1
|
Feka K, Jha P, Aust M, Scott JJ, Schaumberg M, Stanton T, Askew CD, Trial Group SL&L. Saving Legs & Lives: the efficacy of a community-based cardiovascular rehabilitation programme versus usual care on exercise capacity and quality of life in patients who have undergone lower limb revascularisation for peripheral arterial disease-protocol for a single-centre randomised-controlled trial. BMJ Open 2024; 14:e089203. [PMID: 39638603 PMCID: PMC11624831 DOI: 10.1136/bmjopen-2024-089203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Peripheral artery disease (PAD) is an atherosclerotic condition characterised by stenosis or occlusion of the arteries in the lower limbs. Patients with PAD commonly report intermittent claudication (leg pain/discomfort) during physical activities, which significantly limits the ability to walk and perform activities of daily living. Supervised exercise training is an effective therapy that can improve walking capacity in people with PAD. Emerging evidence also suggests that supervised exercise therapy following lower limb revascularisation can further enhance walking capacity when compared with revascularisation alone. However, access to dedicated exercise programmes for patients with PAD is limited in most countries, and there is a need to test the efficacy of alternative rehabilitation strategies and referral pathways. This randomised-controlled study aims to assess the efficacy of a cardiovascular rehabilitation (CR) programme versus usual care on walking capacity and quality of life in patients who have undergone lower limb revascularisation for PAD. METHODS AND ANALYSIS This will be a single-centre, prospective, parallel group, randomised-controlled trial. Sixty-six participants who have undergone a lower limb revascularisation procedure for PAD, in the previous 12 months, will be randomly allocated to a CR programme or a usual care (control) group. The CR programme will include two supervised exercise sessions per week for 6 weeks primarily consisting of intermittent treadmill walking at a moderate exercise intensity and home-based walking advice. During the 6-week programme, participants will also attend one education seminar (5.5 hours) which will cover topics such as diet, medications, exercise training and lifestyle modifications for the management of cardiovascular diseases. The control group will receive usual care and medical advice from their local doctor and vascular surgeon. The primary outcome will be 6-min walk distance. Secondary outcomes include pain-free walking distance during the six-minute walk test, maximal and pain-free walking time during a graded treadmill walking test, cardiorespiratory fitness, self-reported walking capacity, disease-specific quality of life, and self-reported and objectively measured physical activity levels. Exploratory outcomes include brachial artery flow-mediated dilation, arterial stiffness, ankle-brachial blood pressure index and biomarkers of cardiovascular disease risk. Outcomes will be assessed at baseline (week 1), following the CR/usual care period (week 8) and again at 6-month follow-up (week 34). ETHICS AND DISSEMINATION This study has received ethics approval from the Human Research Ethics Committees of Queensland Health Metro North Hospital and Health Service (94155) and the University of the Sunshine Coast (S231914). Findings from this study will be disseminated in peer-reviewed journals and through national and international conference presentations. TRIAL REGISTRATION NUMBER ACTRN12623000190606.
Collapse
Affiliation(s)
- Krist Feka
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Pankaj Jha
- Vascular Surgery, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia
| | - Michelle Aust
- Cardiology, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia
| | - Joseph J. Scott
- School of Education and Tertiary Access, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mia Schaumberg
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Tony Stanton
- Cardiology, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia
| | - Christopher D. Askew
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | | |
Collapse
|
2
|
Wang A, Hurr C. Effect of Ischemic Preconditioning on Endurance Running Performance in the Heat. J Sports Sci Med 2024; 23:799-811. [PMID: 39649574 PMCID: PMC11622057 DOI: 10.52082/jssm.2024.799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/08/2024] [Indexed: 12/11/2024]
Abstract
Ischemic preconditioning (IPC) is a strategy that may enhances endurance performance in thermoneutral environments. Exercising in the heat increases thermoregulatory and cardiovascular strain, decreasing endurance performance. The current study aimed to determine whether IPC administration improves endurance performance in the heat. In a randomized crossover design, 12 healthy subjects (V̇O2max: 54.4 ± 8.1 mL·kg-1·min-1) underwent either IPC administration (220 mmHg) or a sham treatment (20 mmHg), then completed a moderate-intensity 6-min running (EX1) and a high-intensity time-to-exhaustion running test (EX2) in a hot environment (35 °C, 50 % RH). Cardiac function, oxygen consumption (V̇O2), and core body temperature (TCORE) were measured. During EX2, IPC administration increased the total running time in the heat compared to the sham treatment (IPC: 416.4 ± 61.9 vs. sham 389.3 ± 40.7 s, P = 0.027). IPC administration also increased stroke volume (IPC: 150.4 ± 17.5 vs. sham: 128.2 ± 11.6 ml, P = 0.008) and cardiac output (IPC: 27.4 ± 1.7 vs. sham: 25.1 ± 2.2 ml min-1, P = 0.007) during 100% isotime of EX2. End-exercise V̇O2 (IPC: 3.72 ± 0.85 vs. sham: 3.54 ± 0.87 L·min-1, P = 0.017) and slow phase amplitude (IPC: 0.57 ± 0.17 vs. sham: 0.72 ± 0.22 L·min-1, P = 0.016) were improved. When compared with the baseline period, an increase in TCORE was less in the IPC condition during EX1 (IPC: 0.18 ± 0.06 vs. sham: 0.22 ± 0.08 °C, P = 0.005) and EX2 (IPC: 0.87 ± 0.10 vs. sham: 1.03 ± 0.10 °C, P < 0.001). IPC improves high-intensity endurance performance in the heat by 6.9 %. This performance benefit could be associated with improved cardiac and thermoregulatory function engendered by IPC administration.
Collapse
Affiliation(s)
- Anjie Wang
- Department of Physical Education, Anhui Polytechnic University, Wuhu, China
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, South Korea
| | - Chansol Hurr
- Integrative Exercise Physiology Laboratory, Department of Physical Education, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
3
|
Jang MH, Kim DH, Han JH, Kim SH, Kim JH. Impact of ischemic preconditioning combined with aerobic exercise on 24-h ambulatory blood pressure in men with prehypertension and stage 1 hypertension. Front Physiol 2024; 15:1495648. [PMID: 39575451 PMCID: PMC11578983 DOI: 10.3389/fphys.2024.1495648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction A single bout of aerobic exercise is known to induce a temporary reduction in post-exercise blood pressure termed post-exercise hypotension (PEH). Meanwhile, an ischemic preconditioning (IPC), a series of short ischemia-reperfusion intervention, has also shown antihypertensive effects showing a potential nonpharmacologic intervention for hypertension. While the acute BP reduction effects of aerobic exercise and IPC are individually well-investigated, it remains unclear if combining both interventions has an additive effect on PEH. Methods A total of twelve pre- or hypertensive men (six prehypertension, six stage 1 hypertension) underwent either 30 min of aerobic exercise at 50% VO2peak (CON) or IPC before exercise, in a counterbalanced order. IPC involved inflating cuffs on both thighs to 200 mmHg for 5 min, alternating between right and left thighs for three cycles, totaling 30 min. Brachial BP was measured during exercise and 1-h post-exercise recovery whereas muscle oxygen saturation (SmO2) from the rectus femoris was monitored using NIRs during exercise and recovery. Heart rate variability (HRV) and baroreflex sensitivity (BRS) together with a head-up tilt test (at 0 and 50°) were measured at the pre-test, post-test, and 24-h post-test. After the completion of each experiment, 24-h ambulatory blood pressure (ABP) was monitored to assess post-exercise hypotension within a 24-h window. Results BP and heart rate responses during exercise and 1-h recovery did not differ between conditions while SmO2 was significantly elevated during exercise in IPC (p = 0.004). There was no difference in HRV and supine BRS. However, significantly reduced titled BRS after exercise was found in CON while IPC preserved BRS similar to pre-exercise value, extending to 24-h post period (p = 0.047). ABP monitoring revealed a significant reduction in systolic BP during sleep in IPC compared to CON (p = 0.046). Conclusion The present findings suggest that IPC with a single session of aerobic exercise results in a notable decrease in systolic ABP, particularly during sleep, compared to aerobic exercise alone. This supplementary antihypertensive effect was associated with a sustained BRS, persisting up to 24 h in contrast to the significant decrease observed in CON. Future studies are warranted to investigate long-term adaptations to IPC.
Collapse
Affiliation(s)
- Min-Hyeok Jang
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
| | - Dae-Hwan Kim
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
| | - Jean-Hee Han
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
| | - Seok-Ho Kim
- Department of Sports Medicine, Kyung Hee University, Yongin, Republic of Korea
| | - Jung-Hyun Kim
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
- Department of Sports Medicine, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
4
|
Gao X, Wang A, Fan J, Zhang T, Li C, Yue T, Hurr C. The effect of ischemic preconditioning on repeated sprint cycling performance: a randomized crossover study. J Sports Med Phys Fitness 2024; 64:1147-1156. [PMID: 39023202 DOI: 10.23736/s0022-4707.24.16015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
BACKGROUND Ischemic preconditioning (IPC) has been suggested to improve exercise performance by 1-8%. Prior research concerning its impact on short-duration exercises, such as sprints, has been limited and yielded conflicting results. The aim of this study, which included a non-occlusion-based placebo control, was to determine whether IPC improves repeated sprint performance in a manner that accounted for psychophysiological effects. METHODS Twenty-two healthy males participated in this study, which employed a randomized crossover design. Following the 10-min baseline period, participants received intervention under four different conditions: 1) no-intervention control (CON); 2) non-occlusion-based placebo control (SHAM); 3) remote IPC (RIPC); and 4) local IPC (LIPC). Participants then performed a standardized repeated sprint cycling (5×10s maximal cycling sprint, separated by a 40-s rest in each set). RESULTS Repeated sprint performance, as indexed by average power output, peak power output, and total work, the improvement was observed in the RIPC and LIPC during the initial phase (set 1-3) when compared with CON (P<0.05). SHAM condition also showed an increase in peak power output in the set 1 (CON 9.97±1.05 vs. SHAM 10.30±1.13 w/kg, P<0.05), which may represent a psychophysiological component in the IPC-induced improvement. Higher lactate concertation was found in the SHAM and LIPC groups, than in the CON group, 5 minutes after the exercise (CON 15.72±0.68 vs. SHAM 16.82±0.41 vs. LIPC 17.19±0.39 mmol/L, P<0.0001 for both, respectively). CONCLUSIONS In conclusion, LIPC enhanced repeated sprint cycling performance during the initial phase, beyond what could be accounted for entirely by a psychophysiological effect. The improvement associated with RIPC, however, did not surpass the effect of a placebo intervention.
Collapse
Affiliation(s)
- Xinpeng Gao
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Anjie Wang
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Junli Fan
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Tingran Zhang
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Caiyan Li
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Ting Yue
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Chansol Hurr
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea -
| |
Collapse
|
5
|
Li Z, LV M, Li Z, Gao W, Li M. Physiological characteristics of blood pressure responses after combined exercise in elderly hypertensive patients: a systematic review and meta-analysis. Front Cardiovasc Med 2024; 11:1404127. [PMID: 39526180 PMCID: PMC11543474 DOI: 10.3389/fcvm.2024.1404127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Objective The aim of this investigation is to explore the efficacy of combined exercise in elderly patients with hypertension. Moreover, we aim to delve into the underlying mechanisms governing blood pressure regulation, with the objective of promoting the adoption of this exercise regimen among elderly hypertensive individuals. Methods In our study, we conducted a thorough search across multiple databases, including PubMed, Web of Science, Cochrane Library, Embase, and Scopus. This extensive search resulted in the preliminary screening of 2,347 articles. Among these, 9 studies were carefully selected for an in-depth analysis. For our meta-analysis, we employed Review Manager 5.3 and Stata 15.0, enabling us to perform detailed subgroup analyses and assess the possibility of publication bias. Results In comparison to the control group (n = 194), individuals enrolled in the combined exercise group (n = 200) exhibited a notable decrease in both resting systolic blood pressure (SBP) [weighted mean difference (WMD) = -11.17 mm Hg, 95% confidence interval (CI) (-17.13, -5.22), Z = 3.68, P < 0.05] and diastolic blood pressure (DBP) [WMD = -5.93 mm Hg, 95% CI (-9.24, -2.61), Z = 3.51, P < 0.05]. Nonetheless, no statistically significant alteration was observed in pulse pressure (PP) [WMD = -9.05 mm Hg, 95% CI (-22.65, 4.55), Z = 1.3, P = 0.192]. Further subgroup analyses elucidated that combined exercise regimens, characterized by aerobic training intensities below 85% of HRmax, durations of up to 12 weeks, weekly frequencies of either ≥3 or <3 sessions, total session times under 60 min, and a sequence of aerobic exercise followed by resistance training (AE-RT), were particularly effective in enhancing SBP and DBP among elderly patients with hypertension. Additionally, regular engagement in combined exercise led to significant improvements in SBP and DBP across individuals aged 60-70, those older than 70 years, and regardless of whether participants were using antihypertensive medications or not. Conclusion Combined exercise serves as an efficacious adjunctive therapy for reducing blood pressure among elderly individuals with hypertension, exerting beneficial influences on multiple physiological mechanisms pertinent to blood pressure regulation. Moreover, the integration of aerobic exercise with resistance training presents a more varied training program, thereby eliciting wider-ranging positive effects on both the physical and mental well-being of elderly patients afflicted with hypertension.
Collapse
Affiliation(s)
| | | | | | | | - Ming Li
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
6
|
Desanlis J, Gordon D, French C, Calveyrac C, Cottin F, Gernigon M. Effects of occlusion pressure on hemodynamic responses recorded by near-infrared spectroscopy across two visits. Front Physiol 2024; 15:1441239. [PMID: 39324105 PMCID: PMC11422206 DOI: 10.3389/fphys.2024.1441239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Ischemic Preconditioning (IPC) has emerged as a promising approach to mitigate the impact of hypoxia on physiological functions. However, the heterogeneity of occlusion pressures for inducing arterial occlusion has led to inconsistent hemodynamic outcomes across studies. This study aims to evaluate the peripheral hemodynamic responses to partial and total blood-flow occlusions on the left arm at rest, using absolute or individualized pressures, on two occasions. Thirty-five young males volunteered to participate in this study. IPC procedure (3 × 7-min) was performed on the left upper arm with cuff pressures at 50 mmHg (G1), 50 mmHg over the systolic blood pressure (SBP + 50 mmHg) (G2) or 250 mmHg (G3). NIRS-derived parameters were assessed for each occlusion and reperfusion phase in the brachioradialis. Results showed a significantly lower magnitude of deoxygenation (TSIAUC) for G1 compared to G2 (-1959.2 ± 1417.4 vs. -10908.1 ± 1607.5, P < 0.001) and G3 -1959.2 ± 1417.4 vs. -11079.3 ± 1828.1, P < 0.001), without differences between G2 and G3. However, G3 showed a significantly faster reoxygenation only for tissue saturation index (TSIslope) compared to G2 (1.3 ± 0.1 vs. 1.0 ± 0.2, P = 0.010), but without differences in the speed of recovery of deoxyhemoglobin [(HHb) slope], or in the magnitude of post-occlusive hyperemia (PORH). Besides TSI reoxygenation speed, G2 and G3 elicit comparable resting hemodynamic responses measured by NIRS. Thus, this study highlights the practicality and effectiveness of using relative occlusion pressures based on systolic blood pressure (SBP) rather than relying on excessively high absolute pressures.
Collapse
Affiliation(s)
- Julien Desanlis
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Dan Gordon
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Chloe French
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Camille Calveyrac
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - François Cottin
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Marie Gernigon
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| |
Collapse
|
7
|
Yu CJ, Tsai SC, Liao YH, Chen CY, Wu KC. Exploring the Potential Benefits of Interventions When Addressing Simulated Altitude Hypoxia during Male Cyclist Sports: A Systematic Review. APPLIED SCIENCES 2024; 14:3091. [DOI: 10.3390/app14073091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Training in hypoxic environments enhances endurance, but the various influences of training protocols and supplementation for efficient performance are not yet clear. This systematic review explored the effects of different supplementations and interventions used to optimize the aerobic and anaerobic performance of cyclists. Data were collected from the following sources: PubMed, Google Scholar, EMBASE, WOS, Cochrane Central Register of Controlled Trials, and randomized controlled trials (RCTs). Studies that explored the effects of supplementation or intervention during cycling were selected for analysis. Five studies (67 male cyclists; mean age, 23.74–33.56 years) reported different outcomes from supplementation or intervention during the acute hypoxia of cyclists. Three studies (42 male cyclists; mean age, 25.88–36.22 years) listed the benefits of beetroot juice in preserving SpO2 (pulse oxygen saturation) and enhancing high-intensity endurance performance, effectively preventing the reduction in power output. This systematic review provided evidence that the different effects of ischemic preconditioning (IPC), sildenafil, and beetroot (BR) supplementation and intervention did not present a statistically greater benefit than for normoxia groups, but BR supplementation promoted the benefits of SpO2. Future research should evaluate the duration and higher FiO2 (simulated altitude, hypoxia) levels of hypoxia in training protocols for cyclists. This is important when determining the effectiveness of supplements or interventions in hypoxic conditions and their impact on sports performance, particularly in terms of power output.
Collapse
Affiliation(s)
- Chen-Jui Yu
- Institute of Sports Sciences, University of Taipei, Taipei City 11153, Taiwan
| | - Shiow-Chwen Tsai
- Institute of Sports Sciences, University of Taipei, Taipei City 11153, Taiwan
| | - Yi-Hung Liao
- Department of Exercise and Health Sciences, National Taipei University of Nursing and Health Sciences, Taipei City 11219, Taiwan
| | - Chung-Yu Chen
- Department of Exercise and Health Sciences, University of Taipei, Taipei City 11153, Taiwan
| | - Kuo-Cheng Wu
- Graduate Institute of Sports Training, Kinesiology, University of Taipei, Taipei City 11153, Taiwan
| |
Collapse
|
8
|
Brocherie F, Racinais S, Cocking S, Townsend N, Couderc A, Piscione J, Girard O. Repeated-Sprint Training at 5000-m Simulated Altitude in Preparation for the World Rugby Women's Sevens Series: Too High? Med Sci Sports Exerc 2023; 55:1923-1932. [PMID: 37259251 DOI: 10.1249/mss.0000000000003226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PURPOSE The objective of this study is to investigate the effectiveness of novel repeated-sprint training in hypoxia (RSH) protocol, likely maximizing hypoxic stimulus (higher than commonly used) while preserving training quality (interset rest in normoxia). METHODS Twenty-three world-class female rugby sevens players performed four repeated-sprint training sessions (4 sets of 5 × 5-s cycle sprints-25-s intersprint recovery and 3-min interset rest) under normobaric hypoxia (RSH, exercise and interset rest at FiO 2 of 10.6% and 20.9%, respectively; n = 12) or normoxia (repeated-sprint training in normoxia; exercise and interset rest at FiO 2 of 20.9%; n = 11) during a 9-d training camp before international competition. Repeated-sprint ability (8 × 5-s treadmill sprints-25-s recovery), on-field aerobic capacity, and brachial endothelial function were assessed pre- and postintervention. RESULTS Arterial oxygen saturation (pooled data: 87.0% ± 3.1% vs 96.7% ± 2.9%, P < 0.001) and peak and mean power outputs (sets 1 to 4 average decrease: -21.7% ± 7.2% vs -12.0% ± 3.8% and -24.9% ± 8.1% vs -14.9% ± 3.5%; both P < 0.001) were lower in RSH versus repeated-sprint training in normoxia. The cumulated repeated-sprint distance covered significantly increased from pre- to postintervention (+1.9% ± 3.0%, P = 0.019), irrespective of the condition ( P = 0.149). On-field aerobic capacity did not change (all P > 0.45). There was no significant interaction (all P > 0.240) or condition main effect (all P > 0.074) for any brachial artery endothelial function variable. Only peak diameter increased ( P = 0.026), whereas baseline and peak shear stress decreased ( P = 0.014 and 0.019, respectively), from pre- to postintervention. CONCLUSIONS In world-class female rugby sevens players, only four additional repeated-sprint sessions before competition improve repeated-sprint ability and brachial endothelial function. However, adding severe hypoxic stress during sets of repeated sprints only did not provide supplementary benefits.
Collapse
Affiliation(s)
- Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, FRANCE
| | - Sebastien Racinais
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, QATAR
| | | | - Nathan Townsend
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, QATAR
| | - Anthony Couderc
- Research Department, French Rugby Union Federation (FFR), Marcoussis, FRANCE
| | - Julien Piscione
- Research Department, French Rugby Union Federation (FFR), Marcoussis, FRANCE
| | | |
Collapse
|
9
|
Caldwell JT, Fenn SA, Bekkedal LM, Dodge C, Muller-Delp J. Preexercise intermittent passive stretching and vascular function after treadmill exercise. J Appl Physiol (1985) 2023; 135:786-794. [PMID: 37589056 DOI: 10.1152/japplphysiol.00427.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute aerobic exercise stress is associated with decreased endothelial function that may increase the likelihood of an acute cardiovascular event. Passive stretch (PS) elicits improvements in vascular function, but whether PS can be performed before exercise to prevent declines in vascular function remains unknown. This strategy could be directly applicable in populations that may not be able to perform dynamic exercise. We hypothesized that preexercise PS would provide better vascular resilience after treadmill exercise. Sixteen healthy college-aged males and females participated in a single laboratory visit and underwent testing to assess micro- and macrovascular function. Participants were randomized into either PS group or sham control group. Intermittent calf PS was performed by having the foot in a splinting device for a 5-min stretch and 5-min relaxation, repeated four times. Then, a staged V̇o2 peak test was performed and 65% V̇o2 peak calculated for subjects to run at for 30 min. Near-infrared spectroscopy-derived microvascular responsiveness was preserved with the PS group [(pre: 0.53 ± 0.009%/s) (post: 0.56 ± 0.012%/s; P = 0.55)]. However, there was a significant reduction in the sham control group [(pre: 0.67 ± 0.010%/s) (post: 0.51 ± 0.007%/s; P = 0.05)] after treadmill exercise. Flow-mediated vasodilation (FMD) of the popliteal artery showed similar responses. In the PS group, FMD [(pre: 7.23 ± 0.74%) (post: 5.86 ± 1.01%; P = 0.27)] did not significantly decline after exercise. In the sham control group, FMD [(pre: 8.69 ± 0.72%) (post: 5.24 ± 1.24%; P < 0.001)] was significantly reduced after treadmill exercise. Vascular function may be more resilient if intermittent PS is performed before moderate-intensity exercise and, importantly, can be performed by most individuals.NEW & NOTEWORTHY We demonstrate for the first time that popliteal artery and gastrocnemius microvascular responsiveness after acute aerobic exercise are reduced. The decline in vascular function was mitigated in those who performed intermittent passive stretching before the exercise bouts. Collectively, these findings suggest that intermittent passive stretching is a novel method to increase vascular resiliency before aerobic activity.
Collapse
Affiliation(s)
- Jacob T Caldwell
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin, United States
| | - Sarah A Fenn
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin, United States
| | - Lukas M Bekkedal
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin, United States
| | - Christopher Dodge
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin, United States
| | - Judy Muller-Delp
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States
| |
Collapse
|
10
|
García-Sillero M, Maroto-Izquierdo S, Galván-García M, Benitez-Porres J, Vargas-Molina S, Jurado-Castro JM. Acute Effects of Blood Flow Restriction Training on Movement Velocity and Neuromuscular Signal during the Back Squat Exercise. J Clin Med 2023; 12:4824. [PMID: 37510938 PMCID: PMC10381307 DOI: 10.3390/jcm12144824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to verify the effects of blood flow restriction on movement velocity and muscle activity during the back squat exercise. METHODS Twenty-four university students participated in this study. In two randomized sessions 72 h apart, participants performed a 4-set protocol consisting of 30-15-15-15 repetitions performed at 30% of their one-repetition maximum in the back squat exercise. In both sessions, neuromuscular function was monitored by surface electromyography (EMG) and movement velocity (mean propulsive velocity (MPV), peak concentric velocity (Vmax), and the effort index (EI)). Blood flow restriction (BFR) was applied during exercise in one of the experimental sessions with 80% of full arterial occlusion pressure over lower limbs. RESULTS The BFR condition showed higher (p < 0.05) EI, peak, and rooted mean square normalized EMG in Set 1 compared to Set 2. Similar MPV and Vmax were observed in each set for both the BFR and control conditions. No significant differences were observed between conditions in any set. CONCLUSIONS BFR did not imply changes in neuromuscular performance during low-intensity resistance training, but it might induce greater intra-series velocity loss and less excitation of the muscles involved.
Collapse
Affiliation(s)
- Manuel García-Sillero
- Physical Education and Sport, Faculty of Medicine, EADE-University of Wales Trinity Saint David, 29018 Malaga, Spain
| | - Sergio Maroto-Izquierdo
- Department of Health Sciences, European University Miguel de Cervantes (UEMC), 47012 Valladolid, Spain
| | - María Galván-García
- Physical Education and Sport, Faculty of Medicine, EADE-University of Wales Trinity Saint David, 29018 Malaga, Spain
| | - Javier Benitez-Porres
- Physical Education and Sport, Faculty of Medicine, University of Málaga, 29016 Málaga, Spain
| | - Salvador Vargas-Molina
- Physical Education and Sport, Faculty of Medicine, EADE-University of Wales Trinity Saint David, 29018 Malaga, Spain
| | - Jose Manuel Jurado-Castro
- Metabolism and Investigation Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Ciencias De La Actividad Física y El Deporte, Escuela Universitaria de Osuna (Centro Adscrito a la Universidad de Sevilla), 41640 Osuna, Spain
| |
Collapse
|
11
|
Muñoz-Gómez E, Mollà-Casanova S, Sempere-Rubio N, Serra-Añó P, Aguilar-Rodríguez M, Alonso-Aubin DA, Chulvi-Medrano I, Inglés M. Potential Benefits of a Single Session of Remote Ischemic Preconditioning and Walking in Sedentary Older Adults: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3515. [PMID: 36834210 PMCID: PMC9966602 DOI: 10.3390/ijerph20043515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Ischemic preconditioning (IPC) has shown positive effects in endurance-type sports among healthy young individuals; however, its effects in endurance-type exercises in older adults have not been explored. We aimed to examine the acute effects of a single session of IPC prior to an endurance-type exercise on cardiovascular- and physical-function-related parameters in sedentary older adults. A pilot study with a time-series design was carried out. Nine participants were enrolled consecutively in the following intervention groups: (i) SHAM (sham IPC + walking) and (ii) IPC (IPC + walking) groups. The main outcomes were resting systolic (SBP) and diastolic (DBP) blood pressure, heart rate (HR), peripheral oxygen saturation (SpO2), maximum isometric voluntary contraction (MIVC), endurance performance, and perceived fatigue. After the intervention, the IPC group showed a significant reduction in SBP, whereas SpO2 decreased in the SHAM group. The IPC group maintained quadriceps MIVC levels, whereas these levels dropped in the SHAM group. No changes in DBP, resting HR, endurance, or fatigue in any group were observed. These findings are of interest for the promotion of cardiovascular and physical health in older people.
Collapse
Affiliation(s)
- Elena Muñoz-Gómez
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Sara Mollà-Casanova
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Núria Sempere-Rubio
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Pilar Serra-Añó
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Marta Aguilar-Rodríguez
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Diego A. Alonso-Aubin
- Strength Training and Neuromuscular Performance Research Group (STreNgthP), Faculty of Health, Camilo José Cela University, 28692 Madrid, Spain
| | - Iván Chulvi-Medrano
- UIRFIDE Research Group, Physical Education and Sport Department, University of Valencia, 46010 Valencia, Spain
| | - Marta Inglés
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
12
|
O’Brien L, Jacobs I. Potential physiological responses contributing to the ergogenic effects of acute ischemic preconditioning during exercise: A narrative review. Front Physiol 2022; 13:1051529. [PMID: 36518104 PMCID: PMC9742576 DOI: 10.3389/fphys.2022.1051529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 09/26/2023] Open
Abstract
Ischemic preconditioning (IPC) has been reported to augment exercise performance, but there is considerable heterogeneity in the magnitude and frequency of performance improvements. Despite a burgeoning interest in IPC as an ergogenic aid, much is still unknown about the physiological mechanisms that mediate the observed performance enhancing effects. This narrative review collates those physiological responses to IPC reported in the IPC literature and discusses how these responses may contribute to the ergogenic effects of IPC. Specifically, this review discusses documented central and peripheral cardiovascular responses, as well as selected metabolic, neurological, and perceptual effects of IPC that have been reported in the literature.
Collapse
Affiliation(s)
- Liam O’Brien
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Ira Jacobs
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- The Tannenbaum Institute for Science in Sport, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Peden DL, Mitchell EA, Bailey SJ, Ferguson RA. Ischaemic preconditioning blunts exercise-induced mitochondrial dysfunction, speeds oxygen uptake kinetics but does not alter severe-intensity exercise capacity. Exp Physiol 2022; 107:1241-1254. [PMID: 36030522 PMCID: PMC9826326 DOI: 10.1113/ep090264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/12/2022] [Indexed: 01/11/2023]
Abstract
NEW FINDINGS What is the central question of this study? Ischaemic preconditioning is a novel pre-exercise priming strategy. We asked whether ischaemic preconditioning would alter mitochondrial respiratory function and pulmonary oxygen uptake kinetics and improve severe-intensity exercise performance. What is the main finding and its importance? Ischaemic preconditioning expedited overall pulmonary oxygen uptake kinetics and appeared to prevent an increase in leak respiration, proportional to maximal electron transfer system and ADP-stimulated respiration, that was evoked by severe-intensity exercise in sham-control conditions. However, severe-intensity exercise performance was not improved. The results do not support ischaemic preconditioning as a pre-exercise strategy to improve exercise performance in recreationally active participants. ABSTRACT We examined the effect of ischaemic preconditioning (IPC) on severe-intensity exercise performance, pulmonary oxygen uptake ( V ̇ O 2 ${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ ) kinetics, skeletal muscle oxygenation (muscle tissue O2 saturation index) and mitochondrial respiration. Eight men underwent contralateral IPC (4 × 5 min at 220 mmHg) or sham-control (SHAM; 20 mmHg) before performing a cycling time-to-exhaustion test (92% maximum aerobic power). Muscle (vastus lateralis) biopsies were obtained before IPC or SHAM and ∼1.5 min postexercise. The time to exhaustion did not differ between SHAM and IPC (249 ± 37 vs. 240 ± 32 s; P = 0.62). Pre- and postexercise ADP-stimulated (P) and maximal (E) mitochondrial respiration through protein complexes (C) I, II and IV did not differ (P > 0.05). Complex I leak respiration was greater postexercise compared with baseline in SHAM, but not in IPC, when normalized to wet mass (P = 0.01 vs. P = 0.19), mitochondrial content (citrate synthase activity, P = 0.003 vs. P = 0.16; CI+IIP, P = 0.03 vs. P = 0.23) and expressed relative to P (P = 0.006 vs. P = 0.30) and E (P = 0.004 vs. P = 0.26). The V ̇ O 2 ${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ mean response time was faster (51.3 ± 15.5 vs. 63.7 ± 14.5 s; P = 0.003), with a smaller slow component (270 ± 105 vs. 377 ± 188 ml min-1 ; P = 0.03), in IPC compared with SHAM. The muscle tissue O2 saturation index did not differ between trials (P > 0.05). Ischaemic preconditioning expedited V ̇ O 2 ${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ kinetics and appeared to prevent an increase in leak respiration through CI, when expressed proportional to E and P evoked by severe-intensity exercise, but did not improve exercise performance.
Collapse
Affiliation(s)
- Donald L. Peden
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Emma A. Mitchell
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Stephen J. Bailey
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Richard A. Ferguson
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| |
Collapse
|
14
|
Effects of Low-Load Blood Flow Restriction Training on Hemodynamic Responses and Vascular Function in Older Adults: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116750. [PMID: 35682336 PMCID: PMC9180641 DOI: 10.3390/ijerph19116750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
Abstract
Background: The combination of low-load (LL) training with blood flow restriction (BFR) has recently been shown to trigger a series of hemodynamic responses and promote vascular function in various populations. To date, however, evidence is sparse as to how this training regimen influences hemodynamic response and vascular function in older adults. Objective: To systematically evaluate the effects of LL-BFR training on hemodynamic response and vascular function in older adults. Methods: A PRISMA-compliant systematic review and meta-analysis were conducted. The systematic literature research was performed in the following electronic databases from their inception to 30 February 2022: PubMed, Web of Science, Scopus, EBSCO host, the Cochrane Library and CNKI. Subsequently, a meta-analysis with inverse variance weighting was conducted. Results: A total of 1437 articles were screened, and 12 randomized controlled trials with a total 378 subjects were included in the meta-analysis. The meta-analysis results showed that LL-BFR training caused a significant acute increase in heart rate (WMD: 4.02, 95% CI: 0.93, 7.10, p < 0.05), systolic blood pressure (WMD: 5.05, 95% CI: 0.63, 9.48, p < 0.05) and diastolic blood pressure (WMD: 4.87, 95% CI: 1.37, 8.37, p < 0.01). The acute hemodynamic response induced by LL-BFR training is similar to that elicited by high-load (HL) training. Training volume, cuff pressure and width were identified as significant moderators in our subgroup and meta-regression analyses. After 30 min of training, resting systolic blood pressure significantly decreased (WMD: −6.595, 95% CI: −8.88, −3.31, p < 0.01) in the LL-BFR training group, but resting hemodynamic indexes exhibited no significant differences compared with common LL and HL training; long-term LL-BFR training resulted in significant improvements in flow-mediated vasodilation (FMD) (WMD: 1.30, 95% CI: 0.50, 2.10, p < 0.01), cardio ankle vascular index (CAVI) (WMD: 0.55, 95% CI: 0.11, 0.99, p < 0.05) and ankle brachial index (ABI) (WMD: 0.03, 95% CI: 0.00, 0.06, p < 0.05) in older adults. Conclusion: This systematic review and meta-analysis reveals that LL-BFR training will cause an acute hemodynamic response in older adults, which can return to normal levels 30 min after training, and systolic blood pressure significantly decreased. Furthermore, the beneficial effect of LL-BFR training on vascular function is to improve FMD, CAVI and ABI of older adults. However, due to the influence of the quality of the included studies and the sample size, more high-quality studies are needed to confirm such issues as BFR pressure and training risk.
Collapse
|
15
|
Telles LGDS, Billaut F, Cunha G, Ribeiro ADS, Monteiro ER, Barreto AC, Leitão L, Panza P, Vianna JM, Novaes JDS. Ischemic Preconditioning Improves Handgrip Strength and Functional Capacity in Active Elderly Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116628. [PMID: 35682213 PMCID: PMC9180149 DOI: 10.3390/ijerph19116628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
Background: Aging decreases some capacities in older adults, sarcopenia being one of the common processes that occur and that interfered with strength capacity. The present study aimed to verify the acute effect of IPC on isometric handgrip strength and functional capacity in active elderly women. Methods: In a single-blind, placebo-controlled design, 16 active elderly women (68.1 ± 7.6 years) were randomly performed on three separate occasions a series of tests: (1) alone (control, CON); (2) after IPC (3 cycles of 5-min compression/5-min reperfusion at 15 mmHg above systolic blood pressure, IPC); and (3) after placebo compressions (SHAM). Testing included a handgrip isometric strength test (HIST) and three functional tests (FT): 30 s sit and stand up from a chair (30STS), get up and go time (TUG), and 6 min walk distance test (6MWT). Results: HIST significantly increased in IPC (29.3 ± 6.9 kgf) compared to CON (27.3 ± 7.1 kgf; 7.1% difference; p = 0.01), but not in SHAM (27.7 ± 7.9; 5.5%; p = 0.16). The 30STS increased in IPC (20.1 ± 4.1 repetitions) compared to SHAM (18.5 ± 3.5 repetitions; 8.7%; p = 0.01) and CON (18.5 ± 3.9 repetitions; 8.6%; p = 0.01). TUG was significantly lower in IPC (5.70 ± 1.35 s) compared to SHAM (6.14 ± 1.37 s; −7.2%; p = 0.01), but not CON (5.91 ± 1.45 s; −3.7%; p = 0.24). The 6MWT significantly increased in IPC (611.5 ± 93.8 m) compared to CON (546.1 ± 80.5 m; 12%; p = 0.02), but not in SHAM (598.7 ± 67.6 m; 2.1%; p = 0.85). Conclusions: These data suggest that IPC can promote acute improvements in handgrip strength and functional capacity in active elderly women.
Collapse
Affiliation(s)
- Luiz Guilherme da Silva Telles
- Physical Education and Sports Department, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (L.G.d.S.T.); (E.R.M.); (J.d.S.N.)
- Estácio de Sá University (UNESA), Rio de Janeiro 20261-063, Brazil;
| | - François Billaut
- Department of Kinesiology, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Gélio Cunha
- Estácio de Sá University (UNESA), Rio de Janeiro 20261-063, Brazil;
| | - Aline de Souza Ribeiro
- Physical Education and Sports Department, Federal University of Juiz de Fora, São Pedro 36036-900, Brazil; (A.d.S.R.); (P.P.); (J.M.V.)
| | - Estêvão Rios Monteiro
- Physical Education and Sports Department, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (L.G.d.S.T.); (E.R.M.); (J.d.S.N.)
- Department of Physical Therapy, University Center of Augusto Motta of UNISUAM, Rio de Janeiro 21041-020, Brazil
| | | | - Luís Leitão
- Sciences and Technology Department, Superior School of Education of Polytechnic Institute of Setubal, 2910-761 Setúbal, Portugal
- Life Quality Research Centre, 2040-413 Rio Maior, Portugal
- Correspondence:
| | - Patrícia Panza
- Physical Education and Sports Department, Federal University of Juiz de Fora, São Pedro 36036-900, Brazil; (A.d.S.R.); (P.P.); (J.M.V.)
| | - Jeferson Macedo Vianna
- Physical Education and Sports Department, Federal University of Juiz de Fora, São Pedro 36036-900, Brazil; (A.d.S.R.); (P.P.); (J.M.V.)
| | - Jefferson da Silva Novaes
- Physical Education and Sports Department, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (L.G.d.S.T.); (E.R.M.); (J.d.S.N.)
| |
Collapse
|
16
|
Apichartpiyakul P, Shinlapawittayatorn K, Rerkasem K, Chattipakorn SC, Chattipakorn N. Mechanisms and Interventions on Acute Lower Limb Ischemia/Reperfusion Injury: A Review and Insights from Cell to Clinical Investigations. Ann Vasc Surg 2022; 86:452-481. [PMID: 35589030 DOI: 10.1016/j.avsg.2022.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/19/2022]
Abstract
AIM This review aims to highlight mechanistic insights on skeletal muscle ischemia/reperfusion injury (IRI), a potentially life-threatening complication after acute lower limb ischemia. Lower limb IRI produces a wide spectrum of manifestations, ranging from local skeletal muscle necrosis to multi-organ failure. There is increasing evidence from both in vitro and in vivo reports to demonstrate several promising interventions that have successfully reduced IRI in skeletal muscle ischemic models. However, clinical studies to confirm their benefits are still lacking. METHOD We conducted a comprehensive search of English literature listed in the PubMed database (All related published articles shown in PubMed until September 2020 have been included in this review), using the following keywords: acute limb ischemia, acute arterial occlusion, compartment syndrome, ischemic reperfusion injury, revascularization and hypoxic reoxygenation. RESULT 58 articles pertinent to acute limb ischemia models were identified. The underlying mechanisms associated with IRI in skeletal muscle are due to excessive mitochondrial production of reactive oxygen species (ROS), cellular apoptosis and activation of inflammatory cascades. Several therapeutic interventions including both pharmacological and non-pharmacological treatments have been investigated and some showed promising results. These interventions include antioxidation, anti-inflammation, anti-hypertension, controlled-reperfusion and ischemic preconditioning. Further clinical studies are needed to warrant their use in a clinical setting for lower limb IRI treatment. CONCLUSION This review comprehensively summarizes the mechanisms underlying IRI in lower limb ischemia. The reports currently available regarding the potential therapeutic interventions against lower limb IRI from in vitro, in vivo and clinical studies are presented and discussed. These findings may provide mechanistic insights for devising the strategies to improve the clinical outcomes in IRI patients in the near future. Further clinical studies are needed to warrant their use in a clinical setting for lower limb IRI treatment.
Collapse
Affiliation(s)
- Poon Apichartpiyakul
- Vascular Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kittipan Rerkasem
- Vascular Surgery Unit, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Bouffard S, Paradis-Deschênes P, Billaut F. Neuromuscular Adjustments Following Sprint Training with Ischemic Preconditioning in Endurance Athletes: Preliminary Data. Sports (Basel) 2021; 9:124. [PMID: 34564329 PMCID: PMC8470678 DOI: 10.3390/sports9090124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
This preliminary study examined the effect of chronic ischemic preconditioning (IPC) on neuromuscular responses to high-intensity exercise. In a parallel-group design, twelve endurance-trained males (VO2max 60.0 ± 9.1 mL·kg-1·min-1) performed a 30-s Wingate test before, during, and after 4 weeks of sprint-interval training. Training consisted of bi-weekly sessions of 4 to 7 supra-maximal all-out 30-s cycling bouts with 4.5 min of recovery, preceded by either IPC (3 × 5-min of compression at 220 mmHg/5-min reperfusion, IPC, n = 6) or placebo compressions (20 mmHg, PLA, n = 6). Mechanical indices and the root mean square and mean power frequency of the electromyographic signal from three lower-limb muscles were continuously measured during the Wingate tests. Data were averaged over six 5-s intervals and analyzed with Cohen's effect sizes. Changes in peak power output were not different between groups. However, from mid- to post-training, IPC improved power output more than PLA in the 20 to 25-s interval (7.6 ± 10.0%, ES 0.51) and the 25 to 30-s interval (8.8 ± 11.2%, ES 0.58), as well as the fatigue index (10.0 ± 2.3%, ES 0.46). Concomitantly to this performance difference, IPC attenuated the decline in frequency spectrum throughout the Wingate (mean difference: 14.8%, ES range: 0.88-1.80). There was no difference in root mean square amplitude between groups. These preliminary results suggest that using IPC before sprint training may enhance performance during a 30-s Wingate test, and such gains occurred in the last 2 weeks of the intervention. This improvement may be due, in part, to neuromuscular adjustments induced by the chronic use of IPC.
Collapse
Affiliation(s)
- Stéphan Bouffard
- Department of Kinesiology, Laval University, Quebec, QC G1V 0A6, Canada; (S.B.); (P.P.-D.)
| | | | - François Billaut
- Department of Kinesiology, Laval University, Quebec, QC G1V 0A6, Canada; (S.B.); (P.P.-D.)
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| |
Collapse
|
18
|
Jarosz J, Trybulski R, Krzysztofik M, Tsoukos A, Filip-Stachnik A, Zajac A, Bogdanis GC, Wilk M. The Effects of Ischemia During Rest Intervals on Bar Velocity in the Bench Press Exercise With Different External Loads. Front Physiol 2021; 12:715096. [PMID: 34447318 PMCID: PMC8383203 DOI: 10.3389/fphys.2021.715096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
The main aim of the present study was to evaluate the acute effects of ischemia used during rest periods on bar velocity changes during the bench press exercise at progressive loads, from 20 to 90% of 1RM. Ten healthy resistance trained men volunteered for the study (age = 26.3 ± 4.7 years; body mass = 89.8 ± 6.3 kg; bench press 1RM = 142.5 ± 16.9 kg; training experience = 7.8 ± 2.7 years). During the experimental sessions the subjects performed the bench press exercise under two different conditions, in a randomized and counterbalanced order: (a) ischemia condition, with ischemia applied before the first set and during every rest periods between sets, and (b) control condition where no ischemia was applied. During each experimental session eight sets of the bench press exercise were performed, against loads starting from 20 to 90% 1RM, increased progressively by 10% in each subsequent set. A 3-min rest interval between sets was used. For ischemia condition the cuffs was applied 3 min before the first set and during every rest period between sets. Ischemia was released during exercise. The cuff pressure was set to ∼80% of full arterial occlusion pressure. The two-way repeated measures ANOVA showed a statistically significant interaction effect for peak bar velocity (p = 0.04) and for mean bar velocity (p = 0.01). There was also a statistically significant main effect of condition for peak bar velocity (p < 0.01) but not for mean bar velocity (p = 0.25). The post hoc analysis for interaction showed significantly higher peak bar velocity for the ischemia condition compared to control at a load of 20% 1RM (p = 0.007) and at a load of 50% 1RM (p = 0.006). The results of the present study indicate that ischemia used before each set even for a brief duration of <3 min, has positive effects on peak bar velocity at light loads, but it is insufficient to induce such effect on higher loads.
Collapse
Affiliation(s)
- Jakub Jarosz
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Robert Trybulski
- Department of Medical Sciences, The Wojciech Korfanty School of Economics, Katowice, Poland.,Provita Zory Medical Center, Zory, Poland
| | - Michał Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Athanasios Tsoukos
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Aleksandra Filip-Stachnik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Gregory C Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
19
|
Borges RF, Chiappa GR, Muller PT, de Lima ACGB, Cahalin LP, Cipriano GFB, Cipriano G. Moderate-intensity exercise with blood flow restriction on cardiopulmonary kinetics and efficiency during a subsequent high-intensity exercise in young women: A cross-sectional study. Medicine (Baltimore) 2021; 100:e25368. [PMID: 34397788 PMCID: PMC8341275 DOI: 10.1097/md.0000000000025368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/10/2021] [Indexed: 01/04/2023] Open
Abstract
Blood flow restriction (BFR) training applied prior to a subsequent exercise has been used as a method to induce changes in oxygen uptake pulmonary kinetics (O2P) and exercise performance. However, the effects of a moderate-intensity training associated with BFR on a subsequent high-intensity exercise on O2P and cardiac output (QT) kinetics, exercise tolerance, and efficiency remain unknown.This prospective physiologic study was performed at the Exercise Physiology Lab, University of Brasilia. Ten healthy females (mean ± SD values: age = 21.3 ± 2.2 years; height = 1.6 ± 0.07 m, and weight = 55.6 ± 8.8 kg) underwent moderate-intensity training associated with or without BFR for 6 minutes prior to a maximal high-intensity exercise bout. O2P, heart rate, and QT kinetics and gross efficiency were obtained during the high-intensity constant workload exercise test.No differences were observed in O2P, heart rate, and QT kinetics in the subsequent high-intensity exercise following BFR training. However, exercise tolerance and gross efficiency were significantly greater after BFR (220 ± 45 vs 136 ± 30 seconds; P < .05, and 32.8 ± 6.3 vs 27.1 ± 5.4%; P < .05, respectively), which also resulted in lower oxygen cost (1382 ± 227 vs 1695 ± 305 mL min-1).We concluded that moderate-intensity BFR training implemented prior to a high-intensity protocol did not accelerate subsequent O2P and QT kinetics, but it has the potential to improve both exercise tolerance and work efficiency at high workloads.
Collapse
Affiliation(s)
- Robson F. Borges
- Physical Education Graduate Program, University of Brasilia (UnB), Brasilia, DF, Brazil
| | - Gaspar R. Chiappa
- Graduate Program in Human Movement and Rehabilitation of Evangelical University of Goiás, Brazil
| | - Paulo T. Muller
- Laboratory of Respiratory Pathophysiology (LAFIR), Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | | | - Graziella França Bernardelli Cipriano
- Health Sciences and Technologies Graduate Program, University of Brasilia (UnB), Brasilia, DF, Brazil
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL
| | - Gerson Cipriano
- Physical Education Graduate Program, University of Brasilia (UnB), Brasilia, DF, Brazil
- Health Sciences and Technologies Graduate Program, University of Brasilia (UnB), Brasilia, DF, Brazil
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL
| |
Collapse
|
20
|
The Effects of Ischemic Preconditioning Supplementation on Endothelial Function: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6690691. [PMID: 34349827 PMCID: PMC8328691 DOI: 10.1155/2021/6690691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/03/2020] [Accepted: 07/16/2021] [Indexed: 01/01/2023]
Abstract
Objective Ischemic preconditioning (IPC) has gradually been promoted in clinical practice to lower the risk of cardiovascular surgery and postoperative complications. We investigated the role of IPC on vascular endothelial function and the relationship between IPC, flow-mediated dilation (FMD), and brachial artery diameter (BAD). Methods Systematic searches were conducted in PubMed, Medline, Cochrane Library, Embase, and Scopus databases from their inception to March 20, 2020. This research included randomized controlled trials (RCTs) with adults, and the values of FMD and BAD were considered as the primary outcomes. Ten studies comprising 292 participants were included in the meta-analysis. Results Regarding FMD, we observed beneficial effects of IPC on endothelial function (standardized mean difference (SMD): 1.82; 95% confidence interval (CI): 0.64, 3.01; p < 0.001; I 2 = 89.9%). However, the available evidence did not indicate that IPC affected BAD (SMD: 0.08; 95% CI: -0.03, 0.18; p > 0.05; I 2 = 76.5%). Conclusions Our meta-analysis indicated a significant effect of IPC on the endothelial function of the blood vessels, affecting FMD but not BAD.
Collapse
|
21
|
Lalande S, Hemingway HW, Jarrard CP, Moore AM, Olivencia-Yurvati AH, Richey RE, Romero SA. Influence of ischemia-reperfusion injury on endothelial function in men and women with similar serum estradiol concentrations. Am J Physiol Regul Integr Comp Physiol 2021; 321:R273-R278. [PMID: 34259042 DOI: 10.1152/ajpregu.00147.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior data suggest that, relative to the early follicular phase, women in the late follicular phase are protected against endothelial ischemia-reperfusion (I/R) injury when estradiol concentrations are highest. In addition, endothelial I/R injury is consistently observed in men with naturally low endogenous estradiol concentrations that are similar to those of women in the early follicular phase. Therefore, the purpose of this study was to determine whether the vasodeleterious effect of I/R injury differs between women in the early follicular phase of the menstrual cycle and age-matched men. We tested the hypothesis that I/R injury would attenuate endothelium-dependent vasodilation to the same extent in women and age-matched men with similar circulating estradiol concentrations. Endothelium-dependent vasodilation was assessed via brachial artery flow-mediated dilation (duplex ultrasound) in young healthy men (n = 22) and women (n = 12) before (pre-I/R) and immediately after (post-I/R) I/R injury, which was induced via 20 min of arm circulatory arrest followed by 20-min reperfusion. Serum estradiol concentrations did not differ between sexes (men 115.0 ± 33.9 pg·mL-1 vs. women 90.5 ± 40.8 pg·mL-1; P = 0.2). The magnitude by which I/R injury attenuated endothelium-dependent vasodilation did not differ between men (pre-I/R 5.4 ± 2.4% vs. post-I/R 3.0 ± 2.7%) and women (pre-I/R 6.1 ± 2.8% vs. post-I/R 3.7 ± 2.7%; P = 0.9). Our data demonstrate that I/R injury similarly reduces endothelial function in women in the early follicular phase of the menstrual cycle and age-matched men with similar estradiol concentrations.
Collapse
Affiliation(s)
- Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Holden W Hemingway
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Caitlin P Jarrard
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Amy M Moore
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Albert H Olivencia-Yurvati
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Surgery, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rauchelle E Richey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Steven A Romero
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
22
|
Boidin M, Erskine RM, Thijssen DHJ, Dawson EA. Exercise modality, but not exercise training, alters the acute effect of exercise on endothelial function in healthy men. J Appl Physiol (1985) 2021; 130:1716-1723. [PMID: 33955262 DOI: 10.1152/japplphysiol.00004.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used a within-subject crossover design to examine the impact of exercise modality, i.e., resistance (RT) and endurance (END), on the acute impact of exercise on endothelial function. Then, we examined whether a 4-wk period of chronic exercise training altered the acute exercise-induced change in endothelial function in healthy individuals. Thirty-four healthy, young men (21 ± 2 yr) reported to our laboratory and completed assessment of endothelial function [using the brachial artery flow-mediated dilation test (FMD)] before and immediately after a single bout of RT (leg-extension) or END (cycling). Subsequently, participants completed a 4-wk period of training (12 sessions), followed by evaluation of the FMD before and after a single bout of exercise. Following a 3-wk washout, participants repeated these experiments with the different exercise modality (in a balanced crossover design). An exercise × modality interaction effect was found (P < 0.001). Post hoc pairwise analyses revealed a decrease in FMD after END (P < 0.001) but not after RT (P = 0.06). Four weeks of exercise training improved resting FMD after END and RT (P = 0.04) but did not alter the acute effect of exercise on FMD (exercise × modality × training effect: P = 0.63), an effect independent of the modality of exercise (exercise × training interaction: P = 0.46 and P = 0.11 in RT and END, respectively). These distinct changes in FMD following acute exercise may relate to the different prolonged physiological responses induced by endurance versus resistance exercise. Specifically, endurance exercise, but not resistance exercise, causes a decrease in brachial artery endothelial function, which was unaffected by 4 wk of chronic exercise training.NEW & NOTEWORTHY We found that resistance and endurance exercise modalities lead to different endothelial function responses after a single bout of exercise. Endothelial function increased after an acute bout of resistance exercise, whereas it decreased after an acute bout of endurance exercise. Four weeks of chronic exercise training did not affect the acute endothelial function response.
Collapse
Affiliation(s)
- Maxime Boidin
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Cardiovascular Prevention and Rehabilitation (EPIC) Center, Montreal Heart Institute, Montreal, Québec, Canada.,Faculty of Medicine, School of Kinesiology and Exercise Science, Université de Montréal, Montreal, Québec, Canada
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Institute of Sport, Exercise and Health, University College London, London, United Kingdom
| | - Dick H J Thijssen
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.,Department of Physiology, Research Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ellen Adele Dawson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
23
|
Wilk M, Krzysztofik M, Jarosz J, Krol P, Leznicka K, Zajac A, Stastny P, Bogdanis GC. Impact of Ischemic Intra-Conditioning on Power Output and Bar Velocity of the Upper Limbs. Front Physiol 2021; 12:626915. [PMID: 33716773 PMCID: PMC7947627 DOI: 10.3389/fphys.2021.626915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/01/2021] [Indexed: 01/24/2023] Open
Abstract
This study evaluated the effects of ischemic conditioning on power output and bar velocity in the bench press exercise. Ten healthy males (age: 25 ± 2 years; body mass: 92 ± 8 kg; bench press one repetition maximum -1RM: 145 ± 13 kg), took part in two experimental sessions (with and without ischemia), 1 week apart in random and counterbalanced order. In the ischemic condition, cuffs placed around the upper part of the arms were inflated to 80% of arterial occlusion pressure before each set, while in the control condition there was no blood flow restriction. The exercise protocol included 5 sets of three repetitions each, against a resistance equal to 60% 1RM, with 5 min recovery intervals between sets. There was a main effect of condition for mean power output (MP) and mean bar velocity (MV) (p = 0.01), with overall MP being higher in ischemia than in control by 5.6 ± 4.1% (mean ± 90% compatibility limits), a standardized effect size (ES) of 0.51. Overall MV was also higher by 5.5 ± 4.0%, ES = 0.63. Peak power output (PP) and peak bar velocity (PV) were similar in set 1 of the control and ischemia condition (1039 ± 105 vs. 1054 ± 82 W; 684 ± 74 vs. 696 ± 53 W; 1.09 ± 0.07 vs. 1.12 ± 0.09 m/s; 0.81 ± 0.05 vs. 0.82 ± 0.05 m/s, p = 0.67 to 0.99, mean ± standard deviation). However, from set 3 onward (p = 0.03 to 0.001), PP and PV were higher in ischemia compared with control, with the highest difference observed in set 5 (10.9 ± 5.9%, ES = 0.73 for PP and 8.6 ± 4.6%; ES = 0.89 for PV). These results indicate that ischemia used before each set of the bench press exercise increases power output and bar velocity and this may be used as performance-enhancing stimulus during explosive resistance training.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Jakub Jarosz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Pawel Krol
- College of Medical Sciences, Institute of Physical Culture Studies, University of Rzeszów, Rzeszów, Poland
| | - Katarzyna Leznicka
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Adam Zajac
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Petr Stastny
- Faculty of Physical Education and Sport, Department of Sport Games, Charles University, Prague, Czechia
| | - Gregory C. Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Wilk M, Gepfert M, Krzysztofik M, Stastny P, Zajac A, Bogdanis GC. Acute Effects of Continuous and Intermittent Blood Flow Restriction on Movement Velocity During Bench Press Exercise Against Different Loads. Front Physiol 2020; 11:569915. [PMID: 33329020 PMCID: PMC7728989 DOI: 10.3389/fphys.2020.569915] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
This study evaluated the effects of continuous and intermittent blood flow restriction (BFR) with 70% of full arterial occlusion pressure on bar velocity during the bench press exercise against a wide range of resistive loads. Eleven strength-trained males (age: 23.5 ± 1.4 years; resistance training experience: 2.8 ± 0.8 years, maximal bench press strength - 1RM = 101.8 ± 13.9 kg; body mass = 79.8 ± 10.4 kg), performed three different testing protocols in random and counterbalanced order: without BFR (NO-BFR); intermittent BFR (I-BFR) and continuous BFR (C-BFR). During each experimental session, subjects performed eight sets of two repetitions each, with increasing loads from 20 to 90% 1RM (10% steps), and 3 min rest between each set. In the C-BFR condition occlusion was kept throughout the trial, while in the I-BFR, occlusion was released during each 3 min rest interval. Peak bar velocity (PV) during the bench press exercise was higher by 12-17% in both I-BFR and C-BFR compared with NO-BFR only at the loads of 20, 30, 40, and 50% 1RM (p < 0.001), while performance at higher loads remained unchanged. Mean bar velocity (MV) was unaffected by occlusion (p = 0.342). These results indicate that BFR during bench press exercise increases PV and this may be used as an enhanced stimulus during explosive resistance training. At higher workloads, bench press performance was not negatively affected by BFR, indicating that the benefits of exercise under occlusion can be obtained while explosive performance is not impaired.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Mariola Gepfert
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Petr Stastny
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Gregory C. Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Influence of sprint exercise on aortic pulse wave velocity and femoral artery shear patterns. Eur J Appl Physiol 2020; 120:2635-2647. [PMID: 32880701 DOI: 10.1007/s00421-020-04483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Aortic stiffness may affect shear patterns in the peripheral vasculature. This study examined if sprint exercise, which typically increases aortic stiffness is associated with increased peripheral retrograde blood flow and impaired microvascular function. METHODS Twenty participants (10 women; age: 27 ± 5 years) underwent arterial stiffness, shear rate, and microvascular function assessment at three time points: baseline; following time control; ~ 2 min post a 30-s cycle ergometer sprint against 7.0% body mass. Aortic stiffness was assessed using carotid-femoral pulse wave velocity (cfPWV). Superficial femoral artery (SFA) diameter and blood velocity were assessed using Doppler-ultrasound and were used to calculate shear rates and resistance index (RI). SFA wave reflections were obtained via wave intensity analysis. Vastus medialis microvascular function was measured as tissue saturation index reactivity pre-post exercise via near-infrared spectroscopy. RESULTS cfPWV increased by + 0.8 ± 0.7 m·s-1 following exercise (p < 0.001). Retrograde shear was reduced following exercise compared with time control (- 4.9 ± 3.8 s-1; p < 0.001), while tissue saturation index was increased post-exercise from baseline (+ 2.3 ± 4.6%; p = 0.04). Reductions in SFA wave reflections (- 1.70 ± 1.96 aU) and RI (- 0.17 ± 0.13 aU) were also noted following exercise (p < 0.001). CONCLUSION These data suggest sprint exercise-mediated changes in peripheral shear patterns and microvascular function in the exercised vasculature occur independent from increases in aortic stiffness. Exercise-induced reductions in SFA retrograde shear may be related to decreased wave reflections and peripheral vascular resistance.
Collapse
|
26
|
Tanaka D, Suga T, Kido K, Honjo T, Hamaoka T, Isaka T. Acute remote ischemic preconditioning has no effect on quadriceps muscle endurance. TRANSLATIONAL SPORTS MEDICINE 2020. [DOI: 10.1002/tsm2.149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daichi Tanaka
- Faculty of Sport and Health Science Ritsumeikan University Kusatsu Shiga Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science Ritsumeikan University Kusatsu Shiga Japan
| | - Kohei Kido
- Faculty of Sport and Health Science Ritsumeikan University Kusatsu Shiga Japan
| | - Toyoyuki Honjo
- Department of Mechanical Systems Engineering National Defense Academy Yokosuka Japan
| | | | - Tadao Isaka
- Faculty of Sport and Health Science Ritsumeikan University Kusatsu Shiga Japan
| |
Collapse
|
27
|
da Mota GR, Willis SJ, Sobral NDS, Borrani F, Billaut F, Millet GP. Ischemic Preconditioning Maintains Performance on Two 5-km Time Trials in Hypoxia. Med Sci Sports Exerc 2020; 51:2309-2317. [PMID: 31169794 DOI: 10.1249/mss.0000000000002049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The ergogenic effect of ischemic preconditioning (IPC) on endurance exercise performed in hypoxia remains debated and has never been investigated with successive exercise bouts. Therefore, we evaluated if IPC would provide immediate or delayed effects during two 5-km cycling time trials (TT) separated by ~1 h in hypoxia. METHODS In a counterbalanced randomized crossover design, 13 healthy males (27.5 ± 3.6 yr) performed two maximal cycling 5-km TT separated by ~1 h of recovery (TT1 25 min and TT2 2 h post-IPC/SHAM), preceded by IPC (3 × 5 min occlusion 220 mm Hg/reperfusion 0 mm Hg, bilaterally on thighs) or SHAM (20 mm Hg) at normobaric hypoxia (fraction of inspired oxygen [FiO2] of 16%). Performance and physiological (i.e., oxyhemoglobin saturation, heart rate, blood lactate, and vastus lateralis oxygenation) parameters were recorded. RESULTS Time to complete (P = 0.011) 5-km TT and mean power output (P = 0.005) from TT1 to TT2 were worse in SHAM, but not in IPC (P = 0.381/P = 0.360, respectively). There were no differences in time, power output, or physiological variables during the two TT between IPC and SHAM. All muscle oxygenation indices differed (P < 0.001) during the IPC/SHAM with a greater deoxygenation in IPC. During the TT, there was a greater concentration of total hemoglobin in IPC than SHAM (P = 0.047) and greater total hemoglobin in TT1 than TT2. Further, the concentration of oxyhemoglobin was lower during TT2 than TT1 (P = 0.005). CONCLUSION In moderate hypoxia, IPC allowed maintaining a higher blood volume during a subsequent maximal exercise, mitigating the performance decrement between two consecutive cycling TT.
Collapse
Affiliation(s)
- Gustavo R da Mota
- Human Performance and Sport Research Group, Department of Sport Sciences, Institute of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, BRAZIL.,Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | - Sarah J Willis
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | - Nelson Dos Santos Sobral
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | - Fabio Borrani
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| | | | - Grégoire P Millet
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| |
Collapse
|
28
|
Wilk M, Krzysztofik M, Filip A, Zajac A, Bogdanis GC, Lockie RG. Short-Term Blood Flow Restriction Increases Power Output and Bar Velocity During the Bench Press. J Strength Cond Res 2020; 36:2082-2088. [PMID: 32379236 DOI: 10.1519/jsc.0000000000003649] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wilk, M, Krzysztofik, M, Filip, A, Zajac, A, Bogdanis, GC, and Lockie, RG. Short-term blood flow restriction increases power output and bar velocity during the bench press. J Strength Cond Res XX(X): 000-000, 2020-This study examined the effect of blood flow restriction (BFR) with 2 different types of cuffs on peak power output (PP), mean power output (MP), peak bar velocity (PV), and mean bar velocity (MV) in the bench press exercise (BP). Fourteen healthy strength-trained male athletes (age = 27.6 ± 3.5 years; body mass = 84.1 ± 8.0 kg; height = 175.8 ± 6.7 cm; BP 1 repetition maximum [RM] = 138.6 ± 17.8 kg) performed 3 different testing protocols as follows: without BFR (NO-BFR), BFR with a narrow cuff (BFRNARROW), and BFR with a wide cuff (BFRWIDE) in a randomized crossover design. During all sessions, subjects performed one set of 3 repetitions of the BP exercise using 70% 1RM. Cuff pressure was set to approximately 90% full arterial occlusion pressure of the upper limb at rest. Analyses of variance showed an increase in PP (by 21%, p < 0.01; effect size [ES] = 1.67), MP (by 16%, p < 0.01; ES = 0.93), PV (by 22%, p < 0.01; ES = 1.79), and MV (by 21%, p < 0.01; ES = 1.36) during BFRWIDE compared with NO-BFR and a significant increase in PP (by 15%, p < 0.01; ES = 1.07), MP (by 17%, p < 0.01; ES = 0.78), PV (by 18%, p < 0.01; ES = 1.65), and MV (by 13% p < 0.01; ES = 1.00) during BFRWIDE compared with BFRNARROW. There were no significant differences in any of the variable between NO-BFR and BFRNARROW. The results of the study indicate that short-term BFR training increases power output and bar velocity during the BP exercise. However, only BFRWIDE significantly influenced bar velocity and power output, which indicates that the width of the cuff is a critical factor determining acute exercise adaptation during BFR resistance training.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Aleksandra Filip
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Gregory C Bogdanis
- School of P.E. and Sport Science, National & Kapodistrian University of Athens, Athens, Greece
| | - Robert G Lockie
- Center for Sports Performance, Department of Kinesiology, California State University, Fullerton, Fullerton, California
| |
Collapse
|
29
|
Paradis-Deschênes P, Joanisse DR, Mauriège P, Billaut F. Ischemic Preconditioning Enhances Aerobic Adaptations to Sprint-Interval Training in Athletes Without Altering Systemic Hypoxic Signaling and Immune Function. Front Sports Act Living 2020; 2:41. [PMID: 33345033 PMCID: PMC7739728 DOI: 10.3389/fspor.2020.00041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 01/29/2023] Open
Abstract
Optimizing traditional training methods to elicit greater adaptations is paramount for athletes. Ischemic preconditioning (IPC) can improve maximal exercise capacity and up-regulate signaling pathways involved in physiological training adaptations. However, data on the chronic use of IPC are scarce and its impact on high-intensity training is still unknown. We investigated the benefits of adding IPC to sprint-interval training (SIT) on performance and physiological adaptations of endurance athletes. In a randomized controlled trial, athletes included eight SIT sessions in their training routine for 4 weeks, preceded by IPC (3 × 5 min ischemia/5 min reperfusion cycles at 220 mmHg, n = 11) or a placebo (20 mmHg, n = 9). Athletes were tested pre-, mid-, and post-training on a 30 s Wingate test, 5-km time trial (TT), and maximal incremental step test. Arterial O2 saturation, heart rate, rate of perceived exertion, and quadriceps muscle oxygenation changes in total hemoglobin (Δ[THb]), deoxyhemoglobin (Δ[HHb]), and tissue saturation index (ΔTSI) were measured during exercise. Blood samples were taken pre- and post-training to determine blood markers of hypoxic response, lipid-lipoprotein profile, and immune function. Differences within and between groups were analyzed using Cohen's effect size (ES). Compared to PLA, IPC improved time to complete the TT (Mid vs. Post: -1.6%, Cohen's ES ± 90% confidence limits -0.24, -0.40;-0.07) and increased power output (Mid vs. Post: 4.0%, ES 0.20, 0.06;0.35), Δ[THb] (Mid vs. Post: 73.6%, ES 0.70, -0.15;1.54, Pre vs. Post: 68.5%, ES 0.69, -0.05;1.43), Δ[HHb] (Pre vs. Post: 12.7%, ES 0.24, -0.11;0.59) and heart rate (Pre vs. Post: 1.4%, ES 0.21, -0.13;0.55, Mid vs. Post: 1.6%, ES 0.25, -0.09;0.60). IPC also attenuated the fatigue index in the Wingate test (Mid vs. Post: -8.4%, ES -0.37, -0.79;0.05). VO2peak and maximal aerobic power remained unchanged in both groups. Changes in blood markers of the hypoxic response, vasodilation, and angiogenesis remained within the normal clinical range in both groups. We concluded that IPC combined with SIT induces greater adaptations in cycling endurance performance that may be related to muscle perfusion and metabolic changes. The absence of elevated markers of immune function suggests that chronic IPC is devoid of deleterious effects in athletes, and is thus a safe and potent ergogenic tool.
Collapse
Affiliation(s)
- Pénélope Paradis-Deschênes
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Denis R. Joanisse
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Pascale Mauriège
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - François Billaut
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| |
Collapse
|
30
|
Mota GR, Rightmire ZB, Martin JS, McDonald JR, Kavazis AN, Pascoe DD, Gladden LB. Ischemic preconditioning has no effect on maximal arm cycling exercise in women. Eur J Appl Physiol 2019; 120:369-380. [PMID: 31813045 DOI: 10.1007/s00421-019-04281-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/30/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE We investigated the effect of ischemic preconditioning (IPC) on performance of a 3 min maximal effort arm ergometer test in young women. METHODS Twenty healthy women (23.1 (SD 3.3) years) performed a 3 min maximal effort arm cycling exercise, preceded by IPC on both arms or SHAM in a counterbalanced randomized crossover design. Both blood flow (via high resolution ultrasound; n = 17) and muscle oxygenation/deoxygenation (via near infrared spectroscopy; n = 5) were measured throughout the IPC/SHAM. Performance and perceptual/physiological (i.e., heart rate, blood lactate, rating of perceived exertion, and triceps brachialis oxygenation) parameters were recorded during the exercise test. RESULTS Occlusion during IPC completely blocked brachial artery blood flow, decreased oxygenated hemoglobin/myoglobin (Δ[oxy(Hb + Mb)]), and increased deoxygenated Hb/Mb (Δ[deoxy(Hb + Mb)]). There were no differences (P > 0.797) in performance (peak, mean, and end power output) or in any perceptual/physiological variables during the 3 min all-out test between IPC/SHAM. During exercise, Δ[oxy(Hb + Mb)] initially decreased with no differences (P ≥ 0.296) between conditions and returned towards baseline by the completion of the test while Δ[deoxy(Hb + Mb)] increased with no differences between conditions and remained elevated until completion of the test (P ≥ 0.755). CONCLUSIONS We verified the successful application of IPC via blood flow and NIRS measures but found no effects on performance of a 3 min maximal effort arm cranking test in young women.
Collapse
Affiliation(s)
- Gustavo R Mota
- Human Performance and Sport Research Group, Department of Sport Sciences, Institute of Health Sciences, Federal University of Triangulo Mineiro, Av. Tutunas, 490, Uberaba, MG, 38061-500, Brazil.
- School of Kinesiology, Auburn University, Auburn, AL, USA.
| | | | - Jeffrey S Martin
- School of Kinesiology, Auburn University, Auburn, AL, USA
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, USA
- Department of Physiology, Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | | | | | - David D Pascoe
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
31
|
Zhou D, Ding J, Ya J, Pan L, Wang Y, Ji X, Meng R. Remote ischemic conditioning: a promising therapeutic intervention for multi-organ protection. Aging (Albany NY) 2019; 10:1825-1855. [PMID: 30115811 PMCID: PMC6128414 DOI: 10.18632/aging.101527] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of formidable exploration, multi-organ ischemia-reperfusion injury (IRI) encountered, particularly amongst elderly patients with clinical scenarios, such as age-related arteriosclerotic vascular disease, heart surgery and organ transplantation, is still an unsettled conundrum that besets clinicians. Remote ischemic conditioning (RIC), delivered via transient, repetitive noninvasive IR interventions to distant organs or tissues, is regarded as an innovative approach against IRI. Based on the available evidence, RIC holds the potential of affording protection to multiple organs or tissues, which include not only the heart and brain, but also others that are likely susceptible to IRI, such as the kidney, lung, liver and skin. Neuronal and humoral signaling pathways appear to play requisite roles in the mechanisms of RIC-related beneficial effects, and these pathways also display inseparable interactions with each other. So far, several hurdles lying ahead of clinical translation that remain to be settled, such as establishment of biomarkers, modification of RIC regimen, and deep understanding of underlying minutiae through which RIC exerts its powerful function. As this approach has garnered an increasing interest, herein, we aim to encapsulate an overview of the basic concept and postulated protective mechanisms of RIC, highlight the main findings from proof-of-concept clinical studies in various clinical scenarios, and also to discuss potential obstacles that remain to be conquered. More well designed and comprehensive experimental work or clinical trials are warranted in future research to confirm whether RIC could be utilized as a non-invasive, inexpensive and efficient adjunct therapeutic intervention method for multi-organ protection.
Collapse
Affiliation(s)
- Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
32
|
Jeffries O, Evans DT, Waldron M, Coussens A, Patterson SD. Seven-day ischaemic preconditioning improves muscle efficiency during cycling. J Sports Sci 2019; 37:2798-2805. [DOI: 10.1080/02640414.2019.1664537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Owen Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel Thomas Evans
- Faculty of Sport, Health and Applied Science, St Mary’s University, London, UK
| | - Mark Waldron
- College of Engineering, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, NSW, Australia
| | - Adam Coussens
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | |
Collapse
|
33
|
Marocolo M, Simim MAM, Bernardino A, Monteiro IR, Patterson SD, da Mota GR. Ischemic preconditioning and exercise performance: shedding light through smallest worthwhile change. Eur J Appl Physiol 2019; 119:2123-2149. [PMID: 31451953 DOI: 10.1007/s00421-019-04214-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Ischemic preconditioning (IPC) has been suggested as a potential ergogenic aid to improve exercise performance, although controversial findings exist. The controversies may be explained by several factors, including the mode of exercise, the ratio between the magnitude of improvement, or the error of measurement and physiological meaning. However, a relevant aspect has been lacking in the literature: the interpretation of the findings considering statistical tests and adequate effect size (ES) according to the fitness level of individuals. Thus, we performed a systematic review with meta-analysis to update the effects of IPC on exercise performance and physiological responses, using traditional statistics (P values), ES, and smallest worth change (SWC) approach contextualizing the IPC application to applied Sports and Exercise performance. Forty-five studies met the inclusion criteria. Overall, the results show that IPC has a minimal or nonsignificant effect on performance considering the fitness level of the individuals, using statistical approaches (i.e., tests with P value, ES, and SWC). Therefore, IPC procedures should be revised and refined in future studies to evaluate if IPC promotes positive effects on performance in a real-world scenario with more consistent interpretation.
Collapse
Affiliation(s)
- Moacir Marocolo
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Mario A Moura Simim
- Institute of Physical Education and Sports, Federal University of Ceará, Fortaleza, Brazil
| | - Anderson Bernardino
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Iury Reis Monteiro
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Stephen D Patterson
- Faculty of Sport, Health, and Applied Science, St. Mary's University, Twickenham, London, UK
| | - Gustavo R da Mota
- Department of Sport Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
34
|
Müller J, Taebling M, Oberhoffer R. Remote Ischemic Preconditioning Has No Short Term Effect on Blood Pressure, Heart Rate, and Arterial Stiffness in Healthy Young Adults. Front Physiol 2019; 10:1094. [PMID: 31496958 PMCID: PMC6712092 DOI: 10.3389/fphys.2019.01094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
Objective Remote ischemic preconditioning (RIPC) are short episodes of ischemia and reperfusion applied to remote tissue to trigger responses in a specific organ or cardiovascular bed. This study investigates whether RIPC has a short-term effect on blood pressure (BP), heart rate, and arterial stiffness. Patients and Methods From March 2018 to August 2018, we included 40 healthy volunteers (23 female, age 25.6 ± 2.8 years) into this single-blinded randomized-controlled crossover trial. After measuring BP, heart rate, and arterial stiffness in supine position participants were randomized into intervention or SHAM group. The intervention group then underwent a RIPC protocol (3 cycles of 5 min of 200 mmHg ischemia followed by 5 min reperfusion) at the thigh. The SHAM group followed the same protocol just on the upper arm with 40 mmHg pressure inflation. Directly after this 30-min procedure a reassessment of hemodynamic measures was conducted. Results There were no significant changes in all five outcome parameters when comparing the effect of RIPC to SHAM. In peripheral systolic BP the mean difference between groups was Δ1.14 ± 6.5 mmHg (p = 0.672), and for diastolic BP Δ−0.69 ± 4.5 mmHg (p = 0.507). Heart rate shoed a Δ−0.8 ± 4.7 beats/min (p = 0.397). Regarding arterial stiffness measures, there was also no significant improvements thru RIPC. The mean difference between RIPC and SHAM for central systolic BP was Δ0.40 ± 7.2 mmHg (p = 0.951) and for PWV Δ0.01 ± 0.26 m/s (p = 0.563). Conclusion This study could not find any short-term effects of RIPC on arterial stiffness, BP, and heart rate in a RCT in young healthy adults.
Collapse
Affiliation(s)
- Jan Müller
- Institute of Preventive Pediatrics, Technische Universität München, Munich, Germany
| | - Marius Taebling
- Institute of Preventive Pediatrics, Technische Universität München, Munich, Germany
| | - Renate Oberhoffer
- Institute of Preventive Pediatrics, Technische Universität München, Munich, Germany
| |
Collapse
|
35
|
Caru M, Levesque A, Lalonde F, Curnier D. An overview of ischemic preconditioning in exercise performance: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:355-369. [PMID: 31333890 PMCID: PMC6620415 DOI: 10.1016/j.jshs.2019.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/29/2018] [Accepted: 12/03/2018] [Indexed: 06/10/2023]
Abstract
Ischemic preconditioning (IPC) is an attractive method for athletes owing to its potential to enhance exercise performance. However, the effectiveness of the IPC intervention in the field of sports science remains mitigated. The number of cycles of ischemia and reperfusion, as well as the duration of the cycle, varies from one study to another. Thus, the aim of this systematic review was to provide a comprehensive review examining the IPC literature in sports science. A systematic literature search was performed in PubMed (MEDLINE) (from 1946 to May 2018), Web of Science (sport sciences) (from 1945 to May 2018), and EMBASE (from 1974 to May 2018). We included all studies investigating the effects of IPC on exercise performance in human subjects. To assess scientific evidence for each study, this review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The electronic database search generated 441 potential articles that were screened for eligibility. A total of 52 studies were identified as eligible and valid for this systematic review. The studies included were of high quality, with 48 of the 52 studies having a randomized, controlled trial design. Most studied showed that IPC intervention can be beneficial to exercise performance. However, IPC intervention seems to be more beneficial to healthy subjects who wish to enhance their performance in aerobic exercises than athletes. Thus, this systematic review highlights that a better knowledge of the mechanisms generated by the IPC intervention would make it possible to optimize the protocols according to the characteristics of the subjects with the aim of suggesting to the subjects the best possible experience of IPC intervention.
Collapse
Affiliation(s)
- Maxime Caru
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Department of Psychology, University of Paris-Nanterre, Nanterre 92000, France
- Laboratoire EA 4430 – Clinique Psychanalyse Developpement (CliPsyD), University of Paris-Nanterre, Nanterre 92000, France
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
| | - Ariane Levesque
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - François Lalonde
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Department of Physical Activity Sciences, Faculty of Sciences, Université du Québec à Montréal, Montreal, Quebec H2L 2C4, Canada
| | - Daniel Curnier
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
| |
Collapse
|
36
|
Paull EJ, Van Guilder GP. Remote ischemic preconditioning increases accumulated oxygen deficit in middle-distance runners. J Appl Physiol (1985) 2019; 126:1193-1203. [DOI: 10.1152/japplphysiol.00585.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mediators underlying the putative benefits of remote ischemic preconditioning (IPC) on dynamic whole body exercise performance have not been widely investigated. Our objective was to test the hypothesis that remote IPC improves supramaximal exercise performance in National Collegiate Athletic Association (NCAA) Division I middle-distance runners by increasing accumulated oxygen deficit (AOD), an indicator of glycolytic capacity. A randomized sham-controlled crossover study was employed. Ten NCAA Division I middle-distance athletes [age: 21 ± 1 yr; maximal oxygen uptake (V̇o2max): 65 ± 7 ml·kg−1·min−1] completed three supramaximal running trials (baseline, after mock IPC, and with remote IPC) at 110% V̇o2max to exhaustion. Remote IPC was induced in the right arm with 4 × 5 min cycles of brachial artery ischemia with 5 min of reperfusion. Supramaximal AOD (ml/kg) was calculated as the difference between the theoretical oxygen demand required for the supramaximal running bout (linear regression extrapolated from ~12 × 5 min submaximal running stages) and the actual oxygen demand for these bouts. Remote IPC [122 ± 38 s, 95% confidence interval (CI): 94–150] increased ( P < 0.001) time to exhaustion 22% compared with baseline (99 ± 23 s, 95% CI: 82–116, P = 0.014) and sham (101 ± 30 s, 95% CI: 80–123, P = 0.001). In the presence of IPC, AOD was 47 ± 36 ml/kg (95% CI: 20.8–73.9), a 29% increase compared with baseline (36 ± 28 ml/kg, 95% CI: 16.3–56.9, P = 0.008) and sham (38 ± 32 ml/kg, 95% CI: 16.2–63.0, P = 0.024). Remote IPC considerably improved supramaximal exercise performance in NCAA Division I middle-distance athletes. Greater glycolytic capacity, as estimated by increased AOD, is a potential mediator for these performance improvements. NEW & NOTEWORTHY Our novel findings indicate that ischemic preconditioning enhanced glycolytic exercise capacity, enabling National Collegiate Athletic Association (NCAA) middle-distance track athletes to run ~22 s longer before exhaustion compared with baseline and mock ischemic preconditioning. The increase in “all-out” performance appears to be due to increased accumulated oxygen deficit, an index of better supramaximal capacity. Of note, enhanced exercise performance was demonstrated in a specific group of in-competition NCAA elite athletes that has already undergone substantial training of the glycolytic energy systems.
Collapse
Affiliation(s)
- Emily J. Paull
- Vascular Protection Research Laboratory, Department of Health and Nutritional Sciences, South Dakota State University, Brookings, South Dakota
| | - Gary P. Van Guilder
- Vascular Protection Research Laboratory, Department of Health and Nutritional Sciences, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
37
|
Halley SL, Marshall P, Siegler JC. The effect of IPC on central and peripheral fatiguing mechanisms in humans following maximal single limb isokinetic exercise. Physiol Rep 2019; 7:e14063. [PMID: 31025549 PMCID: PMC6483935 DOI: 10.14814/phy2.14063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemic preconditioning (IPC) has been suggested to preserve neural drive during fatiguing dynamic exercise, however, it remains unclear as to whether this may be the consequence of IPC-enhanced muscle oxygenation. We hypothesized that the IPC-enhanced muscle oxygenation during a dynamic exercise task would subsequently attenuate exercise-induced reductions in voluntary activation. Ten resistance trained males completed three 3 min maximal all-out tests (AOTs) via 135 isokinetic leg extensions preceded by treatments of IPC (3 × 5 min bilateral leg occlusions at 220 mmHg), SHAM (3 × 5 min at 20 mmHg) or CON (30 min passive rest). Femoral nerve stimulation was utilized to assess voluntary activation and potentiated twitch torque during maximal voluntary contractions (MVCs) performed at baseline (BL), prior to the AOT (Pre), and then 10 sec post (Post). Tissue oxygenation (via near-infrared spectroscopy) and sEMG activity was measured throughout the AOT. MVC and twitch torque levels declined (MVC: -87 ± 23 Nm, 95% CI = -67 to -107 Nm; P < 0.001, twitch: -30 ± 13 Nm; 95% CI = -25 to -35 Nm; P < 0.001) between Pre and Post without reductions in voluntary activation (P = 0.72); there were no differences between conditions (MVC: P = 0.75, twitch: P = 0.55). There were no differences in tissue saturation index (P = 0.27), deoxyhemoglobin concentrations (P = 0.86) or sEMG activity (P = 0.92) throughout the AOT. These findings demonstrate that IPC does not preserve neural drive during an all-out 3 min isokinetic leg extension task.
Collapse
Affiliation(s)
- Samuel L. Halley
- Sport and Exercise ScienceSchool of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Paul Marshall
- Sport and Exercise ScienceSchool of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Jason C. Siegler
- Sport and Exercise ScienceSchool of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
38
|
Paradis-Deschênes P, Joanisse DR, Billaut F. Ischemic Preconditioning Improves Time Trial Performance at Moderate Altitude. Med Sci Sports Exerc 2018; 50:533-541. [PMID: 29112625 DOI: 10.1249/mss.0000000000001473] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Endurance athletes often compete and train at altitude where exercise capacity is reduced. Investigating acclimation strategies is therefore critical. Ischemic preconditioning (IPC) can improve endurance performance at sea level through improved O2 delivery and utilization, which could also prove beneficial at altitude. However, data are scarce, and there is no study at altitudes commonly visited by endurance athletes. METHODS In a randomized, crossover study, we investigated performance and physiological responses in 13 male endurance cyclists during four 5-km cycling time trials (TT), preceded by either IPC (3 × 5 min ischemia/5-min reperfusion cycles at 220 mm Hg) or SHAM (20 mm Hg) administered to both thighs, at simulated low (FIO2 0.180, ~1200 m) and moderate (FIO2 0.154, ~2400 m) altitudes. Time to completion, power output, cardiac output (Q˙), arterial O2 saturation (SpO2), quadriceps tissue saturation index (TSI) and RPE were recorded throughout the TT. Differences between IPC and SHAM were analyzed at every altitude using Cohen effect size (ES) and compared with the smallest worthwhile change. RESULTS At low altitude, IPC possibly improved time to complete the TT (-5.2 s, -1.1%; Cohen ES ± 90% confidence limits -0.22, -0.44; 0.01), power output (2.7%; ES 0.21, 0.08; 0.51), and Q˙ (5.0%; ES 0.27, 0.00; 0.54), but did not alter SpO2, muscle TSI, and RPE. At moderate altitude, IPC likely enhanced completion time (-7.3 s; -1.5%; ES -0.38, -0.55; -0.20), and power output in the second half of the TT (4.6%; ES 0.28, -0.15; 0.72), increased SpO2 (1.0%; ES 0.38, -0.05; 0.81), and decreased TSI (-6.5%; ES -0.27, -0.73; 0.20) and RPE (-5.4%, ES -0.27, -0.48; -0.06). CONCLUSIONS Ischemic preconditioning may provide an immediate and effective strategy to defend SpO2 and enhance high-intensity endurance performance at moderate altitude.
Collapse
Affiliation(s)
- Pénélope Paradis-Deschênes
- Department of Kinesiology, Laval University, Quebec, QC, CANADA.,Department of Kinesiology, Laval University, Quebec, QC, CANADA
| | - Denis R Joanisse
- Department of Kinesiology, Laval University, Quebec, QC, CANADA.,Department of Kinesiology, Laval University, Quebec, QC, CANADA
| | - François Billaut
- Department of Kinesiology, Laval University, Quebec, QC, CANADA.,Department of Kinesiology, Laval University, Quebec, QC, CANADA.,Department of Kinesiology, Laval University, Quebec, QC, CANADA
| |
Collapse
|
39
|
Effects of ischemic preconditioning on economy, VO2 kinetics and cycling performance in endurance athletes. Eur J Appl Physiol 2018; 118:2541-2549. [DOI: 10.1007/s00421-018-3979-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/25/2018] [Indexed: 01/01/2023]
|
40
|
Remote ischemic preconditioning accelerates systemic O 2
dynamics and enhances endurance during work-to-work cycling exercise. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Vilalva KH, Figueira RL, Silveira M, Graf C, Gonçalves FL, Sbragia L, Gomes MC, Mumic F, Vollet-Filho JD, Bagnato VS, D’Albuquerque LAC, Castro-e-Silva O. Prophylactic application of laser light restores L-FABP expression in the livers of rats submitted to partial ischemia. Clinics (Sao Paulo) 2018; 73:e113. [PMID: 29972436 PMCID: PMC6005990 DOI: 10.6061/clinics/2018/e113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/27/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The objective of the present study was to evaluate the protective effect of pre-conditioning treatment with laser light on hepatic injury in rats submitted to partial ischemia using mitochondrial function and liver fatty acid binding protein as markers. METHODS Rats were divided into four groups (n=5): 1) Control, 2) Control + Laser, 3) Partial Ischemia and 4) Partial Ischemia + Laser. Ischemia was induced by clamping the hepatic pedicle of the left and middle lobes of the liver for 60 minutes. Laser light at 660 nm was applied to the liver immediately prior to the induction of ischemia at 22.5 J/cm2, with 30 seconds of illumination at five individual points. The animals were sacrificed after 30 minutes of reperfusion. Blood and liver tissues were collected for analysis of mitochondrial function, determination of malondialdehyde and analysis of fatty acid binding protein expression by Western blot. RESULTS Mitochondrial function decreased in the Partial Ischemia group, especially during adenosine diphosphate-activated respiration (state 3), and the expression of fatty acid binding protein was also reduced. The application of laser light prevented bioenergetic changes and restored the expression of fatty acid binding protein. CONCLUSION Prophylactic application of laser light to the livers of rats submitted to partial ischemia was found to have a protective effect in the liver, with normalization of both mitochondrial function and fatty acid binding protein tissue expression.
Collapse
Affiliation(s)
- Kelvin Henrique Vilalva
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Rebeca Lopes Figueira
- Laboratorio de Cirurgia Fetal Experimental, Divisao de Cirurgia Pediatrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Marina Silveira
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Catarina Graf
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Frances Lanhellas Gonçalves
- Laboratorio de Cirurgia Fetal Experimental, Divisao de Cirurgia Pediatrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Lourenço Sbragia
- Laboratorio de Cirurgia Fetal Experimental, Divisao de Cirurgia Pediatrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Maria Cecília Gomes
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Fabrícia Mumic
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - José Dirceu Vollet-Filho
- Departamento de Fisica e Ciencia dos Materiais, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, BR
| | - Vanderlei Salvador Bagnato
- Departamento de Fisica e Ciencia dos Materiais, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, BR
| | | | - Orlando Castro-e-Silva
- Divisao de Transplante de Figado, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
- Departamento de Gastroenterologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
42
|
Leak RK, Calabrese EJ, Kozumbo WJ, Gidday JM, Johnson TE, Mitchell JR, Ozaki CK, Wetzker R, Bast A, Belz RG, Bøtker HE, Koch S, Mattson MP, Simon RP, Jirtle RL, Andersen ME. Enhancing and Extending Biological Performance and Resilience. Dose Response 2018; 16:1559325818784501. [PMID: 30140178 PMCID: PMC6096685 DOI: 10.1177/1559325818784501] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022] Open
Abstract
Human performance, endurance, and resilience have biological limits that are genetically and epigenetically predetermined but perhaps not yet optimized. There are few systematic, rigorous studies on how to raise these limits and reach the true maxima. Achieving this goal might accelerate translation of the theoretical concepts of conditioning, hormesis, and stress adaptation into technological advancements. In 2017, an Air Force-sponsored conference was held at the University of Massachusetts for discipline experts to display data showing that the amplitude and duration of biological performance might be magnified and to discuss whether there might be harmful consequences of exceeding typical maxima. The charge of the workshop was "to examine and discuss and, if possible, recommend approaches to control and exploit endogenous defense mechanisms to enhance the structure and function of biological tissues." The goal of this white paper is to fulfill and extend this workshop charge. First, a few of the established methods to exploit endogenous defense mechanisms are described, based on workshop presentations. Next, the white paper accomplishes the following goals to provide: (1) synthesis and critical analysis of concepts across some of the published work on endogenous defenses, (2) generation of new ideas on augmenting biological performance and resilience, and (3) specific recommendations for researchers to not only examine a wider range of stimulus doses but to also systematically modify the temporal dimension in stimulus inputs (timing, number, frequency, and duration of exposures) and in measurement outputs (interval until assay end point, and lifespan). Thus, a path forward is proposed for researchers hoping to optimize protocols that support human health and longevity, whether in civilians, soldiers, athletes, or the elderly patients. The long-term goal of these specific recommendations is to accelerate the discovery of practical methods to conquer what were once considered intractable constraints on performance maxima.
Collapse
Affiliation(s)
- Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Edward J. Calabrese
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Jeffrey M. Gidday
- Departments of Ophthalmology, Neuroscience, and Physiology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Thomas E. Johnson
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - C. Keith Ozaki
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Reinhard Wetzker
- Institute for Molecular Cell Biology, University of Jena, Jena, Germany
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
| | - Regina G. Belz
- Hans-Ruthenberg-Institute, Agroecology Unit, University of Hohenheim, Stuttgart, Germany
| | - Hans E. Bøtker
- Department of Clinical Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Sebastian Koch
- Department of Neurology, University of Miami, Miller School of Medicine, FL, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Roger P. Simon
- Departments of Medicine and Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Randy L. Jirtle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
43
|
Horiuchi M, Endo J, Dobashi S, Handa Y, Kiuchi M, Koyama K. Muscle oxygenation profiles between active and inactive muscles with nitrate supplementation under hypoxic exercise. Physiol Rep 2018; 5:5/20/e13475. [PMID: 29066597 PMCID: PMC5661236 DOI: 10.14814/phy2.13475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/02/2022] Open
Abstract
Whether dietary nitrate supplementation improves exercise performance or not is still controversial. While redistribution of sufficient oxygen from inactive to active muscles is essential for optimal exercise performance, no study investigated the effects of nitrate supplementation on muscle oxygenation profiles between active and inactive muscles. Nine healthy males performed 25 min of submaximal (heart rate ~140 bpm; EXsub) and incremental cycling (EXmax) until exhaustion under three conditions: (A) normoxia without drink; (B) hypoxia (FiO2 = 13.95%) with placebo (PL); and (c) hypoxia with beetroot juice (BR). PL and BR were provided for 4 days. Oxygenated and deoxygenated hemoglobin (HbO2 and HHb) were measured in vastus lateralis (active) and biceps brachii (inactive) muscles, and the oxygen saturation of skeletal muscle (StO2; HbO2/total Hb) were calculated. During EXsub, BR suppressed the HHb increases in active muscles during the last 5 min of exercise. During EXmax, time to exhaustion with BR (513 ± 24 sec) was significantly longer than with PL (490 ± 39 sec, P < 0.05). In active muscles, BR suppressed the HHb increases at moderate work rates during EXmax compared to PL (P < 0.05). In addition, BR supplementation was associated with greater reductions in HbO2 and StO2 at higher work rates in inactive muscles during EXmax. Collectively, these findings indicate that short‐term dietary nitrate supplementation improved hypoxic exercise tolerance, perhaps, due to suppressed increases in HHb in active muscles at moderate work rates. Moreover, nitrate supplementation caused greater reductions in oxygenation in inactive muscle at higher work rates during hypoxic exercise.
Collapse
Affiliation(s)
- Masahiro Horiuchi
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fuji-yoshida, Japan
| | - Junko Endo
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fuji-yoshida, Japan
| | - Shohei Dobashi
- Graduate School Department of Interdisciplinary, University of Yamanashi, Kofu, Japan
| | - Yoko Handa
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fuji-yoshida, Japan
| | - Masataka Kiuchi
- Graduate School Department of Interdisciplinary, University of Yamanashi, Kofu, Japan
| | - Katsuhiro Koyama
- Graduate School Department of Interdisciplinary, University of Yamanashi, Kofu, Japan
| |
Collapse
|
44
|
Halley SL, Marshall P, Siegler JC. The effect of ischaemic preconditioning on central and peripheral fatiguing mechanisms in humans following sustained maximal isometric exercise. Exp Physiol 2018; 103:976-984. [DOI: 10.1113/ep086981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/23/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Samuel L. Halley
- Sport and Exercise Science; School of Science and Health; Western Sydney University; Sydney NSW Australia
| | - Paul Marshall
- Sport and Exercise Science; School of Science and Health; Western Sydney University; Sydney NSW Australia
| | - Jason C. Siegler
- Sport and Exercise Science; School of Science and Health; Western Sydney University; Sydney NSW Australia
| |
Collapse
|
45
|
Hyngstrom AS, Murphy SA, Nguyen J, Schmit BD, Negro F, Gutterman DD, Durand MJ. Ischemic conditioning increases strength and volitional activation of paretic muscle in chronic stroke: a pilot study. J Appl Physiol (1985) 2018; 124:1140-1147. [PMID: 29420152 PMCID: PMC6050199 DOI: 10.1152/japplphysiol.01072.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ischemic conditioning (IC) on the arm or leg has emerged as an intervention to improve strength and performance in healthy populations, but the effects on neurological populations are unknown. The purpose of this study was to quantify the effects of a single session of IC on knee extensor strength and muscle activation in chronic stroke survivors. Maximal knee extensor torque measurements and surface EMG were quantified in 10 chronic stroke survivors (>1 yr poststroke) with hemiparesis before and after a single session of IC or sham on the paretic leg. IC consisted of 5 min of compression with a proximal thigh cuff (inflation pressure = 225 mmHg for IC or 25 mmHg for sham) followed by 5 min of rest. This was repeated five times. Maximal knee extensor strength, EMG magnitude, and motor unit firing behavior were measured before and immediately after IC or sham. IC increased paretic leg strength by 10.6 ± 8.5 Nm, whereas no difference was observed in the sham group (change in sham = 1.3 ± 2.9 Nm, P = 0.001 IC vs. sham). IC-induced increases in strength were accompanied by a 31 ± 15% increase in the magnitude of muscle EMG during maximal contractions and a 5% decrease in motor unit recruitment thresholds during submaximal contractions. Individuals who had the most asymmetry in strength between their paretic and nonparetic legs had the largest increases in strength ( r2 = 0.54). This study provides evidence that a single session of IC can increase strength through improved muscle activation in chronic stroke survivors. NEW & NOTEWORTHY Present rehabilitation strategies for chronic stroke survivors do not optimally activate paretic muscle, and this limits potential strength gains. Ischemic conditioning of a limb has emerged as an effective strategy to improve muscle performance in healthy individuals but has never been tested in neurological populations. In this study, we show that ischemic conditioning on the paretic leg of chronic stroke survivors can increase leg strength and muscle activation while reducing motor unit recruitment thresholds.
Collapse
Affiliation(s)
| | - Spencer A Murphy
- Department of Biomedical Engineering, Marquette University, and the Medical College of Wisconsin Milwaukee, Wisconsin
| | - Jennifer Nguyen
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, and the Medical College of Wisconsin Milwaukee, Wisconsin
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia , Brescia Italy
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Matthew J Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin , Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
46
|
Cocking S, Cable NT, Wilson MG, Green DJ, Thijssen DHJ, Jones H. Conduit Artery Diameter During Exercise Is Enhanced After Local, but Not Remote, Ischemic Preconditioning. Front Physiol 2018; 9:435. [PMID: 29740345 PMCID: PMC5928322 DOI: 10.3389/fphys.2018.00435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction: The ability of ischemic preconditioning (IPC) to enhance exercise capacity may be mediated through altering exercise-induced blood flow and/or vascular function. This study investigated the hypothesis that (local) IPC enhances exercise-induced blood flow responses and prevents decreases in vascular function following exercise. Methods: Eighteen healthy, recreationally trained, male participants (mean ±SD: age 32 ± 8 years; BMI 24.2 ± 2.3; blood pressure 122 ± 10/72 ± 8 mmHg; resting HR 58 ± 9 beats min-1) received IPC (220 mmHg; 4 × 5-min bilateral arms), REMOTE IPC (220 mmHg; 4 × 5-min bilateral legs), or SHAM (20 mmHg; 4 × 5-min bilateral arms) in a counterbalanced order prior to 30-min of submaximal (25% maximal voluntary contraction) unilateral rhythmic handgrip exercise. Brachial artery diameter and blood flow were assessed every 5-min throughout the 30-min submaximal exercise using high resolution ultrasonography. Pre- and post-exercise vascular function was measured using flow-mediated dilation (FMD). Results: IPC resulted in enlarged brachial artery diameter during exercise [0.016 cm (0.003–0.03 cm), P = 0.015] compared to REMOTE IPC, but blood flow during exercise was similar between conditions (P > 0.05). Blood flow (l/min) increased throughout exercise (time: P < 0.005), but there was no main effect of condition (P = 0.29) or condition ∗ time interaction (P = 0.83). Post-exercise FMD was similar between conditions (P > 0.05). Conclusion: Our data show that local (but not remote) IPC, performed as a strategy prior to exercise, enhanced exercise-induced conduit artery diameter dilation, but these changes do not translate into increased blood flow during exercise nor impact post-exercise vascular function.
Collapse
Affiliation(s)
- Scott Cocking
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - N T Cable
- Department of Sport Science, Aspire Academy, Doha, Qatar.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mathew G Wilson
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel J Green
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom.,Sport and Exercise Science, School of Human Sciences, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| | - Dick H J Thijssen
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom.,Department of Physiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, Netherlands
| | - Helen Jones
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
47
|
Rieger MG, Hoiland RL, Tremblay JC, Stembridge M, Bain AR, Flück D, Subedi P, Anholm JD, Ainslie PN. One session of remote ischemic preconditioning does not improve vascular function in acute normobaric and chronic hypobaric hypoxia. Exp Physiol 2017; 102:1143-1157. [PMID: 28699679 DOI: 10.1113/ep086441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/30/2017] [Indexed: 01/12/2023]
Abstract
NEW FINDINGS What is the central question of this study? It is suggested that remote ischemic preconditioning (RIPC) might offer protection against ischaemia-reperfusion injuries, but the utility of RIPC in high-altitude settings remains unclear. What is the main finding and its importance? We found that RIPC offers no vascular protection relative to pulmonary artery pressure or peripheral endothelial function during acute, normobaric hypoxia and at high altitude in young, healthy adults. However, peripheral chemosensitivity was heightened 24 h after RIPC at high altitude. Application of repeated short-duration bouts of ischaemia to the limbs, termed remote ischemic preconditioning (RIPC), is a novel technique that might have protective effects on vascular function during hypoxic exposures. In separate parallel-design studies, at sea level (SL; n = 16) and after 8-12 days at high altitude (HA; n = 12; White Mountain, 3800 m), participants underwent either a sham protocol or one session of four bouts of 5 min of dual-thigh-cuff occlusion with 5 min recovery. Brachial artery flow-mediated dilatation (FMD; ultrasound), pulmonary artery systolic pressure (PASP; echocardiography) and internal carotid artery (ICA) flow (ultrasound) were measured at SL in normoxia and isocapnic hypoxia (end-tidal PO2 maintained at 50 mmHg) and during normal breathing at HA. The hypoxic ventilatory response (HVR) was measured at each location. All measures at SL and HA were obtained at baseline (BL) and at 1, 24 and 48 h post-RIPC or sham. At SL, RIPC produced no changes in FMD, PASP, ICA flow, end-tidal gases or HVR in normoxia or hypoxia. At HA, although HVR increased 24 h post-RIPC compared with BL [2.05 ± 1.4 versus 3.21 ± 1.2 l min-1 (% arterial O2 saturation)-1 , P < 0.01], there were no significant differences in FMD, PASP, ICA flow and resting end-tidal gases. Accordingly, a single session of RIPC is insufficient to evoke changes in peripheral, pulmonary and cerebral vascular function in healthy adults. Although chemosensitivity might increase after RIPC at HA, this did not confer any vascular changes. The utility of a single RIPC session seems unremarkable during acute and chronic hypoxia.
Collapse
Affiliation(s)
- Mathew G Rieger
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Mike Stembridge
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, UK
| | - Anthony R Bain
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada.,University of Colorado, Boulder, Department of Integrative Physiology, Integrative Vascular Biology Laboratory, Boulder, CO, USA
| | - Daniela Flück
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Prajan Subedi
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| | - James D Anholm
- Pulmonary/Critical Care Section, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
48
|
Griffin PJ, Ferguson RA, Gissane C, Bailey SJ, Patterson SD. Ischemic preconditioning enhances critical power during a 3 minute all-out cycling test. J Sports Sci 2017; 36:1038-1043. [PMID: 28686083 DOI: 10.1080/02640414.2017.1349923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study tested the hypothesis that ischemic preconditioning (IPC) would increase critical power (CP) during a 3 minute all-out cycling test. Twelve males completed two 3 minute all-out cycling tests, in a crossover design, separated by 7 days. These tests were preceded by IPC (4 x 5 minute intervals at 220 mmHg bilateral leg occlusion) or SHAM treatment (4 x 5 minute intervals at 20 mmHg bilateral leg occlusion). CP was calculated as the mean power output during the final 30 s of the 3 minute test with W' taken as the total work done above CP. Muscle oxygenation was measured throughout the exercise period. There was a 15.3 ± 0.3% decrease in muscle oxygenation (TSI; [Tissue saturation index]) during the IPC stimulus, relative to SHAM. CP was significantly increased (241 ± 65 W vs. 234 ± 67 W), whereas W' (18.4 ± 3.8 vs 17.9 ± 3.7 kJ) and total work done (TWD) were not different (61.1 ± 12.7 vs 60.8 ± 12.7 kJ), between the IPC and SHAM trials. IPC enhanced CP during a 3 minute all-out cycling test without impacting W' or TWD. The improved CP after IPC might contribute towards the effect of IPC on endurance performance.
Collapse
Affiliation(s)
- Patrick J Griffin
- a School of Sport, Health, and Applied Science , St. Mary's University , London , UK
| | - Richard A Ferguson
- b School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Conor Gissane
- a School of Sport, Health, and Applied Science , St. Mary's University , London , UK
| | - Stephen J Bailey
- b School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Stephen D Patterson
- a School of Sport, Health, and Applied Science , St. Mary's University , London , UK
| |
Collapse
|
49
|
Bailey TG, Perissiou M, Windsor M, Russell F, Golledge J, Green DJ, Askew CD. Cardiorespiratory fitness modulates the acute flow-mediated dilation response following high-intensity but not moderate-intensity exercise in elderly men. J Appl Physiol (1985) 2017; 122:1238-1248. [DOI: 10.1152/japplphysiol.00935.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/30/2017] [Accepted: 02/11/2017] [Indexed: 01/05/2023] Open
Abstract
Impaired endothelial function is observed with aging and in those with low cardiorespiratory fitness (V̇o2peak). Improvements in endothelial function with exercise training are somewhat dependent on the intensity of exercise. While the acute stimulus for this improvement is not completely understood, it may, in part, be due to the flow-mediated dilation (FMD) response to acute exercise. We examined the hypothesis that exercise intensity alters the brachial (systemic) FMD response in elderly men and is modulated by V̇o2peak. Forty-seven elderly men were stratified into lower (V̇o2peak = 24.3 ± 2.9 ml·kg−1·min−1; n = 27) and higher fit groups (V̇o2peak = 35.4 ± 5.5 ml·kg−1·min−1; n = 20) after a test of cycling peak power output (PPO). In randomized order, participants undertook moderate-intensity continuous exercise (MICE; 40% PPO) or high-intensity interval cycling exercise (HIIE; 70% PPO) or no-exercise control. Brachial FMD was assessed at rest and 10 and 60 min after exercise. FMD increased after MICE in both groups {increase of 0.86% [95% confidence interval (CI), 0.17–1.56], P = 0.01} and normalized after 60 min. In the lower fit group, FMD was reduced after HIIE [reduction of 0.85% (95% CI, 0.12–1.58), P = 0.02] and remained decreased at 60 min. In the higher fit group, FMD was unchanged immediately after HIIE and increased after 60 min [increase of 1.52% (95% CI, 0.41–2.62), P < 0.01, which was correlated with V̇o2peak, r = 0.41; P < 0.01]. In the no-exercise control, FMD was reduced in both groups after 60 min ( P = 0.05). Exercise intensity alters the acute FMD response in elderly men and V̇o2peak modulates the FMD response following HIIE but not MICE. The sustained decrease in FMD in the lower fit group following HIIE may represent a signal for vascular adaptation or endothelial fatigue. NEW & NOTEWORTHY This study is the first to show that moderate-intensity continuous cycling exercise increased flow-mediated dilation (FMD) transiently before normalization of FMD after 1 h, irrespective of cardiorespiratory fitness level in elderly men. Interestingly, we show increased FMD after high-intensity cycling exercise in higher fit men, with a sustained reduction in FMD in lower fit men. The prolonged reduction in FMD after high-intensity cycling exercise may be associated with future vascular adaptation but may also reflect a period of increased cardiovascular risk in lower fit elderly men.
Collapse
Affiliation(s)
- Tom G. Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| | - Maria Perissiou
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| | - Mark Windsor
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| | - Fraser Russell
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University and the Townsville Hospital, Townsville, Australia
| | - Daniel J. Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Australia; and
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Christopher D. Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
50
|
Sex impacts the flow-mediated dilation response to acute aerobic exercise in older adults. Exp Gerontol 2017; 91:57-63. [PMID: 28216412 DOI: 10.1016/j.exger.2017.02.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/09/2017] [Accepted: 02/14/2017] [Indexed: 11/23/2022]
Abstract
There is growing evidence of sex differences in the chronic effect of aerobic exercise on endothelial function (flow-mediated dilation; FMD) in older adults, but whether there are sex differences also in the acute effect of aerobic exercise on FMD in older adults is unknown. The purpose of this study was to test the hypothesis that sex modulates the FMD response to acute aerobic exercise in older adults. Thirteen older men and fifteen postmenopausal women (67±1 vs. 65±2years, means±SE, P=0.6), non-smokers, free of major clinical disease, participated in this randomized crossover study. Brachial artery FMD was measured: 1) prior to exercise; 2) 20min after a single bout of high-intensity interval training (HIIT; 40min; 4×4 intervals 90% peak heart rate (HRpeak)), moderate-intensity continuous training (MICT; 47min 70% HRpeak) and low-intensity continuous training (LICT; 47min 50% HRpeak) on treadmill; and 3) following 60-min recovery from exercise. In older men, FMD was attenuated by 45% following HIIT (5.95±0.85 vs. 3.27±0.52%, P=0.003) and by 37% following MICT (5.97±0.87 vs. 3.73±0.47%, P=0.03; P=0.9 for FMD response to HIIT vs. MICT) and was normalized following 60-min recovery (P=0.99). In postmenopausal women, FMD did not significantly change in response to HIIT (4.93±0.55 vs. 6.31±0.57%, P=0.14) and MICT (5.32±0.62 vs. 5.60±0.68%, P=0.99). In response to LICT, FMD did not change in postmenopausal women nor older men (5.21±0.64 vs. 6.02±0.73%, P=0.7 and 5.70±0.80 vs. 5.55±0.67%, P=0.99). In conclusion, sex and exercise intensity influence the FMD response to acute aerobic exercise in older adults.
Collapse
|