1
|
Fang J, Bao W, Chagan-Yasutan H, Arlud S, Qin S, Wu R, He N. Mechanism of Mongolian mind-body interactive therapy in regulating essential hypertension through HTR2B: A metabolome- and transcriptome-based study. Heliyon 2024; 10:e37113. [PMID: 39319128 PMCID: PMC11419866 DOI: 10.1016/j.heliyon.2024.e37113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Essential hypertension is a psychosomatic disease associated with emotions and behaviors. Although Mongolian mind-body interactive therapy can help patients with essential hypertension reduce their systolic blood pressure (SBP), the mechanism is unclear. We assigned patients who underwent Mongolian mind-body interactive therapy to groups that were treated with (DT) or without (NDT) antihypertensive drugs (Clinical registration no: ChiCTR2000034918). We screened differentially expressed genes (DEGs) using targeted metabolic and transcriptomic analyses of blood samples before and after intervention. Sequenced data were analyzed using quantitative polymerase chain reaction (qPCR) and validated using enzyme-linked immunosorbent assays (ELISAs). Small interfering (Si)-RNA interference on key DEGs in human umbilical vein endothelial cells (HUVECs) was experimentally verified. Omics analysis identified 187 DEGS, including human 5-hydroxytryptamine (5-HT) receptor 2B (5-HTR2B), human endothelin receptor type B (EDNRB), and the metabolite N-acetylserotonin. The qPCR and transcriptome sequencing results were consistent. Post-intervention ELISA assays revealed significantly elevated 5-HT in the NDT group after intervention (P < 0.05). Interactions between 5-HTR2B and N-acetylserotonin differed between the groups. The cellular findings showed significantly reduced G protein-coupled receptor 82 (GPR82) and phospholipid phosphatase-related protein type 4 (PLPPR4), and significantly increased S100A2 protein expression in the Si-HTR2B group, compared with the controls (P < 0.05). The biochemical results uncovered significantly decreased nitric oxide (NO) and significantly increased malondialdehyde and NO synthetase concentrations compared with the models (P < 0.05). Mongolian mind-body interactive therapy might affect SBP in patients with essential hypertension by combining 5-HT with 5-HTR2B to mediate NO relaxation.
Collapse
Affiliation(s)
- Jun Fang
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot, 010065, China
- Ordos Mongolia Medicine Hospital, Ordos, 017065, China
| | - Wenfeng Bao
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China
| | - Haorile Chagan-Yasutan
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot, 010065, China
| | - Sarnai Arlud
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot, 010065, China
| | - Si Qin
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot, 010065, China
| | - Rihan Wu
- Ordos Mongolia Medicine Hospital, Ordos, 017065, China
| | - Nagongbilige He
- Inner Mongolia Traditional Chinese & Mongolian Medical Research Institute, Hohhot, 010010, China
| |
Collapse
|
2
|
Trotta RJ, Harmon DL, Klotz JL. Serotonin receptor-mediated vasorelaxation occurs primarily through 5-HT 4 activation in bovine lateral saphenous vein. Physiol Rep 2024; 12:e16128. [PMID: 38946059 PMCID: PMC11214916 DOI: 10.14814/phy2.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024] Open
Abstract
To better understand mechanisms of serotonin- (5-HT) mediated vasorelaxation, isolated lateral saphenous veins from cattle were assessed for vasoactivity using myography in response to increasing concentrations of 5-HT or selective 5-HT receptor agonists. Vessels were pre-contracted with 1 × 10-4 M phenylephrine and exposed to increasing concentrations of 5-HT or 5-HT receptor agonists that were selective for 5-HT1B, 5-HT2B, 5-HT4, and 5-HT7. Vasoactive response data were normalized as a percentage of the maximum contractile response induced by the phenylephrine pre-contraction. At 1 × 10-7 M 5-HT, a relaxation was observed with an 88.7% decrease (p < 0.01) from the phenylephrine maximum. At 1 × 10-4 M 5-HT, a contraction was observed with a 165% increase (p < 0.01) from the phenylephrine maximum. Increasing concentrations of agonists selective for 5-HT2B, 5-HT4, or 5-HT7 resulted in a 27%, 92%, or 44% (p < 0.01) decrease from the phenylephrine maximum, respectively. Of these 5-HT receptor agonists, the selective 5-HT4 receptor agonist resulted in the greatest potency (-log EC50) value (6.30) compared with 5-HT2B and 5-HT7 receptor agonists (4.21 and 4.66, respectively). To confirm the involvement of 5-HT4 in 5-HT-mediated vasorelaxation, blood vessels were exposed to either DMSO (solvent control) or a selective 5-HT4 antagonist (1 × 10-5 M) for 5-min prior to the phenylephrine pre-contraction and 5-HT additions. Antagonism of the 5-HT4 receptor attenuated the vasorelaxation caused by 5-HT. Approximately 94% of the vasorelaxation occurring in response to 5-HT could be accounted for through 5-HT4, providing strong evidence that 5-HT-mediated vasorelaxation occurs through 5-HT4 activation in bovine peripheral vasculature.
Collapse
Affiliation(s)
- Ronald J. Trotta
- Department of Animal and Food SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - David L. Harmon
- Department of Animal and Food SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - James L. Klotz
- Forage‐Animal Production Research UnitUSDA‐ARSLexingtonKentuckyUSA
| |
Collapse
|
3
|
Watts SW, Garver H, Morisset-Lopez S, Suzenet F, Fink GD. β-arrestin biased signaling is not involved in the hypotensive actions of 5-HT 7 receptor stimulation: use of Serodolin. Pharmacol Res 2024; 199:107047. [PMID: 38157998 DOI: 10.1016/j.phrs.2023.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The 5-hydroxytryptamine 7 receptor (5-HT7) is necessary for 5-HT to cause a concentration-dependent vascular relaxation and hypotension. 5-HT7 is recognized as having biased signaling, transduced through either Gs or β -arrestin. It is unknown whether 5-HT7 signals in a biased manner to cause vasorelaxation/hypotension. We used the recently described β-arrestin selective 5-HT7 receptor agonist serodolin to test the hypothesis that 5-HT7 activation does not cause vascular relaxation or hypotension via the β -arrestin pathway. Isolated abdominal aorta (no functional 5-HT7) and vena cava (functional 5-HT7) from male Sprague Dawley rats were used in isometric contractility studies. Serodolin (1 nM - 10 μM) did not change baseline tone of isolated tissues and did not relax the endothelin-1 (ET-1)-contracted vena cava or aorta. In the aorta, serodolin acted as a 5-HT2A receptor antagonist, evidenced by a rightward shift in 5-HT-induced concentration response curve [pEC50 5-HT [M]: Veh = 5.2 +/- 0.15; Ser (100 nM) = 4.49 +/- 0.08; p < 0.05]. In the vena cava, serodolin acted as a 5-HT7 receptor antagonist, shifting the concentration response curve to 5-HT left and upward (%10 μM NE contraction; Veh = 3.2 +/- 1.7; Ser (10 nM) = 58 +/- 11; p < 0.05) and blocking relaxation of pre-contracted tissue to the 5-HT1A/7 agonist 5-carboxamidotryptamine. In anesthetized rats, 5-HT or serodolin was infused at 5, 25 and 75 μg/kg/min, iv. Though 5-HT caused concentration-dependent depressor responses, serodolin caused an insignificant small depressor responses at all three infusion rates. With the final dose of serodolin on board, 5-HT was unable to reduce blood pressure. Collectively the data indicate that serodolin functions as a 5-HT7 antagonist with additional 5-HT2A blocking properties. 5-HT7 activation does not cause vascular relaxation or hypotension via the β -arrestin pathway.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | - Severine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS, Unité Propre de Recherche 4301, Université d'Orléans, Orléans Cedex 2 45071 France
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS UMR 7311, rue de Chartres, 45067 Orléans, France
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| |
Collapse
|
4
|
Thompson JM, Tragge W, Flood ED, Schulz S, Lisabeth E, Watts SW. Development of a 5-HT 7 receptor antibody for the rat: the good, the bad, and the ugly. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2599-2611. [PMID: 37071157 PMCID: PMC10497691 DOI: 10.1007/s00210-023-02482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
Our laboratory has a vested interest in measuring the location and expression of the 5-hydroxytryptamine (5-HT, serotonin) 7 (5-HT7) receptor in the rat. Determining tissue-specific receptor expression would aid in validating understood and potentially new tissues that support the 5-HT7 receptor-mediated fall in blood pressure, an event we are committed to understand. We contracted with 7TM Antibodies to develop deliberately and rigorously a rat 5-HT7 (r5-HT7) receptor specific antibody. Three antigens, two targeting the third internal loop and one the C terminus, were used in three rabbits to generate antibodies. As a positive control, HEK293(T or AD) cells were transfected with a plasmid for the r5-HT7 receptor also expressing a C terminus 3xFLAG tag. Naïve rat tissues were also used in Western and immunohistochemical analyses. Nine antibodies (3 from three different rabbits) detected a ~ 75 kDa protein absent in homogenates of vector control HEK293T cells. Only antibodies that recognized the C terminus of the 5-HT7 receptor [ERPERSEFVLQNSDH(Abu)GKKGHDT; antibodies 3, 6, and 9] positively and concentration-dependently identified the r5-HT7 receptor expressed in Westerns of transfected HEK293T cells. These same C terminus antibodies also successfully detected the r5-HT7 receptor in immunocytochemical test of the transfected HEK293AD cells, colocalizing with the detected FLAG sequence. In naive tissue, antibody 6 performed the best, identifying specific bands in the brain cortex in Western analysis. These same antibodies produced a more diverse band profile in the vena cava, identifying 6 major proteins. In immunohistochemical experiments, the same C-terminus antibodies, with antibody 3 performing the best, detected the 5-HT7 receptor in rat veins. This deliberate work has given rise to at least three antibodies that can be used with good confidence in r5-HT7 transfected cells, two antibodies that can be used in immunohistochemical analyses of rat tissues and in Westerns of rat brain; we are less confident of the use of these same antibodies in rat veins.
Collapse
Affiliation(s)
- Janice M Thompson
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, Rm B445, East Lansing, MI, 48824-1317, USA
| | - Will Tragge
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, Rm B445, East Lansing, MI, 48824-1317, USA
| | - Emma D Flood
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, Rm B445, East Lansing, MI, 48824-1317, USA
| | - Stefan Schulz
- Department of Pharmacology and Toxicology, Jena University Hospital, 07747, Jena, Germany
- 7TM Antibodies, 07745, Jena, Germany
| | - Erika Lisabeth
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, Rm B445, East Lansing, MI, 48824-1317, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, Rm B445, East Lansing, MI, 48824-1317, USA.
| |
Collapse
|
5
|
Jackson WF, Daci A, Thompson JM, Fink GD, Watts SW. 5-HT 7 receptors mediate dilation of rat cremaster muscle arterioles in vivo. Microcirculation 2023; 30:e12808. [PMID: 37204759 PMCID: PMC11409460 DOI: 10.1111/micc.12808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE Serotonin (5-HT) infusion in vivo causes hypotension and a fall in total peripheral resistance. However, the vascular segment and the receptors that mediate this response remain in question. We hypothesized that 5-HT7 receptors mediate arteriolar dilation to 5-HT in skeletal muscle microcirculation. METHODS Cremaster muscles of isoflurane-anesthetized male Sprague-Dawley rats were prepared for in vivo microscopy of third- and fourth-order arterioles and superfused with physiological salt solution at 34°C. Quantitative real-time PCR (RT-PCR) was applied to pooled samples of first- to third-order cremaster arterioles (2-4 rats/sample) to evaluate 5-HT7 receptor expression. RESULTS Topical 5-HT (1-10 nmols) or the 5-HT1/7 receptor agonist, 5-carboxamidotryptamine (10-30 nM), dilated third- and fourth-order arterioles, responses that were abolished by 1 μM SB269970, a selective 5-HT7 receptor antagonist. In contrast, dilation induced by the muscarinic agonist, methacholine (100 nmols) was not inhibited by SB269970. Serotonin (10 nmols) failed to dilate cremaster arterioles in 5-HT7 receptor knockout rats whereas arterioles in wild-type litter mates dilated to 1 nmol 5-HT, a response blocked by 1 μM SB269970. Quantitative RT-PCR revealed that cremaster arterioles expressed mRNA for 5-HT7 receptors. CONCLUSIONS 5-HT7 receptors mediate dilation of small arterioles in skeletal muscle and likely contribute to 5-HT-induced hypotension, in vivo.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Armond Daci
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacy, Faculty of Medicine, University of Prishtina "Hasan Prishtina", Prishtina, Kosovo
| | - Janice M Thompson
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Gregory D Fink
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Stephanie W Watts
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Afolabi JM, Michael OS, Falayi OO, Kanthakumar P, Mankuzhy PD, Soni H, Adebiyi A. Activation of renal vascular smooth muscle TRPV4 channels by 5-hydroxytryptamine impairs kidney function in neonatal pigs. Microvasc Res 2023; 148:104516. [PMID: 36889668 PMCID: PMC10258165 DOI: 10.1016/j.mvr.2023.104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Control of microvascular reactivity by 5-hydroxytryptamine (5-HT; serotonin) is complex and may depend on vascular bed type and 5-HT receptors. 5-HT receptors consist of seven families (5-HT1-5-HT7), with 5-HT2 predominantly mediating renal vasoconstriction. Cyclooxygenase (COX) and smooth muscle intracellular Ca2+ levels ([Ca2+]i) have been implicated in 5-HT-induced vascular reactivity. Although 5-HT receptor expression and circulating 5-HT levels are known to be dependent on postnatal age, control of neonatal renal microvascular function by 5-HT is unclear. In the present study, we demonstrate that 5-HT stimulated human TRPV4 transiently expressed in Chinese hamster ovary cells. 5-HT2A is the predominant 5-HT2 receptor subtype in freshly isolated neonatal pig renal microvascular smooth muscle cells (SMCs). HC-067047 (HC), a selective TRPV4 blocker, attenuated cation currents induced by 5-HT in the SMCs. HC also inhibited the 5-HT-induced increase in renal microvascular [Ca2+]i and constriction. Intrarenal artery infusion of 5-HT had minimal effects on systemic hemodynamics but reduced renal blood flow (RBF) and increased renal vascular resistance (RVR) in the pigs. Transdermal measurement of glomerular filtration rate (GFR) indicated that kidney infusion of 5-HT reduced GFR. HC and 5-HT2 receptor antagonist ritanserin attenuated 5-HT effects on RBF, RVR, and GFR. Moreover, the serum and urinary COX-1 and COX-2 levels in 5-HT-treated piglets were unchanged compared with the control. These data suggest that activation of renal microvascular SMC TRPV4 channels by 5-HT impairs kidney function in neonatal pigs independently of COX production.
Collapse
Affiliation(s)
- Jeremiah M Afolabi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olugbenga S Michael
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olufunke O Falayi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pratheesh D Mankuzhy
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
7
|
Skin Vascular Resistance Decreases during 5-HT-Induced Hypotension in the Rat. Biomedicines 2023; 11:biomedicines11020547. [PMID: 36831083 PMCID: PMC9953042 DOI: 10.3390/biomedicines11020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
A recognized vasodilator, the infusion of 5-hydroxytryptamine (5-HT, serotonin) decreases blood pressure through the reduction of total peripheral resistance in the rat. It is not clear which vascular beds/tissues are responsible for this fall. We hypothesized that an increase in blood flow within the skin, measured as an elevated temperature (T) in the thermoregulatory tail and paws, enables at least part of 5-HT-induced reduction in blood pressure through active vasodilation. The temperature of thermoregulatory regions of the skin of an anesthetized male, Sprague Dawley rats were measured using a Optris PI640 thermal camera. The blood pressure of the animal and the temperature of each paw and four locations along the tail (TL1-4) were recorded before, during, and after the infusion of 5-HT at a rate of 25 mg/min into a femoral vein. Contrary to our hypothesis, the temperature of the paws and tail was stable before and during 5-HT infusion and actually increased during the 15-min recovery period. This finding suggests that hyperemia of the skin circulation is not necessary for the fall in blood pressure observed with infused 5-HT, but that a reduction in cutaneous vascular resistance plays a part in the fall in total peripheral resistance.
Collapse
|
8
|
Watts SW, Flood ED, Thompson JM. Is the 5-hydroxytryptamine 7 Receptor Constitutively Active in the Vasculature? A Study in Veins/Vein. J Cardiovasc Pharmacol 2022; 80:314-322. [PMID: 35939654 PMCID: PMC9373064 DOI: 10.1097/fjc.0000000000001296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The 5-hydroxytryptamine 7 (5-HT 7 ) receptor is reported to have considerable constitutive activity when transfected into cells. Constitutive activity-receptor activity in the absence of known agonist-is important for understanding the contributions of a receptor to (patho)physiology. We test the hypothesis that the 5-HT 7 receptor possesses constitutive activity in a physiological situation. Isolated veins from male and female Sprague Dawley rats were used as models for measuring isometric force; the abdominal vena cava possesses a functional 5-HT 7 receptor that mediates relaxation, whereas the small mesenteric vein does not. Compounds reported to act as inverse agonists were investigated for their ability to cause contraction (moving a constitutively active relaxant receptor to an inactive state, removing relaxation). Compared with a vehicle control, clozapine, risperidone, ketanserin, and SB269970 caused no contraction in the isolated male abdominal vena cava. By contrast, methiothepin caused a concentration-dependent contraction of the male but not female abdominal vena cava, although with low potency (-log EC 50 [M] = 5.50 ± 0.45) and efficacy (∼12% of contraction to endothelin-1). Methiothepin-induced contraction was not reduced by the 5-HT 7 receptor antagonist (SB269970, 1 μM, not active in the vena cava). These same compounds showed little to no effect in the isolated mesenteric vein. We conclude that the 5-HT 7 receptor in the isolated veins of the Sprague Dawley rat does not possess constitutive activity. We raise the question of the physiological relevance of constitutive activity of this receptor important to such diverse physiological functions as sleep, circadian rhythm, temperature, and blood pressure regulation.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | | | | |
Collapse
|
9
|
Gonzalez-Pons R, McRae K, Thompson JM, Watts SW. 5-HT7 Receptor Restrains 5-HT-induced 5-HT2A Mediated Contraction in the Isolated Abdominal Vena Cava. J Cardiovasc Pharmacol 2021; 78:319-327. [PMID: 34029269 PMCID: PMC8460595 DOI: 10.1097/fjc.0000000000001057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/04/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Although discovered as a vasoconstrictor, 5-hydroxytryptamine (5-HT, serotonin) infused into man and rodent reduces blood pressure. This occurs primarily through activation of 5-HT7 receptors and, at least in part, venodilation. Vascular mechanisms by which this could occur include direct receptor activation leading to vasodilation and/or suppression of contractile 5-HT receptor activation. This study tests the hypothesis that the 5-HT7 receptor restrains activation of the 5-HT2A receptor. A subhypothesis is whether agonist-induced activation-independent of constitutive activity-of the 5-HT7 receptor is necessary for this restraint. The isolated abdominal aorta and vena cava from the normal male Sprague-Dawley rat was our model. Studies used real-time PCR and a pharmacological approach in the isolated tissue bath for measurement of isometric tone. Although 5-HT2A receptor mRNA expression in both aorta and vena cava was significantly larger than that of the 5-HT7 receptor mRNA, the 5-HT7/5-HT2A receptor mRNA ratio was greater in the vena cava (0.30) than in the aorta (0.067). 5-HT7 receptor antagonism by SB266970 and DR 4458 increased maximum contraction to 5-HT in the isolated vein by over 50% versus control. The 5-HT2A receptor agonists TCB-2 and NBOH were more potent in the aorta compared with 5-HT but less efficacious, serving as partial agonists. By contrast, these same three agonists caused no contraction in the vena cava isolated from the same rats up to 10 μM agonist. Antagonism of the 5-HT7 receptor by SB269970 did not increase either the potency or efficacy of TCB-2 or NBOH. These data support that the 5-HT7 receptor itself needs to be stimulated to reduce contraction and suggest there is little constitutive activity of the 5-HT7 receptor in the isolate abdominal vena cava.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- In Vitro Techniques
- Male
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Serotonin/pharmacology
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Vasoconstriction/drug effects
- Vasodilation/drug effects
- Vena Cava, Inferior/drug effects
- Vena Cava, Inferior/metabolism
- Rats
Collapse
Affiliation(s)
- Romina Gonzalez-Pons
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | | | | | | |
Collapse
|
10
|
Seitz BM, Watts SW, Fink GD. Reduction in Hindquarter Vascular Resistance Supports 5-HT 7 Receptor Mediated Hypotension. Front Physiol 2021; 12:679809. [PMID: 34248666 PMCID: PMC8264506 DOI: 10.3389/fphys.2021.679809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
The 5-HT7 receptor is the primary mediator of both the acute (<hours) and chronic (day-week) decreases in mean arterial pressure (MAP) during low dose 5-HT infusion in rats. Previous data show the hypotensive response during chronic 5-HT infusion is due to a decrease total peripheral resistance (TPR) and specifically splanchnic vascular resistance. We hypothesized that changes in vascular resistance in both the splanchnic and skeletal muscle vascular beds are critical to the cardiovascular effects mediated by the 5-HT7 receptor. Systemic and regional hemodynamic data were collected in conscious and anesthetized male rats using radiotelemetry, vascular catheters and transit-time flowmetry. Reversible antagonism of the 5-HT7 receptor was achieved with the selective antagonist SB269970 (33 μg/kg, iv). From the very beginning and throughout the duration (up to 5 days) of a low dose (25 μg/kg) infusion of 5-HT, TPR, and MAP were decreased while cardiac output (CO) was increased. In a separate group of rats, the contribution of the 5-HT7 receptor to the regional hemodynamic response was tested during 5-HT-induced hypertension. The decrease in MAP after 24 h of 5-HT (saline 83 ± 3 vs. 5-HT 72 ± 3 mmHg) was associated with a significant decrease in skeletal muscle vascular resistance (saline 6 ± 0.2 vs. 5-HT 4 ± 0.4 mmHg/min/mL) while splanchnic vascular resistance was similar in 5-HT and saline-treated rats. When SB269970 was administered acutely, MAP and skeletal muscle vascular resistance rapidly increased, whereas splanchnic resistance was unaffected. Our work suggests the most prominent regional hemodynamic response to 5-HT7 receptor activation paralleling the fall in MAP is a decrease in skeletal muscle vascular resistance.
Collapse
Affiliation(s)
- Bridget M Seitz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Patel P, Shaik NF, Zhou Y, Golla K, McKenzie SE, Naik UP. Apoptosis signal-regulating kinase 1 regulates immune-mediated thrombocytopenia, thrombosis, and systemic shock. J Thromb Haemost 2020; 18:3013-3028. [PMID: 32767736 PMCID: PMC7831975 DOI: 10.1111/jth.15049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Immune complexes (ICs) bind to and activate platelets via FcγRIIA, causing patients to experience thrombocytopenia, as well as an increased risk of forming occlusive thrombi. Although platelets have been shown to mediate IC-induced pathologies, the mechanisms involved have yet to be fully elucidated. We identified that apoptosis signal-regulating kinase 1 (ASK1) is present in both human and mouse platelets and potentiates many platelet functions. OBJECTIVES Here we set out to study ASK1's role in regulating IC-mediated platelet functions in vitro and IC-induced pathologies using an in vivo mouse model. METHODS Using human platelets treated with an ASK1-specific inhibitor and platelets from FCGR2A/Ask1-/- transgenic mice, we examined various platelet functions induced by model ICs in vitro and in vivo. RESULTS We found that ASK1 was activated in human platelets following cross-linking of FcγRIIA using either anti-hCD9 or IV.3 + goat-anti-mouse. Although genetic deletion or inhibition of ASK1 significantly attenuated anti-CD9-induced platelet aggregation, activation of the canonical FcγRIIA signaling targets Syk and PLCγ2 was unaffected. We further found that anti-mCD9-induced cPla2 phosphorylation and TxA2 generation is delayed in Ask1 null transgenic mouse platelets leading to diminished δ-granule secretion. In vivo, absence of Ask1 protected FCGR2A transgenic mice from thrombocytopenia, thrombosis, and systemic shock following injection of anti-mCD9. In whole blood microfluidics, platelet adhesion and thrombus formation on fibrinogen was enhanced by Ask1. CONCLUSIONS These findings suggest that ASK1 inhibition may be a potential target for the treatment of IC-induced shock and other immune-mediated thrombotic disorders.
Collapse
Affiliation(s)
- Pravin Patel
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Noor F. Shaik
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Yuhang Zhou
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
- Dell Children’s Hospital, University of Texas, Austin, TX
| | - Kalyan Golla
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
- Center for Blood Research, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Steven E. McKenzie
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Ulhas P. Naik
- Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
12
|
Seitz BM, Fink GD, Watts SW. Activation of the 5-HT 7 receptor but not nitric oxide synthase is necessary for chronic 5-hydroxytryptamine-induced hypotension. Exp Physiol 2020; 105:2025-2032. [PMID: 33052620 DOI: 10.1113/ep088919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What mechanisms account for the hypotension observed during chronic elevations in circulating 5-hydroxytryptamine in rats? What is the main finding and its importance? Chronic 5-hydroxytryptamine-induced hypotension requires continued activation of the 5-HT7 receptor subtype but does not require NO, an outcome that resolves previous conflicting results. Therapeutic interruption of the hypotensive actions of 5-HT under pathophysiological conditions can only be achieved through blockade of the 5-HT7 receptor. ABSTRACT Low dose infusion of 5-hydroxytryptamine (5-HT) to rats causes both an acute and a chronic fall in arterial blood pressure. The 5-HT7 receptor subtype plays a critical part in the observed hypotension. Acute (minutes to hours) 5-HT infusion shows no depressor role for nitric oxide (NO), but 5-HT depressor responses under chronic conditions suggest that NO production may be critical. We test the hypothesis that NO contributes to the chronic, but not the acute, depressor response to 5-HT. We compared the role of NO and 5-HT7 receptors in 5-HT-induced hypotension under acute and chronic conditions in the same animal. Mean arterial pressure and heart rate were measured by radiotelemetry in conscious rats during 5 days of saline or 5-HT (25 μg kg-1 min-1 ; osmotic pump) infusion and for 2 days after infusion was stopped. To quantify the contributions of NO and the 5-HT7 receptor to 5-HT-induced hypotension, the nitric oxide synthase (NOS) inhibitor l-NAME or the selective 5-HT7 receptor antagonist SB-267790 were given at 1, 3 and 5 days of chronic infusion, and 1 day after 5-HT infusion pumps were removed. Nω -Nitro-l-arginine methyl ester (l-NAME) caused a pressor response of the same magnitude in the absence or presence of 5-HT infusion. Conversely, SB-269970 did not affect mean arterial pressure in the absence of 5-HT infusion and reversed the 5-HT-induced depressor response at each time point. Our findings demonstrate that acute and chronic 5-HT-induced hypotension does not require NOS activation but does require continued activation of the 5-HT7 receptor.
Collapse
Affiliation(s)
- Bridget M Seitz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Mota CMD, Branco LGS, Morrison SF, Madden CJ. Systemic serotonin inhibits brown adipose tissue sympathetic nerve activity via a GABA input to the dorsomedial hypothalamus, not via 5HT 1A receptor activation in raphe pallidus. Acta Physiol (Oxf) 2020; 228:e13401. [PMID: 31599481 DOI: 10.1111/apha.13401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022]
Abstract
AIM Serotonin (5-hydroxytryptamine, 5-HT), an important neurotransmitter and hormone, modulates many physiological functions including body temperature. We investigated neural mechanisms involved in the inhibition of brown adipose tissue (BAT) sympathetic nerve activity (SNA) and BAT thermogenesis evoked by 5-HT. METHODS Electrophysiological recordings, intravenous (iv) injections and nanoinjections in the brains of anaesthetized rats. RESULTS Cooling-evoked increases in BAT SNA were inhibited by the intra-rostral raphé pallidus (rRPa) and the iv administration of the 5-HT1A receptor agonist, 8-OH-DPAT or 5-HT. The intra-rRPa 5-HT, the intra-rRPa and the iv 8-OH-DPAT, but not the iv 5-HT-induced inhibition of BAT SNA were prevented by nanoinjection of a 5-HT1A receptor antagonist in the rRPa. The increase in BAT SNA evoked by nanoinjection of NMDA in the rRPa was not inhibited by iv 5-HT, indicating that iv 5-HT does not inhibit BAT SNA by acting in the rRPa or in the sympathetic pathway distal to the rRPa. In contrast, under a warm condition, blockade of 5HT1A receptors in the rRPa increased BAT SNA and BAT thermogenesis, suggesting that endogenous 5-HT in the rRPa contributes to the suppression of BAT SNA and BAT thermogenesis. The increases in BAT SNA and BAT thermogenesis evoked by nanoinjection of NMDA in the dorsomedial hypothalamus (DMH) were inhibited by iv 5-HT, but those following bicuculline nanoinjection in the DMH were not inhibited. CONCLUSIONS The systemic 5-HT-induced inhibition of BAT SNA requires a GABAergic inhibition of BAT sympathoexcitatory neurones in the DMH. In addition, during warming, 5-HT released endogenously in rRPa inhibits BAT SNA.
Collapse
Affiliation(s)
- Clarissa M. D. Mota
- Department of Neurological Surgery Oregon Health and Science University Portland OR USA
- Department of Physiology School of Medicine of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Luiz G. S. Branco
- Department of Physiology School of Medicine of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
- Department of Morphology, Physiology, and Basic Pathology School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Shaun F. Morrison
- Department of Neurological Surgery Oregon Health and Science University Portland OR USA
| | - Christopher J. Madden
- Department of Neurological Surgery Oregon Health and Science University Portland OR USA
| |
Collapse
|
14
|
Thirumaran SL, Lepailleur A, Rochais C. Structure-activity relationships of serotonin 5-HT7 receptors ligands: A review. Eur J Med Chem 2019; 183:111705. [DOI: 10.1016/j.ejmech.2019.111705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/30/2023]
|
15
|
Fernandes ES, Celani MFS, Fistarol M, Geber S. Effectiveness of the short-term use of Cimicifuga racemosa in the endothelial function of postmenopausal women: a double-blind, randomized, controlled trial. Climacteric 2019; 23:245-251. [PMID: 31691621 DOI: 10.1080/13697137.2019.1682542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: This study aimed to assess the effects of daily use of Cimicifuga racemosa on endothelial function through flow-mediated dilation of the brachial artery, when used for 28 days by healthy postmenopausal women.Methods: The double-blind, randomized, placebo-controlled study included two groups of postmenopausal women (n = 31 each). The subjects were clinically assessed and flow-mediated dilation of the brachial artery was measured before and after 28 days of treatment. Patients received dry extract corresponding to 160 mg C. racemosa (extract with 4 mg of triterpene glycosides) or placebo.Results: Mean age, time since menopause, and body mass index in the two groups were similar. The measurements of flow-mediated dilation of the brachial artery, pre and post treatment, respectively, showed a significant increase in patients who used C. racemosa (p = 0.006), unlike patients who used placebo, who did not present changes in the outcome of flow-mediated dilation of the brachial artery after 28 days of use (p ≥ 0.05). When comparing the number of women in both groups who showed an increase in flow-mediated dilation, a significant difference was found in the measurements of the treated group after the use of the medication (p = 0.018).Conclusions: Daily use of 160 mg C. racemosa extract by postmenopausal women for 28 days beneficially influences endothelial function by promoting elasticity of the brachial artery.
Collapse
Affiliation(s)
- E S Fernandes
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - M F S Celani
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - M Fistarol
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - S Geber
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Chen Y, Chen H, Shi G, Yang M, Zheng F, Zheng Z, Zhang S, Zhong S. Ultra-performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan metabolites in human plasma and its application to clinical study. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121745. [PMID: 31586884 DOI: 10.1016/j.jchromb.2019.121745] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/11/2019] [Accepted: 08/02/2019] [Indexed: 02/05/2023]
Abstract
A sensitive, rapid and reliable ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to assay tryptophan (TRP) and its nine metabolites, including kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), xanthurenic acid (XA), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), 3-indolepropionic acid (IPA) and 3-indoleacetic acid (IAA) in human plasma. Tryptophan-d5 (TRP-d5) and carbamazepine (CAR) were applied to the method quantification, where TRP-d5 was the corresponding internal standard (IS) for TRP and KYN, and CAR was the corresponding IS for the other analytes. Plasma samples were processed by deproteinisation with acetonitrile, followed by separation on an Acquity UPLC HSS T3 column by using gradient elution with 0.1% (v/v) formic acid in water and acetonitrile and detection by electrospray ionisation tandem mass spectrometry in positive ion multiple reaction monitoring (MRM) within a total run time of 5 min. The calibration ranges were 3-600 ng/mL for 3-HK, 1.5-300 ng/mL for 5-HT, 25-5000 ng/mL for KYN, 1-200 ng/mL for XA, 100-20,000 ng/mL for TRP, 5-1000 ng/mL for KYNA, 2-400 ng/mL for 3-HAA, 2.5-500 ng/mL for 5-HIAA and 10-2000 ng/mL for IAA and IPA. All intra- and inter-day analytical variations were acceptable. Matrix effect and recovery evaluation proved that matrix effect can be negligible, and sample preparation approach was effective. The newly developed method can simultaneously determine a panel of TRP metabolites and was successfully applied in the clinical study characterising TRP metabolism in healthy volunteers.
Collapse
Affiliation(s)
- Yun Chen
- Clinical Pharmacy Research Center, Shantou University Medical College, Shantou 515031, PR China; Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Hui Chen
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Fuchun Zheng
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, PR China
| | - Zhijie Zheng
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Shuyao Zhang
- Clinical Pharmacy Research Center, Shantou University Medical College, Shantou 515031, PR China; Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou 515031, PR China; Department of Pharmacy, Guangzhou Red Cross Hospital Affiliated of Jinan University Medical College, Guangzhou 510220, PR China.
| | - Shilong Zhong
- Clinical Pharmacy Research Center, Shantou University Medical College, Shantou 515031, PR China; Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China.
| |
Collapse
|
17
|
Demireva EY, Xie H, Flood ED, Thompson JM, Seitz BM, Watts SW. Creation of the 5-hydroxytryptamine receptor 7 knockout rat as a tool for cardiovascular research. Physiol Genomics 2019; 51:290-301. [PMID: 31125290 PMCID: PMC6689730 DOI: 10.1152/physiolgenomics.00030.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022] Open
Abstract
Using CRISPR-Cas9 technology, we created a 5-HT7 receptor global knockout (KO) rat, on a Sprague-Dawley background, for use in cardiovascular physiology studies focused on blood pressure regulation. A stable line carrying indels in exons 1 and 2 of the rat Htr7 locus was established and validated. Surprisingly, 5-HT7 receptor mRNA was still present in the KO rat. However, extensive cDNA and genomic sequencing of KO tissues confirmed an 11 bp deletion in exon 1 and 4 bp deletion in exon 2. The exon 1 deletion resulted in a frameshifted mRNA sequence coding for a nonfunctional protein. While the Htr1B locus was a potential off-target for the guide RNAs designed for exon 2 of Htr7, there were no off-target sequence changes at this locus in the originating founder. When the F2 generation of KO was compared with wild-type (WT) counterparts, neither the male nor female KO rats were different in body size, fat weights, or mass of organs (kidney, heart, and brain) important to blood pressure. Females were smaller in mass than their counterpart males. Clinical measures of plasma from nonfasted rats revealed largely similar values, comparing WT and KO, of glucose, blood urea nitrogen, creatinine, phosphate, calcium, and albumin to name a few. Loss of a functional 5-HT7 receptor was validated by the complete loss of relaxation to the 5-HT1/7 receptor agonist 5-carboxamidotryptamine in the isolated abdominal vena cava. This newly created 5-HT7 receptor KO rat will be of use to investigate the importance of the 5-HT7 receptor in blood pressure regulation.
Collapse
Affiliation(s)
- Elena Y Demireva
- Transgenic and Genome Editing Facility, and Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing, Michigan
| | - Huirong Xie
- Transgenic and Genome Editing Facility, and Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing, Michigan
| | - Emma D Flood
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Janice M Thompson
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Bridget M Seitz
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
18
|
Seitz BM, Demireva EY, Xie H, Fink GD, Krieger-Burke T, Burke WM, Watts SW. 5-HT does not lower blood pressure in the 5-HT 7 knockout rat. Physiol Genomics 2019; 51:302-310. [PMID: 31125292 DOI: 10.1152/physiolgenomics.00031.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The fall in mean arterial pressure (MAP) after 24 h of 5-HT infusion is associated with a dilation of the portal vein (PV) and abdominal inferior vena cava (Ab IVC); all events were blocked by the selective 5-HT7 receptor antagonist SB269970. Few studies have investigated the contribution of the 5-HT7 receptor in long-term cardiovascular control, and this requires an understanding of the chronic activation of the receptor. Using the newly created 5-HT7 receptor knockout (KO) rat, we presently test the hypothesis that continuous activation of the 5-HT7 receptor by 5-HT is necessary for the chronic (1 wk) depressor response and splanchnic venodilation. We also address if the 5-HT7 receptor contributes to endogenous cardiovascular regulation. Conscious MAP (radiotelemeter), splanchnic vessel diameter (ultrasound), and cardiac function (echocardiogram) were measured in ambulatory rats during multiday 5-HT infusion (25 μg·kg-1·min-1 via minipump) and after pump removal. 5-HT infusion reduced MAP and caused splanchnic venodilation of wild-type (WT) but not KO rats at any time point. The efficacy of 5-HT-induced contraction was elevated in the isolated abdominal inferior vena cava from the KO compared with WT rats, supporting loss of a relaxant receptor. Similarly, the efficacy of 5-HT causing an acute pressor response to higher doses of 5-HT in vivo was also increased in the KO vs. WT rat. Our work supports a novel mechanism for the cardiovascular effects of 5-HT, activation of 5-HT7 receptors mediating venodilation in the splanchnic circulation, which could prove useful in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Bridget M Seitz
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Elena Y Demireva
- Transgenic and Genome Editing Facility, and Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing, Michigan
| | - Huirong Xie
- Transgenic and Genome Editing Facility, and Institute for Quantitative Health Science and Engineering, Michigan State University , East Lansing, Michigan
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Teresa Krieger-Burke
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - William M Burke
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
19
|
Hypertension exhibits 5-HT4 receptor as a modulator of sympathetic neurotransmission in the rat mesenteric vasculature. Hypertens Res 2019; 42:618-627. [DOI: 10.1038/s41440-019-0217-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/17/2018] [Accepted: 10/17/2018] [Indexed: 01/11/2023]
|
20
|
Blattner KM, Canney DJ, Pippin DA, Blass BE. Pharmacology and Therapeutic Potential of the 5-HT 7 Receptor. ACS Chem Neurosci 2019; 10:89-119. [PMID: 30020772 DOI: 10.1021/acschemneuro.8b00283] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well-documented that serotonin (5-HT) exerts its pharmacological effects through a series of 5-HT receptors. The most recently identified member of this family, 5-HT7, was first identified in 1993. Over the course of the last 25 years, this receptor has been the subject of intense investigation, and it has been demonstrated that 5-HT7 plays an important role in a wide range of pharmacological processes. As a result of these findings, modulation of 5-HT7 activity has been the focus of numerous drug discovery and development programs. This review provides an overview of the roles of 5-HT7 in normal physiology and the therapeutic potential of this interesting drug target.
Collapse
Affiliation(s)
- Kevin M. Blattner
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Daniel J. Canney
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Douglas A. Pippin
- Praeventix, LLC, 665 Stockton Drive, Suite 200H, Exton, Pennsylvania 19341, United States
| | - Benjamin E. Blass
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
21
|
Lindsey ML, Gray GA, Wood SK, Curran-Everett D. Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 2018; 315:H303-H313. [PMID: 30028200 PMCID: PMC6139626 DOI: 10.1152/ajpheart.00309.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The problem of inadequate statistical reporting is long standing and widespread in the biomedical literature, including in cardiovascular physiology. Although guidelines for reporting statistics have been available in clinical medicine for some time, there are currently no guidelines specific to cardiovascular physiology. To assess the need for guidelines, we determined the type and frequency of statistical tests and procedures currently used in the American Journal of Physiology-Heart and Circulatory Physiology. A PubMed search for articles published in the American Journal of Physiology-Heart and Circulatory Physiology between January 1, 2017, and October 6, 2017, provided a final sample of 146 articles evaluated for methods used and 38 articles for indepth analysis. The t-test and ANOVA accounted for 71% (212 of 300 articles) of the statistical tests performed. Of six categories of post hoc tests, Bonferroni and Tukey tests were used in 63% (62 of 98 articles). There was an overall lack in details provided by authors publishing in the American Journal of Physiology-Heart and Circulatory Physiology, and we compiled a list of recommended minimum reporting guidelines to aid authors in preparing manuscripts. Following these guidelines could substantially improve the quality of statistical reports and enhance data rigor and reproducibility.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Gillian A Gray
- British Heart Foundation/University Centre for Cardiovascular Science, Edinburgh Medical School, University of Edinburgh , Edinburgh , United Kingdom
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine , Columbia, South Carolina
| | - Douglas Curran-Everett
- Division of Biostatistics and Bioinformatics, National Jewish Health , Denver, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver , Denver, Colorado
| |
Collapse
|
22
|
Brooks HL, Lindsey ML. Guidelines for authors and reviewers on antibody use in physiology studies. Am J Physiol Heart Circ Physiol 2018; 314:H724-H732. [PMID: 29351459 PMCID: PMC6048465 DOI: 10.1152/ajpheart.00512.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Antibody use is a critical component of cardiovascular physiology research, and antibodies are used to monitor protein abundance (immunoblot analysis) and protein expression and localization (in tissue by immunohistochemistry and in cells by immunocytochemistry). With ongoing discussions on how to improve reproducibility and rigor, the goal of this review is to provide best practice guidelines regarding how to optimize antibody use for increased rigor and reproducibility in both immunoblot analysis and immunohistochemistry approaches. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-on-antibody-use-in-physiology-studies/.
Collapse
Affiliation(s)
- Heddwen L Brooks
- Department of Physiology, Pharmacology and Medicine, Sarver Heart Center, College of Medicine, University of Arizona , Tucson, Arizona
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| |
Collapse
|