposure remains a public health risk for which effective therapeutic countermeasures are lacking. Here, we evaluated the efficacy of fibroblast growth factor-2 (FGF2) in treating radiation-induced gastrointestinal syndrome (RIGS) incurred by lethal whole-body irradiation (WBI) when administered in conjunction with bone marrow transplantation (BMT). In vitro experiments indicated FGF2 treatment increased proliferation, reduced apoptosis, and upregulated AKT–GSK3β/β–catenin signaling in irradiated IEC-6 cells. We next established and analyzed mice cohorts consisting of sham irradiation (Group Sh); 12 Gy WBI (Group A); WBI with BMT (Group B); WBI with FGF2 treatment (Group F); and WBI with BMT and FGF2 treatment (Group BF). At 2 weeks post-irradiation, Group BF showed a dramatic increase in survival over all other groups. Intestinal epithelium of Group BF, but not Group B or F, showed augmented proliferation, decreased apoptosis, and preserved crypt numbers and morphology. Furthermore, Group BF maintained intestinal barrier function with minimal inflammatory disturbances in a manner comparable to Group Sh. In accordance, transcriptomic analyses showed significant upregulation of intestinal barrier and stem cell markers in Group BF relative to Groups A and B. Taken together, parenteral FGF2 synergizes with BMT to confer potent mitigation against RIGS.
Collapse
|
10
|
Gürkan A. Advances in small bowel transplantation. Turk J Surg 2017; 33:135-141. [PMID: 28944322 DOI: 10.5152/turkjsurg.2017.3544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022]
Abstract
Small bowel transplantation is a life-saving surgery for patients with intestinal failure. The biggest problem in intestinal transplantation is graft rejection. Graft rejection is the main reason for morbidity and mortality. Rejection has a negative effect on the survival of the graft. While 50%-75% of small bowel transplantation patients experience acute rejection, chronic rejection occurs in approximately 15% of patients. Immune monitoring is crucial after small bowel transplantation. Unlike other types of transplantation, there are no non-invasive or reliable markers to predict rejection in small bowel transplantation. The diagnosis of AR is confirmed by clinical symptoms, endoscopic appearance, and pathological specimens taken by endoscopy. Thus, histopathological examinations obtained by protocol biopsies remain as the gold standard for intestinal graft monitoring; however, biopsies have some complications, especially in small grafts. In addition to the high complication rate, biopsies are non-diagnostic; thus, multiple biopsies should be performed to exclude rejection. Therefore, auxiliary assays, such as measurements of citrulline and calprotectin in the blood, cytofluorographic examination of peripheral blood immune cells, cytokine profiling, and distinct gene-set-change measurements, are increasingly being used in small bowel transplantation. Developments in the understanding of genes seem to be promising that limited gene sets, taken from blood or from intestinal biopsies, will enhance pathological diagnosis. Bone marrow mesenchymal stem cell transplantation with SBT and tissue engineering are also promising procedures.
Collapse
Affiliation(s)
- Alp Gürkan
- Department of General Surgery, Çamlıca Medicana Hospital, İstanbul, Turkey.,Department of General Surgery, İstanbul Aydın University School of Medicine, İstanbul, Turkey
| |
Collapse
|
11
|
Castillo GM, Nishimoto-Ashfield A, Jones CC, Kabirov KK, Zakharov A, Lyubimov AV. Protected graft copolymer-formulated fibroblast growth factors mitigate the lethality of partial body irradiation injury. PLoS One 2017; 12:e0171703. [PMID: 28207794 PMCID: PMC5313194 DOI: 10.1371/journal.pone.0171703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
We evaluated the mitigating effects of fibroblast growth factor 4 and 7 (FGF4 and FGF7, respectively) in comparison with long acting protected graft copolymer (PGC)-formulated FGF4 and 7 (PF4 and PF7, respectively) administered to C57BL/6J mice a day after exposure to LD50/30 (15.7 Gy) partial body irradiation (PBI) which targeted the gastrointestinal (GI) system. The PGC that we developed increased the bioavailability of FGF4 and FGF7 by 5- and 250-fold compared to without PGC, respectively, and also sustained a 24 hr presence in the blood after a single subcutaneous administration. The dose levels tested for mitigating effects on radiation injury were 3 mg/kg for the PF4 and PF7 and 1.5 mg each for their combination (PF4/7). Amifostine administered prior to PBI was used as a positive control. The PF4, PF7, or PF4/7 mitigated the radiation lethality in mice. The mitigating effect of PF4 and PF7 was similar to the positive control and PF7 was better than other mitigators tested. The plasma citrulline levels and hematology parameters were early markers of recovery and survival. GI permeability function appeared to be a late or full recovery indicator. The villus length and crypt number correlated with plasma citrulline level, indicating that it can act as a surrogate marker for these histology evaluations. The IL-18 concentrations in jejunum as early as day 4 and TPO levels in colon on day 10 following PBI showed statistically significant changes in irradiated versus non-irradiated mice which makes them potential biomarkers of radiation exposure. Other colon and jejunum cytokine levels are potentially useful but require larger numbers of samples than in the present study before their full utility can be realized.
Collapse
Affiliation(s)
| | | | | | - Kasim K. Kabirov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Alexander Zakharov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Alexander V. Lyubimov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
12
|
Satyamitra MM, DiCarlo AL, Taliaferro L. Understanding the Pathophysiology and Challenges of Development of Medical Countermeasures for Radiation-Induced Vascular/Endothelial Cell Injuries: Report of a NIAID Workshop, August 20, 2015. Radiat Res 2016; 186:99-111. [PMID: 27387859 DOI: 10.1667/rr14436.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
After the events of September 11, 2001, a decade of research on the development of medical countermeasures (MCMs) to treat victims of a radiological incident has yielded two FDA-approved agents to mitigate acute radiation syndrome. These licensed agents specifically target the mitigation of radiation-induced neutropenia and infection potential, while the ramifications of the exposure event in a public health emergency incident could include the entire body, causing additional acute and/or delayed organ/tissue injuries. Anecdotal data as well as recent findings from both radiation accident survivors and animal experiments implicate radiation-induced injury or dysfunction of the vascular endothelium leading to tissue and organ injuries. There are significant gaps in our understanding of the disease processes and progression, as well as the optimum approaches to develop medical countermeasures to mitigate radiation vascular injury. To address this issue, the Radiation and Nuclear Countermeasures Program of the National Institute of Allergy and Infectious Diseases (NIAID) organized a one-day workshop to examine the current state of the science in radiation-induced vascular injuries and organ dysfunction, the natural history of the pathophysiology and the product development maturity of potential medical countermeasures to treat these injuries. Meeting presentations were followed by a NIAID-led open discussion among academic investigators, industry researchers and government agency representatives. This article provides a summary of these presentations and subsequent discussion from the workshop.
Collapse
Affiliation(s)
- Merriline M Satyamitra
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Andrea L DiCarlo
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Lanyn Taliaferro
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| |
Collapse
|
13
|
Kim JE, Park SH, Kwak MH, Go J, Koh EK, Song SH, Sung JE, Lee HS, Hong JT, Hwang DY. Characterization of Changes in Global Genes Expression in the Distal Colon of Loperamide-Induced Constipation SD Rats in Response to the Laxative Effects of Liriope platyphylla. PLoS One 2015; 10:e0129664. [PMID: 26151867 PMCID: PMC4495015 DOI: 10.1371/journal.pone.0129664] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 05/12/2015] [Indexed: 12/24/2022] Open
Abstract
To characterize the changes in global gene expression in the distal colon of constipated SD rats in response to the laxative effects of aqueous extracts of Liriope platyphylla (AEtLP), including isoflavone, saponin, oligosaccharide, succinic acid and hydroxyproline, the total RNA extracted from the distal colon of AEtLP-treated constipation rats was hybridized to oligonucleotide microarrays. The AEtLP treated rats showed an increase in the number of stools, mucosa thickness, flat luminal surface thickness, mucin secretion, and crypt number. Overall, compared to the controls, 581 genes were up-regulated and 216 genes were down-regulated by the constipation induced by loperamide in the constipated rats. After the AEtLP treatment, 67 genes were up-regulated and 421 genes were down-regulated. Among the transcripts up-regulated by constipation, 89 were significantly down-regulated and 22 were recovered to the normal levels by the AEtLP treatment. The major genes in the down-regulated categories included Slc9a5, klk10, Fgf15, and Alpi, whereas the major genes in the recovered categories were Cyp2b2, Ace, G6pc, and Setbp1. On the other hand, after the AEtLP treatment, ten of these genes down-regulated by constipation were up-regulated significantly and five were recovered to the normal levels. The major genes in the up-regulated categories included Serpina3n, Lcn2 and Slc5a8, whereas the major genes in the recovered categories were Tmem45a, Rerg and Rgc32. These results indicate that several gene functional groups and individual genes as constipation biomarkers respond to an AEtLP treatment in constipated model rats.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - So Hae Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan, 609–735, Korea
| | - Moon Hwa Kwak
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - Jun Go
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - Eun Kyoung Koh
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - Sung Hwa Song
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - Ji Eun Sung
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
| | - Hee Seob Lee
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan, 609–735, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungju, 361–763, Korea
- * E-mail: (DYH); (JTH)
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 627–706, Korea
- * E-mail: (DYH); (JTH)
| |
Collapse
|
14
|
Abstract
No treatment to halt the progressive loss of insulin-producing beta-cells in type 1 diabetes mellitus has yet been clinically introduced. Strategies tested have at best only transiently preserved beta-cell function and in many cases with obvious side effects of drugs used. Several studies have suggested that mesenchymal stromal cells exert strong immunomodulatory properties with the capability to prevent or halt diabetes development in animal models of type 1 diabetes. A multitude of mechanisms has been forwarded to exert this effect. Recently, we translated this strategy into a first clinical phase I/IIa trial and observed no side effects, and preserved or even increased C-peptide responses to a mixed meal tolerance test during the first year after treatment. Future blinded, larger studies, with extended follow-up, are clearly of interest to investigate this treatment concept.
Collapse
Affiliation(s)
- Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Husargatan 3, Box 571, 75123, Uppsala, Sweden,
| | | | | |
Collapse
|
15
|
Seeley RJ, Chambers AP, Sandoval DA. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab 2015; 21:369-78. [PMID: 25662404 PMCID: PMC4351155 DOI: 10.1016/j.cmet.2015.01.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bariatric surgical procedures such as vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) are the most potent treatments available to produce sustained reductions in body weight and improvements in glucose regulation. While traditionally these effects are attributed to mechanical aspects of these procedures, such as restriction and malabsorption, a growing body of evidence from mouse models of these procedures points to physiological changes that mediate the potent effects of these surgeries. In particular, there are similar changes in gut hormone secretion, bile acid levels, and composition after both of these procedures. Moreover, loss of function of the nuclear bile acid receptor (FXR) greatly diminishes the effects of VSG. Both VSG and RYGB are linked to profound changes in the gut microbiome that also mediate at least some of these surgical effects. We hypothesize that surgical rearrangement of the gastrointestinal tract results in enteroplasticity caused by the high rate of nutrient presentation and altered pH in the small intestine that contribute to these physiological effects. Identifying the molecular underpinnings of these procedures provides new opportunities to understand the relationship of the gastrointestinal tract to obesity and diabetes as well as new therapeutic strategies to harness the effectiveness of surgery with less-invasive approaches.
Collapse
Affiliation(s)
- Randy J Seeley
- Departments of Surgery and Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Adam P Chambers
- Department of Diabetes Pharmacology, Novo Nordisk, Copenhagen 2760 MÅLØV, Denmark
| | - Darleen A Sandoval
- Departments of Surgery and Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Liu Z, Liu H, Jiang J, Tan S, Yang Y, Zhan Y, Wu B. PDGF-BB and bFGF ameliorate radiation-induced intestinal progenitor/stem cell apoptosis via Akt/p53 signaling in mice. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1033-43. [PMID: 25301184 DOI: 10.1152/ajpgi.00151.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Radiation-induced gastrointestinal (GI) syndrome currently has no effective prophylactic or therapeutic treatment. Previous studies and our data have demonstrated the important role of p53 in acute radiation-induced GI syndrome in mice. Many cytokines, such as tumor necrosis factor-α and fibroblast growth factor (bFGF), have been found to protect against radiation-induced intestinal injury, although the underlying mechanisms remain to be identified. Here, we report blockage of p53 through a protein kinase B (Akt) pathway in intestinal progenitor/stem cells or crypt cells as a novel molecular mechanism of growth factor-mediated intestinal radioprotection. Treatment with platelet-derived growth factor (PDGF-BB) or bFGF activated Akt phosphorylation in the intestinal crypt, lessened intestinal crypt p53 expression, decreased radiation-induced apoptosis in mouse intestinal progenitor/stem cell marker leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)-positive cells by an average of 50%, and increased the survival rate of mice with abdominal radiation by 3 days in average. Conversely, the Akt inhibitor perifosine obstructed growth factor-simulated Akt phosphorylation while promoting radiation-induced p53 expression in intestinal crypts. Importantly, reduced Akt phosphorylation and elevated p53 expression due to the Akt inhibitor perifosine impaired intestinal progenitor/stem cells radioprotection provided by PDGF-BB and bFGF. Consistently, PDGF-BB and bFGF both upregulated Akt activation, suppressed radiation-induced p53 expression, and abrogated radiation-induced apoptosis in IEC-6 cells, although p53 overexpression in IEC-6 cells partially counteracted the radioprotection of PDGF-BB and bFGF. Our data suggest that intestinal crypt radioprotection by PDGF-BB and bFGF is dependent on regulation of Akt/p53 signaling.
Collapse
Affiliation(s)
- Zhihao Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yidong Yang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yashi Zhan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Qu D, May R, Sureban SM, Weygant N, Chandrakesan P, Ali N, Li L, Barrett T, Houchen CW. Inhibition of Notch signaling reduces the number of surviving Dclk1+ reserve crypt epithelial stem cells following radiation injury. Am J Physiol Gastrointest Liver Physiol 2014; 306:G404-11. [PMID: 24368703 PMCID: PMC3949020 DOI: 10.1152/ajpgi.00088.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously reported that doublecortin-like kinase 1 (Dclk1) is a putative intestinal stem cell (ISC) marker. In this report, we evaluated the use of Dclk1 as a marker of surviving ISCs in response to treatment with high-dose total body irradiation (TBI). Both apoptotic and mitotic Dclk1(+) cells were observed 24 h post-TBI associated with a corresponding loss of intestinal crypts observed at 84 h post-TBI. Although the Notch signaling pathway plays an important role in regulating proliferation and lineage commitment within the intestine, its role in ISC function in response to severe genotoxic injury is not yet fully understood. We employed the microcolony assay to functionally assess the effects of Notch inhibition with difluorophenacetyl-l-alanyl-S-phenylglycine t-butyl ester (DAPT) on intestinal crypt stem cell survival following severe (>8 Gy) radiation injury. Following treatment with DAPT, we observed a nearly 50% reduction in the number of surviving Dclk1(+) crypt epithelial cells at 24 h after TBI and similar reduction in the number of surviving small intestinal crypts at 84 h. These data indicate that inhibition of Notch signaling decreases ISC survival following radiation injury, suggesting that the Notch signaling pathway plays an important role in ISC-mediated crypt regeneration. These results also suggest that crypt epithelial cell Dclk1 expression can be used as one potential marker to evaluate the early survival of ISCs following severe radiation injury.
Collapse
Affiliation(s)
- Dongfeng Qu
- 1Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; ,2Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma;
| | - Randal May
- 1Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; ,2Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma;
| | - Sripathi M. Sureban
- 1Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; ,2Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma; ,3Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, Oklahoma;
| | - Nathaniel Weygant
- 1Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma;
| | | | - Naushad Ali
- 1Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma;
| | - Linheng Li
- 4Stowers Institute for Medical Research, Kansas City, Missouri; and
| | - Terrence Barrett
- 5Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Courtney W. Houchen
- 1Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; ,2Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma; ,3Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, Oklahoma;
| |
Collapse
|
18
|
Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ 2013; 21:216-25. [PMID: 24185619 PMCID: PMC3890955 DOI: 10.1038/cdd.2013.158] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from almost all tissues and effectively expanded in vitro. Although their true in situ properties and biological functions remain to be elucidated, these in vitro expanded cells have been shown to possess potential to differentiate into specific cell lineages. It is speculated that MSCs in situ have important roles in tissue cellular homeostasis by replacing dead or dysfunctional cells. Recent studies have demonstrated that in vitro expanded MSCs of various origins have great capacity to modulate immune responses and change the progression of different inflammatory diseases. As tissue injuries are often accompanied by inflammation, inflammatory factors may provide cues to mobilize MSCs to tissue sites with damage. Before carrying out tissue repair functions, MSCs first prepare the microenvironment by modulating inflammatory processes and releasing various growth factors in response to the inflammation status. In this review, we focus on the crosstalk between MSCs and immune responses and their potential clinical applications, especially in inflammatory diseases.
Collapse
Affiliation(s)
- S Ma
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - N Xie
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - W Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | - B Yuan
- National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Beijing 100050, China
| | - Y Shi
- 1] Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China [2] Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Y Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
19
|
Watanabe H. Beneficial biological effects of miso with reference to radiation injury, cancer and hypertension. J Toxicol Pathol 2013; 26:91-103. [PMID: 23914051 PMCID: PMC3695331 DOI: 10.1293/tox.26.91] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/18/2013] [Indexed: 11/20/2022] Open
Abstract
This review describes effects of miso with reference to prevention of radiation injury,
cancer and hypertension with a twin focus on epidemiological and experimental evidence.
Miso with a longer fermentation time increased crypt survival against radiation injury in
mice. When evaluating different types of miso provided by different areas in Japan, miso
fermented for a longer period increased the number of surviving crypts, and 180 days of
fermentation was the most significant. Dietary administration of 180-day fermented miso
inhibits the development of azoxymethane (AOM)-induced aberrant crypt foci (ACF) and rat
colon cancers in F344 rats. Miso was also effective in suppression of lung tumors, breast
tumors in rats and liver tumors in mice. The incidence of gastric tumors of groups of rats
given NaCl was higher than those of the groups given miso fermented for longer periods.
Moreover, the systolic blood pressure of the Dahl male rat on 2.3% NaCl was significantly
increased but that of the SD rat was not. However, the blood pressures of the rats on a
diet of miso or commercial control diet (MF) did not increase. Even though miso contains
2.3% NaCl, their blood pressures were as stable as those of rats fed commercial diet
containing 0.3% salt. So we considered that sodium in miso might behave differently
compared with NaCl alone. These biological effects might be caused by longer fermentation
periods.
Collapse
Affiliation(s)
- Hiromitsu Watanabe
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
20
|
Jin S. Role of p53 in Anticancer Drug Treatment- and Radiation-Induced Injury in Normal Small Intestine. Cancer Biol Med 2013; 9:1-8. [PMID: 23691447 PMCID: PMC3643648 DOI: 10.3969/j.issn.2095-3941.2012.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 02/27/2012] [Indexed: 12/15/2022] Open
Abstract
In the human gastrointestinal tract, the functional mucosa of the small intestine has the highest capacity for absorption of nutrients and rapid proliferation rates, making it vulnerable to chemoradiotherapy. Recent understanding of the protective role of p53-mediated cell cycle arrest in the small intestinal mucosa has led researchers to explore new avenues to mitigate mucosal injury during cancer treatment. A traditional p53 inhibitor and two other molecules that exhibit strong protective effects on normal small intestinal epithelium during anticancer drug treatment and radiation therapy are introduced in this work. The objective of this review was to update current knowledge regarding potential mechanisms and targets that inhibit the side effects induced by chemoradiotherapy.
Collapse
Affiliation(s)
- Shi Jin
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, The Johns Hopkins University, Baltimore, MD 21210, USA
| |
Collapse
|
21
|
Shadad AK, Sullivan FJ, Martin JD, Egan LJ. Gastrointestinal radiation injury: Symptoms, risk factors and mechanisms. World J Gastroenterol 2013; 19:185-98. [PMID: 23345941 PMCID: PMC3547560 DOI: 10.3748/wjg.v19.i2.185] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/31/2012] [Accepted: 12/15/2012] [Indexed: 02/06/2023] Open
Abstract
Ionising radiation therapy is a common treatment modality for different types of cancer and its use is expected to increase with advances in screening and early detection of cancer. Radiation injury to the gastrointestinal tract is important factor working against better utility of this important therapeutic modality. Cancer survivors can suffer a wide variety of acute and chronic symptoms following radiotherapy, which significantly reduces their quality of life as well as adding an extra burden to the cost of health care. The accurate diagnosis and treatment of intestinal radiation injury often represents a clinical challenge to practicing physicians in both gastroenterology and oncology. Despite the growing recognition of the problem and some advances in understanding the cellular and molecular mechanisms of radiation injury, relatively little is known about the pathophysiology of gastrointestinal radiation injury or any possible susceptibility factors that could aggravate its severity. The aims of this review are to examine the various clinical manifestations of post-radiation gastrointestinal symptoms, to discuss possible patient and treatment factors implicated in normal gastrointestinal tissue radiosensitivity and to outline different mechanisms of intestinal tissue injury.
Collapse
|
22
|
Schmidt B, Lee HJ, Ryeom S, Yoon SS. Combining Bevacizumab with Radiation or Chemoradiation for Solid Tumors: A Review of the Scientific Rationale, and Clinical Trials. ACTA ACUST UNITED AC 2012; 1:169-179. [PMID: 24977113 DOI: 10.2174/2211552811201030169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radiation therapy or the combination of radiation and chemotherapy is an important component in the local control of many tumor types including glioblastoma, rectal cancer, and pancreatic cancer. The addition of anti-angiogenic agents to chemotherapy is now standard treatment for a variety of metastatic cancers including colorectal cancer and non-squamous cell lung cancer. Anti-angiogenic agents can increase the efficacy of radiation or chemoradiation for primary tumors through mechanisms such as vascular normalization and augmentation of endothelial cell injury. The most commonly used anti-angiogenic drug, bevacizumab, is a humanized monoclonal antibody that binds and neutralizes vascular endothelial growth factor A (VEGF-A). Dozens of preclinical studies nearly uniformly demonstrate that inhibition of VEGF-A or its receptors potentiates the effects of radiation therapy against solid tumors, and this potentiation is generally independent of the type or schedule of radiation and timing of VEGF-A inhibitor delivery. There are now several clinical trials combining bevacizumab with radiation or chemoradiation for the local control of various primary, recurrent, and metastatic tumors, and many of these early trials show encouraging results. Some added toxicities occur with the delivery of bevacizumab but common toxicities such as hypertension and proteinuria are generally easily managed while severe toxicities are rare. In the future, bevacizumab and other anti-angiogenic agents may become common additions to radiation and chemoradiation regimens for tumors that are difficult to locally control.
Collapse
Affiliation(s)
- Benjamin Schmidt
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hae-June Lee
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sandra Ryeom
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sam S Yoon
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA ; Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
23
|
Mucin production and mucous cell metaplasia in otitis media. Int J Otolaryngol 2012; 2012:745325. [PMID: 22685463 PMCID: PMC3364788 DOI: 10.1155/2012/745325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/21/2012] [Indexed: 01/24/2023] Open
Abstract
Otitis media (OM) with mucoid effusion, characterized by mucous cell metaplasia/hyperplasia in the middle ear cleft and thick fluid accumulation in the middle ear cavity, is a subtype of OM which frequently leads to chronic OM in young children. Multiple factors are involved in the developmental process of OM with mucoid effusion, especially disorders of mucin production resulting from middle ear bacterial infection and Eustachian tube dysfunction. In this review, we will focus on several aspects of this disorder by analyzing the cellular and molecular events such as mucin production and mucous cell differentiation in the middle ear mucosa with OM. In addition, infectious agents, mucin production triggers, and relevant signaling pathways will be discussed.
Collapse
|
24
|
Yao S, Gutierrez DL, He H, Dai Y, Liu D, Wise GE. Proliferation of dental follicle-derived cell populations in heat-stress conditions. Cell Prolif 2011; 44:486-93. [PMID: 21951291 DOI: 10.1111/j.1365-2184.2011.00778.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Isolation and purification of adult stem cells (ASC) are a great challenge. Our objectives were to determine whether ASC are more heat-tolerant than non-stem cells, and to explore if ASC could be enriched by heat-stress treatments. MATERIALS AND METHODS Rat dental follicle cells were cultured in a variety of media to obtain either a heterogeneous cell population (H-DFC) consisting of stem cells and non-stem cells, or a homogenous cell population (DFC) containing non-stem cells only. Real-time RT-PCR was conducted to compare expression of heat-shock proteins (HSPs) between the two populations. To study heat tolerance, H-DFC and DFC were incubated under heat-stress conditions and cell proliferation was evaluated by alamar blue reduction assay. Furthermore, cells resulting from heat-stress treatments were evaluated for differentiation capability and expression of stem cell markers. RESULTS H-DFC expressed higher levels of HSP110, HSP70s and HSP27s than did DFC. H-DFC increased levels of proliferation at 40 °C compared to controls grown at 37 °C; no significant reduction in proliferation occurred at temperatures below 40.5 °C. In contrast, DFC showed significant reduction in proliferation under all heat-stress treatments. Heat-stressed H-DFC had increased differentiation capability and increased expression of stem cell markers. CONCLUSION Stem cells appear to be more tolerant to heat stress than non-stem cells. Incubation of a heterogeneous cell population in heat-stress conditions resulted in increased stem cell numbers.
Collapse
Affiliation(s)
- S Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Paunovic B, Deng X, Khomenko T, Ahluwalia A, Tolstanova G, Tarnawski A, Szabo S, Sandor Z. Molecular mechanisms of basic fibroblast growth factor effect on healing of ulcerative colitis in rats. J Pharmacol Exp Ther 2011; 339:430-7. [PMID: 21841041 DOI: 10.1124/jpet.111.183665] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We demonstrated previously that basic fibroblast growth factor (bFGF) accelerated the healing of experimental duodenal ulcers, and we now hypothesize that bFGF might also accelerate the healing of experimental ulcerative colitis (UC). We also explored the potential molecular mechanisms involved in the accelerated healing of UC in rats treated with bFGF. The results demonstrated that colonic lesions were significantly reduced by bFGF treatment, whereas neutralization of bFGF aggravated iodoacetamide-induced UC. Protein expression of bFGF was increased during the healing stage of UC. Tumor necrosis factor-α levels and myeloperoxidase activity were significantly decreased in UC rats treated with bFGF, whereas they increased in rats treated with anti-bFGF antibody. Real-time polymerase chain reaction and immunohistochemistry showed decreased levels of p27 in the UC rats compared with the healthy controls, which was reversed by bFGF treatment in a dose-dependent manner. By immunohistochemistry and double labeling of Ki-67 and CD34, prominent positive staining of Ki-67 and CD34 was seen after bFGF treatment, indicating the enhanced proliferation of fibroblasts and epithelial and endothelial cells, i.e., angiogenesis. We conclude that bFGF plays a beneficial role in the healing of UC in rats. The molecular mechanisms of bFGF in UC healing not only involve the expected increased cell proliferation, especially angiogenesis, but also encompass the reduction of inflammatory cytokines and infiltration of inflammatory cells. Thus, bFGF enema may be a new therapeutic option for UC.
Collapse
Affiliation(s)
- Brankica Paunovic
- Diagnostic and Molecular Medicine Health Care Group, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Enzastaurin, an inhibitor of PKCbeta, Enhances Antiangiogenic Effects and Cytotoxicity of Radiation against Endothelial Cells. Transl Oncol 2011; 1:195-201. [PMID: 19043530 DOI: 10.1593/tlo.08151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/14/2008] [Accepted: 09/16/2008] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Angiogenesis plays an important role in pancreas cancer pathobiology. Pancreatic tumor cells secrete vascular endothelial growth factor (VEGF), activating endothelial cell protein kinase C beta (PKCbeta) that phosphorylates GSK3beta to suppress apoptosis and promote endothelial cell proliferation and microvessel formation. We used Enzastaurin (Enz) to test the hypothesis that inhibition of PKCbeta results in radiosensitization of endothelial cells in culture and in vivo. MATERIALS/METHODS We measured PKCbeta phosphorylation, VEGF pathway signaling, colony formation, and capillary sprout formation in primary human dermal microvessel endothelial cells (HDMECs) after Enz or radiation (RT) treatment. Microvessel density and tumor volume of human pancreatic cancer xenografts in nude mice were measured after treatment with Enz, RT, or both. RESULTS Enz inhibited PKCbeta and radiosensitized HDMEC with an enhancement ratio of 1.31 +/- 0.05. Enz combined with RT reduced HDMEC capillary sprouting to a greater extent than either agent alone. Enz prevented radiation-induced GSK3beta phosphorylation of serine 9 while having no direct effect on VEGFR phosphorylation. Treatment of xenografts with Enz and radiation produced greater reductions in microvessel density than either treatment alone. The reduction in microvessel density corresponded with increased tumor growth delay. CONCLUSIONS Enz-induced PKCbeta inhibition radiosensitizes human endothelial cells and enhances the antiangiogenic effects of RT. The combination of Enz and RT reduced microvessel density and resulted in increased growth delay in pancreatic cancer xenografts, without increase in toxicity. These results provide the rationale for combining PKCbeta inhibition with radiation and further investigating such regimens in pancreatic cancer.
Collapse
|
27
|
Solanki AA, Liauw SL. Role of HMG-CoA reductase inhibitors with curative radiotherapy in men with prostate cancer. Open Access J Urol 2011; 3:95-104. [PMID: 24198641 PMCID: PMC3818949 DOI: 10.2147/oaju.s14245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Brachytherapy and external beam radiotherapy are effective and commonly used treatment modalities in men with localized prostate cancer. In this review, we explore the role of radiation therapy in the curative management of prostate cancer, including the use of conformal therapeutic techniques to allow for the escalation of radiation doses to tumor, along with the use of combined radiation and hormonal therapy to enhance disease outcomes in men with aggressive disease. We also review the possible anticancer role of HMG-CoA reductase inhibiting agents (statins) in men with prostate cancer. Laboratory evidence suggests that statins may have antineoplastic effects when used alone and may sensitize cells to radiation therapy when given in combination. We explore the biologic basis for an anticancer effect and the clinical evidence suggesting statins may aid in improving outcomes with radiation therapy for localized prostate cancer.
Collapse
Affiliation(s)
- Abhishek A Solanki
- Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Stanley L Liauw
- Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
28
|
Arjunan KP, Friedman G, Fridman A, Clyne AM. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. J R Soc Interface 2011; 9:147-57. [PMID: 21653568 DOI: 10.1098/rsif.2011.0220] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.
Collapse
Affiliation(s)
- Krishna Priya Arjunan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
29
|
Brodrick B, Vidrich A, Porter E, Bradley L, Buzan JM, Cohn SM. Fibroblast growth factor receptor-3 (FGFR-3) regulates expression of paneth cell lineage-specific genes in intestinal epithelial cells through both TCF4/beta-catenin-dependent and -independent signaling pathways. J Biol Chem 2011; 286:18515-25. [PMID: 21388956 DOI: 10.1074/jbc.m111.229252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fibroblast growth factor receptor-3 (FGFR-3) expression in the developing intestine is restricted to the undifferentiated epithelial cells within the lower portion of the crypt. We previously showed that mice lacking functional FGFR-3 have a significant decrease in the number of Paneth cells in the small intestine. Here, we used Caco2 cells to investigate whether FGFR-3 signaling can directly modulate expression of Paneth cell differentiation markers through its effects on TCF4/β-catenin or through other signaling pathways downstream of this receptor. Caco2 cells treated with FGFR-3 ligands or expressing FGFR-3(K650E), a constitutively active mutant, resulted in a significantly increased expression of genes characteristic of mature Paneth cells, including human α-defensins 5 and 6 (HD5 and HD6) and Paneth cell lysozyme, whereas enterocytic differentiation markers were reduced. Activation of FGFR-3 signaling sustained high levels of β-catenin mRNA expression, leading to increased TCF4/β-catenin-regulated transcriptional activity in Caco2 cells. Sustained activity of the TCF4/β-catenin pathway was required for the induction of Paneth cell markers. Activation of the MAPK pathway by FGFR-3 is also required for the induction of Paneth cell markers in addition to and independent of the effect of FGFR-3 on TCF4/β-catenin activity. These studies suggest that coordinate activation of multiple independent signaling pathways downstream of FGFR-3 is involved in regulation of Paneth cell differentiation.
Collapse
Affiliation(s)
- Brooks Brodrick
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
30
|
Harfouche G, Vaigot P, Rachidi W, Rigaud O, Moratille S, Marie M, Lemaitre G, Fortunel NO, Martin MT. Fibroblast growth factor type 2 signaling is critical for DNA repair in human keratinocyte stem cells. Stem Cells 2010; 28:1639-48. [PMID: 20681019 PMCID: PMC2996082 DOI: 10.1002/stem.485] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tissue stem cells must be endowed with superior maintenance and repair systems to ensure genomic stability over multiple generations, which would be less necessary in more differentiated cells. We previously reported that human keratinocyte stem cells were more resistant to ionizing radiation toxicity than their direct progeny, the keratinocyte progenitor cells. In the present study we addressed the mechanisms underlying this difference. Investigations of DNA repair showed that both single and double DNA strand breaks were repaired more rapidly and more efficiently in stem cells than in progenitors. As cell signaling is a key regulatory step in the management of DNA damage, a gene profiling study was performed. Data revealed that several genes of the fibroblast growth factor type 2 (FGF2) signaling pathway were induced by DNA damage in stem cells and not in progenitors. Furthermore, an increased content of the FGF2 protein was found in irradiated stem cells, both for the secreted and the cellular forms of the protein. To examine the role of endogenous FGF2 in DNA repair, stem cells were exposed to FGF2 pathway inhibitors. Blocking the FGF2 receptor (FGF receptor 1) or the kinase (Ras-mitogen-activated protein kinase 1) resulted in a inhibition of single and double DNA strand-break repair in the keratinocyte stem cells. Moreover, supplementing the progenitor cells with exogenous FGF2 activated their DNA repair. We propose that, apart from its well-known role as a strong mitogen and prosurvival factor, FGF2 helps to maintain genomic integrity in stem cells by activating stress-induced DNA repair. Stem Cells 2010; 28:1639–1648.
Collapse
Affiliation(s)
- Ghida Harfouche
- CEA, iRCM, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Self-renewal in the intestinal epithelia is fueled by a population of undifferentiated intestinal stem cells (ISCs) that give rise to daughter or progenitor cells, which can subsequently differentiate into the mature cell types required for normal gut function. The cellular signals that regulate self-renewal are poorly understood and the factors that mediate the transition from a stem cell to a progenitor cell in the gut are unknown. Recent studies have suggested that ISCs are located either at the crypt base interspersed between the Paneth cells (eg, Lgr-5+ve cells) or at or near position 4 within the intestinal crypt (eg, DCAMKL-1 or Bmi-1+ve cells). This raises the possibility that distinct stem cell regions exist in the crypts and that ISC's state of activation will determine how the self-renewal is regulated in the intestinal tract.
Collapse
|
32
|
Zhang L, Sun W, Wang J, Zhang M, Yang S, Tian Y, Vidyasagar S, Peña LA, Zhang K, Cao Y, Yin L, Wang W, Zhang L, Schaefer KL, Saubermann LJ, Swarts SG, Fenton BM, Keng PC, Okunieff P. Mitigation effect of an FGF-2 peptide on acute gastrointestinal syndrome after high-dose ionizing radiation. Int J Radiat Oncol Biol Phys 2010; 77:261-8. [PMID: 20394858 DOI: 10.1016/j.ijrobp.2009.11.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/05/2009] [Accepted: 11/07/2009] [Indexed: 10/19/2022]
Abstract
PURPOSE Acute gastrointestinal syndrome (AGS) resulting from ionizing radiation causes death within 7 days. Currently, no satisfactory agent exists for mitigation of AGS. A peptide derived from the receptor binding domain of fibroblast growth factor 2 (FGF-P) was synthesized and its mitigation effect on AGS was examined. METHODS AND MATERIALS A subtotal body irradiation (sub-TBI) model was created to induce gastrointestinal (GI) death while avoiding bone marrow death. After 10.5 to 16 Gy sub-TBI, mice received an intramuscular injection of FGF-P (10 mg/kg/day) or saline (0.2 ml/day) for 5 days; survival (frequency and duration) was measured. Crypt cells and their proliferation were assessed by hematoxylin, eosin, and BrdU staining. In addition, GI hemoccult score, stool formation, and plasma levels of endotoxin, insulin, amylase, interleukin (IL)-6, keratinocyte-derived chemokine (KC) monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor (TNF)-alpha were evaluated. RESULTS Treatment with FGF-P rescued a significant fraction of four strains of mice (33-50%) exposed to a lethal dose of sub-TBI. Use of FGF-P improved crypt survival and repopulation and partially preserved or restored GI function. Furthermore, whereas sub-TBI increased plasma endotoxin levels and several pro-inflammation cytokines (IL-6, KC, MCP-1, and TNF-alpha), FGF-P reduced these adverse responses. CONCLUSIONS The study data support pursuing FGF-P as a mitigator for AGS.
Collapse
Affiliation(s)
- Lurong Zhang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642-8647, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann Biomed Eng 2009; 38:748-57. [PMID: 20013154 DOI: 10.1007/s10439-009-9868-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/02/2009] [Indexed: 01/08/2023]
Abstract
Non-thermal dielectric barrier discharge plasma is being developed for a wide range of medical applications, including wound healing, blood coagulation, and malignant cell apoptosis. However, the effect of non-thermal plasma on the vasculature is unclear. Blood vessels are affected during plasma treatment of many tissues and may be an important potential target for clinical plasma therapy. Porcine aortic endothelial cells were treated in vitro with a custom non-thermal plasma device. Low dose plasma (up to 30 s or 4 J cm(-2)) was relatively non-toxic to endothelial cells while treatment at longer exposures (60 s and higher or 8 J cm(-2)) led to cell death. Endothelial cells treated with plasma for 30 s demonstrated twice as much proliferation as untreated cells five days after plasma treatment. Endothelial cell release of fibroblast growth factor-2 (FGF2) peaked 3 h after plasma treatment. The plasma proliferative effect was abrogated by an FGF2 neutralizing antibody, and FGF2 release was blocked by reactive oxygen species scavengers. These data suggest that low dose non-thermal plasma enhances endothelial cell proliferation due to reactive oxygen species mediated FGF2 release. Plasma may be a novel therapy for dose-dependent promotion or inhibition of endothelial cell mediated angiogenesis.
Collapse
|
34
|
Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis. Oncogene 2009; 29:1622-32. [PMID: 19966853 PMCID: PMC3076086 DOI: 10.1038/onc.2009.451] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastrointestinal toxicity is the primary limiting factor in abdominal and pelvic radiotherapy, but has no effective treatment currently. We recently showed a critical role of the BH3-only protein p53 upregulated modulator of apoptosis (PUMA) in acute radiation-induced GI damage and GI syndrome in mice. Growth factors such as insulin-like growth factor 1 (IGF-1) and basic fibroblast growth factor (bFGF) have been shown to protect against radiation-induced intestinal injury, although the underlying mechanisms remain to be identified. We report here the suppression of PUMA through the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/p53 axis in the intestinal stem cells as a novel molecular mechanism of growth factor-mediated intestinal radioprotection. IGF-1 or bFGF impaired radiation-induced apoptosis and the expression of PUMA and p53 in the crypt cells and intestinal stem cells. Using colonic epithelial cells that undergo PUMA-dependent and radiation-induced apoptosis, we found that a PI3K inhibitor, dominant-negative PI3K or Mdm2 antagonist restored the induction of PUMA, p53 and apoptosis in the presence of growth factors. In contrast, overexpression of AKT suppressed the induction of PUMA and p53 by radiation. Furthermore, inhibiting PI3K or activating p53 abrogated growth factor-mediated suppression of apoptosis and PUMA expression in the intestinal crypts and stem cells after radiation.
Collapse
|
35
|
Dekaney CM, Gulati AS, Garrison AP, Helmrath MA, Henning SJ. Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice. Am J Physiol Gastrointest Liver Physiol 2009; 297:G461-70. [PMID: 19589945 PMCID: PMC2739827 DOI: 10.1152/ajpgi.90446.2008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 07/07/2009] [Indexed: 01/31/2023]
Abstract
The intestinal epithelium is in a constant state of renewal. The rapid turnover of cells is fed by a hierarchy of transit amplifying and stem/progenitor cells destined to give rise to the four differentiated epithelial lineages of the small intestine. Doxorubicin (Dox) is a commonly used chemotherapeutic agent that preferentially induces apoptosis in the intestinal stem cell zone (SCZ). We hypothesized that Dox treatment would initially decrease "+4" intestinal stem cell numbers with a subsequent expansion during mucosal repair. Temporal assessment following Dox treatment demonstrated rapid induction of apoptosis in the SCZ leading to a decrease in the number of intestinal stem/progenitor cells as determined by flow cytometry for CD45(-) SP cells, and immunohistochemistry of cells positive for putative +4 stem cell markers beta-cat(Ser552) and DCAMKL1. Between 96 and 168 h postinjection, overall proliferation in the crypts increased concomitant with increases in both absolute and relative numbers of goblet, Paneth, and enteroendocrine cells. This regeneration phase was also associated with increases of CD45(-) SP cells, beta-cat(Ser552)-positive cells, crypt fission, and crypt number. We used Lgr5-lacZ mice to assess behavior of Lgr5-positive stem cells following Dox and found no change in this cell population. Lgr5 mRNA level was also measured and showed no change immediately after Dox but decreased during the regeneration phase. Together these data suggest that, following Dox-induced injury, expansion of intestinal stem cells occurs during mucosal repair. On the basis of available markers this expansion appears to be predominantly the +4 stem cell population rather than those of the crypt base.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/toxicity
- Apoptosis/drug effects
- Cell Lineage
- Cell Proliferation/drug effects
- Doublecortin-Like Kinases
- Doxorubicin/administration & dosage
- Doxorubicin/toxicity
- Female
- Injections, Intraperitoneal
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Jejunum/drug effects
- Jejunum/pathology
- Leukocyte Common Antigens/analysis
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Regeneration/drug effects
- Stem Cells/drug effects
- Stem Cells/metabolism
- Stem Cells/pathology
- Time Factors
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Christopher M Dekaney
- Department of Surgery, The University of North Carolina, Chapel Hill, North Carolina 27599-7223, USA.
| | | | | | | | | |
Collapse
|
36
|
Vidrich A, Buzan JM, Brodrick B, Ilo C, Bradley L, Fendig KS, Sturgill T, Cohn SM. Fibroblast growth factor receptor-3 regulates Paneth cell lineage allocation and accrual of epithelial stem cells during murine intestinal development. Am J Physiol Gastrointest Liver Physiol 2009; 297:G168-78. [PMID: 19407216 PMCID: PMC2711760 DOI: 10.1152/ajpgi.90589.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibroblast growth factor receptor 3 (FGFR-3) is expressed in the lower crypt epithelium, where stem cells of the intestine reside. The role of FGFR-3 signaling in regulating features of intestinal morphogenesis was examined in FGFR-3-null (FGFR-3(-/-)) mice. FGFR-3(-/-) mice had only about half the number of intestinal crypts and a marked decrease in the number of functional clonogenic stem cells, as assessed by an in vivo microcolony-forming assay, compared with wild-type littermates. A marked deficit in allocation of progenitor cells to Paneth cell differentiation was noted, although all the principal epithelial lineages were represented in FGFR-3(-/-) mice. The total cellular content and nuclear localization of beta-catenin protein were reduced in FGFR-3(-/-) mice, as was expression of cyclin D1 and matrix metalloproteinase-7, major downstream targets of beta-catenin/T cell factor-4 (Tcf-4) signaling. Activation of FGFR-3 in Caco-2 cells, an intestinal epithelial cell line, abrogated the fall in beta-catenin/Tcf-4 signaling activity that is normally observed in these cells as cultures become progressively more confluent. These findings are consistent with the hypothesis that, during intestinal development, FGFR-3 signaling regulates crypt epithelial stem cell expansion and crypt morphogenesis, as well as Paneth cell lineage specification, through beta-catenin/Tcf-4-dependent and -independent pathways.
Collapse
Affiliation(s)
- Alda Vidrich
- Digestive Health Center of Excellence and Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Jenny M. Buzan
- Digestive Health Center of Excellence and Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Brooks Brodrick
- Digestive Health Center of Excellence and Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Chibuzo Ilo
- Digestive Health Center of Excellence and Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Leigh Bradley
- Digestive Health Center of Excellence and Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Kirstin Skaar Fendig
- Digestive Health Center of Excellence and Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Thomas Sturgill
- Digestive Health Center of Excellence and Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Steven M. Cohn
- Digestive Health Center of Excellence and Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
37
|
Weil BR, Abarbanell AM, Herrmann JL, Wang Y, Meldrum DR. High glucose concentration in cell culture medium does not acutely affect human mesenchymal stem cell growth factor production or proliferation. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1735-43. [PMID: 19386985 PMCID: PMC2692791 DOI: 10.1152/ajpregu.90876.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 04/21/2009] [Indexed: 11/22/2022]
Abstract
Optimizing the function and proliferative capacity of stem cells is essential to maximize their therapeutic benefits. High glucose concentrations are known to have detrimental effects on many cell types. We hypothesized that human mesenchymal stem cells (hMSCs) cultured in high glucose-containing media would exhibit diminished proliferation and attenuated production of VEGF, hepatocyte growth factor (HGF), and FGF2 in response to treatment with TNF-alpha, LPS, or hypoxia. hMSCs were plated in medium containing low (5.5 mM) and high (20 mM or 30 mM) glucose concentrations and treated with TNF-alpha, LPS, or hypoxia. Supernatants were collected at 24 and 48 h and assayed via ELISA for VEGF, HGF, and FGF2. In addition, hMSCs were cultured on 96-well plates at the above glucose concentrations, and proliferation at 48 h was determined via bromo-2'-deoxy-uridine (BrdU) incorporation. At 24 and 48 h, TNF-alpha, LPS, and hypoxia-treated hMSCs produced significantly higher VEGF, HGF, and FGF2 compared with control. Hypoxia-induced VEGF production by hMSCs was the most pronounced change over baseline. At both 24 and 48 h, glucose concentration did not affect production of VEGF, HGF, or FGF2 by untreated hMSCs and those treated with TNF-alpha, LPS, or hypoxia. Proliferation of hMSCs as determined via BrdU incorporation was unaffected by glucose concentration of the media. Contrary to what has been observed with other cells, hMSCs may be resistant to the short-term effects of high glucose. Ongoing efforts to characterize and optimize ex vivo and in vivo conditions are critical if the therapeutic benefits of MSCs are to be maximized.
Collapse
Affiliation(s)
- Brent R Weil
- Clarian Cardiovascular Surgery and the Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
38
|
Moretti L, Kim KW, Jung DK, Willey CD, Lu B. Radiosensitization of solid tumors by Z-VAD, a pan-caspase inhibitor. Mol Cancer Ther 2009; 8:1270-9. [PMID: 19417149 DOI: 10.1158/1535-7163.mct-08-0893] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite recent advances in the management of breast and lung cancer, novel treatment strategies are still needed to further improve patient outcome. The targeting of cell death pathways has therefore been proposed to enhance therapeutic ratio in cancer. In this study, we examined the in vitro and in vivo effects of Z-VAD, a broad-spectrum caspase inhibitor, on breast and lung cancer in association with radiation. Using clonogenic assays, we observed that Z-VAD markedly radiosensitized breast and lung cancer cells, with a radiation dose enhancement ratio of 1.31 (P < 0.003). For both models, the enhanced tumor cytotoxicity was associated with induction of autophagy. Furthermore, we found that administration of Z-VAD with radiation in both breast and lung cancer xenograft produced a significant tumor growth delay compared with radiation alone and was well tolerated. Interestingly, Z-VAD also had dramatic antiangiogenic effect when combined with radiation both in vitro and in vivo and thus represents an attractive anticancer therapeutic strategy. In conclusion, this preclinical study supports the therapeutic potential of Z-VAD as a radiosensitizer in breast and lung cancer. This study also suggests caspase inhibition as a promising strategy to enhance the therapeutic ratio of radiation therapy in solid tumors. Therefore, clinical trials are needed to determine the potential of this combination therapy in cancer patients.
Collapse
Affiliation(s)
- Luigi Moretti
- Department of Radiation Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-5671, USA
| | | | | | | | | |
Collapse
|
39
|
George RJ, Sturmoski MA, May R, Sureban SM, Dieckgraefe BK, Anant S, Houchen CW. Loss of p21Waf1/Cip1/Sdi1 enhances intestinal stem cell survival following radiation injury. Am J Physiol Gastrointest Liver Physiol 2009; 296:G245-54. [PMID: 19056768 PMCID: PMC2643902 DOI: 10.1152/ajpgi.00021.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The microcolony assay following gamma irradiation (IR) is a functional assay of intestinal stem cell fate. The cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1/Sdi1) (p21) regulates cell cycle arrest following DNA damage. To explore the role of p21 on stem cell fate, we examined the effects of p21 deletion on intestinal crypt survival following IR and expression of the stem/progenitor cell marker Musashi-1 (Msi-1) and the antiapoptotic gene survivin. Intestinal stem cell survival in adult wild-type (WT) and p21(-/-) mice was measured using the microcolony assay. Msi-1, p21, and survivin mRNA were measured using real-time PCR and immunohistochemical analysis. Laser capture microdissection (LCM) was used to isolate mRNA from the crypt stem cell zone. No differences in radiation-induced apoptosis were observed between WT and p21(-/-) mice. However, increased crypt survival (3.0-fold) was observed in p21(-/-) compared with WT mice 3.5 days after 13 Gy. Msi-1 and survivin mRNA were elevated 12- and 7.5-fold, respectively, in LCM-dissected crypts of p21(-/-) compared with WT mice. In conclusion, deletion of p21 results in protection of crypt stem/progenitor cells from IR-induced cell death. Furthermore, the increase in crypt survival is associated with increased numbers of Msi-1- and survivin-expressing cells in regenerative crypts.
Collapse
Affiliation(s)
- Robert J. George
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Mark A. Sturmoski
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Randal May
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Sripathi M. Sureban
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Brian K. Dieckgraefe
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Shrikant Anant
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| | - Courtney W. Houchen
- Department of Medicine, Division of Digestive Diseases and Nutrition, and Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Internal Medicine, Division of Gastroenterology, and Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; OU Cancer Institute, Oklahoma City; and Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
40
|
Wang X, Song Y, Jacobi JL, Tuan RS. Inhibition of histone deacetylases antagonized FGF2 and IL-1beta effects on MMP expression in human articular chondrocytes. Growth Factors 2009; 27:40-9. [PMID: 19107653 PMCID: PMC3612426 DOI: 10.1080/08977190802625179] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fibroblast growth factor-2 (FGF2) and interleukin-1beta (IL-1beta) stimulate the expression of matrix metalloproteinases (MMPs) in articular chondrocytes, which may contribute to cartilage degradation and development of osteoarthritis. Histone deacetylases (HDACs) have recently been implicated in the regulation of MMP gene expression. To investigate the functional involvement of HDACs in the signaling pathway of FGF2 and IL-1beta, we examined the effects of HDAC inhibition on activities of FGF2 or IL-1beta on gene expression of MMP-1, MMP-3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS5), collagen type II, and aggrecan. Human articular chondrocyte cultures were treated with FGF2 or IL-1beta in the presence or absence of HDAC inhibitor (trichostatin A, TSA). Gene expression levels after treatments were assessed using quantitative real time PCR. Results showed that FGF2 and IL-1beta both increased MMP-1 and -13 expression, while IL-1beta also increased MMP-3 mRNA levels. These effects were attenuated in the presence of TSA in a dose dependent manner. In contrast to the effects on MMPs, FGF2 decreased mRNA levels of ADAMTS-5, which was not affected by HDAC inhibition. FGF2, IL-1beta, and TSA inhibited expression of aggrecan, while TSA also decreased mRNA levels of collagen type II. These findings showed that HDAC inhibition antagonized FGF2 and IL-1beta induced MMP expression. Combination of FGF2 and the HDAC inhibitor decreases both anabolic and catabolic genes, which may slow the cartilage turnover and be beneficial for maintaining cartilage integrity.
Collapse
Affiliation(s)
| | | | | | - Rocky S. Tuan
- Correspondence: Dr. Rocky S. Tuan, Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, NIH. Building 50, Room 1523, Bethesda, MD 20892-8022, Phone: 301-451-6854, Fax: 301-435-8017,
| |
Collapse
|
41
|
Nakayama F, Müller K, Hagiwara A, Ridi R, Akashi M, Meineke V. Involvement of intracellular expression of FGF12 in radiation-induced apoptosis in mast cells. JOURNAL OF RADIATION RESEARCH 2008; 49:491-501. [PMID: 18525161 DOI: 10.1269/jrr.08021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Several fibroblast growth factors (FGFs) are able to reduce and improve radiation-induced tissue damage through the activation of surface fibroblast growth factor receptors (FGFRs). In contrast, some FGFs lack classical signal sequences, which play roles in the release of FGFs, and the intracellular function of these FGFs is not well clarified. In this study, we evaluated the transcript levels of 22 FGFs in a human mast cell line, HMC-1, using quantitative RT-PCR and found that FGF2 and FGF12 were expressed in HMC-1 cells. FGF12 not only lacks classical signal sequences but also fails to activate FGFRs. HMC-1 cells were transfected with an expression vector of FGF12 to clarify the intracellular function of FGF12 after irradiation. The overexpression of FGF12 in HMC-1 cells decreased ionizing radiation-induced apoptosis, and siRNA-mediated repression of FGF12 expression augmented apoptosis in HMC-1 cells. The overexpression of FGF12 strongly suppressed the marked augmentation of apoptosis induced by inhibition of the MEK/ERK pathway with PD98059. In contrast, the mitogen-activated protein kinase (MAPK) scaffold protein islet brain 2 (IB2), which was reported to bind to FGF12, did not interfere with the anti-apoptotic effect of FGF12. The expression of FGF12 transcripts was also detected in murine cultured mast cells derived from bone marrow or fetal skin. These findings suggest that FGF12 intracellularly suppresses radiation-induced apoptosis in mast cells independently of IB2.
Collapse
Affiliation(s)
- Fumiaki Nakayama
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Ning S, Nemeth JA, Hanson RL, Forsythe K, Knox SJ. Anti-integrin monoclonal antibody CNTO 95 enhances the therapeutic efficacy of fractionated radiation therapy in vivo. Mol Cancer Ther 2008; 7:1569-78. [DOI: 10.1158/1535-7163.mct-08-0288] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Kim KW, Moretti L, Lu B. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models. PLoS One 2008; 3:e2275. [PMID: 18509530 PMCID: PMC2386548 DOI: 10.1371/journal.pone.0002275] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 04/17/2008] [Indexed: 11/18/2022] Open
Abstract
Background Lung cancer remains the leading cause of cancer death worldwide. Radioresistance of lung cancer cells results in unacceptable rate of loco-regional failure. Although radiation is known to induce apoptosis, our recent study showed that knockdown of pro-apoptotic proteins Bak and Bax resulted in an increase in autophagic cell death and lung cancer radiosensitivity in vitro. To further explore the potential of apoptosis inhibition as a way to sensitize lung cancer for therapy, we tested M867, a novel chemical and reversible caspase-3 inhibitor, in combination with ionizing radiation in vivo and in vitro. Methods and Findings M867 reduced clonogenic survival in H460 lung cancer cells (DER = 1.27, p = 0.007) compared to the vehicle-treated treated cells. We found that administration of M867 with ionizing radiation in an in vivo mouse hind limb lung cancer model was well tolerated, and produced a significant tumor growth delay compared to radiation alone. A dramatic decrease in tumor vasculature was observed with M867 and radiation using von Willebrand factor staining. In addition, Ki67 index showed >5-fold reduction of tumor proliferation in the combination therapy group, despite the reduced levels of apoptosis observed with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Radiosensitizing effect of M867 through inhibiting caspases was validated using caspase-3/-7 double-knockout (DKO) mouse embryonic fibroblasts (MEF) cell model. Consistent with our previous study, autophagy contributed to the mechanism of increased cell death, following inhibition of apoptosis. In addition, matrigel assay showed a decrease in in vitro endothelial tubule formation during the M867/radiation combination treatment. Conclusions M867 enhances the cytotoxic effects of radiation on lung cancer and its vasculature both in vitro and in vivo. M867 has the potential to prolong tumor growth delay by inhibiting tumor proliferation. Clinical trials are needed to determine the potential of this combination therapy in patients with locally advanced lung cancer.
Collapse
Affiliation(s)
- Kwang Woon Kim
- Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Luigi Moretti
- Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Bo Lu
- Department of Radiation Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
44
|
Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol 2008; 294:C675-82. [PMID: 18234850 DOI: 10.1152/ajpcell.00437.2007] [Citation(s) in RCA: 363] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding the mechanisms by which adult stem cells produce growth factors may represent an important way to optimize their beneficial paracrine and autocrine effects. Components of the wound milieu may stimulate growth factor production to promote stem cell-mediated repair. We hypothesized that tumor necrosis factor-alpha (TNF-alpha), endotoxin (LPS), or hypoxia may activate human mesenchymal stem cells (MSCs) to increase release of vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), insulin-like growth factor 1 (IGF-1), or hepatocyte growth factor (HGF) and that nuclear factor-kappa B (NF kappa B), c-Jun NH2-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) mediates growth factor production from human MSCs. To study this, human MSCs were harvested, passaged, divided into four groups (100,000 cells, triplicates) and treated as follows: 1) with vehicle; 2) with stimulant alone [24 h LPS (200 ng/ml), 24 h TNF-alpha (50 ng/ml), or 24 h hypoxia (1% O2)]; 3) with inhibitor alone [NF kappa B (PDTC, 1 mM), JNK (TI-JIP, 10 microM), or ERK (ERK Inhibitor II, 25 microM)]; and 4) with stimulant and the various inhibitors. After 24 h incubation, MSC activation was determined by measuring supernatants for VEGF, FGF2, IGF-1, or HGF (ELISA). TNF-alpha, LPS, and hypoxia significantly increased human MSC VEGF, FGF2, HGF, and IGF-1 production versus controls. Stem cells exposed to injury demonstrated increased activation of NF kappa B, ERK, and JNK. VEGF, FGF2, and HGF expression was significantly reduced by NF kappa B inhibition (50% decrease) but not ERK or JNK inhibition. Moreover, ERK, JNK, and NF kappa B inhibitor alone did not activate MSC VEGF expression over controls. Various stressors activate human MSCs to increase VEGF, FGF2, HGF, and IGF-1 expression, which depends on an NFkB mechanism.
Collapse
Affiliation(s)
- Paul R Crisostomo
- Departments of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
45
|
Ratajczak MZ, Zuba-Surma EK, Machalinski B, Kucia M. Bone-marrow-derived stem cells--our key to longevity? J Appl Genet 2008; 48:307-19. [PMID: 17998587 DOI: 10.1007/bf03195227] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone marrow (BM) was for many years primarily regarded as the source of hematopoietic stem cells. In this review we discuss current views of the BM stem cell compartment and present data showing that BM contains not only hematopoietic but also heterogeneous non-hematopoietic stem cells. It is likely that similar or overlapping populations of primitive non-hematopoietic stem cells in BM were detected by different investigators using different experimental strategies and hence were assigned different names (e.g., mesenchymal stem cells, multipotent adult progenitor cells, or marrow-isolated adult multilineage inducible cells). However, the search still continues for true pluripotent stem cells in adult BM, which would fulfill the required criteria (e.g. complementation of blastocyst development). Recently our group has identified in BM a population of very small embryonic-like stem cells (VSELs), which express several markers characteristic for pluripotent stem cells and are found during early embryogenesis in the epiblast of the cylinder-stage embryo.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute, University of Louisville, 500 South Floyd Street, Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
46
|
Riehl TE, George RJ, Sturmoski MA, May R, Dieckgraefe B, Anant S, Houchen CW. Azoxymethane protects intestinal stem cells and reduces crypt epithelial mitosis through a COX-1-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2006; 291:G1062-70. [PMID: 17038629 DOI: 10.1152/ajpgi.00129.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Azoxymethane (AOM) is a potent DNA-damaging agent and carcinogen that induces intestinal and colonic tumors in rodents. Evaluation of the stem cell population by colony formation assay reveals that, within 8 h after treatment, AOM (10 mg/kg) elicited a prosurvival response. In wild-type (WT) mice, AOM treatment induced a 2.5-fold increase in intestinal crypt stem cell survival. AOM treatment increased stem cell survival in cyclooxygenase (COX)-2(-/-) but not COX-1(-/-) mice, confirming a role of COX-1 in the AOM-induced increase in stem cell survival. COX-1 mRNA and protein expression as well as COX-1-derived PGE(2) synthesis were increased 8 h after AOM treatment. Immunohistochemical staining of COX-1 demonstrated expression of the enzyme in the crypt epithelial cells, especially in the columnar epithelial cells between the Paneth cells adjacent to the stem cell zone. WT mice receiving AOM exhibited increased intestinal apoptosis and a simultaneous reduction in crypt mitotic figures within 8 h of injection. There were no significant differences in baseline or AOM-induced intestinal epithelial apoptosis between WT and COX-1(-/-) mice, but there was a complete reversal of the AOM-mediated reduction in mitosis in COX-1(-/-) mice. This suggests that COX-1-derived PGE(2) may play a key role in the early phase of intestinal tumorigenesis in response to DNA damage and suggests that COX-1 may be a potential therapeutic target in this model of colon cancer.
Collapse
Affiliation(s)
- Terrence E Riehl
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Vidrich A, Buzan JM, Barnes S, Reuter BK, Skaar K, Ilo C, Cominelli F, Pizarro T, Cohn SM. Altered epithelial cell lineage allocation and global expansion of the crypt epithelial stem cell population are associated with ileitis in SAMP1/YitFc mice. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1055-67. [PMID: 15793286 PMCID: PMC1602382 DOI: 10.1016/s0002-9440(10)62326-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Crohn's disease is characterized by cycles of mucosal injury and ulceration followed by epithelial regeneration and restoration of normal epithelial function. In this study, we examined whether ileitis in SAMP1/YitFc mice, a recombinant-inbred line that spontaneously develops ileitis resembling human Crohn's disease, was associated with alterations in normal patterns of epithelial differentiation or changes in epithelial regeneration after experimental injury. Increased numbers of Paneth, goblet, and intermediate cells were present focally in the ileum of SAMP1/YitFc mice by 4 weeks of age, before any histological evidence of acute or chronic inflammation. This increase in secretory cells became more pronounced at sites of ileitis with increasing age and inflammation. Additionally, there was mispositioning of Paneth and intermediate cells along the crypt-to-villus unit. A concomitant reduction in the number of absorptive enterocytes was observed. In contrast to the ileal-specific changes in lineage allocation, crypt stem cell numbers began to increase in both the ileum and proximal jejunum at the onset of inflammation in SAMP1/YitFc mice. These data suggest that the alterations in epithelial cell differentiation and increases in the size of the crypt stem cell population observed in SAMP1/YitFc mice are regulated by distinct mechanisms. We speculate that these epithelial alterations may play a role in the pathogenesis of ileitis in this murine model of Crohn's disease.
Collapse
Affiliation(s)
- Alda Vidrich
- Digestive Health Center of Excellence, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
McBride WH, Chiang CS, Olson JL, Wang CC, Hong JH, Pajonk F, Dougherty GJ, Iwamoto KS, Pervan M, Liao YP. A Sense of Danger from Radiation1. Radiat Res 2004; 162:1-19. [PMID: 15222781 DOI: 10.1667/rr3196] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tissue damage caused by exposure to pathogens, chemicals and physical agents such as ionizing radiation triggers production of generic "danger" signals that mobilize the innate and acquired immune system to deal with the intrusion and effect tissue repair with the goal of maintaining the integrity of the tissue and the body. Ionizing radiation appears to do the same, but less is known about the role of "danger" signals in tissue responses to this agent. This review deals with the nature of putative "danger" signals that may be generated by exposure to ionizing radiation and their significance. There are a number of potential consequences of "danger" signaling in response to radiation exposure. "Danger" signals could mediate the pathogenesis of, or recovery from, radiation damage. They could alter intrinsic cellular radiosensitivity or initiate radioadaptive responses to subsequent exposure. They may spread outside the locally damaged site and mediate bystander or "out-of-field" radiation effects. Finally, an important aspect of classical "danger" signals is that they link initial nonspecific immune responses in a pathological site to the development of specific adaptive immunity. Interestingly, in the case of radiation, there is little evidence that "danger" signals efficiently translate radiation-induced tumor cell death into the generation of tumor-specific immunity or normal tissue damage into autoimmunity. The suggestion is that radiation-induced "danger" signals may be inadequate in this respect or that radiation interferes with the generation of specific immunity. There are many issues that need to be resolved regarding "danger" signaling after exposure to ionizing radiation. Evidence of their importance is, in some areas, scant, but the issues are worthy of consideration, if for no other reason than that manipulation of these pathways has the potential to improve the therapeutic benefit of radiation therapy. This article focuses on how normal tissues and tumors sense and respond to danger from ionizing radiation, on the nature of the signals that are sent, and on the impact on the eventual consequences of exposure.
Collapse
Affiliation(s)
- William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1714, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sasaki H, Hirai K, Yamamoto H, Tanooka H, Sakamoto H, Iwamoto T, Takahashi T, Terada M, Ochiya T. HST-1/FGF-4 plays a critical role in crypt cell survival and facilitates epithelial cell restitution and proliferation. Oncogene 2004; 23:3681-8. [PMID: 15116099 DOI: 10.1038/sj.onc.1207348] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The fibroblast growth factor-4 (HST-1/FGF-4) is a heparin-binding growth factor that influences on epithelial and many other cells through interaction with FGF receptors. It has been demonstrated that the HST-1/FGF-4 gene protects mice from lethal irradiation by preventing bone marrow damage and intestinal tract damage. However, the radioprotective mechanism is unknown. In this study, we have investigated the expression of Hst-1/Fgf-4 in mouse small intestine after irradiation, and determined the role of HST-1/FGF-4 in mouse intestinal crypt cell survival and epithelial cell proliferation and restitution. We found the induction of endogenous Hst-1/Fgf-4 expression in intestine when mice are exposed to 9.0 Gy irradiation. Laser-captured microdissection (LCM) coupled with RT-PCR analysis revealed that expression of Hst-1/Fgf-4 was found in epithelial cell of the villi and crypt cells. Pretreatment of HST-1/FGF-4 caused an increase in the number of surviving crypt cells, and clearly suppresses the radiation-induced apoptosis of the crypt cells. Moreover, exogenous HST-1/FGF-4 enhances epithelial cell restitution and proliferation in an in vitro model. These data suggest that HST-1/FGF-4 is induced by irradiation injury, and that HST-1/FGF-4 will find a therapeutic role in the prevention of intestinal cell toxicity following intensive chemotherapy and radiation therapy protocols, and in allogenic cell transplantation.
Collapse
Affiliation(s)
- Hideo Sasaki
- Section for Studies on Metastasis, National Cancer Center Research Institute, 1-1 Tsukiji, 5-chome, Chuoku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhao J, Huang L, Belmar N, Buelow R, Fong T. Oral RDP58 Allows CPT-11 Dose Intensification for Enhanced Tumor Response by Decreasing Gastrointestinal Toxicity. Clin Cancer Res 2004; 10:2851-9. [PMID: 15102694 DOI: 10.1158/1078-0432.ccr-03-0496] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer patients undergoing triple therapy (CPT-11, 5-fluorouracil, and leucovorin) often present with severe delayed diarrhea as a result of chemotherapy-induced gastrointestinal (GI) toxicity and inflammation. RDP58 is a novel, anti-inflammatory, D-amino acid decapeptide that inhibits the production of tumor necrosis factor alpha, IFN-gamma, and interleukin 12, and has been shown to effectively inhibit clinical symptoms and intestinal inflammation in several rodent models of chemically induced colitis, nonhuman primates with spontaneous colitis, and humans with mild to moderate ulcerative colitis. We evaluated RDP58 as a potential protective agent in chemotherapy-induced GI inflammation. Oral administration of RDP58 significantly decreased the incidence of diarrhea and improved the survival rates of mice treated with toxic doses of CPT-11 or 5-fluorouracil. Histological analysis showed that RDP58 significantly reduced the destruction of the intestinal mucosa by inhibiting local overproduction of tumor necrosis factor alpha, IFN-gamma, and interleukin 12 in vivo. Furthermore, RDP58 administration allowed the maximum tolerated dose of CPT-11 to be doubled in tumor-bearing mice resulting in significantly enhanced primary tumor responses and prolongation of time to relapse without a concomitant increase in GI toxicity. Our results suggest that RDP58 may have clinical utility in cancer therapy by preventing treatment-associated GI toxicity and potentially increasing the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Jingsong Zhao
- Department of Discovery Research, SangStat Medical Corporation, Fremont, California 94555, USA.
| | | | | | | | | |
Collapse
|