1
|
Schopohl B, Kohlhaas M, Nickel AG, Schiuma AF, Maas SL, van der Vorst EPC, Shia YX, Maack C, Steffens S, Puhl SL. Gpr55 deficiency crucially alters cardiomyocyte homeostasis and counteracts angiotensin II induced maladaption in female mice. Br J Pharmacol 2025; 182:670-691. [PMID: 39428581 DOI: 10.1111/bph.17350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/24/2024] [Accepted: 07/20/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Cannabis stimulates several G-protein-coupled-receptors and causes bradycardia and hypotension upon sustained consumption. Moreover, in vitro studies suggest an interference of cannabinoid-signalling with cardiomyocyte contractility and hypertrophy. We aimed at revealing a functional contribution of the cannabinoid-sensitive receptor GPR55 to cardiomyocyte homeostasis and neurohumorally induced hypertrophy in vivo. EXPERIMENTAL APPROACH Gpr55-/- and wild-type (WT) mice were characterized after 28-day angiotensin II (AngII; 1·μg·kg-1 min-1) or vehicle infusion. In isolated adult Gpr55-/- and WT cardiomyocytes, mitochondrial function was assessed under naïve conditions, while cytosolic Ca2+ handling was additionally determined following application of the selective GPR55 antagonist CID16020046. KEY RESULTS Gpr55 deficiency did not affect angiotensin II (AngII) mediated hypertrophic growth, yet, especially in females, it alleviated maladaptive pro-hypertrophic and -inflammatory gene expression and improved inotropy and adrenergic responsiveness compared to WT. In-depth analyses implied increased cytosolic Ca2+ concentrations and transient amplitudes, and accelerated sarcomere contraction kinetics in Gpr55-/- myocytes, which could be mimicked by GPR55 blockade with CID16020046 in female WT cells. Moreover, Gpr55 deficiency up-regulated factors involved in glucose and fatty acid transport independent of the AngII challenge, accelerated basal mitochondrial respiration and reduced basal protein kinase (PK) A, G and C activity and phospholemman (PLM) phosphorylation. CONCLUSIONS AND IMPLICATIONS Our study suggests GPR55 as crucial regulator of cardiomyocyte hypertrophy and homeostasis presumably by regulating PKC/PKA-PLM and PKG signalling, and identifies the receptor as potential target to counteract maladaptation, adrenergic desensitization and metabolic shifts as unfavourable features of the hypertrophied heart in females.
Collapse
Affiliation(s)
- Brigitte Schopohl
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Alexander G Nickel
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | | | - Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, Aachen, Germany
| | - Yi Xuan Shia
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
- Medical Clinic I, University Clinic Würzburg, Würzburg, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sarah-Lena Puhl
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Casarella S, Ferla F, Di Francesco D, Canciani E, Rizzi M, Boccafoschi F. Focal Adhesion's Role in Cardiomyocytes Function: From Cardiomyogenesis to Mechanotransduction. Cells 2024; 13:664. [PMID: 38667279 PMCID: PMC11049660 DOI: 10.3390/cells13080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/β-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.
Collapse
Affiliation(s)
- Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Federica Ferla
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Elena Canciani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| |
Collapse
|
3
|
Ginsenoside Rg1 attenuates mechanical stress-induced cardiac injury via calcium sensing receptor-related pathway. J Ginseng Res 2021; 45:683-694. [PMID: 34764723 PMCID: PMC8569322 DOI: 10.1016/j.jgr.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/02/2021] [Accepted: 03/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background Ginsenoside Rg1 (Rg1) has been well documented to be effective against various cardiovascular disease. The aim of this study is to evaluate the effect of Rg1 on mechanical stress-induced cardiac injury and its possible mechanism with a focus on the calcium sensing receptor (CaSR) signaling pathway. Methods Mechanical stress was implemented on rats through abdominal aortic constriction (AAC) procedure and on cardiomyocytes and cardiac fibroblasts by mechanical stretching with Bioflex Collagen I plates. The effects of Rg1 on cell hypertrophy, fibrosis, cardiac function, [Ca2+]i, and the expression of CaSR and calcineurin (CaN) were assayed both on rat and cellular level. Results Rg1 alleviated cardiac hypertrophy and fibrosis, and improved cardiac decompensation induced by AAC in rat myocardial tissue and cultured cardiomyocytes and cardiac fibroblasts. Importantly, Rg1 treatment inhibited CaSR expression and increase of [Ca2+]i, which similar to the CaSR inhibitor NPS2143. In addition, Rg1 treatment inhibited CaN and TGF-β1 pathways activation. Mechanistic analysis showed that the CaSR agonist GdCl3 could not further increase the [Ca2+]i and CaN pathway related protein expression induced by mechanical stretching in cultured cardiomyocytes. CsA, an inhibitor of CaN, inhibited cardiac hypertrophy, cardiac fibrosis, [Ca2+]i and CaN signaling but had no effect on CaSR expression. Conclusion The activation of CaN pathway and the increase of [Ca2+]i mediated by CaSR are involved in cardiac hypertrophy and fibrosis, that may be the target of cardioprotection of Rg1 against myocardial injury.
Collapse
|
4
|
Chang YW, Song ZH, Chen CC. FAK regulates cardiomyocyte mitochondrial fission and function through Drp1. FEBS J 2021; 289:1897-1910. [PMID: 34739186 DOI: 10.1111/febs.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
Loss of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) in cardiomyocytes results in energy shortage and heart failure. We aim to understand the intracellular signal pathway and extracellular factors regulating Drp1 phosphorylation and mitochondrial morphology and function in cardiomyocytes. We found cyclic mechanical stretching induced mitochondrial fission through Drp1 and focal adhesion kinase (FAK) in neonatal rat ventricular myocytes (NRVMs). FAK regulated phosphorylation of Drp1 and mitochondrial Drp1 levels. Extracellular fibronectin activated Drp1 and caused mitochondrial fission through FAK and extracellular signal-regulated kinase 1/2 (ERK1/2). Fibronectin increased NRVMs oxygen consumption rate and ATP content via FAK-ERK1/2-Drp1. Inhibition of the FAK-ERK1/2-Drp1 pathway caused cellular energy shortage. In addition, the FAK-ERK1/2-Drp1 pathway was rapidly activated by adrenergic agonists and contributed to agonists-stimulated NRVMs respiration. Interestingly, fibronectin limited the adrenergic agonists-induced NRVMs respiration by restricting phosphorylation of Drp1. Our results suggest that extracellular fibronectin and adrenergic stimulations use the FAK-ERK1/2-Drp1 pathway to regulate mitochondrial morphology and function in cardiomyocytes.
Collapse
Affiliation(s)
- Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | - Zong-Han Song
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | | |
Collapse
|
5
|
Yan J, Song K, Bai Z, Ge RL. WY14643 improves left ventricular myocardial mitochondrial and systolic functions in obese rats under chronic persistent hypoxia via the PPARα pathway. Life Sci 2020; 266:118888. [PMID: 33310031 DOI: 10.1016/j.lfs.2020.118888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
AIMS Peroxisome proliferator-activated receptor (PPAR) α, a key regulator of lipid metabolism, plays a role in maintaining the homeostasis of myocardial energy metabolism. Both hypoxia and obesity inhibit the expression of PPARα in the myocardium. In this study, we verified the inhibitory effects of hypoxia and obesity on PPARα and examined whether WY14643 (4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid), an agonist of PPARα, ameliorates myocardial mitochondrial dysfunction and protects cardiac function in obese rats under chronic persistent hypoxia. MAIN METHODS Sprague-Dawley rats were randomly divided into six groups: a control group (normal chow diet, normal oxygen), a high-fat diet (HFD) group (normal oxygen), a chronic persistent hypoxia normal chow diet group, a chronic persistent hypoxia HFD group, a chronic persistent hypoxia HFD group with WY14643 treatment, and a chronic persistent hypoxia HFD group with vehicle treatment. KEY FINDINGS Hypoxia and obesity increased myocardial lipid accumulation, mitochondrial dysfunction, and left ventricular systolic dysfunction. Myocardial lipid metabolism-related genes, including those encoding PPARα, PPARγ coactivator 1α (PGC1α), and carnitine palmitoyl transferase 1α (CPT1α), were downregulated, while acetyl-CoA carboxylase 2 (ACC2) was upregulated under a combination of hypoxia and obesity. WY14643 upregulated PPARα, PGC1α, and CPT1α, and downregulated ACC2. WY14643 alleviated hypoxia- and obesity-induced myocardial lipid accumulation and improved mitochondrial and left ventricular systolic functions. SIGNIFICANCE WY14643 improved myocardial mitochondrial and left ventricular systolic functions in obese rats under chronic persistent hypoxia. Thus, WY14643 possibly exerts its effects by regulating the PPARα pathway and shows potential as a therapeutic target for cardiovascular diseases associated with obesity and hypoxia.
Collapse
Affiliation(s)
- Jun Yan
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810001, PR China; Key Laboratory of Persistent medicine (Qinghai University), Ministry of Education, Xining 810001, PR China; Key Laboratory for Application of Persistent Medicine in Qinghai Province, Xining 810001, PR China; Cardiovascular Medicine Department, Xuzhou Medical University affiliated hospital, Xuzhou 221006, PR China
| | - Kang Song
- Endocrinology Department, Qinghai Provincial People's Hospital, Xining 810000, PR China
| | - Zhenzhong Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810001, PR China; Key Laboratory of Persistent medicine (Qinghai University), Ministry of Education, Xining 810001, PR China; Key Laboratory for Application of Persistent Medicine in Qinghai Province, Xining 810001, PR China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining 810001, PR China; Key Laboratory of Persistent medicine (Qinghai University), Ministry of Education, Xining 810001, PR China; Key Laboratory for Application of Persistent Medicine in Qinghai Province, Xining 810001, PR China.
| |
Collapse
|
6
|
Liu P, Wu D, Duan J, Xiao H, Zhou Y, Zhao L, Feng Y. NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway. Redox Biol 2020; 37:101702. [PMID: 32898818 PMCID: PMC7486457 DOI: 10.1016/j.redox.2020.101702] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 11/21/2022] Open
Abstract
Transcription factor nuclear factor-erythroid 2-like 2 (NRF2) mainly regulates cellular antioxidant response, redox homeostasis and metabolic balance. Our previous study illustrated the translational significance of NRF2-mediated transcriptional repression, and the transcription of FOCAD gene might be negatively regulated by NRF2. However, the detailed mechanism and the related significance remain unclear. In this study, we mainly explored the effect of NRF2-FOCAD signaling pathway on ferroptosis regulation in human non-small-cell lung carcinoma (NSCLC) model. Our results confirmed the negative regulation relationship between NRF2 and FOCAD, which was dependent on NRF2-Replication Protein A1 (RPA1)-Antioxidant Response Elements (ARE) complex. In addition, FOCAD promoted the activity of focal adhesion kinase (FAK), which further enhanced the sensitivity of NSCLC cells to cysteine deprivation-induced ferroptosis via promoting the tricarboxylic acid (TCA) cycle and the activity of Complex I in mitochondrial electron transport chain (ETC). However, FOCAD didn't affect GPX4 inhibition-induced ferroptosis. Moreover, the treatment with the combination of NRF2 inhibitor (brusatol) and erastin showed better therapeutic action against NSCLC in vitro and in vivo than single treatment, and the improved therapeutic function partially depended on the activation of FOCAD-FAK signal. Taken together, our study indicates the close association of NRF2-FOCAD-FAK signaling pathway with cysteine deprivation-induced ferroptosis, and elucidates a novel insight into the ferroptosis-based therapeutic approach for the patients with NSCLC.
Collapse
Affiliation(s)
- Pengfei Liu
- Ambulatory Surgical Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| | - Di Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130012, China
| | - Jinyue Duan
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130012, China
| | - Hexin Xiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130012, China
| | - Yulai Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130012, China
| | - Lei Zhao
- Ambulatory Surgical Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yetong Feng
- Ambulatory Surgical Center, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China; School of Pharmaceutical Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
7
|
Nguyen AH, Marsh P, Schmiess-Heine L, Burke PJ, Lee A, Lee J, Cao H. Cardiac tissue engineering: state-of-the-art methods and outlook. J Biol Eng 2019; 13:57. [PMID: 31297148 PMCID: PMC6599291 DOI: 10.1186/s13036-019-0185-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to assess the state-of-the-art fabrication methods, advances in genome editing, and the use of machine learning to shape the prospective growth in cardiac tissue engineering. Those interdisciplinary emerging innovations would move forward basic research in this field and their clinical applications. The long-entrenched challenges in this field could be addressed by novel 3-dimensional (3D) scaffold substrates for cardiomyocyte (CM) growth and maturation. Stem cell-based therapy through genome editing techniques can repair gene mutation, control better maturation of CMs or even reveal its molecular clock. Finally, machine learning and precision control for improvements of the construct fabrication process and optimization in tissue-specific clonal selections with an outlook of cardiac tissue engineering are also presented.
Collapse
Affiliation(s)
- Anh H. Nguyen
- Electrical and Computer Engineering Department, University of Alberta, Edmonton, Alberta Canada
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Paul Marsh
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Lauren Schmiess-Heine
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Peter J. Burke
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Chemical Engineering and Materials Science Department, University of California Irvine, Irvine, CA USA
| | - Abraham Lee
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Mechanical and Aerospace Engineering Department, University of California Irvine, Irvine, CA USA
| | - Juhyun Lee
- Bioengineering Department, University of Texas at Arlington, Arlington, TX USA
| | - Hung Cao
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Henry Samueli School of Engineering, University of California, Irvine, USA
| |
Collapse
|
8
|
Lv J, Deng C, Jiang S, Ji T, Yang Z, Wang Z, Yang Y. Blossoming 20: The Energetic Regulator's Birthday Unveils its Versatility in Cardiac Diseases. Am J Cancer Res 2019; 9:466-476. [PMID: 30809287 PMCID: PMC6376194 DOI: 10.7150/thno.29130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) was first identified in 1998 as a PGC-1 family member that regulates adaptive thermogenesis and mitochondrial function following cold exposure in brown adipose tissue. The PGC-1 family has drawn widespread attention over the past two decades as the energetic regulator. We recently summarized a review regarding PGC-1 signaling pathway and its mechanisms in cardiac metabolism. In this review, we elaborate upon the PGC-1 signaling network and highlight the recent progress of its versatile roles in cardiac diseases, including myocardial hypertrophy, peripartum and diabetic cardiomyopathy, and heart failure. The information reviewed here may be useful in future studies, which may increase the potential of this energetic regulator as a therapeutic target.
Collapse
|
9
|
Ferreira R, Nogueira-Ferreira R, Trindade F, Vitorino R, Powers SK, Moreira-Gonçalves D. Sugar or fat: The metabolic choice of the trained heart. Metabolism 2018; 87:98-104. [PMID: 30077622 DOI: 10.1016/j.metabol.2018.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022]
Abstract
Mammals respond to muscular exercise by increasing cardiac output to meet the increased demand for oxygen in the working muscles and it is well-established that regular bouts of exercise results in myocardial remodeling. Depending on exercise type, intensity and duration, these cardiac adaptations lead to changes in the energetic substrates required to sustain cardiac contractility. In contrast to the failing heart, fatty acids are the preferred substrate in the trained heart, though glucose metabolism is also enhanced to support oxidative phosphorylation. The participation of AMPK/eNOS and PPARα/PGC-1α pathways in the regulation of cardiac metabolism is well known but other players also contribute including sirtuins and integrins-mediated outside-in activation of FAK and other kinases. These regulatory players act by up-regulating fatty acid uptake, transport to mitochondria and oxidation, and glucose uptake via GLUT4. This exercise-induced increase in mitochondria metabolic flexibility is important to sustain the energetic demand associated with cardiomyocyte hypertrophy and hyperplasia promoted by IGF-1 and neuregulin-1-induced PI3K/Akt signaling. So, the timeless advice of Hippocrates "walking is the best medicine" seems to be justified by the promotion of mitochondrial health and, consequently, the beneficial metabolic remodeling of the heart.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Rita Nogueira-Ferreira
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Fábio Trindade
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, United States
| | - Daniel Moreira-Gonçalves
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal.
| |
Collapse
|
10
|
Jia J, Zhang T, Chi J, Liu X, Sun J, Xie Q, Peng S, Li C, Yi L. Neuroprotective Effect of CeO 2@PAA-LXW7 Against H 2O 2-Induced Cytotoxicity in NGF-Differentiated PC12 Cells. Neurochem Res 2018; 43:1439-1453. [PMID: 29882125 DOI: 10.1007/s11064-018-2559-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/19/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023]
Abstract
CeO2 nanoparticles (nanoceria) have been used in many studies as a powerful free radical scavenger, and LXW7, a small-molecule peptide, can specifically target the integrin αvβ3, whose neuroprotective effects have also been demonstrated. The objective of this study is to observe the neuroprotective effect and potential mechanism of CeO2@PAA-LXW7, a new compound that couples CeO2@PAA (nanoceria modified with the functional group of polyacrylic acid) with LXW7 via a series of chemical reactions, in H2O2-induced NGF-differentiated PC12 cells. We examined the effects of LXW7, CeO2@PAA, and CeO2@PAA-LXW7 on the viability of primary hippocampal neurons and found that there was no significant difference under control conditions, but increased cellular viability was observed in the case of H2O2-induced injury. We used H2O2-induced NGF-differentiated PC12 cells as the classical injury model to investigate the neuroprotective effect of CeO2@PAA-LXW7. In this study, LXW7, CeO2@PAA, and CeO2@PAA-LXW7 inhibit H2O2-induced oxidative stress by reducing the production of reactive oxygen species (ROS) and regulating Bax/Bcl-2, cleaved caspase-3 and mitochondrial cytochrome C (cyto C) in the apoptotic signaling pathways. We found that the levels of phosphorylation of focal adhesion kinase (FAK) and of signal transducer and activator of transcription 3 (STAT3) increased significantly in H2O2-induced NGF-differentiated PC12 cells, whereas LXW7, CeO2@PAA, and CeO2@PAA-LXW7 suppressed the increase to different degrees. Among the abovementioned changes, the inhibitory effect of CeO2@PAA-LXW7 on H2O2-induced changes, including the increases in the levels of p-FAK and p-STAT3, is more obvious than that of LXW7 or CeO2@PAA alone. In summary, these results suggest that integrin signaling participates in the regulation of apoptosis via the regulation of ROS and of the apoptosis pathway in H2O2-induced NGF-differentiated PC12 cells. LXW7, CeO2@PAA, and CeO2@PAA-LXW7 can play neuroprotective roles by counteracting the oxidative stress and apoptosis induced by H2O2 in NGF-differentiated PC12 cells. CeO2@PAA-LXW7 exerting a more powerful synergistic effect via the conjunction of LXW7 and CeO2@PAA.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Ting Zhang
- Department of Phoenix international medical center, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jieshan Chi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Xiaoma Liu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Jingjing Sun
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Qizhi Xie
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Sijia Peng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Changyan Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, China.
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
11
|
Keasey MP, Jia C, Pimentel LF, Sante RR, Lovins C, Hagg T. Blood vitronectin is a major activator of LIF and IL-6 in the brain through integrin-FAK and uPAR signaling. J Cell Sci 2018; 131:jcs.202580. [PMID: 29222114 DOI: 10.1242/jcs.202580] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022] Open
Abstract
We defined how blood-derived vitronectin (VTN) rapidly and potently activates leukemia inhibitory factor (LIF) and pro-inflammatory interleukin 6 (IL-6) in vitro and after vascular injury in the brain. Treatment with VTN (but not fibrinogen, fibronectin, laminin-111 or collagen-I) substantially increased LIF and IL-6 within 4 h in C6-astroglioma cells, while VTN-/- mouse plasma was less effective than that from wild-type mice. LIF and IL-6 were induced by intracerebral injection of recombinant human (rh)VTN in mice, but induction seen upon intracerebral hemorrhage was less in VTN-/- mice than in wild-type littermates. In vitro, VTN effects were inhibited by RGD, αvβ3 and αvβ5 integrin-blocking peptides and antibodies. VTN activated focal adhesion kinase (FAK; also known as PTK2), whereas pharmacological- or siRNA-mediated inhibition of FAK, but not PYK2, reduced the expression of LIF and IL-6 in C6 and endothelial cells and after traumatic cell injury. Dominant-negative FAK (Y397F) reduced the amount of injury-induced LIF and IL-6. Pharmacological inhibition or knockdown of uPAR (also known as PLAUR), which binds VTN, also reduced cytokine expression, possibly through a common target of uPAR and integrins. We propose that VTN leakage into tissues promotes inflammation. Integrin-FAK signaling is therefore a novel IL-6 and LIF regulation mechanism relevant to the inflammation and stem cell fields.
Collapse
Affiliation(s)
- Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Lylyan F Pimentel
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Keizo Asami Laboratory (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - Richard R Sante
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
12
|
Vaccaro M, Irrera N, Cutroneo G, Rizzo G, Vaccaro F, Anastasi GP, Borgia F, Cannavò SP, Altavilla D, Squadrito F. Differential Expression of Nitric Oxide Synthase Isoforms nNOS and iNOS in Patients with Non-Segmental Generalized Vitiligo. Int J Mol Sci 2017; 18:ijms18122533. [PMID: 29186858 PMCID: PMC5751136 DOI: 10.3390/ijms18122533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is involved in several biological processes, but its role in human melanogenesis is still not well understood. Exposure to UVA and UVB induces nitric oxide production in keratinocytes and melanocytes through the activation of constitutive nitric oxide synthase, increasing tyrosinase activity and melanin synthesis, whereas inducible nitric oxide synthase over expression might be involved in hypopigmentary disorders. The aim of this study was to evaluate whether inducible nitric oxide synthase and neuronal nitric oxide synthase expression were modified in vitiligo skin compared to healthy controls. Skin biopsies were obtained from inflammatory/lesional and white/lesional skin in 12 patients with active, non-segmental vitiligo; site-matched biopsies of normal skin from eight patients were used as controls. Nitric oxide synthase isoforms expression was evaluated by confocal laser scanning microscopy and Western Blot analysis. Inducible nitric oxide synthase expression was significantly increased in inflammatory/lesional skin compared to healthy skin; melanocytes showed a moderate neuronal nitric oxide synthase expression in white/lesional skin, demonstrating that metabolic function still goes on. The obtained data demonstrated that vitiligo lesions were characterized by modifications of nitric oxide synthase isoforms, thus confirming the hypothesis that nitric oxide imbalance is involved in vitiligo and supporting the idea that nitric oxide synthase inhibitors might be used as a possible therapeutic approach for the management of vitiligo.
Collapse
Affiliation(s)
- Mario Vaccaro
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| | - Giuseppina Cutroneo
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| | - Giuseppina Rizzo
- Department of Biomedical Sciences and Morpho-Functional Images, University of Messina, I-98125 Messina, Italy.
| | - Federico Vaccaro
- Department of Biomedical Sciences and Morpho-Functional Images, University of Messina, I-98125 Messina, Italy.
| | - Giuseppe P Anastasi
- Department of Biomedical Sciences and Morpho-Functional Images, University of Messina, I-98125 Messina, Italy.
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| | - Serafinella P Cannavò
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| | - Domenica Altavilla
- Department of Biomedical Sciences and Morpho-Functional Images, University of Messina, I-98125 Messina, Italy.
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98124 Messina, Italy.
| |
Collapse
|
13
|
Energetic mitochondrial failing in vitiligo and possible rescue by cardiolipin. Sci Rep 2017; 7:13663. [PMID: 29057950 PMCID: PMC5654478 DOI: 10.1038/s41598-017-13961-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
Vitiligo is characterized by death or functional defects of epidermal melanocytes through still controversial pathogenic process. Previously, we showed that mitochondria-driven pre-senescent phenotype diminishes the capability of vitiligo melanocytes to cope with stressful stimuli. In the current study, we investigated markers of mitochondrial energy metabolism including the PGC1a axis, and then we determined the index of mitochondrial impairment using a cytomic approach. We found in cultured epidermal vitiligo melanocytes, compared to healthy ones, low ATP, increased proton leakage, and altered expression of several glycolytic enzymes (hexokinase II, pyruvic dehydrogenase kinase 1 and pyruvic kinase M2), We suggest that the low ATP production may be sufficient in steady-state conditions but it is unable to cover further needs. We also found in vitiligo melanocyrtes hyper-activation of the PGC1α axis, finalized to counteract the energy defect. Cytomic analysis, supported by MitoTracker Red pattern and ex-vivo immunohistochemistry, suggested an increased mitochondrial mass, possibly useful to ensure the essential ATP level. Finally, pharmacological cardiolipin stabilization reverted the energetic impairment, confirming the initial mitochondrial role. In conclusion, we report new insight in the pathogenetic mechanism of viitligo and indicate that the mitochondrial failure rescue by cardiolipin manipulation may be a new intriguing target in treatment development.
Collapse
|
14
|
Klawitter J, Seres T, Pennington A, Beatty JT, Klawitter J, Christians U. Ablation of Cyclophilin D Results in an Activation of FAK, Akt, and ERK Pathways in the Mouse Heart. J Cell Biochem 2017; 118:2933-2940. [PMID: 28230282 DOI: 10.1002/jcb.25947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Cyclophilin D (CypD) is a mitochondrial chaperone that regulates the mitochondrial permeability transition pore. Metabolically, deletion of Ppif (the gene encoding CypD) in mice is associated with elevated levels of mitochondrial matrix Ca2+ that leads to increased glucose as relative to fatty acid oxidation. Here, we characterized the adaptive mechanisms involved in the regulation of glucose metabolism including the regulation of Akt and ERK kinases that we evaluated by Western blot analysis of Ppif-/- in comparison to wild type (WT) mouse hearts. CypD loss led to adaptive mechanisms in the heart resulting in an upregulation of focal adhesion kinase (phosphorylated at Tyr925) and increased phosphorylation of Akt at S473. The increased activity of this pathway (pAktS473 increased to 170% and 145% in Ppif-/- versus WT males and females, respectively) could be responsible for the observed metabolic switch towards glycolysis. Furthermore, the phosphorylation of ERK1/2 proteins was elevated following CypD ablation. In addition, we observed differences in protein expression and activity in male versus female hearts that were independent of CypD expression. This included an upregulation of pAktS473 (to 273% and 269% in Ppif-/- and WT females as compared to their corresponding males, respectively). Furthermore, decreased levels of endothelial nitric oxide synthase (eNOS) inhibitor asymmetric dimethylarginine were accompanied by an upregulation of eNOS in female mice. The higher extent of kinases phosphorylation may be responsible for the reported lowered tolerance of CypD animals to stress. Moreover, the higher nitric oxide production could be responsible for the cardioprotective properties observed only in female hearts. J. Cell. Biochem. 118: 2933-2940, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jelena Klawitter
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Tamas Seres
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Alexander Pennington
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Jonathan-Thomas Beatty
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
15
|
Bernard K, Logsdon NJ, Miguel V, Benavides GA, Zhang J, Carter AB, Darley-Usmar VM, Thannickal VJ. NADPH Oxidase 4 (Nox4) Suppresses Mitochondrial Biogenesis and Bioenergetics in Lung Fibroblasts via a Nuclear Factor Erythroid-derived 2-like 2 (Nrf2)-dependent Pathway. J Biol Chem 2017; 292:3029-3038. [PMID: 28049732 DOI: 10.1074/jbc.m116.752261] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/29/2016] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial bioenergetics are critical for cellular homeostasis and stress responses. The reactive oxygen species-generating enzyme, NADPH oxidase 4 (Nox4), regulates a number of physiological and pathological processes, including cellular differentiation, host defense, and tissue fibrosis. In this study we explored the role of constitutive Nox4 activity in regulating mitochondrial function. An increase in mitochondrial oxygen consumption and reserve capacity was observed in murine and human lung fibroblasts with genetic deficiency (or silencing) of Nox4. Inhibition of Nox4 expression/activity by genetic or pharmacological approaches resulted in stimulation of mitochondrial biogenesis, as evidenced by elevated mitochondrial-to-nuclear DNA ratio and increased expression of the mitochondrial markers transcription factor A (TFAM), citrate synthase, voltage-dependent anion channel (VDAC), and cytochrome c oxidase subunit 4 (COX IV). Induction of mitochondrial biogenesis was dependent on TFAM up-regulation but was independent of the activation of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). The enhancement of mitochondrial bioenergetics as well as the increase in mitochondrial proteins in Nox4-deficient lung fibroblasts is inhibited by silencing of nuclear factor erythroid-derived 2-like 2 (Nrf2), supporting a key role for Nrf2 in control of mitochondrial biogenesis. Together, these results indicate a critical role for both Nox4 and Nrf2 in counter-regulation of mitochondrial biogenesis and metabolism.
Collapse
Affiliation(s)
- Karen Bernard
- From the Division of Pulmonary, Allergy, and Critical Care Medicine,
| | - Naomi J Logsdon
- From the Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Veronica Miguel
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Gloria A Benavides
- Department of Pathology, and.,Center for Free Radicals Biology and Medicine, University of Alabama at Birmingham and
| | - Jianhua Zhang
- Department of Pathology, and.,Center for Free Radicals Biology and Medicine, University of Alabama at Birmingham and
| | - A Brent Carter
- From the Division of Pulmonary, Allergy, and Critical Care Medicine.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama 35294 and
| | - Victor M Darley-Usmar
- Department of Pathology, and.,Center for Free Radicals Biology and Medicine, University of Alabama at Birmingham and
| | | |
Collapse
|
16
|
Visavadiya NP, Keasey MP, Razskazovskiy V, Banerjee K, Jia C, Lovins C, Wright GL, Hagg T. Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun Signal 2016; 14:32. [PMID: 27978828 PMCID: PMC5159999 DOI: 10.1186/s12964-016-0157-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/06/2016] [Indexed: 01/02/2023] Open
Abstract
Background STAT3 is increasingly becoming known for its non-transcriptional regulation of mitochondrial bioenergetic function upon activation of its S727 residue (S727-STAT3). Lengthy mitochondrial dysfunction can lead to cell death. We tested whether an integrin-FAK-STAT3 signaling pathway we recently discovered regulates mitochondrial function and cell survival, and treatments thereof. Methods Cultured mouse brain bEnd5 endothelial cells were treated with integrin, FAK or STAT3 inhibitors, FAK siRNA, as well as integrin and STAT3 activators. STAT3 null cells were transfected with mutant STAT3 plasmids. Outcome measures included oxygen consumption rate for mitochondrial bioenergetics, Western blotting for protein phosphorylation, mitochondrial membrane potential for mitochondrial integrity, ROS production, and cell counts. Results Vitronectin-dependent mitochondrial basal respiration, ATP production, and maximum reserve and respiratory capacities were suppressed within 4 h by RGD and αvβ3 integrin antagonist peptides. Conversely, integrin ligands vitronectin, laminin and fibronectin stimulated mitochondrial function. Pharmacological inhibition of FAK completely abolished mitochondrial function within 4 h while FAK siRNA treatments confirmed the specificity of FAK signaling. WT, but not S727A functionally dead mutant STAT3, rescued bioenergetics in cells made null for STAT3 using CRISPR-Cas9. STAT3 inhibition with stattic in whole cells rapidly reduced mitochondrial function and mitochondrial pS727-STAT3. Stattic treatment of isolated mitochondria did not reduce pS727 whereas more was detected upon phosphatase inhibition. This suggests that S727-STAT3 is activated in the cytoplasm and is short-lived upon translocation to the mitochondria. FAK inhibition reduced pS727-STAT3 within mitochondria and reduced mitochondrial function in a non-transcriptional manner, as shown by co-treatment with actinomycin. Treatment with the small molecule bryostatin-1 or hepatocyte growth factor (HGF), which indirectly activate S727-STAT3, preserved mitochondrial function during FAK inhibition, but failed in the presence of the STAT3 inhibitor. FAK inhibition induced loss of mitochondrial membrane potential, which was counteracted by bryostatin, and increased superoxide and hydrogen peroxide production. Bryostatin and HGF reduced the substantial cell death caused by FAK inhibition over a 24 h period. Conclusion These data suggest that extracellular matrix molecules promote STAT3-dependent mitochondrial function and cell survival through integrin-FAK signaling. We furthermore show a new treatment strategy for cell survival using S727-STAT3 activators.
Collapse
Affiliation(s)
- Nishant P Visavadiya
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Vladislav Razskazovskiy
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Kalpita Banerjee
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Gary L Wright
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Building 178, Maple Ave, PO Box 70582, Johnson City, TN37614, USA.
| |
Collapse
|
17
|
Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene 2015; 35:1926-42. [PMID: 26119934 PMCID: PMC4486081 DOI: 10.1038/onc.2015.256] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/10/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
Abstract
Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC.
Collapse
|
18
|
Early changes in costameric and mitochondrial protein expression with unloading are muscle specific. BIOMED RESEARCH INTERNATIONAL 2014; 2014:519310. [PMID: 25313365 PMCID: PMC4182083 DOI: 10.1155/2014/519310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/23/2014] [Indexed: 11/25/2022]
Abstract
We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (−23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.
Collapse
|
19
|
Lennon FE, Salgia R. Mitochondrial dynamics: biology and therapy in lung cancer. Expert Opin Investig Drugs 2014; 23:675-92. [PMID: 24654596 DOI: 10.1517/13543784.2014.899350] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Lung cancer mortality rates remain at unacceptably high levels. Although mitochondrial dysfunction is a characteristic of most tumor types, mitochondrial dynamics are often overlooked. Altered rates of mitochondrial fission and fusion are observed in lung cancer and can influence metabolic function, proliferation and cell survival. AREAS COVERED In this review, the authors outline the mechanisms of mitochondrial fission and fusion. They also identify key regulatory proteins and highlight the roles of fission and fusion in metabolism and other cellular functions (e.g., proliferation, apoptosis) with an emphasis on lung cancer and the interaction with known cancer biomarkers. They also examine the current therapeutic strategies reported as altering mitochondrial dynamics and review emerging mitochondria-targeted therapies. EXPERT OPINION Mitochondrial dynamics are an attractive target for therapeutic intervention in lung cancer. Mitochondrial dysfunction, despite its molecular heterogeneity, is a common abnormality of lung cancer. Targeting mitochondrial dynamics can alter mitochondrial metabolism, and many current therapies already non-specifically affect mitochondrial dynamics. A better understanding of mitochondrial dynamics and their interaction with currently identified cancer 'drivers' such as Kirsten-Rat Sarcoma Viral Oncogene homolog will lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Frances E Lennon
- University of Chicago, Department of Medicine, Section of Hematology/Oncology , 5841 S. Maryland Avenue, MC 2115 Chicago, IL 60637 , USA +1 773 702 4399 ; +1 773 834 1798 ;
| | | |
Collapse
|
20
|
Meyer W, Schoennagel B, Kacza J, Busche R, Hornickel IN, Hewicker-Trautwein M, Schnapper A. Keratinization of the esophageal epithelium of domesticated mammals. Acta Histochem 2014; 116:235-42. [PMID: 23948668 DOI: 10.1016/j.acthis.2013.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/12/2013] [Accepted: 07/14/2013] [Indexed: 11/25/2022]
Abstract
We studied the esophageal epithelium for keratinization characteristics from samples of domesticated mammals of three nutrition groups (herbivores: horse, cattle, sheep; omnivores: pig, dog, rat; carnivores: cat) using histochemistry (keratins, disulfides), sulfur measurements, and cryo-SEM. Keratins were found in all esophageal layers of all species, except for the equine Stratum corneum. The positive reaction staining of Pan-keratin was remarkable, but decreased in intensity toward the outer layers, whereas in the pig and cat, staining was confined to the corneal layer. The herbivores revealed positive staining reactions in the upper Stratum spinosum, particularly in the sheep. Regarding single keratins, CK6 immunostating was found in most esophageal layers, but only weakly or negatively in the porcine and equine Stratum corneum. CK13 staining was restricted to the sheep and here was found in all layers. CK14 could be detected in the equine and feline Stratum basale, and upper vital layers of the dog and rat. CK17 appeared only in the Stratum spinosum and Stratum granulosum, but in all layers of the dog and cat. Disulfides reacted strongest in the Stratum corneum of the herbivores, as corroborated by the sulfur concentrations in the esophagus. Our study emphasized that keratins are very important for the mechanical stability of the epithelial cells and cell layers of the mammalian esophagus. The role of these keratins in the esophageal epithelia is of specific interest owing to the varying feed qualities and mechanical loads of different nutrition groups, which have to be countered.
Collapse
|
21
|
Jafri MS. Mechanisms of Myofascial Pain. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:523924. [PMID: 25574501 PMCID: PMC4285362 DOI: 10.1155/2014/523924] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/08/2014] [Accepted: 06/10/2014] [Indexed: 01/17/2023]
Abstract
Myofascial pain syndrome is an important health problem. It affects a majority of the general population, impairs mobility, causes pain, and reduces the overall sense of well-being. Underlying this syndrome is the existence of painful taut bands of muscle that contain discrete, hypersensitive foci called myofascial trigger points. In spite of the significant impact on public health, a clear mechanistic understanding of the disorder does not exist. This is likely due to the complex nature of the disorder which involves the integration of cellular signaling, excitation-contraction coupling, neuromuscular inputs, local circulation, and energy metabolism. The difficulties are further exacerbated by the lack of an animal model for myofascial pain to test mechanistic hypothesis. In this review, current theories for myofascial pain are presented and their relative strengths and weaknesses are discussed. Based on new findings linking mechanoactivation of reactive oxygen species signaling to destabilized calcium signaling, we put forth a novel mechanistic hypothesis for the initiation and maintenance of myofascial trigger points. It is hoped that this lays a new foundation for understanding myofascial pain syndrome and how current therapies work, and gives key insights that will lead to the improvement of therapies for its treatment.
Collapse
Affiliation(s)
- M. Saleet Jafri
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MNS 2A1, Fairfax, VA 22030, USA
| |
Collapse
|
22
|
Meyer W, Kacza J, Hornickel IN, Schoennagel B. Immunolocalization of succinate dehydrogenase in the esophagus epithelium of domesticated mammals. Eur J Histochem 2013; 57:e18. [PMID: 23807297 PMCID: PMC3794344 DOI: 10.4081/ejh.2013.e18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/30/2013] [Accepted: 04/15/2013] [Indexed: 11/23/2022] Open
Abstract
Using immunohistochemistry and transmission electron microscopy (TEM), the esophagus epithelia of seven domesticated mammals (horse, cattle, goat, pig, dog, laboratory rat, cat) of three nutrition groups (herbivorous, omnivorous, carnivorous) were studied to get first information about energy generation, as demonstrated by succinate dehydrogenase (SDH) activities. Distinct reaction intensities could be observed in all esophageal cell layers of the different species studied reflecting moderate to strong metabolic activities. The generally strong staining in the stratum basale indicated that new cells are continuously produced. The latter feature was confirmed by a thick, and in the horse generally highly active stratum spinosum. Only in the pig, reaction intensity variations occurred, obviously related to differences in physical feed quality or restricted feed allocation. The immunohistochemical results were corroborated by the presence of intact mitochondria in the esophageal cells of all species and nutrition types studied, except for the horse. Possible relationships between SDH reaction intensities and feed structure, mass or consistency are discussed.
Collapse
Affiliation(s)
- W Meyer
- Institute for Anatomy, University of Veterinary Medicine Hannover Foundation, 30173 Hannover, Germany.
| | | | | | | |
Collapse
|
23
|
Induction of mitochondrial changes associated with oxidative stress on very long chain fatty acids (C22:0, C24:0, or C26:0)-treated human neuronal cells (SK-NB-E). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:623257. [PMID: 22919440 PMCID: PMC3420217 DOI: 10.1155/2012/623257] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/05/2012] [Indexed: 01/02/2023]
Abstract
In Alzheimer's disease, lipid alterations point towards peroxisomal dysfunctions. Indeed, a cortical accumulation of saturated very long chain fatty acids (VLCFAs: C22:0, C24:0, C26:0), substrates for peroxisomal β-oxidation, has been found in Alzheimer patients. This study was realized to investigate the effects of VLCFAs at the mitochondrial level since mitochondrial dysfunctions play crucial roles in neurodegeneration. On human neuronal SK-NB-E cells treated with C22:0, C24:0, or C26:0 (0.1-20 μM; 48 h), an inhibition of cell growth and mitochondrial dysfunctions were observed by cell counting with trypan blue, MTT assay, and measurement of mitochondrial transmembrane potential (Δψ(m)) with DiOC(6)(3). A stimulation of oxidative stress was observed with DHE and MitoSOX used to quantify superoxide anion production on whole cells and at the mitochondrial level, respectively. With C24:0 and C26:0, by Western blotting, lower levels of mitochondrial complexes III and IV were detected. After staining with MitoTracker and by transmission electron microscopy used to study mitochondrial topography, mass and morphology, major changes were detected in VLCFAs treated-cells: modification of the cytoplasmic distribution of mitochondria, presence of large mitochondria, enhancement of the mitochondrial mass. Thus, VLCFAs can be potential risk factors contributing to neurodegeneration by inducing neuronal damages via mitochondrial dysfunctions.
Collapse
|
24
|
Crane JD, Ogborn DI, Cupido C, Melov S, Hubbard A, Bourgeois JM, Tarnopolsky MA. Massage Therapy Attenuates Inflammatory Signaling After Exercise-Induced Muscle Damage. Sci Transl Med 2012; 4:119ra13. [DOI: 10.1126/scitranslmed.3002882] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Franchini KG. Focal adhesion kinase -- the basis of local hypertrophic signaling domains. J Mol Cell Cardiol 2011; 52:485-92. [PMID: 21749874 DOI: 10.1016/j.yjmcc.2011.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Focal adhesion kinase (FAK), a broadly expressed non-receptor tyrosine kinase which transduces signals from integrins, growth and hormonal factors, is a key player in many fundamental biological processes and functions, including cell adhesion, migration, proliferation and survival. The involvement of FAK in this range of functions supports its role in important aspects of organismal development and disease, such as central nervous system and cardiovascular development, cancer, cardiac hypertrophy and tissue fibrosis. Many functions of FAK are correlated with its tyrosine kinase activity, which is temporally and spatially controlled by complex intra-molecular autoinhibitory conformation and inter-molecular interactions with protein and lipid partners. The inactivation of FAK in mice results in embryonic lethality attributed to the lack of proper development and function of the heart. Accordingly, embryonic FAK myocyte-specific knockout mice display lethal cardiac defects such as thin ventricle wall and ventricular septum defects. Emerging data also support a role for FAK in the reactive hypertrophy and failure of adult hearts. Moreover, the mechanisms that regulate FAK in differentiated cardiac myocytes to biomechanical stress and soluble factors are beginning to be revealed and are discussed here together with data that connect FAK to its downstream effectors. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- K G Franchini
- Department of Internal Medicine, School of Medicine, State University of Campinas, Campinas, Campinas, SP, Brazil.
| |
Collapse
|