1
|
Kim C, Tsai TH, Lopez R, McCullough A, Kasumov T. Obeticholic acid's effect on HDL function in MASH varies by diabetic status. Lipids 2024; 59:221-231. [PMID: 39014264 PMCID: PMC11560728 DOI: 10.1002/lipd.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Inflammation and oxidative stress are the key factors in the pathogenesis of both metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis. Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, improves hepatic inflammation and fibrosis in patients with MASH. However, it also reduces HDL cholesterol, suggesting that OCA may increase cardiovascular disease (CVD) risk in patients with MASH. We assessed HDL cholesterol efflux function, antioxidant (paraoxonase and ceruloplasmin activity), pro-inflammatory index, and particle sizes in a small group of patients with and without diabetes (n = 10/group) at baseline and after 18 months of OCA treatment. Patients on lipid-lowering medications (statins, fibrates) were excluded. At baseline, ferritin levels were higher in patients with MASH without diabetes (336.5 [157.0, 451.0] vs. 83 [36.0, 151.0] ng/mL, p < 0.005). Markers of HDL functions were similar in both groups. OCA therapy significantly improved liver histology and liver enzymes but increased alkaline phosphatase levels in nondiabetic patients with MASH (p < 0.05). However, it did not have any significant effect on cholesterol efflux and the antioxidant paraoxonase functions. In nondiabetics, ceruloplasmin (CP) antioxidant activity decreased (p < 0.005) and the pro-inflammatory index of HDL increased (p < 0.005) due to OCA therapy. In contrast, in diabetics, OCA increased levels of pre-β-HDL-the HDL particles enhanced protective capacity (p = 0.005) with no alteration in HDL functionality. In all patients, serum glucose levels were negatively correlated with OCA-induced change in pro-inflammatory function in HDL (p < 0.001), which was primarily due to diabetes (p = 0.05). These preliminary results suggest a distinct effect of OCA therapy on diabetic and nondiabetic patients with MASH and warrant a future large-scale study.
Collapse
Affiliation(s)
- Chunki Kim
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St.Rt.44, PO Box 95, Rootstown, OH 44272
| | - Tsung-Heng Tsai
- Department of Mathematical Sciences, Kent State University, 1300 Lefton Esplanade, Kent, OH 44242
| | - Rocio Lopez
- Department of Quantitative Health Sciences, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Arthur McCullough
- Department of Hepatology and Gastroenterology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St.Rt.44, PO Box 95, Rootstown, OH 44272
- Department of Hepatology and Gastroenterology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| |
Collapse
|
2
|
Hsiao YC, Yang Y, Liu CW, Peng J, Feng J, Zhao H, Teitelbaum T, Lu K. Multiomics to Characterize the Molecular Events Underlying Impaired Glucose Tolerance in FXR-Knockout Mice. J Proteome Res 2024; 23:3332-3341. [PMID: 38967328 DOI: 10.1021/acs.jproteome.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The prevalence of different metabolic syndromes has grown globally, and the farnesoid X receptor (FXR), a metabolic homeostat for glucose, lipid, and bile acid metabolisms, may serve an important role in the progression of metabolic disorders. Glucose intolerance by FXR deficiency was previously reported and observed in our study, but the underlying biology remained unclear. To investigate the ambiguity, we collected the nontargeted profiles of the fecal metaproteome, serum metabolome, and liver proteome in Fxr-null (Fxr-/-) and wild-type (WT) mice with LC-HRMS. FXR deficiency showed a global impact on the different molecular levels we monitored, suggesting its serious disruption in the gut microbiota, hepatic metabolism, and circulating biomolecules. The network and enrichment analyses of the dysregulated metabolites and proteins suggested the perturbation of carbohydrate and lipid metabolism by FXR deficiency. Fxr-/- mice presented lower levels of hepatic proteins involved in glycogenesis. The impairment of glycogenesis by an FXR deficiency may leave glucose to accumulate in the circulation, which may deteriorate glucose tolerance. Lipid metabolism was dysregulated by FXR deficiency in a structural-dependent manner. Fatty acid β-oxidations were alleviated, but cholesterol metabolism was promoted by an FXR deficiency. Together, we explored the molecular events associated with glucose intolerance by impaired FXR with integrated novel multiomic data.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jingya Peng
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jiahao Feng
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haoduo Zhao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Taylor Teitelbaum
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
4
|
Li Z, Zheng D, Zhang T, Ruan S, Li N, Yu Y, Peng Y, Wang D. The roles of nuclear receptors in cholesterol metabolism and reverse cholesterol transport in nonalcoholic fatty liver disease. Hepatol Commun 2024; 8:e0343. [PMID: 38099854 PMCID: PMC10727660 DOI: 10.1097/hc9.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
As the most prevalent chronic liver disease globally, NAFLD encompasses a pathological process that ranges from simple steatosis to NASH, fibrosis, cirrhosis, and HCC, closely associated with numerous extrahepatic diseases. While the initial etiology was believed to be hepatocyte injury caused by lipid toxicity from accumulated triglycerides, recent studies suggest that an imbalance of cholesterol homeostasis is of greater significance. The role of nuclear receptors in regulating liver cholesterol homeostasis has been demonstrated to be crucial. This review summarizes the roles and regulatory mechanisms of nuclear receptors in the 3 main aspects of cholesterol production, excretion, and storage in the liver, as well as their cross talk in reverse cholesterol transport. It is hoped that this review will offer new insights and theoretical foundations for the study of the pathogenesis and progression of NAFLD and provide new research directions for extrahepatic diseases associated with NAFLD.
Collapse
|
5
|
Guo Y, Luo T, Xie G, Zhang X. Bile acid receptors and renal regulation of water homeostasis. Front Physiol 2023; 14:1322288. [PMID: 38033333 PMCID: PMC10684672 DOI: 10.3389/fphys.2023.1322288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
The kidney is the key organ responsible for maintaining the body's water and electrolyte homeostasis. About 99% of the primary urine filtered from the Bowman's capsule is reabsorbed along various renal tubules every day, with only 1-2 L of urine excreted. Aquaporins (AQPs) play a vital role in water reabsorption in the kidney. Currently, a variety of molecules are found to be involved in the process of urine concentration by regulating the expression or activity of AQPs, such as antidiuretic hormone, renin-angiotensin-aldosterone system (RAAS), prostaglandin, and several nuclear receptors. As the main bile acid receptors, farnesoid X receptor (FXR) and membrane G protein-coupled bile acid receptor 1 (TGR5) play important roles in bile acid, glucose, lipid, and energy metabolism. In the kidney, FXR and TGR5 exhibit broad expression across all segments of renal tubules, and their activation holds significant therapeutic potential for numerous acute and chronic kidney diseases through alleviating renal lipid accumulation, inflammation, oxidative stress, and fibrosis. Emerging evidence has demonstrated that the genetic deletion of FXR or TGR5 exhibits increased basal urine output, suggesting that bile acid receptors play a critical role in urine concentration. Here, we briefly summarize the function of bile acid receptors in renal water reabsorption and urine concentration.
Collapse
Affiliation(s)
- Yanlin Guo
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| | - Taotao Luo
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Guixiang Xie
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Xiaoyan Zhang
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
- Health Science Center, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Henry Z, Meadows V, Guo GL. FXR and NASH: an avenue for tissue-specific regulation. Hepatol Commun 2023; 7:e0127. [PMID: 37058105 PMCID: PMC10109454 DOI: 10.1097/hc9.0000000000000127] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 04/15/2023] Open
Abstract
NASH is within the spectrum of NAFLD, a liver condition encompassing liver steatosis, inflammation, hepatocyte injury, and fibrosis. The prevalence of NASH-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. There is no Food and Drug Administration (FDA)-approved pharmacological intervention for NASH. The farnesoid X receptor (FXR) is essential in regulating bile acid homeostasis, and dysregulation of bile acids has been implicated in the pathogenesis of NASH. As a result, modulators of FXR that show desirable effects in mitigating key characteristics of NASH have been developed as promising therapeutic approaches. However, global FXR activation causes adverse effects such as cholesterol homeostasis imbalance and pruritus. The development of targeted FXR modulation is necessary for ideal NASH therapeutics, but information regarding tissue-specific and cell-specific FXR functionality is limited. In this review, we highlight FXR activation in the regulation of bile acid homeostasis and NASH development, examine the current literature on tissue-specific regulation of nuclear receptors, and speculate on how FXR regulation will be beneficial in the treatment of NASH.
Collapse
Affiliation(s)
- Zakiyah Henry
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Vik Meadows
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, USA
| |
Collapse
|
7
|
Guo Y, Xie G, Zhang X. Role of FXR in Renal Physiology and Kidney Diseases. Int J Mol Sci 2023; 24:2408. [PMID: 36768731 PMCID: PMC9916923 DOI: 10.3390/ijms24032408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Farnesoid X receptor, also known as the bile acid receptor, belongs to the nuclear receptor (NR) superfamily of ligand-regulated transcription factors, which performs its functions by regulating the transcription of target genes. FXR is highly expressed in the liver, small intestine, kidney and adrenal gland, maintaining homeostasis of bile acid, glucose and lipids by regulating a diverse array of target genes. It also participates in several pathophysiological processes, such as inflammation, immune responses and fibrosis. The kidney is a key organ that manages water and solute homeostasis for the whole body, and kidney injury or dysfunction is associated with high morbidity and mortality. In the kidney, FXR plays an important role in renal water reabsorption and is thought to perform protective functions in acute kidney disease and chronic kidney disease, especially diabetic kidney disease. In this review, we summarize the recent advances in the understanding of the physiological and pathophysiological function of FXR in the kidney.
Collapse
Affiliation(s)
| | | | - Xiaoyan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Panzitt K, Zollner G, Marschall HU, Wagner M. Recent advances on FXR-targeting therapeutics. Mol Cell Endocrinol 2022; 552:111678. [PMID: 35605722 DOI: 10.1016/j.mce.2022.111678] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022]
Abstract
The bile acid receptor FXR has emerged as a bona fide drug target for chronic cholestatic and metabolic liver diseases, ahead of all non-alcoholic fatty liver disease (NAFLD). FXR is highly expressed in the liver and intestine and activation at both sites differentially contributes to its desired metabolic effects. Unrestricted FXR activation, however, also comes along with undesired effects such as a pro-atherogenic lipid profile, pruritus and hepatocellular toxicity under certain conditions. Several pre-clinical studies have confirmed the potency of FXR activation for cholestatic and metabolic liver diseases, but overall it remains still open whether selective activation of intestinal FXR is advantageous over pan-FXR activation and whether restricted or modulated FXR activation can limit some of the side effects. Even more, FXR antagonist also bear the potential as intestinal-selective drugs in NAFLD models. In this review we will discuss the molecular prerequisites for FXR activation, pan-FXR activation and intestinal FXR in/activation from a therapeutic point of view, different steroidal and non-steroidal FXR agonists, ways to restrict FXR activation and finally what we have learned from pre-clinical models and clinical trials with different FXR therapeutics.
Collapse
Affiliation(s)
- Katrin Panzitt
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Gernot Zollner
- Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Wagner
- Research Unit for Translational Nuclear Receptor Research, Medical University Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Medical University Graz, Graz, Austria.
| |
Collapse
|
9
|
Haonon O, Liu Z, Dangtakot R, Pinlaor P, Puapairoj A, Cha'on U, Intuyod K, Pongking T, Chantawong C, Sengthong C, Chaidee A, Onsurathum S, Li JV, Pinlaor S. Opisthorchis viverrini infection induces metabolic disturbances in hamsters fed with high fat/high fructose diets: implications for liver and kidney pathologies. J Nutr Biochem 2022; 107:109053. [DOI: 10.1016/j.jnutbio.2022.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
|
10
|
FXR, a Key Regulator of Lipid Metabolism, Is Inhibited by ER Stress-Mediated Activation of JNK and p38 MAPK in Large Yellow Croakers ( Larimichthys crocea) Fed High Fat Diets. Nutrients 2021; 13:nu13124343. [PMID: 34959897 PMCID: PMC8706856 DOI: 10.3390/nu13124343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
High-fat diets induced abnormal lipid accumulation in the liver of cultured fish that caused body damage and diseases. The purpose of this research was to investigate the role and mechanism of farnesoid X receptor (FXR) in regulating lipid metabolism and to determine how high-fat diets affect FXR expression in large yellow croakers. The results showed that ligand-meditated FXR-activation could prevent abnormal lipid accumulation in the liver and hepatocytes of large yellow croakers. FXR activation increased the expression of lipid catabolism-related genes while decreasing the expression of lipogenesis-related genes. Further investigation found that the promoter activity of proliferator-activated receptor α (PPARα) could be increased by croaker FXR. Through the influence of SHP on LXR, FXR indirectly decreased the promoter activity of sterol regulatory element binding protein 1 (SREBP1) in large yellow croakers. Furthermore, the findings revealed that endoplasmic reticulum (ER)-stress-induced-activation of JNK and P38 MAPK participated in the reduction of FXR induced by high-fat diets. Then, hepatocyte nuclear factor 1α (HNF1α) was confirmed to be an FXR regulator in large yellow croaker, and it was reduced by high-fat diets and ER stress. In addition, co-expression of c-Jun with HNF1α inhibited the effect of HNF1α on FXR promoter, and suppression of P38 MAPK could relieve the HNF1α expression reduction caused by ER stress activation. In summary, the present study showed that FXR mediated lipid metabolism can prevent abnormal lipid accumulation through regulating PPARα and SREBP1 in large yellow croakers, while high-fat diets can suppress FXR expression by ER stress mediated-activation of JNK and P38 MAPK pathways. This research could benefit the study of FXR functions in vertebrate evolution and the development of therapy or preventative methods for nutrition-related disorders.
Collapse
|
11
|
Fiorucci S, Distrutti E. Linking liver metabolic and vascular disease via bile acid signaling. Trends Mol Med 2021; 28:51-66. [PMID: 34815180 DOI: 10.1016/j.molmed.2021.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder affecting over one quarter of the global population. Liver fat accumulation in NAFLD is promoted by increased de novo lipogenesis leading to the development of a proatherosclerotic lipid profile and atherosclerotic cardiovascular disease (CVD). The CVD component of NAFLD is the main determinant of patient outcome. The farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) are bile acid-activated receptors that modulate inflammation and lipid and glucose metabolism in the liver and CV system, and are thus potential therapeutic targets. We review bile acid signaling in liver, metabolic tissues, and the CV system, and we propose the development of dual FXR/GPBAR1 ligands, intestine-restricted FXR ligands, or statin combinations to limit side effects and effectively manage the liver and CV components of NAFLD.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- Struttura Complessa di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
12
|
Biagioli M, Fiorucci S. Bile acid activated receptors: Integrating immune and metabolic regulation in non-alcoholic fatty liver disease. LIVER RESEARCH 2021; 5:119-141. [PMID: 39957845 PMCID: PMC11791866 DOI: 10.1016/j.livres.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023]
Abstract
Bile acids are a family of atypical steroids generated at the interface of liver-intestinal microbiota acting on a ubiquitously expressed family of membrane and nuclear receptors known as bile acid activated receptors. The two best characterized receptors of this family are the nuclear receptor, farnesoid X receptor (FXR) and the G protein-coupled receptor, G protein-coupled bile acid receptor 1 (GPBAR1). FXR and GPBAR1 regulate major aspects of lipid and glucose metabolism, energy balance, autophagy and immunity and have emerged as potential pharmaceutical targets for the treatment of metabolic and inflammatory disorders. Clinical trials in non-alcoholic fatty liver disease (NAFLD), however, have shown that selective FXR agonists cause side effects while their efficacy is partial. Because FXR and GPBAR1 exert additive effects, dual FXR/GPBAR1 ligands have been developed for the treatment of metabolic disorders and are currently advanced to clinical trials. Here, we will review the role of FXR and GPBAR1 agonism in NAFLD and how the two receptors could be exploited to target multiple components of the disease.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Gaillard D, Masson D, Garo E, Souidi M, Pais de Barros JP, Schoonjans K, Grober J, Besnard P, Thomas C. Muricholic Acids Promote Resistance to Hypercholesterolemia in Cholesterol-Fed Mice. Int J Mol Sci 2021; 22:7163. [PMID: 34281217 PMCID: PMC8269105 DOI: 10.3390/ijms22137163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Hypercholesterolemia is a major risk factor for atherosclerosis and cardiovascular diseases. Although resistant to hypercholesterolemia, the mouse is a prominent model in cardiovascular research. To assess the contribution of bile acids to this protective phenotype, we explored the impact of a 2-week-long dietary cholesterol overload on cholesterol and bile acid metabolism in mice. METHODS Bile acid, oxysterol, and cholesterol metabolism and transport were assessed by quantitative real-time PCR, western blotting, GC-MS/MS, or enzymatic assays in the liver, the gut, the kidney, as well as in the feces, the blood, and the urine. RESULTS Plasma triglycerides and cholesterol levels were unchanged in mice fed a cholesterol-rich diet that contained 100-fold more cholesterol than the standard diet. In the liver, oxysterol-mediated LXR activation stimulated the synthesis of bile acids and in particular increased the levels of hydrophilic muricholic acids, which in turn reduced FXR signaling, as assessed in vivo with Fxr reporter mice. Consequently, biliary and basolateral excretions of bile acids and cholesterol were increased, whereas portal uptake was reduced. Furthermore, we observed a reduction in intestinal and renal bile acid absorption. CONCLUSIONS These coordinated events are mediated by increased muricholic acid levels which inhibit FXR signaling in favor of LXR and SREBP2 signaling to promote efficient fecal and urinary elimination of cholesterol and neo-synthesized bile acids. Therefore, our data suggest that enhancement of the hydrophilic bile acid pool following a cholesterol overload may contribute to the resistance to hypercholesterolemia in mice. This work paves the way for new therapeutic opportunities using hydrophilic bile acid supplementation to mitigate hypercholesterolemia.
Collapse
Affiliation(s)
- Dany Gaillard
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- Department of Cell & Developmental Biology, and The Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Masson
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Biochemistry Department, University Hospital François Mitterrand, 21000 Dijon, France
| | - Erwan Garo
- IGBMC, CNRS UMR 7104, INSERM U 1258, 67400 Illkirch, France;
| | - Maamar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260 Fontenay-aux-Roses, France;
| | - Jean-Paul Pais de Barros
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Lipidomic Facility, Université de Bourgogne Franche-Comté (UBFC), 21078 Dijon, France
| | - Kristina Schoonjans
- Institute of Bioengineering, Life Science Faculty, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Jacques Grober
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
| | - Philippe Besnard
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Physiologie de la Nutrition, AgroSup Dijon, 21000 Dijon, France
| | - Charles Thomas
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
| |
Collapse
|
14
|
Fiorucci S, Biagioli M, Baldoni M, Ricci P, Sepe V, Zampella A, Distrutti E. The identification of farnesoid X receptor modulators as treatment options for nonalcoholic fatty liver disease. Expert Opin Drug Discov 2021; 16:1193-1208. [PMID: 33849361 DOI: 10.1080/17460441.2021.1916465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The farnesoid-x-receptor (FXR) is a ubiquitously expressed nuclear receptor selectively activated by primary bile acids. AREA COVERED FXR is a validated pharmacological target. Herein, the authors review preclinical and clinical data supporting the development of FXR agonists in the treatment of nonalcoholic fatty liver disease. EXPERT OPINION Development of systemic FXR agonists to treat the metabolic liver disease has been proven challenging because the side effects associated with these agents including increased levels of cholesterol and LDL-c and reduced HDL-c raising concerns over their long-term cardiovascular safety. Additionally, pruritus has emerged as a common, although poorly explained, dose-related side effect with all FXR ligands, but is especially common with OCA. FXR agonists that are currently undergoing phase 2/3 trials are cilofexor, tropifexor, nidufexor and MET409. Some of these agents are currently being developed as combination therapies with other agents including cenicriviroc, a CCR2/CCR5 inhibitor, or firsocostat an acetyl CoA carboxylase inhibitor. Additional investigations are needed to evaluate the beneficial effects of combination of these agents with statins. It is expected that in the coming years, FXR agonists will be developed as a combination therapy to minimize side effects and increase likelihood of success by targeting different metabolic pathways.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Monia Baldoni
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Patrizia Ricci
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy University of Napoli, Federico II, Napoli, Italy
| | - Angela Zampella
- Department of Pharmacy University of Napoli, Federico II, Napoli, Italy
| | - Eleonora Distrutti
- SC Di Gastroenterologia Ed Epatologia, Azienda Ospedaliera Di Perugia, Perugia, Italy
| |
Collapse
|
15
|
FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166133. [PMID: 33771667 DOI: 10.1016/j.bbadis.2021.166133] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
The liver is the central metabolic hub which coordinates nutritional inputs and metabolic outputs. Food intake releases bile acids which can be sensed by the bile acid receptor FXR in the liver and the intestine. Hepatic and intestinal FXR coordinately regulate postprandial nutrient disposal in a network of interacting metabolic nuclear receptors. In this review we summarize and update the "classical roles" of FXR as a central integrator of the feeding state response, which orchestrates the metabolic processing of carbohydrates, lipids, proteins and bile acids. We also discuss more recent and less well studied FXR effects on amino acid, protein metabolism, autophagic turnover and inflammation. In addition, we summarize the recent understanding of how FXR signaling is affected by posttranslational modifications and by different FXR isoforms. These modifications and variations in FXR signaling might be considered when FXR is targeted pharmaceutically in clinical applications.
Collapse
|
16
|
Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M. Bile acids and their receptors in metabolic disorders. Prog Lipid Res 2021; 82:101094. [PMID: 33636214 DOI: 10.1016/j.plipres.2021.101094] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Bile acids are a large family of atypical steroids which exert their functions by binding to a family of ubiquitous cell membrane and nuclear receptors. There are two main bile acid activated receptors, FXR and GPBAR1, that are exclusively activated by bile acids, while other receptors CAR, LXRs, PXR, RORγT, S1PR2and VDR are activated by bile acids in addition to other more selective endogenous ligands. In the intestine, activation of FXR and GPBAR1 promotes the release of FGF15/19 and GLP1 which integrate their signaling with direct effects exerted by theother receptors in target tissues. This network is tuned in a time ordered manner by circadian rhythm and is critical for the regulation of metabolic process including autophagy, fast-to-feed transition, lipid and glucose metabolism, energy balance and immune responses. In the last decade FXR ligands have entered clinical trials but development of systemic FXR agonists has been proven challenging because their side effects including increased levels of cholesterol and Low Density Lipoproteins cholesterol (LDL-c) and reduced High-Density Lipoprotein cholesterol (HDL-c). In addition, pruritus has emerged as a common, dose related, side effect of FXR ligands. Intestinal-restricted FXR and GPBAR1 agonists and dual FXR/GPBAR1 agonists have been developed. Here we review the last decade in bile acids physiology and pharmacology.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli, Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
17
|
Cariello M, Piccinin E, Moschetta A. Transcriptional Regulation of Metabolic Pathways via Lipid-Sensing Nuclear Receptors PPARs, FXR, and LXR in NASH. Cell Mol Gastroenterol Hepatol 2021; 11:1519-1539. [PMID: 33545430 PMCID: PMC8042405 DOI: 10.1016/j.jcmgh.2021.01.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease comprises a wide spectrum of liver injuries from simple steatosis to steatohepatitis and cirrhosis. Nonalcoholic steatohepatitis (NASH) is defined when liver steatosis is associated with inflammation, hepatocyte damage, and fibrosis. A genetic predisposition and environmental insults (ie, dietary habits, obesity) are putatively responsible for NASH progression. Here, we present the impact of the lipid-sensing nuclear receptors in the pathogenesis and treatment of NASH. In detail, we discuss the pros and cons of the putative transcriptional action of the fatty acid sensors (peroxisome proliferator-activated receptors), the bile acid sensor (farnesoid X receptor), and the oxysterol sensor (liver X receptors) in the pathogenesis and bona fide treatment of NASH.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy
| | - Elena Piccinin
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro," Bari, Italy; National Institute for Biostructures and Biosystems (INBB), Rome, Italy; Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy.
| |
Collapse
|
18
|
Maroni L, Fianchi F, Miele L, Svegliati Baroni G. The pathophysiology of gut–liver connection. THE COMPLEX INTERPLAY BETWEEN GUT-BRAIN, GUT-LIVER, AND LIVER-BRAIN AXES 2021:97-122. [DOI: 10.1016/b978-0-12-821927-0.00002-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Gu M, Song H, Li Y, Jiang Y, Zhang Y, Tang Z, Ji G, Huang C. Extract of Schisandra chinensis fruit protects against metabolic dysfunction in high-fat diet induced obese mice via FXR activation. Phytother Res 2020; 34:3063-3077. [PMID: 32583938 DOI: 10.1002/ptr.6743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
Abstract
Schisandra chinensis fruit has been shown to restore carbohydrate- and lipid-metabolic disorders and has anti-hepatotoxicity and anti-hepatitis activities. However, the molecular targets mediating the pharmacological properties of S. chinensis fruit have not been clarified. Here, we assayed the effects of S. chinensis fruit ethanol extract (SCE) on farnesoid X receptor (FXR) transactivity. The pharmacological effects of SCE (1 g/100 g diet) were assessed in high-fat diet (HFD)-fed C57BL/6 mice and ob/ob mice. The FXR and Fgf15 signalling pathways were evaluated by FXR silencing, ELISA, Western blot and RT-PCR analyses. The results showed that SCE treatment increased FXR transcription activity and improved obesity, hypercholesteremia and fatty liver in HFD-fed mice, while it had limited effects on ob/ob mice. Our study suggests that SCE treatment may improve HFD-induced metabolic disorders through pharmacological activation of FXR/Fgf15 signalling, and such beneficial effects of SCE may require leptin participation.
Collapse
Affiliation(s)
- Ming Gu
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Li
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Jiang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yali Zhang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhipeng Tang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Li C, Yang J, Wang Y, Qi Y, Yang W, Li Y. Farnesoid X Receptor Agonists as Therapeutic Target for Cardiometabolic Diseases. Front Pharmacol 2020; 11:1247. [PMID: 32982723 PMCID: PMC7479173 DOI: 10.3389/fphar.2020.01247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiometabolic diseases are characterized as a combination of multiple risk factors for cardiovascular disease (CVD) and metabolic diseases including diabetes mellitus and dyslipidemia. Cardiometabolic diseases are closely associated with cell glucose and lipid metabolism, inflammatory response and mitochondrial function. Farnesoid X Receptor (FXR), a metabolic nuclear receptor, are found to be activated by primary BAs such as chenodeoxycholic acid (CDCA), cholic acid (CA) and synthetic agonists such as obeticholic acid (OCA). FXR plays crucial roles in regulating cholesterol homeostasis, lipid metabolism, glucose metabolism, and intestinal microorganism. Recently, emerging evidence suggests that FXR agonists are functional for metabolic syndrome and cardiovascular diseases and are considered as a potential therapeutic agent. This review will discuss the pathological mechanism of cardiometabolic disease and reviews the potential mechanisms of FXR agonists in the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Wang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingzi Qi
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
21
|
Chen X, Lu F, Luo G, Ren Y, Ma J, Zhang Y. Discovery of selective farnesoid X receptor agonists for the treatment of hyperlipidemia from traditional Chinese medicine based on virtual screening and in vitro validation. J Biomol Struct Dyn 2019; 38:4461-4470. [PMID: 31842697 DOI: 10.1080/07391102.2019.1695665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Farnesoid X receptor (FXR), a bile acid receptor, has important roles in maintaining bile acid and cholesterol homeostasis, which is an attractive target for hyperlipidemia. Present study aimed to discover potential selective FXR agonists over G-protein coupled bile acid receptor 1 (GPBAR1, TGR5) from traditional Chinese medicine (TCM) by using virtual screening, in vitro studies and molecular dynamics simulation (MD). Ligand-based pharmacophore model for FXR was firstly built to screen FXR agonists from the Traditional Chinese Medicine Database (TCMD). Then, 21 FXR crystal structures were clustered in two types and two representative structures (PDB ID: 3OMM and 3P89) were, respectively, used to carry out molecular docking to refine the screened result. Moreover, the pharmacophore model for GPBAR1 was built to screen selective FXR agonists with no activity on GPBAR1. A set of 24 candidate selective FXR agonists which fitvalue of FXR pharmacophore model and docking score of 3OMM and 3P89 were in the top 100 and cannot match the pharmacophore model for GPBAR1 were obtained. By the lipid-lowering activity test in HepG2 cell lines, Arctigenin was identified to be potential selective FXR agonist with the activity of 20 μmol·L-1. After down-regulating FXR, Arctigenin could increase the mRNA of FXR while exerted no effect on the mRNA of GPBAR1. MD was further used to interpret the mechanism of Arctigenin with the representative structures. This research provided a new screening procedure for finding selective candidate compounds and appropriate docking models of a target by considering the structure diversity of PDB structures, which was applied to discovery novel selective FXR agonists to treat hyperlipidemia.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xi Chen
- School of Chinese Material Medica, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Chinese Material Medica, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing University of Chinese Medicine, Beijing, China
| | - Ganggang Luo
- School of Chinese Material Medica, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Ren
- School of Chinese Material Medica, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Ma
- School of Chinese Material Medica, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing University of Chinese Medicine, Beijing, China
| | - Yanling Zhang
- School of Chinese Material Medica, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Schumacher JD, Guo GL. Pharmacologic Modulation of Bile Acid-FXR-FGF15/FGF19 Pathway for the Treatment of Nonalcoholic Steatohepatitis. Handb Exp Pharmacol 2019; 256:325-357. [PMID: 31201553 DOI: 10.1007/164_2019_228] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is within the spectrum of nonalcoholic fatty liver disease (NAFLD) and can progress to fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). The prevalence of NASH is rising and has become a large burden to the medical system worldwide. Unfortunately, despite its high prevalence and severe health consequences, there is currently no therapeutic agent approved to treat NASH. Therefore, the development of efficacious therapies is of utmost urgency and importance. Many molecular targets are currently under investigation for their ability to halt NASH progression. One of the most promising and well-studied targets is the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR). In this chapter, the characteristics, etiology, and prevalence of NASH will be discussed. A brief introduction to FXR regulation of BA homeostasis will be described. However, for more details regarding FXR in BA homeostasis, please refer to previous chapters. In this chapter, the mechanisms by which tissue and cell type-specific FXR regulates NASH development will be discussed in detail. Several FXR agonists have reached later phase clinical trials for treatment of NASH. The progress of these compounds and summary of released data will be provided. Lastly, this chapter will address safety liabilities specific to the development of FXR agonists.
Collapse
Affiliation(s)
- Justin D Schumacher
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
23
|
Gege C, Hambruch E, Hambruch N, Kinzel O, Kremoser C. Nonsteroidal FXR Ligands: Current Status and Clinical Applications. Handb Exp Pharmacol 2019; 256:167-205. [PMID: 31197565 DOI: 10.1007/164_2019_232] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
FXR agonists have demonstrated very promising clinical results in the treatment of liver disorders such as primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), and nonalcoholic steatohepatitis (NASH). NASH, in particular, is one of the last uncharted white territories in the pharma landscape, and there is a huge medical need and a large potential pharmaceutical market for a NASH pharmacotherapy. Clinical efficacy superior to most other treatment options was shown by FXR agonists such as obeticholic acid (OCA) as they improved various metabolic features including liver steatosis as well as liver inflammation and fibrosis. But OCA's clinical success comes with some major liabilities such as pruritus, high-density lipoprotein cholesterol (HDLc) lowering, low-density lipoprotein cholesterol (LDLc) increase, and a potential for drug-induced liver toxicity. Some of these effects can be attributed to on-target effects exerted by FXR, but with others it is not clear whether it is FXR- or OCA-related. Therefore a quest for novel, proprietary FXR agonists is ongoing with the aim to increase FXR potency and selectivity over other proteins and to overcome at least some of the OCA-associated clinical side effects through an improved pharmacology. In this chapter we will discuss the historical and ongoing efforts in the identification and development of nonsteroidal, which largely means non-bile acid-type, FXR agonists for clinical use.
Collapse
Affiliation(s)
- Christian Gege
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Eva Hambruch
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Nina Hambruch
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Olaf Kinzel
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany
| | - Claus Kremoser
- Phenex Pharmaceuticals AG, Drug Discovery Research, Heidelberg, Germany.
| |
Collapse
|
24
|
Miyazaki T, Honda A, Ikegami T, Iida T, Matsuzaki Y. Human-specific dual regulations of FXR-activation for reduction of fatty liver using in vitro cell culture model. J Clin Biochem Nutr 2018; 64:112-123. [PMID: 30936623 PMCID: PMC6436045 DOI: 10.3164/jcbn.18-80] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptor farnesoid X receptor activation inhibits fatty acid synthesis through the liver X receptor-α-sterol regulatory element binding protein-1c pathway universally in animals, but also has human-specific crosstalk with the peroxisome proliferator-activated receptor-α. The effects of farnesoid X receptor-ligands on both the synthesis and degradation of fatty liver through nuclear receptor-related regulation were investigated in both human and murine hepatocytes. A fatty liver culture cell model was established using a synthetic liver X receptor-α-ligand (To901317) for both human and mouse non-neoplastic hepatocytes. The hepatocytes were exposed to natural or synthetic farnesoid X receptor-ligands (bile acids, GW4064, obeticholic acid) together with or after To901317. Cellular triglyceride accumulation was significantly inhibited by the farnesoid X receptor-ligands along with inhibition of lipogenic genes and up-regulation of farnesoid X receptor-target small heterodimer partner in both human and mouse cells. The accumulated triglyceride was significantly degraded by the farnesoid X receptor-ligands only in the human cells accompanied with the up-regulations of peroxisome proliferator-activated receptor-α and fatty acid β-oxidation. Farnesoid X receptor-ligands can be therapeutic agents for treating human fatty liver through dual effects on inhibition of lipogenesis and on enhancement of lipolysis.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan.,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan
| | - Tadashi Ikegami
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan
| | - Takashi Iida
- Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Yasushi Matsuzaki
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan
| |
Collapse
|
25
|
DENG YF, HUANG XL, SU M, YU PX, ZHANG Z, LIU QH, WANG GP, LIU MY. Hypolipidemic effect of SIPI-7623, a derivative of an extract from oriental wormwood, through farnesoid X receptor antagonism. Chin J Nat Med 2018; 16:572-579. [DOI: 10.1016/s1875-5364(18)30094-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 01/30/2023]
|
26
|
Papazyan R, Liu X, Liu J, Dong B, Plummer EM, Lewis RD, Roth JD, Young MA. FXR activation by obeticholic acid or nonsteroidal agonists induces a human-like lipoprotein cholesterol change in mice with humanized chimeric liver. J Lipid Res 2018; 59:982-993. [PMID: 29559521 PMCID: PMC5983391 DOI: 10.1194/jlr.m081935] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/01/2018] [Indexed: 12/15/2022] Open
Abstract
Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) agonist that regulates bile acid and lipid metabolism. FXR activation induces distinct changes in circulating cholesterol among animal models and humans. The mechanistic basis of these effects has been elusive because of difficulties in studying lipoprotein homeostasis in mice, which predominantly package circulating cholesterol in HDLs. Here, we tested the effects of OCA in chimeric mice whose livers are mostly composed (≥80%) of human hepatocytes. Chimeric mice exhibited a human-like ratio of serum LDL cholesterol (LDL-C) to HDL cholesterol (HDL-C) at baseline. OCA treatment in chimeric mice increased circulating LDL-C and decreased circulating HDL-C levels, demonstrating that these mice closely model the cholesterol effects of FXR activation in humans. Mechanistically, OCA treatment increased hepatic cholesterol in chimeric mice but not in control mice. This increase correlated with decreased SREBP-2 activity and target gene expression, including a significant reduction in LDL receptor protein. Cotreatment with atorvastatin reduced total cholesterol, rescued LDL receptor protein levels, and normalized serum LDL-C. Treatment with two clinically relevant nonsteroidal FXR agonists elicited similar lipoprotein and hepatic changes in chimeric mice, suggesting that the increase in circulating LDL-C is a class effect of FXR activation.
Collapse
Affiliation(s)
| | - Xueqing Liu
- Intercept Pharmaceuticals, Inc., San Diego, CA 92121
| | - Jingwen Liu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Bin Dong
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | | | | | | | - Mark A Young
- Intercept Pharmaceuticals, Inc., San Diego, CA 92121.
| |
Collapse
|
27
|
Abstract
In most cholestatic liver diseases the primary cholestasis-causing lesions are located in the biliary tree and may be of (auto)immune origin. Bile salts are responsible for the secondary toxic consequences. Bile salt and nuclear hormone directed therapies primarily aim at improving this secondary toxic injury. In primary biliary cholangitis, trials show statistically significant responses on biochemical endpoints. Preclinical studies suggest that FXR- and PPAR-agonists, inhibitors of the apical sodium-dependent bile salt transporter (ASBT-inhibitors) and the C23 UDCA derivative nor-UDCA are promising agents for the treatment of primary sclerosing cholangitis (PSC). Area covered: Pharmaceuticals that interfere with bile salt signaling in humans for the treatment of chronic cholestatic liver disease are reviewed. Expert commentary: Nuclear hormone receptors, bile salt transport proteins and receptors provide targets for novel therapies of cholestatic liver disease. These drugs show positive results on biochemical endpoints. For histological endpoints, survival and transplant-free survival, long-term trials are needed. For relief of symptoms, such as fatigue and pruritus, these drugs have yet to prove their value.
Collapse
Affiliation(s)
- Peter L M Jansen
- a Maastricht Center for Systems Biology (MaCSBio) , Maastricht University , Maastricht , The Netherlands.,b Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
28
|
Tian J, Huang S, Sun S, Ding L, Zhang E, Huang W. Bile acid signaling and bariatric surgery. LIVER RESEARCH 2017; 1:208-213. [PMID: 30034914 PMCID: PMC6051716 DOI: 10.1016/j.livres.2017.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rapid worldwide rise in obesity rates over the past few decades imposes an urgent need to develop effective strategies for treating obesity and associated metabolic complications. Bariatric surgical procedures, such as Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), currently provide the most effective treatment for obesity and type 2 diabetes (T2D), as well as for non-alcoholic steatohepatitis (NASH). However, the underlying mechanisms of the beneficial effects of bariatric surgery remain elusive. Recent studies have identified bile acids as potential signaling molecules involved in the beneficial effects of bariatric surgery. This review focuses on the most recent studies on the roles of bile acids and bile acid receptors Farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 5 (TGR5) in bariatric surgery. We also discuss the possibility of modulating bile acid signaling as a pharmacological therapeutic approach to treating obesity and its associated metabolic complications.
Collapse
Affiliation(s)
- Jingyan Tian
- National Clinical Research Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Silvia Huang
- Eugene Robert Summer Program, City of Hope, Duarte, CA, USA
| | - Siming Sun
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lili Ding
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Shanghai Key Laboratory of Compound Chinese Medicines and the Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Shanghai Key Laboratory of Compound Chinese Medicines and the Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
29
|
Bacterial bile salt hydrolase: an intestinal microbiome target for enhanced animal health. Anim Health Res Rev 2017; 17:148-158. [PMID: 28155801 DOI: 10.1017/s1466252316000153] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To effectively mitigate antimicrobial resistance in the agricultural ecosystem, there is an increasing pressure to reduce and eliminate the use of in-feed antibiotics for growth promotion and disease prevention in food animals. However, limiting antibiotic use could compromise animal production efficiency and health. Thus, there is an urgent need to develop effective alternatives to antibiotic growth promoters (AGPs). Increasing evidence has shown that the growth-promoting effect of AGPs was highly correlated with the reduced activity of bile salt hydrolase (BSH), an intestinal bacterial enzyme that has a negative impact on host fat digestion and energy harvest; consistent with this finding, the population of Lactobacillus species, the major intestinal BSH-producer, was significantly reduced in response to AGP use. Thus, BSH is a key mechanistic microbiome target for developing novel alternatives to AGPs. Despite recent significant progress in the characterization of diverse BSH enzymes, research on BSH is still in its infancy. This review is focused on the function of BSH and its significant impacts on host physiology in human beings, laboratory animals and food animals. The gaps in BSH-based translational microbiome research for enhanced animal health are also identified and discussed.
Collapse
|
30
|
Zhang GN, Huan Y, Wang X, Sun SJ, Shen ZF, Fang WS. Design, synthesis and metabolic regulation effect of farnesoid X receptor (FXR) antagonistic benzoxepin-5-ones. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Synthesis and biological evaluations of chalcones, flavones and chromenes as farnesoid x receptor (FXR) antagonists. Eur J Med Chem 2017; 129:303-309. [PMID: 28235703 DOI: 10.1016/j.ejmech.2017.02.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/13/2017] [Accepted: 02/14/2017] [Indexed: 01/06/2023]
Abstract
Farnesoid X receptor (FXR), a nuclear receptor mainly distributed in liver and intestine, has been regarded as a potential target for the treatment of various metabolic diseases, cancer and infectious diseases related to liver. Starting from two previously identified chalcone-based FXR antagonists, we tried to increase the activity through the design and synthesis of a library containing chalcones, flavones and chromenes, based on substitution manipulation and conformation (ring closure) restriction strategy. Many chalcones and four chromenes were identified as microM potent FXR antagonists, among which chromene 11c significantly decreased the plasma and hepatic triglyceride level in KKay mice.
Collapse
|
32
|
Ryan PM, Stanton C, Caplice NM. Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol Metab Syndr 2017; 9:102. [PMID: 29299069 PMCID: PMC5745752 DOI: 10.1186/s13098-017-0299-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
While basic and clinical research over the last several decades has recognized a number of modifiable risk factors associated with cardiometabolic disease progression, additional and alternative biological perspectives may offer novel targets for prevention and treatment of this disease set. There is mounting preclinical and emerging clinical evidence indicating that the mass of metabolically diverse microorganisms which inhabit the human gastrointestinal tract may be implicated in initiation and modulation of cardiovascular and metabolic disease outcomes. The following review will discuss this gut microbiome-host metabolism axis and address newly proposed bile-mediated signaling pathways through which dysregulation of this homeostatic axis may influence host cardiovascular risk. With a central focus on the major nuclear and membrane-bound bile acid receptor ligands, we aim to review the putative impact of microbial bile acid modification on several major phenotypes of metabolic syndrome, from obesity to heart failure. Finally, attempting to synthesize several separate but complementary hypotheses, we will review current directions in preclinical and clinical investigation in this evolving field.
Collapse
Affiliation(s)
- Paul M. Ryan
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork, Ireland
- Centre for Research in Vascular Biology, University College Cork, Co. Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Noel M. Caplice
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork, Ireland
- Centre for Research in Vascular Biology, University College Cork, Co. Cork, Ireland
| |
Collapse
|
33
|
Dong B, Young M, Liu X, Singh AB, Liu J. Regulation of lipid metabolism by obeticholic acid in hyperlipidemic hamsters. J Lipid Res 2016; 58:350-363. [PMID: 27940481 DOI: 10.1194/jlr.m070888] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
The farnesoid X receptor (FXR) plays critical roles in plasma cholesterol metabolism, in particular HDL-cholesterol (HDL-C) homeostasis. Obeticholic acid (OCA) is a FXR agonist being developed for treating various chronic liver diseases. Previous studies reported inconsistent effects of OCA on regulating plasma cholesterol levels in different animal models and in different patient populations. The mechanisms underlying its divergent effects have not yet been thoroughly investigated. The scavenger receptor class B type I (SR-BI) is a FXR-modulated gene and the major receptor for HDL-C. We investigated the effects of OCA on hepatic SR-BI expression and correlated such effects with plasma HDL-C levels and hepatic cholesterol efflux in hyperlipidemic hamsters. We demonstrated that OCA induced a time-dependent reduction in serum HDL-C levels after 14 days of treatment, which was accompanied by a significant reduction of liver cholesterol content and increases in fecal cholesterol in OCA-treated hamsters. Importantly, hepatic SR-BI mRNA and protein levels in hamsters were increased to 1.9- and 1.8-fold of control by OCA treatment. Further investigations in normolipidemic hamsters did not reveal OCA-induced changes in serum HDL-C levels or hepatic SR-BI expression. We conclude that OCA reduces plasma HDL-C levels and promotes transhepatic cholesterol efflux in hyperlipidemic hamsters via a mechanism involving upregulation of hepatic SR-BI.
Collapse
Affiliation(s)
- Bin Dong
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Mark Young
- Intercept Pharmaceuticals, Inc., San Diego, CA 92121
| | - Xueqing Liu
- Intercept Pharmaceuticals, Inc., San Diego, CA 92121
| | | | - Jingwen Liu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| |
Collapse
|
34
|
Liu Q, Yang M, Fu X, Liu R, Sun C, Pan H, Wong CW, Guan M. Activation of farnesoid X receptor promotes triglycerides lowering by suppressing phospholipase A2 G12B expression. Mol Cell Endocrinol 2016; 436:93-101. [PMID: 27471003 DOI: 10.1016/j.mce.2016.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/14/2016] [Accepted: 07/24/2016] [Indexed: 01/05/2023]
Abstract
As a novel mediator of hepatic very low-density lipoproteins (VLDL) secretion, phospholipase A2 G12B (PLA2G12B) is transcriptionally regulated by hepatocyte nuclear factor-4 alpha (HNF-4α). Farnesoid X receptor (FXR) plays a critical role in maintaining bile acids and triglycerides (TG) homeostasis. Here we report that FXR regulates serum TG level in part through PLA2G12B. Activation of FXR by chenodeoxycholic acid (CDCA) or GW4064 significantly decreased PLA2G12B expression in HepG2 cells. PLA2G12B expression was transcriptionally repressed due to an FXR-mediated up-regulation of small heterodimer partner (SHP) which functionally suppresses HNF-4α activity. We found that hepatic PLA2G12B expression was suppressed and serum TG level reduced in high fat diet mice treated with CDCA. Concurrently, CDCA treatment lowered hepatic VLDL-TG secretion. Our data demonstrate that activation of FXR promotes TG lowering, not only by decreasing de novo lipogenesis but also reducing hepatic secretion of TG-rich VLDL particles in part through suppressing PLA2G12B expression.
Collapse
Affiliation(s)
- Qingli Liu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Meng Yang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Xuekun Fu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Renzhong Liu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Caijun Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangdong, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Chi-Wai Wong
- NeuMed Pharmaceuticals Limited, Shatin, N. T., Hong Kong, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
35
|
Zhang R, Ran H, Peng L, Zhang Y, Shen W, Sun T, Cao F, Chen Y. Farnesoid X receptor regulates vasoreactivity via Angiotensin II type 2 receptor and the kallikrein-kinin system in vascular endothelial cells. Clin Exp Pharmacol Physiol 2016; 43:327-34. [PMID: 26710942 DOI: 10.1111/1440-1681.12535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 01/02/2023]
Abstract
Vascular farnesoid X receptor (FXR) ligands have been shown previously to regulate vascular tension. This study investigated whether FXR activation regulates vasoreactivity via the angiotensin II (Ang II) type 2 receptor (AT2 R) and the kallikrein-kinin system in rat aortic vascular endothelial cells (RAECs). Protein abundances of Ang II type 1 receptor (AT1 R), AT2 R, bradykinin type 1/2 receptor (B1 R, B2 R), small heterodimer partner-1 (SHP-1) and the endothelial and inducible NO synthases (eNOS/iNOS) were analysed by Western blotting. Real-time quantitative polymerase chain reaction was performed to analyse expression of eNOS and iNOS mRNA. Kallikrein activity and bradykinin content were assayed using spectrophotometry and a bradykinin assay kit, respectively. Aortic vasoconstriction and vasodilation were also investigated following FXR activation in the presence or absence of AT2 R and B2 R blockade. It was found that the FXR agonists GW4064 and INT-747, in a dose-dependent manner, increased the protein abundance of AT2 R, B2 R and SHP-1 and decreased that of AT1 R. AT2 R blockade with PD123319 reversed effects of FXR agonists on kallikrein activity and levels of SHP-1, B2 R and bradykinin. Moreover, it was found that GW4064 and INT-747 upregulated expression of eNOS and enhanced NOS activity, which attenuated vasoconstriction and induced vasodilation, respectively. These effects were partially reversed by PD123319 and by B2 R blockade with HOE140. The current work suggests that FXR regulates vascular tension by controlling the eNOS-NO system via activation of a pathway mediated by AT2 R-B2 R pathway in RAECs.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Haihong Ran
- Department of Geriatric Haematology, Chinese PLA General Hospital, Beijing, China
| | - Liang Peng
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Wenbin Shen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Ting Sun
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Cha JH, Kim SR, Kang HJ, Kim MH, Ha AW, Kim WK. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Nutr Res Pract 2016; 10:501-506. [PMID: 27698957 PMCID: PMC5037067 DOI: 10.4162/nrp.2016.10.5.501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/19/2016] [Accepted: 06/14/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND/OBJECTIVES Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. MATERIALS/METHODS Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. RESULTS Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CONCLUSIONS CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.
Collapse
Affiliation(s)
- Jae Hoon Cha
- Department of Food Science and Nutrition, Dankook University, 152, Juljeon-ro, Suji-gu, Yonin-si, Gyeonggi 16890, Korea
| | - Sun Rim Kim
- Agriculture Science Technology, 300 Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeonbuk 54875, Korea
| | - Hyun Joong Kang
- Agriculture Science Technology, 300 Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeonbuk 54875, Korea
| | - Myung Hwan Kim
- Department of Food Engineering, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Korea
| | - Ae Wha Ha
- Department of Food Science and Nutrition, Dankook University, 152, Juljeon-ro, Suji-gu, Yonin-si, Gyeonggi 16890, Korea
| | - Woo Kyoung Kim
- Department of Food Science and Nutrition, Dankook University, 152, Juljeon-ro, Suji-gu, Yonin-si, Gyeonggi 16890, Korea
| |
Collapse
|
37
|
Choi SB, Lew LC, Yeo SK, Nair Parvathy S, Liong MT. Probiotics and the BSH-related cholesterol lowering mechanism: a Jekyll and Hyde scenario. Crit Rev Biotechnol 2016; 35:392-401. [PMID: 24575869 DOI: 10.3109/07388551.2014.889077] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Probiotic microorganisms have been documented over the past two decades to play a role in cholesterol-lowering properties via various clinical trials. Several mechanisms have also been proposed and the ability of these microorganisms to deconjugate bile via production of bile salt hydrolase (BSH) has been widely associated with their cholesterol lowering potentials in prevention of hypercholesterolemia. Deconjugated bile salts are more hydrophobic than their conjugated counterparts, thus are less reabsorbed through the intestines resulting in higher excretion into the feces. Replacement of new bile salts from cholesterol as a precursor subsequently leads to decreased serum cholesterol levels. However, some controversies have risen attributed to the activities of deconjugated bile acids that repress the synthesis of bile acids from cholesterol. Deconjugated bile acids have higher binding affinity towards some orphan nuclear receptors namely the farsenoid X receptor (FXR), leading to a suppressed transcription of the enzyme cholesterol 7-alpha hydroxylase (7AH), which is responsible in bile acid synthesis from cholesterol. This notion was further corroborated by our current docking data, which indicated that deconjugated bile acids have higher propensities to bind with the FXR receptor as compared to conjugated bile acids. Bile acids-activated FXR also induces transcription of the IBABP gene, leading to enhanced recycling of bile acids from the intestine back to the liver, which subsequently reduces the need for new bile formation from cholesterol. Possible detrimental effects due to increased deconjugation of bile salts such as malabsorption of lipids, colon carcinogenesis, gallstones formation and altered gut microbial populations, which contribute to other varying gut diseases, were also included in this review. Our current findings and review substantiate the need to look beyond BSH deconjugation as a single factor/mechanism in strain selection for hypercholesterolemia, and/or as a sole mean to justify a cholesterol-lowering property of probiotic strains.
Collapse
Affiliation(s)
- Sy-Bing Choi
- a School of Industrial Technology, Universiti Sains Malaysia , Penang , Malaysia
| | | | | | | | | |
Collapse
|
38
|
Hambruch E, Kinzel O, Kremoser C. On the Pharmacology of Farnesoid X Receptor Agonists: Give me an “A”, Like in “Acid”. NUCLEAR RECEPTOR RESEARCH 2016. [DOI: 10.11131/2016/101207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Eva Hambruch
- Phenex Pharmaceuticals AG, Waldhofer Str. 104, 69123 Heidelberg, Germany
| | - Olaf Kinzel
- Phenex Pharmaceuticals AG, Waldhofer Str. 104, 69123 Heidelberg, Germany
| | - Claus Kremoser
- Phenex Pharmaceuticals AG, Waldhofer Str. 104, 69123 Heidelberg, Germany
| |
Collapse
|
39
|
Abstract
NAFLD is the most prevalent form of liver disease in the USA, affecting an estimated 30% of the population. The condition is associated with increased mortality related to cardiovascular disease, malignancy and liver disease. Identification of patients who might be at increased risk of adverse outcomes is critical as it is not feasible to screen all patients with suspected NAFLD. Patients with NASH, the progressive subtype of NAFLD, should be targeted for treatment, especially if they have concomitant fibrosis because such patients are more likely than those without fibrosis to have adverse outcomes. Treatment goals in patients with NAFLD vary depending on the disease stage owing to differential risk of progression and the particularities of an individual's comorbid disease. Lifestyle intervention is important for all patients irrespective of disease stage, but other therapies should be targeted to those most likely to benefit. In this Review, we highlight risk factors for disease progression and offer a stage-based treatment approach for patients with NAFLD.
Collapse
Affiliation(s)
- Mary E Rinella
- Northwestern University Feinberg School of Medicine, Department of Internal Medicine, Division of Gastroenterology and Hepatology, 676 N. St. Clair Street, Arkes Pavillion, 14-005, Chicago, Illinois 60527, USA
| | - Arun J Sanyal
- Virginia Commonwealth University, 1200 East Broad Street, MCV BOX 980341, Richmond, Virginia 23298-0341, USA
| |
Collapse
|
40
|
Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ, Prough RA. Nuclear receptors and nonalcoholic fatty liver disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1083-1099. [PMID: 26962021 DOI: 10.1016/j.bbagrm.2016.03.002] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.
| | - Heather B Clair
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jennifer Sidey
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bashar A Aqel
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Scottsdale, AZ 85054, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
41
|
Bays HE, Jones PH, Jacobson TA, Cohen DE, Orringer CE, Kothari S, Azagury DE, Morton J, Nguyen NT, Westman EC, Horn DB, Scinta W, Primack C. Lipids and bariatric procedures part 1 of 2: Scientific statement from the National Lipid Association, American Society for Metabolic and Bariatric Surgery, and Obesity Medicine Association: FULL REPORT. J Clin Lipidol 2016; 10:33-57. [DOI: 10.1016/j.jacl.2015.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023]
|
42
|
Xu X, Xu X, Liu P, Zhu ZY, Chen J, Fu HA, Chen LL, Hu LH, Shen X. Structural Basis for Small Molecule NDB (N-Benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) Benzamide) as a Selective Antagonist of Farnesoid X Receptor α (FXRα) in Stabilizing the Homodimerization of the Receptor. J Biol Chem 2015; 290:19888-99. [PMID: 26100621 DOI: 10.1074/jbc.m114.630475] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 01/27/2023] Open
Abstract
Farnesoid X receptor α (FXRα) as a bile acid sensor plays potent roles in multiple metabolic processes, and its antagonist has recently revealed special interests in the treatment of metabolic disorders, although the underlying mechanisms still remain unclear. Here, we identified that the small molecule N-benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) benzamide (NDB) functioned as a selective antagonist of human FXRα (hFXRα), and the crystal structure of hFXRα ligand binding domain (hFXRα-LBD) in complex with NDB was analyzed. It was unexpectedly discovered that NDB induced rearrangements of helix 11 (H11) and helix 12 (H12, AF-2) by forming a homodimer of hFXRα-LBD, totally different from the active conformation in monomer state, and the binding details were further supported by the mutation analysis. Moreover, functional studies demonstrated that NDB effectively antagonized the GW4064-stimulated FXR/RXR interaction and FXRα target gene expression in primary mouse hepatocytes, including the small heterodimer partner (SHP) and bile-salt export pump (BSEP); meanwhile, administration of NDB to db/db mice efficiently decreased the gene expressions of phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6-pase), small heterodimer partner, and BSEP. It is expected that our first analyzed crystal structure of hFXRα-LBD·NDB will help expound the antagonistic mechanism of the receptor, and NDB may find its potential as a lead compound in anti-diabetes research.
Collapse
Affiliation(s)
- Xing Xu
- From the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China, Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xin Xu
- From the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Peng Liu
- From the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhi-yuan Zhu
- From the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jing Chen
- From the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hai-an Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Li-li Chen
- From the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China,
| | - Li-hong Hu
- From the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China,
| | - Xu Shen
- From the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China,
| |
Collapse
|
43
|
Design, Synthesis, and Biological Evaluation of Novel Nonsteroidal Farnesoid X Receptor (FXR) Antagonists: Molecular Basis of FXR Antagonism. ChemMedChem 2015; 10:1184-99. [DOI: 10.1002/cmdc.201500136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Indexed: 01/24/2023]
|
44
|
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
45
|
Jiao Y, Lu Y, Li XY. Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol Sin 2015; 36:44-50. [PMID: 25500875 DOI: 10.1038/aps.2014.116] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the aberrant accumulation of triglycerides in hepatocytes in the absence of significant alcohol consumption, viral infection or other specific causes of liver disease. NAFLD has become a burgeoning health problem both worldwide and in China, but its pathogenesis remains poorly understood. Farnesoid X receptor (FXR), a member of the nuclear receptor (NR) superfamily, has been demonstrated to be the primary sensor for endogenous bile acids, and play a crucial role in hepatic triglyceride homeostasis. Deciphering the synergistic contributions of FXR to triglyceride metabolism is critical for discovering therapeutic agents in the treatment of NAFLD and hypertriglyceridemia.
Collapse
|
46
|
Deuschle U, Birkel M, Hambruch E, Hornberger M, Kinzel O, Perović-Ottstadt S, Schulz A, Hahn U, Burnet M, Kremoser C. The nuclear bile acid receptor FXR controls the liver derived tumor suppressor histidine-rich glycoprotein. Int J Cancer 2014; 136:2693-704. [PMID: 25363753 DOI: 10.1002/ijc.29312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/16/2014] [Indexed: 12/19/2022]
Abstract
The nuclear bile acid receptor Farnesoid X receptor (FXR) is strongly expressed in liver and intestine, controls bile acid and lipid homeostasis and exerts tumor-protective functions in liver and intestine. Histidine-rich glycoprotein (HRG) is an abundant plasma protein produced by the liver with the proposed function as a pattern recognition molecule involved in the clearance of immune complexes, necrotic cells and pathogens, the modulation of angiogenesis, the normalization of deranged endothelial vessel structure in tumors and tumor suppression. FXR recognition sequences were identified within a human HRG promoter fragment that mediated FXR/FXR-agonist dependent reporter gene activity in vitro. We show that HRG is a novel transcriptional target gene of FXR in human hepatoma cells, human upcyte® primary hepatocytes and 3D human liver microtissues in vitro and in mouse liver in vivo. Prolonged administration of the potent nonsteroidal FXR agonist PX20606 increases HRG levels in mouse plasma. Finally, daily oral administration of this FXR agonist for seven days resulted in a significant increase of HRG levels in the plasma of healthy human male volunteers during a clinical Phase I safety study. HRG might serve as a surrogate marker indicative of liver-specific FXR activation in future human clinical studies. Furthermore, potent FXR agonists might be beneficial in serious health conditions where HRG is reduced, for example, in hepatocellular carcinoma but also other solid cancers, liver failure, sepsis and pre-eclampsia.
Collapse
Affiliation(s)
- Ulrich Deuschle
- Phenex Pharmaceuticals AG, Waldhofer Str. 104, 69123, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vedell PT, Townsend RR, You M, Malone JP, Grubbs CJ, Bland KI, Muccio DD, Atigadda VR, Chen Y, Vignola K, Lubet RA. Global molecular changes in rat livers treated with
RXR
agonists: a comparison using transcriptomics and proteomics. Pharmacol Res Perspect 2014. [DOI: 10.1002/prp2.74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Peter T. Vedell
- Department of Pharmacology Medical College of Wisconsin Cancer Center Milwaukee Wisconsin 53226
| | - Reid R. Townsend
- Department of Internal Medicine Washington University School of Medicine St. Louis Missouri 63110
| | - Ming You
- Department of Pharmacology Medical College of Wisconsin Cancer Center Milwaukee Wisconsin 53226
| | - James P. Malone
- Department of Internal Medicine Washington University School of Medicine St. Louis Missouri 63110
| | - Clinton J. Grubbs
- Department of Surgery University of Alabama at Birmingham Birmingham Alabama 35294
| | - Kirby I. Bland
- Department of Surgery University of Alabama at Birmingham Birmingham Alabama 35294
| | - Donald D. Muccio
- Department of Chemistry University of Alabama at Birmingham Birmingham Alabama 35294
| | - Venkatram R. Atigadda
- Department of Chemistry University of Alabama at Birmingham Birmingham Alabama 35294
| | - Yang Chen
- Department of Science Development Metabolon Research Triangle Park North Carolina 27709
| | - Katie Vignola
- Department of Science Development Metabolon Research Triangle Park North Carolina 27709
| | - Ronald A. Lubet
- Chemoprevention Agent Development Research Group National Cancer Institute Rockville Maryland 20892
| |
Collapse
|
48
|
George M, Selvarajan S, Muthukumar R, Elangovan S. Looking into the Crystal Ball—Upcoming Drugs for Dyslipidemia. J Cardiovasc Pharmacol Ther 2014; 20:11-20. [DOI: 10.1177/1074248414545127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dyslipidaemia is a critical risk factor for the development of cardiovascular complications such as ischemic heart disease and stroke. Although statins are effective anti-dyslipidemic drugs, their usage is fraught with issues such as failure of adequate lipid control in 30% of cases and intolerance in select patients. The limited potential of other alternatives such as fibrates, bile acid sequestrants and niacin has spurred the search for novel drug molecules with better efficacy and safety. CETP inhibitors such as evacetrapib and anacetrapib have shown promise in raising HDL besides LDL lowering property. Microsomal triglyceride transfer protein (MTP) inhibitors such as lomitapide and Apo CIII inhibitors such as mipomersen have recently been approved in Familial Hypercholesterolemia but experience in the non-familial setting is pretty much limited. One of the novel anti-dyslipidemic drugs which is greatly anticipated to make a mark in LDL-C control is the PCSK9 inhibitors. Some of the anti-dyslipidemic drugs which work by PCSK9 inhibition include evolocumab, alirocumab and ALN-PCS. Other approaches that are being given due consideration include farnesoid X receptor modulation and Lp-PLA2 inhibition. While it may not be an easy proposition to dismantle statins from their current position as a cholesterol reducing agent and as a drug to reduce coronary and cerebro-vascular atherosclerosis, our improved understanding of the disease and appropriate harnessing of resources using sound and robust technology could make rapid in-roads in our pursuit of the ideal anti-dyslipidemic drug.
Collapse
Affiliation(s)
- Melvin George
- Department of Cardiology, SRM Medical College Hospital & Research Centre, Kattankulathur, Kancheepuram, Chennai, India
| | - Sandhiya Selvarajan
- Department of Clinical Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - Rajaram Muthukumar
- Department of Cardiology, SRM Medical College Hospital & Research Centre, Kattankulathur, Kancheepuram, Chennai, India
| | - Shanmugam Elangovan
- Department of Cardiology, SRM Medical College Hospital & Research Centre, Kattankulathur, Kancheepuram, Chennai, India
| |
Collapse
|
49
|
Calmarza P, Bajador E, Lapresta C, García Castañón S, de Castro I, Civeira F. [Effect of biliary obstruction on lipoprotein(a) concentration]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2014; 26:218-23. [PMID: 24629889 DOI: 10.1016/j.arteri.2014.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES This study was appointed to determine the correlation between the concentration of lipoprotein(a) [Lp(a)], apolipoproteins and lipids with biochemical parameters of liver function in a group of patients with reversible cholestasis. We have also determined the concentration of these parameters once solved the biliary obstruction process. MATERIAL AND METHODS Eighteen adults over 17 years with extrahepatic cholestasis were included in the study on a prospective basis, and we determined in them biochemical liver function parameters and lipoprotein metabolism parameters, particularly Lp(a) before and after unblocking. RESULTS The concentration of Lp(a) prior to desobstruction was inverse and statistically significantly correlated with the concentration of gamma glutamyl transpeptidase (correlation coefficient [r] = -0.757, P = .018). The concentration of Lp(a) (median = 2.66 mg/dL, interquartile range = 5,62) showed a statistically significant increase (median = 9.72 mg/dL, interquartile range = 28.76, P < .001), once the unblocking was performed. Concentrations of total cholesterol and triglycerides had a statistically significant decrease, and HDL cholesterol and apolipoprotein A-1 showed a statistically significant increase once the unblocking was carried out. CONCLUSIONS The concentration of Lp(a) is decreased during cholestasis, although there is a significant simultaneous hypercholesterolemia. Cholestasis has a causal role in lowering Lp(a), because the unblocking of bile duct recovers Lp(a) concentration. Our study supports the concept that bile acids exert a controlling effect on the synthesis of Lp(a) and open a mechanism for the treatment of hyper Lp(a).
Collapse
Affiliation(s)
- Pilar Calmarza
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, España.
| | - Eduardo Bajador
- Servicio de Digestivo, Hospital Universitario Miguel Servet, Zaragoza, España
| | - Carlos Lapresta
- Servicio de Medicina Preventiva, Hospital Universitario Miguel Servet, Zaragoza, España
| | | | - Isabel de Castro
- Unidad de Lípidos y Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Zaragoza, España
| | - Fernando Civeira
- Unidad de Lípidos y Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Zaragoza, España
| |
Collapse
|
50
|
Pang J, Chan DC, Watts GF. Critical review of non-statin treatments for dyslipoproteinemia. Expert Rev Cardiovasc Ther 2014; 12:359-71. [DOI: 10.1586/14779072.2014.888312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|