1
|
Chen W, Liu Y, Deng X, Li B, Wang H, Wei G, Chen K, Wang S. CYP2C19 Loss-of-Function is an Associated Risk Factor for Premature Coronary Artery Disease: A Case-Control Study. Int J Gen Med 2024; 17:5049-5058. [PMID: 39512259 PMCID: PMC11542493 DOI: 10.2147/ijgm.s486187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
Objective Cytochrome P450 2C19 (CYP2C19) is a major enzyme involved in the biotransformation and metabolism of various substances. Loss-of-function of the CYP2C19 gene represents downregulation of CYP2C19 enzyme indication limited or no enzymatic function, which may be, in turn, associated with some disease susceptibility. The relationship between CYP2C19 polymorphisms and susceptibility to premature coronary artery disease (PCAD) is not fully understood. This study aimed to assess this relationship. Methods This study included 635 PCAD patients, and 548 age-matched non-CAD individuals as controls, from November 2019 to August 2023. The CYP2C19 rs4244285 (681G > A, *2) and rs4986893 (636G > A, *3) were genotyped, and the distribution of CYP2C19 polymorphisms between patients and controls and the relationship between CYP2C19 polymorphisms and PCAD risk were analyzed. Results A total of 442 (37.4%), 543 (45.9%), and 198 (16.7%) individuals had CYP2C19 extensive metabolizer (EM) (*1/*1), intermediate metabolizer (IM) (*1/*2 and *1/*3), and poor metabolizer (PM) (*2/*2, *2/*3, and *3/*3) phenotypes, respectively. CYP2C19 *2/*2 genotype frequency was higher, *1/*1 genotype was lower in PCAD patients than controls. Individuals with CYP2C19 PM phenotype had higher triglyceride (TG) levels than those with CYP2C19 EM or IM phenotypes. Logistic regression analysis showed that body mass index (BMI) ≥24.0 kg/m2 (≥24.0 kg/m2 vs 18.5-23.9 kg/m2, odds ratio (OR): 1.326, 95% confidence interval (CI): 1.041-1.688, p = 0.022), smoking (OR: 1.974, 95% CI: 1.283-3.306, p = 0.002), hypertension (OR: 1.327, 95% CI: 1.044-1.687, p = 0.021), diabetes mellitus (OR: 1.390, 95% CI: 1.054-1.834, p = 0.020), CYP2C19 PM phenotype (PM phenotype vs EM phenotype, OR: 1.701, 95% CI: 1.200-2.411, p = 0.003), and CYP2C19 IM+PM phenotypes (IM+PM vs EM phenotype, OR: 1.369, 95% CI: 1.077-1.740, p = 0.010) were associated with PCAD. Conclusion CYP2C19 PM or IM+PM phenotypes, overweight, smoking, hypertension, and diabetes mellitus were associated with PCAD.
Collapse
Affiliation(s)
- Wenhao Chen
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Yuanliang Liu
- Department of Computer Tomography, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Xunwei Deng
- Research Experimental Center, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Bin Li
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Hao Wang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Guoliang Wei
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Kehui Chen
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Shen Wang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
2
|
Shi Y, Yang Y, Feng M, Wu H. CYP2C19 loss-of-function variants are independent risk factors for premature cerebral infarction: a hospital based retrospective study. BMC Cardiovasc Disord 2024; 24:602. [PMID: 39472784 PMCID: PMC11520391 DOI: 10.1186/s12872-024-04269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVE Cytochrome P450 2C19 (CYP2C19) plays an vital role in the course of cardiovascular and cerebrovascular diseases by affecting lipid metabolism. Triglyceride-glucose (TyG) is a comprehensive index composed of triglyceride and blood glucose, has relationship with some diseases. There was no research report on the association CYP2C19 polymorphisms, TyG with premature cerebral infarction (CI) (onset ≤ 65 years old) susceptibility. METHODS This study retrospectively analyzed 1953 CI patients aged ≤ 65 years old from December 2018 to March 2024, and 1919 age-matched individuals with non-CI as controls. The relationship between CYP2C19 polymorphisms, TyG and premature CI risk were analyzed. RESULTS The proportion of hypertension, and diabetes mellitus in patients with premature CI was higher than those in controls. The serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C), and TyG levels in patients with premature CI were significantly higher than those in controls (all p < 0.05). The patients had lower CYP2C19 *1 allele frequency (63.3% vs. 69.6%, p < 0.001) and higher CYP2C19 *2 allele frequency (31.3% vs. 25.4%, p < 0.001) than controls. Logistic regression analysis showed that smoking history (odds ratio (OR): 1.193, 95% confidence interval (CI): 1.002-1.422, p = 0.048), hypertension (OR: 3.371, 95% CI: 2.914-3.898, p < 0.001), diabetes mellitus (OR: 1.911, 95% CI: 1.632-2.237, p < 0.001), CYP2C19 intermediate metabolizer (IM) + poor metabolizer (PM) phenotypes (OR: 1.424, 95% CI: 1.243-1.631, p < 0.001), and dyslipidemia (OR: 1.294, 95% CI: 1.077-1.554, p = 0.006) were independent risk factors for premature CI. CONCLUSIONS History of smoking, hypertension, diabetes mellitus, dyslipidemia, and CYP2C19 IM + PM phenotypes were independently associated with premature CI susceptibility.
Collapse
Affiliation(s)
- Yuliang Shi
- Department of Neurology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Yuxian Yang
- Department of Neurology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Miaoling Feng
- Department of Neurology, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Heming Wu
- Department of Prenatal Diagnostic Center, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.
| |
Collapse
|
3
|
Han W, Xiong N, Zhong R, Pan Z. CYP2C19 Poor Metabolizer Status and High System Inflammation Response Index are Independent Risk Factors for Premature Myocardial Infarction: A Hospital-Based Retrospective Study. Int J Gen Med 2024; 17:4959-4969. [PMID: 39494358 PMCID: PMC11529344 DOI: 10.2147/ijgm.s489235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Objective Atherosclerosis (AS) is a sustained chronic vascular inflammatory response caused by lipid metabolism disorders and immune response disorders and is the main cause of premature (men ≤ 55 years old, women ≤ 65 years old) myocardial infarction (PMI). Cytochrome P450 2C19 (CYP2C19) (related to vascular function and lipid metabolism) and peripheral immune cell levels and plays an important role in the course of AS. The association CYP2C19 polymorphisms, comprehensive immunoinflammatory indices with PMI susceptibility is unclear. Methods This study included 485 PMI patients, and 639 age-matched non-PMI individuals as controls, from January 2019 to March 2024. The relationship between CYP2C19 polymorphisms, peripheral immunoinflammatory indices (pan-immune inflammation value (PIV), systemic immune inflammation index (SII), and system inflammation response index (SIRI)) and PMI risk were analyzed. Results The inflammatory indices levels in PMI patients were higher than those in controls (all p<0.05). The frequencies of the CYP2C19 *1/*2 and *2/*2 genotypes were higher, while the frequency of the *1/*1 genotype was lower in the PMI patients than those in controls. The cut-off values of TC, TG, LDL-C, PIV, SII, and SIRI were 5.065, 1.305, 2.805, 410.485, 869.645, and 1.495 for distinguishing PMI, respectively. Logistic regression analysis showed that male (odds ratio (OR): 1.607, 95% confidence interval (CI): 1.134-2.277, p=0.008), history of smoking (OR: 7.108, 95% CI: 4.351-11.614, p<0.001), diabetes mellitus (OR: 4.906, 95% CI: 3.333-7.223, p<0.001), CYP2C19 poor metabolizer (PM) (*2/*2, *2/*3, and *3/*3) (OR: 2.147, 95% CI: 1.279-3.603, p=0.004), and high TG (≥1.305 vs <1.305, OR: 2.598, 95% CI: 1.864-3.623, p<0.001) and SIRI level (≥1.495 vs <1.495, OR: 2.495, 95% CI: 1.432-4.349, p=0.001) were independent risk factors for PMI. Conclusion CYP2C19 PM phenotype, high SIRI level (≥1.495) and TG level (≥1.305), male, history of smoking, and diabetes mellitus were independently associated with PMI susceptibility.
Collapse
Affiliation(s)
- Wendao Han
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Renkai Zhong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhongyi Pan
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
4
|
Xu L, Yang Q, Zhou J. Mechanisms of Abnormal Lipid Metabolism in the Pathogenesis of Disease. Int J Mol Sci 2024; 25:8465. [PMID: 39126035 PMCID: PMC11312913 DOI: 10.3390/ijms25158465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Lipid metabolism is a critical component in preserving homeostasis and health, and lipids are significant chemicals involved in energy metabolism in living things. With the growing interest in lipid metabolism in recent years, an increasing number of studies have demonstrated the close relationship between abnormalities in lipid metabolism and the development of numerous human diseases, including cancer, cardiovascular, neurological, and endocrine system diseases. Thus, understanding how aberrant lipid metabolism contributes to the development of related diseases and how it works offers a theoretical foundation for treating and preventing related human diseases as well as new avenues for the targeted treatment of related diseases. Therefore, we discuss the processes of aberrant lipid metabolism in various human diseases in this review, including diseases of the cardiovascular system, neurodegenerative diseases, endocrine system diseases (such as obesity and type 2 diabetes mellitus), and other diseases including cancer.
Collapse
Affiliation(s)
| | | | - Jinghua Zhou
- School of Basic Medicine Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
5
|
Shen X, Li M, Li Y, Jiang Y, Niu K, Zhang S, Lu X, Zhang R, Zhao Z, Zhou L, Guo Z, Wang S, Wei C, Chang L, Hou Y, Wu Y. Bazi Bushen ameliorates age-related energy metabolism dysregulation by targeting the IL-17/TNF inflammatory pathway associated with SASP. Chin Med 2024; 19:61. [PMID: 38594761 PMCID: PMC11005220 DOI: 10.1186/s13020-024-00927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Chronic inflammation and metabolic dysfunction are key features of systemic aging, closely associated with the development and progression of age-related metabolic diseases. Bazi Bushen (BZBS), a traditional Chinese medicine used to alleviate frailty, delays biological aging by modulating DNA methylation levels. However, the precise mechanism of its anti-aging effect remains unclear. In this study, we developed the Energy Expenditure Aging Index (EEAI) to estimate biological age. By integrating the EEAI with transcriptome analysis, we aimed to explore the impact of BZBS on age-related metabolic dysregulation and inflammation in naturally aging mice. METHODS We conducted indirect calorimetry analysis on five groups of mice with different ages and utilized the data to construct EEAI. 12 -month-old C57BL/6 J mice were treated with BZBS or β-Nicotinamide Mononucleotide (NMN) for 8 months. Micro-CT, Oil Red O staining, indirect calorimetry, RNA sequencing, bioinformatics analysis, and qRT-PCR were performed to investigate the regulatory effects of BZBS on energy metabolism, glycolipid metabolism, and inflammaging. RESULTS The results revealed that BZBS treatment effectively reversed the age-related decline in energy expenditure and enhanced overall metabolism, as indicated by the aging index of energy expenditure derived from energy metabolism parameters across various ages. Subsequent investigations showed that BZBS reduced age-induced visceral fat accumulation and hepatic lipid droplet aggregation. Transcriptomic analysis of perirenal fat and liver indicated that BZBS effectively enhanced lipid metabolism pathways, such as the PPAR signaling pathway, fatty acid oxidation, and cholesterol metabolism, and improved glycolysis and mitochondrial respiration. Additionally, there was a significant improvement in inhibiting the inflammation-related arachidonic acid-linoleic acid metabolism pathway and restraining the IL-17 and TNF inflammatory pathways activated via senescence associated secretory phenotype (SASP). CONCLUSIONS BZBS has the potential to alleviate inflammation in metabolic organs of naturally aged mice and maintain metabolic homeostasis. This study presents novel clinical therapeutic approaches for the prevention and treatment of age-related metabolic diseases.
Collapse
Affiliation(s)
- Xiaogang Shen
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Mengnan Li
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
| | - Yawen Li
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Yuning Jiang
- Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Kunxu Niu
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Shixiong Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xuan Lu
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Runtao Zhang
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Zhiqin Zhao
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China
| | - Liangxing Zhou
- Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Zhifang Guo
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
| | - Siwei Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, People's Republic of China
| | - Cong Wei
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Hebei Yiling Hospital, Shijiazhuang, 050091, Hebei Province, People's Republic of China
- Shijiazhuang New Drug Technology Innovation Center of Compound Traditional Chinese Medicine, Shijiazhuang, 050035, People's Republic of China
| | - Liping Chang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China
- Shijiazhuang New Drug Technology Innovation Center of Compound Traditional Chinese Medicine, Shijiazhuang, 050035, People's Republic of China
| | - Yunlong Hou
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China.
| | - Yiling Wu
- Hebei Medical University, Hebei Province, 361 East Zhongshan Road, Shijiazhuang, 050017, People's Republic of China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Zheng T, Ma D, Shi P, Zhang H, Li J, Sun Z. Probiotics Bifidobacterium lactis M8 and Lactobacillus rhamnosus M9 prevent high blood pressure via modulating the gut microbiota composition and host metabolic products. mSystems 2023; 8:e0033123. [PMID: 37855616 PMCID: PMC10734487 DOI: 10.1128/msystems.00331-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Elevated blood pressure affects 40% of the adult population, which accounts for high cardiovascular disease risk and further high mortality yearly. The global understanding of the gut microbiome for hypertension may provide important insights into the prevention. Bifidobacterium lactis M8 and Lactobacillus rhamnosus M9 originated from human breast milk, were able to decrease blood pressure, and modified metabolites in a high fructose-induced elevated blood pressure mouse model. Moreover, we found there was a close relationship between unexplored gut microbes and elevated blood pressure. Also, subsequently, the cross-link was explored among gut microbes, metabolites, and some metabolic pathways in gut microbial environment through introducing novel prediction methodology and bioinformatic analysis. It allowed us to hypothesize that probiotics can prevent elevated blood pressure via gut microbiota and related metabolism.Thus, utilization of dietary strategies (such as probiotics) to maintain the blood pressure level is of crucial importance.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Tingting Zheng
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Da Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Peng Shi
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Jun Li
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
7
|
Dong Z, Li H, Wang Y, Lin S, Guo F, Zhao J, Yao R, Zhu L, Wang W, Buttino I, Qi P, Guo B. Transcriptome profiling reveals the strategy of thermal tolerance enhancement caused by heat-hardening in Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165785. [PMID: 37499827 DOI: 10.1016/j.scitotenv.2023.165785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The thick-shell mussel Mytilus coruscus serves as a common sessile intertidal species and holds economic significance as an aquatic organism. M. coruscus often endure higher temperatures than their ideal range during consecutive low tides in the spring. This exposure to elevated temperatures provides them with a thermal tolerance boost, enabling them to adapt to high-temperature events caused by extreme low tides and adverse weather conditions. This phenomenon is referred to as heat-hardening. Some related studies showed the phenomenon of heat-hardening in sessile intertidal species but not reported at the mechanism level based on transcriptome so far. In this study, physiological experiments, gene family identification and transcriptome sequencing were performed to confirm the thermotolerance enhancement based on heat-hardening and explore the mechanism in M. coruscus. A total of 2935 DEGs were identified and the results of the KEGG enrichment showed that seven heat-hardening relative pathways were enriched, including Toll-like receptor signal pathway, Arachidonic acid metabolism, and others. Then, 24 HSP70 members and 36 CYP2 members, were identified, and the up-regulated members are correlated with increasing thermotolerance. Finally, we concluded that the heat-hardening M. coruscus have a better thermotolerance because of the capability of maintaining the integrity and the phenomenon of vasodilation of the gill under thermal stress. Further, the physiological experiments yielded the same conclusions. Overall, this study confirms the thermotolerance enhancement caused by heat-hardening and reveals the survival strategy in M. coruscus. In addition, the conclusion provides a new reference for studying the intertidal species' heat resistance mechanisms to combat extreme heat events and the strategies for dealing with extreme weather in aquaculture under the global warming trend.
Collapse
Affiliation(s)
- Zhenyu Dong
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Hongfei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan 316021, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Shuangrui Lin
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Feng Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Jiemei Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Ronghui Yao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Li Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Weifeng Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research ISPRA, Via del Cedro n.38, 57122 Livorno, Italy
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan 316021, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China.
| |
Collapse
|
8
|
Xie J, Pan T, Luo W, Zhang S, Fang Y, Xu Z. CYP2C19 *2/*2 Genotype is a Risk Factor for Multi-Site Arteriosclerosis: A Hospital-Based Cohort Study. Int J Gen Med 2023; 16:5139-5146. [PMID: 37954650 PMCID: PMC10637229 DOI: 10.2147/ijgm.s437251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Background Vascular diseases such as atherosclerosis usually affect multiple organs. Genetic factors have a certain proportion in the risk factors of atherosclerosis. The purpose was to investigate the relationship of cytochrome P450 2C19 (CYP2C19) polymorphisms with multi-site atherosclerosis. Methods The study included 410 patients with single-site atherosclerosis and 529 patients with multi-site atherosclerosis. The relationship between CYP2C19 rs4244285 and rs4986893 polymorphisms and single-site atherosclerosis and multi-site atherosclerosis was analyzed. Results The proportion of CYP2C19 rs4244285 A allele (35.9% vs 29.9%, P=0.007) and rs4986893 G allele (97.7% vs 94.8%, P=0.001) in multi-site atherosclerosis group was significantly higher than that in single-site atherosclerosis group. The distribution of CYP2C19 genotypes was significantly different between the two groups (P=0.002). The results of univariate logistic regression indicated that CYP2C19 *1/*3 genotype (*1/*3 vs *1/*1: odds ratio (OR) 0.456, 95% confidence interval (CI): 0.231-0.902, P=0.024) may decrease risk of multi-site atherosclerosis, while *2/*2 genotype (*2/*2 vs *1/*1: OR 1.780, 95% CI: 1.100-2.880, P=0.019) may increase risk of multi-site atherosclerosis. Multivariate logistic regression (adjusted for gender, age, smoking, drinking, hypertension, and diabetes) indicated that CYP2C19 *1/*3 genotype (*1/*3 vs *1/*1: OR 0.459, 95% CI: 0.231-0.909, P=0.026) may be an independent protective factor for multi-site atherosclerosis, while *2/*2 genotype (*2/*2 vs *1/*1: OR 1.767, 95% CI: 1.091-2.864, P=0.021) may be an independent risk factor for multi-site atherosclerosis. Conclusion CYP2C19 *1/*3 genotype may be an independent protective factor for multi-site atherosclerosis, while *2/*2 genotype may be an independent risk factor for multi-site atherosclerosis.
Collapse
Affiliation(s)
- Jieyao Xie
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Tingjun Pan
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Weiwen Luo
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Songsheng Zhang
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Yuquan Fang
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhou Xu
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
9
|
Parchem JG, Fan H, Mann LK, Chen Q, Won JH, Gross SS, Zhao Z, Taegtmeyer H, Papanna R. Fetal metabolic adaptations to cardiovascular stress in twin-twin transfusion syndrome. iScience 2023; 26:107424. [PMID: 37575192 PMCID: PMC10415929 DOI: 10.1016/j.isci.2023.107424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Monochorionic-diamniotic twin pregnancies are susceptible to unique complications arising from a single placenta shared by two fetuses. Twin-twin transfusion syndrome (TTTS) is a constellation of disturbances caused by unequal blood flow within the shared placenta giving rise to a major hemodynamic imbalance between the twins. Here, we applied TTTS as a model to uncover fetal metabolic adaptations to cardiovascular stress. We compared untargeted metabolomic analyses of amniotic fluid samples from severe TTTS cases vs. singleton controls. Amniotic fluid metabolites demonstrated alterations in fatty acid, glucose, and steroid hormone metabolism in TTTS. Among TTTS cases, unsupervised principal component analysis revealed two distinct clusters of disease defined by levels of glucose metabolites, amino acids, urea, and redox status. Our results suggest that the human fetal heart can adapt to hemodynamic stress by modulating its glucose metabolism and identify potential differences in the ability of individual fetuses to respond to cardiovascular stress.
Collapse
Affiliation(s)
- Jacqueline G. Parchem
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lovepreet K. Mann
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The Fetal Center at Children’s Memorial Hermann Hospital, Houston, TX, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jong H. Won
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ramesha Papanna
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Maternal-Fetal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The Fetal Center at Children’s Memorial Hermann Hospital, Houston, TX, USA
| |
Collapse
|
10
|
Shi Y, Yang Y, Feng M, Ling W, Wei T, Cao Y, Zhong R, Wu H. Differences in the Proportion of CYP2C19 Loss-of-Function Between Cerebral Infarction and Coronary Artery Disease Patients. Int J Gen Med 2023; 16:3473-3481. [PMID: 37601806 PMCID: PMC10438470 DOI: 10.2147/ijgm.s420108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Background Cytochrome P450 2C19 (CYP2C19) genotypes and metabolic phenotypes (extensive metabolizer (EM), intermediate metabolizer (IM), and poor metabolizer (PM)) are related to the metabolism of therapeutic drugs for cardiovascular and cerebrovascular diseases. This study aimed to investigate the differences of CYP2C19 gene polymorphism distribution between coronary artery disease (CAD) patients and cerebral infarction (CI) patients. Methods We identified 413 CI patients, 509 CAD patients, and 241 CI+CAD patients from 2016 to 2020 and studied genotypes of CYP2C19 rs4986893 (636G>A) and rs4244285 (681G>A) polymorphisms using PCR-gene chip detection method. Differences in CYP2C19 genotypes and metabolic phenotypes between the groups were compared. To analyze the efficacy of CYP2C19 metabolic phenotypes in discriminating between cerebral infarction and coronary artery disease, multiple logistic regression analysis was conducted after adjusting for gender, age, smoking history, drinking history, hypertension, and diabetes. Results There were significant differences in the distribution of CYP2C19 genotypes and metabolic phenotypes between CI and CAD patients. The results of multivariate logistic regression (adjusted for sex, age, smoking, drinking, hypertension, and diabetes) indicated that CYP2C19 IM phenotype (IM vs EM: OR 1.443, 95% CI: 1.086-1.918, P=0.011) and CYP2C19 IM+PM phenotype (IM or PM vs EM: OR 1.440, 95% CI: 1.100-1.885, P=0.008) may be indicators of CI from CAD. Conclusion CYP2C19 EM metabolic phenotype was dominant in CAD patients, and CYP2C19 IM metabolic phenotype was dominant in CI patients. After adjusting for other confounding factors, patients with the CYP2C19 IM metabolic phenotype were more likely to develop CI than CAD.
Collapse
Affiliation(s)
- Yuliang Shi
- Department of Neurology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Yuxian Yang
- Department of Neurology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Miaoling Feng
- Department of Neurology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Weihan Ling
- Department of Neurology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Tongguo Wei
- Department of Neurology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Yumin Cao
- Department of Neurology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Rui Zhong
- Department of Neurology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Heming Wu
- Center for Precision Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
11
|
Cai N, Li C, Gu X, Zeng W, Zhong J, Liu J, Zeng G, Zhu J, Hong H. CYP2C19 loss-of-function is associated with increased risk of hypertension in a Hakka population: a case-control study. BMC Cardiovasc Disord 2023; 23:185. [PMID: 37024851 PMCID: PMC10080785 DOI: 10.1186/s12872-023-03207-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Genetic factors have a certain proportion in the risk factors of hypertension. The purpose was to investigate the relationship of cytochrome P450 2C19 (CYP2C19) polymorphisms with hypertension in Hakka population. METHODS The study included 1,872 hypertensive patients and 1,110 controls. The genotypes of CYP2C19 rs4244285 and rs4986893 of all individuals were detected and analyzed. RESULTS The genotype and allele distributions of CYP2C19 rs4244285 were significantly different between hypertension group and control group. The CYP2C19 *1/*1 genotype was the most predominant among the subjects (40.8%), followed by the CYP2C19 *1/*2 genotype (40.5%). The percentage of CYP2C19*1, *2, and *3 allele was 64.2%, 30.8%, and 5.0%, respectively. The proportion of intermediate metabolizers (IM) (49.3% vs. 42.9%), poor metabolizers (PM) (14.3% vs. 8.9%) (P < 0.001), and CYP2C19*2 allele (33.8% vs. 25.7%, P < 0.001) in hypertension group was significantly higher than that in control group. Multivariate logistic regression (adjusted for gender, age, smoking, and drinking) indicated that CYP2C19 *1/*2, *1/*3, and *2/*2 genotypes may increase susceptibility to hypertension. And the CYP2C19 IM genotype (IM vs. EM: OR 1.514, 95% CI: 1.291-1.775, P < 0.001), PM genotype (PM vs. EM: OR 2.120, 95% CI: 1.638-2.743, P < 0.001), IM + PM genotypes (IM + PM vs. EM: OR 1.617, 95% CI: 1.390-1.882, P < 0.001) may increase risk of hypertension. CONCLUSIONS CYP2C19 loss-of-function (IM, PM genotypes) is independent risk factor for hypertension susceptibility. Specifically, the risk genotypes include CYP2C19 *1/*2, *1/*3, and *2/*2.
Collapse
Affiliation(s)
- Nan Cai
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China.
- , No. 63 Huangtang Road, Meijiang District, Meizhou, China.
| | - Cunren Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Xianfang Gu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Wenfeng Zeng
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Jiawei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Jingfeng Liu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Guopeng Zeng
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Junxing Zhu
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Haifeng Hong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
12
|
Classes of Lipid Mediators and Their Effects on Vascular Inflammation in Atherosclerosis. Int J Mol Sci 2023; 24:ijms24021637. [PMID: 36675152 PMCID: PMC9863938 DOI: 10.3390/ijms24021637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
It is commonly believed that the inactivation of inflammation is mainly due to the decay or cessation of inducers. In reality, in connection with the development of atherosclerosis, spontaneous decay of inducers is not observed. It is now known that lipid mediators originating from polyunsaturated fatty acids (PUFAs), which are important constituents of all cell membranes, can act in the inflamed tissue and bring it to resolution. In fact, PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are precursors to both pro-inflammatory and anti-inflammatory compounds. In this review, we describe the lipid mediators of vascular inflammation and resolution, and their biochemical activity. In addition, we highlight data from the literature that often show a worsening of atherosclerotic disease in subjects deficient in lipid mediators of inflammation resolution, and we also report on the anti-proteasic and anti-thrombotic properties of these same lipid mediators. It should be noted that despite promising data observed in both animal and in vitro studies, contradictory clinical results have been observed for omega-3 PUFAs. Many further studies will be required in order to clarify the observed conflicts, although lifestyle habits such as smoking or other biochemical factors may often influence the normal synthesis of lipid mediators of inflammation resolution.
Collapse
|
13
|
Bacterial lipoxygenases: Biochemical characteristics, molecular structure and potential applications. Biotechnol Adv 2022; 61:108046. [DOI: 10.1016/j.biotechadv.2022.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
|
14
|
Mandal A. The Focus on Core Genetic Factors That Regulate Hepatic Injury in Cattle Seems to be Important for the Dairy Sector’s Long-Term Development. Vet Med Sci 2022. [DOI: 10.5772/intechopen.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cattle during the perinatal period, as well as malnutrition, generate oxidative stress which leads to high culling rates of calves after calving across the world. Although metabolic diseases have such a negative impact on the welfare and economic value of dairy cattle, that becomes a serious industrial concern across the world. According to research, genetic factors have a role or controlling fat deposition in the liver by influencing the biological processes of hepatic lipid metabolism, insulin resistance, gluconeogenesis, oxidative stress, endoplasmic reticulum stress, and inflammation, all of which contribute to hepatic damage. This review focuses on the critical regulatory mechanisms of VEGF, mTOR/AKT/p53, TNF-alpha, Nf-kb, interleukin, and antioxidants that regulate lipid peroxidation in the liver via direct or indirect pathways, suggesting that they could be a potential critical therapeutic target for hepatic disease.
Collapse
|
15
|
Tudorancea IM, Ciorpac M, Stanciu GD, Caratașu C, Săcărescu A, Ignat B, Burlui A, Rezuș E, Creangă I, Alexa-Stratulat T, Tudorancea I, Tamba BI. The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases. Biomedicines 2022; 10:2492. [PMID: 36289755 PMCID: PMC9599275 DOI: 10.3390/biomedicines10102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
The endocannabinoid system (ECS) dynamically regulates many aspects of mammalian physiology. ECS has gained substantial interest since growing evidence suggests that it also plays a major role in several pathophysiological conditions due to its ability to modulate various underlying mechanisms. Furthermore, cannabinoids, as components of the cannabinoid system (CS), have proven beneficial effects such as anti-inflammatory, immunomodulatory, neuromodulatory, antioxidative, and cardioprotective effects. In this comprehensive review, we aimed to describe the complex interaction between CS and most common age-related diseases such as neuro-degenerative, oncological, skeletal, and cardiovascular disorders, together with the potential of various cannabinoids to ameliorate the progression of these disorders. Since chronic inflammation is postulated as the pillar of all the above-mentioned medical conditions, we also discuss in this paper the potential of CS to ameliorate aging-associated immune system dysregulation.
Collapse
Affiliation(s)
- Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Gabriela Dumitrița Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Cătălin Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Alina Săcărescu
- Department of Medical Specialties II, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității, 700115 Iași, Romania
- Department of Neurology, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa, 700661 Iași, Romania
| | - Bogdan Ignat
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandra Burlui
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Elena Rezuș
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Ioana Creangă
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Teodora Alexa-Stratulat
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Oncology Department, Regional Institute of Oncology, 700483 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| |
Collapse
|
16
|
Sabbir MG, Wigle JT, Taylor CG, Zahradka P. Growth State-Dependent Expression of Arachidonate Lipoxygenases in the Human Endothelial Cell Line EA.hy926. Cells 2022; 11:cells11162478. [PMID: 36010555 PMCID: PMC9406857 DOI: 10.3390/cells11162478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022] Open
Abstract
Endothelial cells regulate vascular homeostasis through the secretion of various paracrine molecules, including bioactive lipids, but little is known regarding the enzymes responsible for generating these lipids under either physiological or pathophysiological conditions. Arachidonate lipoxygenase (ALOX) expression was therefore investigated in confluent and nonconfluent EA.h926 endothelial cells, which represent the normal quiescent and proliferative states, respectively. mRNAs for ALOX15, ALOX15B, and ALOXE3 were detected in EA.hy926 cells, with the highest levels present in confluent cells compared to nonconfluent cells. In contrast, ALOX5, ALOX12, and ALOX12B mRNAs were not detected. At the protein level, only ALOX15B and ALOXE3 were detected but only in confluent cells. ALOXE3 was also observed in confluent human umbilical artery endothelial cells (HUAEC), indicating that its expression, although previously unreported, may be a general feature of endothelial cells. Exposure to laminar flow further increased ALOXE3 levels in EA.hy926 cells and HUAECs. The evidence obtained in this study indicates that proliferative status and shear stress are both important factors that mediate endothelial ALOX gene expression. The presence of ALOX15B and ALOXE3 exclusively in quiescent human endothelial cells suggests their activity likely contributes to the maintenance of a healthy endothelium.
Collapse
Affiliation(s)
- Mohammad G. Sabbir
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Jeffrey T. Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Carla G. Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +204-235-3507; Fax: +204-237-4018
| |
Collapse
|
17
|
Alhashim A, Abdelbary M, Sullivan JC, Naeini SE, Elmarakby AA. Sexual dimorphism in renal heme oxygenase-1 and arachidonic acid metabolizing enzymes in spontaneously hypertensive rats versus normotensive Wistar Kyoto rats. Prostaglandins Other Lipid Mediat 2022; 161:106650. [PMID: 35618157 DOI: 10.1016/j.prostaglandins.2022.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Numerous studies have demonstrated a sexual dimorphism in blood pressure (BP) control in spontaneously hypertensive rats (SHR), however the mechanisms remain to be further elucidated. Based on the established role of arachidonic acid metabolites and heme oxygenase (HO) in BP control, we hypothesize that higher BP in male SHR is associated with differential expression in renal HO and arachidonic acid metabolizing enzymes vs. female SHR. Higher BP in male SHR coincided with significant increases in renal cortical superoxide production and thiobarbituric acid reactive substances (TBARs) levels as measures of oxidative stress compared to normotensive female WKY and female SHR. The elevations in BP and oxidative stress in male SHR were also associated with a decrease in cortical heme oxygenase-1 (HO-1) expression when compared to normotensive female WKY. Although there was no sex or strain differences in cortical expression of the epoxyeicosatrienoic acids (EETs) producing enzyme, cytochrome P450 epoxygenase (CYP2C23), in male and female SHR and WKY, SHR had greater expression of the EETs metabolizing enzyme, soluble epoxide hydrolase (sEH) vs. WKY. Cortical expression of the 20-hydroxyeicosatetraenoic acid (20-HETE) producing enzyme, cytochrome P450 hydroxylase (CYP4A), was less in female WKY and SHR compared to strain-matched males and cortical 20-HETE levels were also less in female SHR vs. male SHR. Cortical cyclooxygenase-2 (COX-2) expression was significantly greater in female SHR and WKY vs. males and cortical prostaglandin E2 (PGE2) levels in female SHR was significantly greater than male WKY. In conclusion, our data suggest that sex differences in renal oxidative stress, HO-1 and arachidonic acid metabolizing enzymes could contribute to sexual dimorphism in hypertension in young SHR.
Collapse
Affiliation(s)
| | - Mahmoud Abdelbary
- Department of Physiology, Augusta University, Augusta, GA 30912, USA
| | | | - Sahar Emami Naeini
- Department of Oral Biology & Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA
| | - Ahmed A Elmarakby
- Department of Oral Biology & Diagnostic Sciences, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|
18
|
Gao L, Kong X, Wu W, Feng Z, Zhi H, Zhang Z, Long H, Lei M, Hou J, Wu W, Guo DA. Dissecting the Regulation of Arachidonic Acid Metabolites by Uncaria rhynchophylla (Miq). Miq. in Spontaneously Hypertensive Rats and the Predictive Target sEH in the Anti-Hypertensive Effect Based on Metabolomics and Molecular Docking. Front Pharmacol 2022; 13:909631. [PMID: 35712719 PMCID: PMC9196077 DOI: 10.3389/fphar.2022.909631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 01/26/2023] Open
Abstract
Uncariarhynchophylla (Miq). Miq. (UR), as a traditional Chinese medicine, was employed in treating hypertension as a safe and effective therapy. The pharmacological properties of UR have characteristics of multiple biological targets and multiple functional pathways. Hypertension is related to impaired metabolic homeostasis and is especially associated with the abnormal regulation of arachidonic acid metabolites, the classical cardiovascular active compounds. This study aimed to examine the anti-hypertensive effect of UR extract (URE) and its regulating role in differential metabolic pathways. The results showed that daily administration of URE at a dose of 4 g crude drug/kg orally could exert hypotensive effects on spontaneously hypertensive rats (SHRs) for 8 weeks. Non-targeted metabolomics analysis of the plasma samples suggested that the anti-hypertension effect of URE in SHRs was associated with the reorganization of the perturbed metabolic network, such as the pathways of glycerophospholipid metabolism, linoleic acid metabolism, and arachidonic acid metabolism. For the targeted metabolomics, twenty-eight arachidonic acid metabolites in SHRs were quantitatively analyzed for the first time based on ultra-high performance liquid chromatography-tandem mass spectrometry method after URE administration. URE restored the functions of these cardiovascular active compounds and rebalanced the dynamics of arachidonic acid metabolic flux. Among them, the inhibition of soluble epoxide hydrolase (sEH) enzyme activity and up-regulation of vasodilators epoxyeicosatrienoic acids (EETs) were identified as contributors to the anti-hypertension effect of URE on SHRs, and sEH represented an attractive and promising drug-binding target of URE. With the molecular docking approach, 13 potential anti-hypertension ingredients as well as sEH inhibitors were discovered, which were worthy of further investigation and verification in future studies.
Collapse
Affiliation(s)
- Lei Gao
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinqin Kong
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenyong Wu
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijin Feng
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haijuan Zhi
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zijia Zhang
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huali Long
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Lei
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jinjun Hou
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Jinjun Hou, ; Wanying Wu,
| | - Wanying Wu
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jinjun Hou, ; Wanying Wu,
| | - De-an Guo
- National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Zhou Y, Khan H, Xiao J, Cheang WS. Effects of Arachidonic Acid Metabolites on Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:12029. [PMID: 34769460 PMCID: PMC8584625 DOI: 10.3390/ijms222112029] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA) is an essential fatty acid that is released by phospholipids in cell membranes and metabolized by cyclooxygenase (COX), cytochrome P450 (CYP) enzymes, and lipid oxygenase (LOX) pathways to regulate complex cardiovascular function under physiological and pathological conditions. Various AA metabolites include prostaglandins, prostacyclin, thromboxanes, hydroxyeicosatetraenoic acids, leukotrienes, lipoxins, and epoxyeicosatrienoic acids. The AA metabolites play important and differential roles in the modulation of vascular tone, and cardiovascular complications including atherosclerosis, hypertension, and myocardial infarction upon actions to different receptors and vascular beds. This article reviews the roles of AA metabolism in cardiovascular health and disease as well as their potential therapeutic implication.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Wai San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| |
Collapse
|
20
|
Hoel F, Hoel A, Pettersen IK, Rekeland IG, Risa K, Alme K, Sørland K, Fosså A, Lien K, Herder I, Thürmer HL, Gotaas ME, Schäfer C, Berge RK, Sommerfelt K, Marti HP, Dahl O, Mella O, Fluge Ø, Tronstad KJ. A map of metabolic phenotypes in patients with myalgic encephalomyelitis/chronic fatigue syndrome. JCI Insight 2021; 6:e149217. [PMID: 34423789 PMCID: PMC8409979 DOI: 10.1172/jci.insight.149217] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease usually presenting after infection. Emerging evidence supports that energy metabolism is affected in ME/CFS, but a unifying metabolic phenotype has not been firmly established. We performed global metabolomics, lipidomics, and hormone measurements, and we used exploratory data analyses to compare serum from 83 patients with ME/CFS and 35 healthy controls. Some changes were common in the patient group, and these were compatible with effects of elevated energy strain and altered utilization of fatty acids and amino acids as catabolic fuels. In addition, a set of heterogeneous effects reflected specific changes in 3 subsets of patients, and 2 of these expressed characteristic contexts of deregulated energy metabolism. The biological relevance of these metabolic phenotypes (metabotypes) was supported by clinical data and independent blood analyses. In summary, we report a map of common and context-dependent metabolic changes in ME/CFS, and some of them presented possible associations with clinical patient profiles. We suggest that elevated energy strain may result from exertion-triggered tissue hypoxia and lead to systemic metabolic adaptation and compensation. Through various mechanisms, such metabolic dysfunction represents a likely mediator of key symptoms in ME/CFS and possibly a target for supportive intervention.
Collapse
Affiliation(s)
| | - August Hoel
- Department of Biomedicine and.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Ingrid G Rekeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kristin Risa
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kine Alme
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Sørland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Alexander Fosså
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,KJ Jebsen Centre for B-cell malignancies, University of Oslo, Oslo, Norway
| | - Katarina Lien
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingrid Herder
- CFS/ME Center, Division of Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Merete E Gotaas
- Department of Pain and Complex Disorders, St. Olav's Hospital, Trondheim, Norway
| | - Christoph Schäfer
- Department of Rehabilitation Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristian Sommerfelt
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics and
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
21
|
Koçancı FG. Role of Fatty Acid Chemical Structures on Underlying Mechanisms of Neurodegenerative Diseases and Gut Microbiota. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Gonca Koçancı
- Vocational High School of Health Services Department of Medical Laboratory Techniques Alanya Alaaddin Keykubat University Alanya/Antalya 07425 Turkey
| |
Collapse
|
22
|
Eicosanoid blood vessel regulation in physiological and pathological states. Clin Sci (Lond) 2021; 134:2707-2727. [PMID: 33095237 DOI: 10.1042/cs20191209] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Arachidonic acid can be metabolized in blood vessels by three primary enzymatic pathways; cyclooxygenase (COX), lipoxygenase (LO), and cytochrome P450 (CYP). These eicosanoid metabolites can influence endothelial and vascular smooth muscle cell function. COX metabolites can cause endothelium-dependent dilation or constriction. Prostaglandin I2 (PGI2) and thromboxane (TXA2) act on their respective receptors exerting opposing actions with regard to vascular tone and platelet aggregation. LO metabolites also influence vascular tone. The 12-LO metabolite 12S-hydroxyeicosatrienoic acid (12S-HETE) is a vasoconstrictor whereas the 15-LO metabolite 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) is an endothelial-dependent hyperpolarizing factor (EDHF). CYP enzymes produce two types of eicosanoid products: EDHF vasodilator epoxyeicosatrienoic acids (EETs) and the vasoconstrictor 20-HETE. The less-studied cross-metabolites generated from arachidonic acid metabolism by multiple pathways can also impact vascular function. Likewise, COX, LO, and CYP vascular eicosanoids interact with paracrine and hormonal factors such as the renin-angiotensin system and endothelin-1 (ET-1) to maintain vascular homeostasis. Imbalances in endothelial and vascular smooth muscle cell COX, LO, and CYP metabolites in metabolic and cardiovascular diseases result in vascular dysfunction. Restoring the vascular balance of eicosanoids by genetic or pharmacological means can improve vascular function in metabolic and cardiovascular diseases. Nevertheless, future research is necessary to achieve a more complete understanding of how COX, LO, CYP, and cross-metabolites regulate vascular function in physiological and pathological states.
Collapse
|
23
|
Kim J, Choe J. A paracrine effect of 15 (S)-hydroxyeicosatetraenoic acid revealed in prostaglandin production by human follicular dendritic cell-like cells. Prostaglandins Other Lipid Mediat 2020; 151:106487. [PMID: 33007445 DOI: 10.1016/j.prostaglandins.2020.106487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
Lipid mediators play active roles in each stage of inflammation under physiological and pathologic conditions. We have investigated the cellular source and functions of several prostanoids in the immune inflammatory responses using follicular dendritic cell (FDC)-like cells. In this study, we report a novel finding on the role of 15(S)- hydroxyeicosatetraenoic acid (HETE). Our observation of 15(S)-HETE uptake by FDC-like cells prompted to hypothesize that 15(S)-HETE might have a regulatory role in the other branch of eicosanoid production. The effects of 15(S)-HETE on COX-2 expression and prostaglandin (PG) production were analyzed by immunoblotting and specific enzyme immunoassays. The addition of 15(S)-HETE resulted in elevated levels of COX-2 expression and PG production. The enhanced PG production was not due to growth stimulation of FDC-like cells since 15(S)-HETE did not modulate FDC-like cell proliferation by the culture period of PG measurement. Peroxisome proliferator-activated receptor gamma (PPARγ) seems to mediate the augmenting activity as the antagonist GW9662 dose- dependently prevented 15(S)-HETE from increasing PG production. In addition, PPARγ protein expression was readily detected in FDC-like cells. These effects of 15(S)-HETE were displayed in the combined addition with IL-1β. Based on these results, we suggest that 15(S)-HETE is an inflammatory costimulator of FDC acting in a paracrine fashion.
Collapse
Affiliation(s)
- Jini Kim
- Institute of Life Sciences, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jongseon Choe
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea.
| |
Collapse
|
24
|
Nikoui V, Mehrzadi S, Khan MI, Aman W, Ostadhadi S, Dehpour AR. Licofelone, a dual cyclooxygenase/5-lipoxygenase inhibitor, reverses endotoxin-induced impaired atrial chronotropic responsiveness to cholinergic stimulation in rats. Eur J Pharmacol 2020; 887:173569. [DOI: 10.1016/j.ejphar.2020.173569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
|
25
|
Serum leukotriene B4 and hydroxyeicosatetraenoic acid in the prediction of pre-eclampsia. Placenta 2020; 103:76-81. [PMID: 33099202 DOI: 10.1016/j.placenta.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Pre-eclampsia (PE) affects 2-8% of pregnancies worldwide. Despite identification of numerous possible biomarkers, accurate prediction and early diagnosis of PE remain challenging. We examined the potential of leukotriene B4 (LTB4) and 15-hydroxyeicosatetraenoic acid (15(S)-HETE) as biomarkers of PE by comparing serum levels at three gestational age (GA) groups between normotensive pregnancies and asymptomatic women who subsequently developed preterm or term-PE. METHODS This is a case-control study drawn from a prospective study of adverse pregnancy outcomes with serum samples collected at 19-24 weeks (n = 48), 30-34 weeks (n = 101) and 35-37 weeks (n = 54) GA. LTB4 and 15(S)-HETE levels were determined by ELISA. Serum level multiples of the median (MoM) were compared between normal and PE-pregnancies. Association between LTB4 and 15(S)-HETE and GA at delivery was investigated with Cox proportional-hazards models. RESULTS Serum LTB4 levels were lower in women of East-Asian ethnicity, higher in women with PE history, and increased with GA in normotensive pregnancies, but not in PE. LTB4 was elevated at 19-24 weeks in women who developed preterm-PE. There was a negative association between LTB4 MoM and interval between sampling and delivery with PE at 19-24 weeks only. Serum 15(S)-HETE levels were not influenced by GA at testing and were elevated in women of South-Asian ethnicity. Median 15(S)-HETE levels were unchanged in preterm and term-PE at any GA. DISCUSSION LTB4 was higher at 19-24 weeks in pregnancies that developed preterm-PE versus unaffected pregnancies, suggesting it is a potentially useful predictive marker of preterm PE in the second trimester.
Collapse
|
26
|
Chen Y, Zhou B, Yu Z, Yuan P, Sun T, Gong J, Zhang Y, Wang T, Wang S, Liu K, Liu J. Baicalein Alleviates Erectile Dysfunction Associated With Streptozotocin-Induced Type I Diabetes by Ameliorating Endothelial Nitric Oxide Synthase Dysfunction, Inhibiting Oxidative Stress and Fibrosis. J Sex Med 2020; 17:1434-1447. [PMID: 32586748 DOI: 10.1016/j.jsxm.2020.04.390] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Management of diabetes mellitus induced-erectile dysfunction (DMED) is challenging because of its poor responses to phosphodiesterase type 5 inhibitors. Increasingly important roles of 12-lipoxygenase (12-LOX) have been proven in diabetes mellitus. AIM To investigate 12-LOX activity and therapeutic effect of its inhibitor, baicalein (BE), on DMED. METHODS Intraperitoneal streptozotocin injection was used to induce type I DM, and an apomorphine test was used to evaluate erectile function. In experiment A, we assessed 12-LOX expression alteration in the corpus cavernosum (CC) of rats with DMED of different levels of severity. In experiment B, rats with DMED were intraperitoneally injected with BE for 4 weeks, and control rats were injected with vehicles. The erectile function was tested by cavernous nerve stimulation before penile tissue was harvested. We performed Western blot, immunohistochemistry, immunofluorescence, Masson trichrome staining, and enzyme-linked immunosorbent assays to measure related proteins in CC. MAIN OUTCOME MEASURE The main outcome measures included rectile response, histologic examination, and expression alteration of related proteins. RESULTS 12-LOX upregulation was associated with the progression of type I DMED. After 4 weeks treatment, compared with the DMED group, the DMED + BE group showed better erectile responses to cavernous nerve stimulation. In the DMED + BE group, significantly enhanced endothelial nitric oxide synthase/nitric oxide/cyclic guanosine monophosphate pathway, reduced 12-LOX expression, and inhibited p38 mitogen-activated protein kinase/arginase II/L-arginine pathway were showed in CC relative to the DMED group. In addition, overactivated oxidative stress and fibrosis in the DMED group were both partially ameliorated in the DMED + BE group. CLINICAL IMPLICATIONS BE may be considered as an effective therapy for DMED, but needs to be verified in future human investigations. STRENGTHS & LIMITATIONS The role of 12-LOX and its inhibitor, BE, is firstly demonstrated in rats with type I DMED. However, the experimental data are derived from animal models with without evidences from cellular-based experiments. CONCLUSION 12-LOX might serve as an important factor in the pathogenesis of type I DMED. BE alleviated erectile dysfunction in rats with type I DMED probably by inhibiting 12-LOX expression, ameliorating endothelial nitric oxide synthase dysfunction, as well as suppressing oxidative stress and fibrosis. Chen Y, Zhou B, Yu Z, et al. Baicalein Alleviates Erectile Dysfunction Associated With Streptozotocin-Induced Type I Diabetes by Ameliorating Endothelial Nitric Oxide Synthase Dysfunction, Inhibiting Oxidative Stress and Fibrosis. J Sex Med 2020;17:1434-1447.
Collapse
Affiliation(s)
- Yinwei Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingyan Zhou
- Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhe Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Penghui Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianan Gong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - JiHong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Chabowski DS, Cohen KE, Abu-Hatoum O, Gutterman DD, Freed JK. Crossing signals: bioactive lipids in the microvasculature. Am J Physiol Heart Circ Physiol 2020; 318:H1185-H1197. [PMID: 32243770 PMCID: PMC7541955 DOI: 10.1152/ajpheart.00706.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The primary function of the arterial microvasculature is to ensure that regional perfusion of blood flow is matched to the needs of the tissue bed. This critical physiological mechanism is tightly controlled and regulated by a variety of vasoactive compounds that are generated and released from the vascular endothelium. Although these substances are required for modulating vascular tone, they also influence the surrounding tissue and have an overall effect on vascular, as well as parenchymal, homeostasis. Bioactive lipids, fatty acid derivatives that exert their effects through signaling pathways, are included in the list of vasoactive compounds that modulate the microvasculature. Although lipids were identified as important vascular messengers over three decades ago, their specific role within the microvascular system is not well defined. Thorough understanding of these pathways and their regulation is not only essential to gain insight into their role in cardiovascular disease but is also important for preventing vascular dysfunction following cancer treatment, a rapidly growing problem in medical oncology. The purpose of this review is to discuss how biologically active lipids, specifically prostanoids, epoxyeicosatrienoic acids, sphingolipids, and lysophospholipids, contribute to vascular function and signaling within the endothelium. Methods for quantifying lipids will be briefly discussed, followed by an overview of the various lipid families. The cross talk in signaling between classes of lipids will be discussed in the context of vascular disease. Finally, the potential clinical implications of these lipid families will be highlighted.
Collapse
Affiliation(s)
- Dawid S. Chabowski
- 1Division of Cardiology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin,2Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Katie E. Cohen
- 1Division of Cardiology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin,2Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ossama Abu-Hatoum
- 4Department of Surgery, HaEmek Medical Center, Technion Medical School, Haifa, Israel
| | - David D. Gutterman
- 1Division of Cardiology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin,2Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julie K. Freed
- 2Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin,3Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
28
|
Walser M, Svensson J, Karlsson L, Motalleb R, Åberg M, Kuhn HG, Isgaard J, Åberg ND. Growth Hormone and Neuronal Hemoglobin in the Brain-Roles in Neuroprotection and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2020; 11:606089. [PMID: 33488521 PMCID: PMC7821093 DOI: 10.3389/fendo.2020.606089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, evidence for hemoglobin (Hb) synthesis in both animal and human brains has been accumulating. While circulating Hb originating from cerebral hemorrhage or other conditions is toxic, there is also substantial production of neuronal Hb, which is influenced by conditions such as ischemia and regulated by growth hormone (GH), insulin-like growth factor-I (IGF-I), and other growth factors. In this review, we discuss the possible functions of circulating and brain Hb, mainly the neuronal form, with respect to the neuroprotective activities of GH and IGF-I against ischemia and neurodegenerative diseases. The molecular pathways that link Hb to the GH/IGF-I system are also reviewed, although the limited number of reports on this topic suggests a need for further studies. In summary, GH and/or IGF-I appear to be significant determinants of systemic and local brain Hb concentrations through mediating responses to oxygen and metabolic demand, as part of the neuroprotective effects exerted by GH and IGF-I. The nature and quantity of the latter deserve further exploration in specific experiments.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Marion Walser,
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Karlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Reza Motalleb
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maria Åberg
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- School of Public Health and Community Medicine at University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Institute for Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - N David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
29
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
30
|
Bastounis EE, Yeh YT, Theriot JA. Subendothelial stiffness alters endothelial cell traction force generation while exerting a minimal effect on the transcriptome. Sci Rep 2019; 9:18209. [PMID: 31796790 PMCID: PMC6890669 DOI: 10.1038/s41598-019-54336-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells respond to changes in subendothelial stiffness by altering their migration and mechanics, but whether those responses are due to transcriptional reprogramming remains largely unknown. We measured traction force generation and also performed gene expression profiling for two endothelial cell types grown in monolayers on soft or stiff matrices: primary human umbilical vein endothelial cells (HUVEC) and immortalized human microvascular endothelial cells (HMEC-1). Both cell types respond to changes in subendothelial stiffness by increasing the traction stresses they exert on stiffer as compared to softer matrices, and exhibit a range of altered protein phosphorylation or protein conformational changes previously implicated in mechanotransduction. However, the transcriptome has only a minimal role in this conserved biomechanical response. Only few genes were differentially expressed in each cell type in a stiffness-dependent manner, and none were shared between them. In contrast, thousands of genes were differentially regulated in HUVEC as compared to HMEC-1. HUVEC (but not HMEC-1) upregulate expression of TGF-β2 on stiffer matrices, and also respond to application of exogenous TGF-β2 by enhancing their endogenous TGF-β2 expression and their cell-matrix traction stresses. Altogether, these findings provide insights into the relationship between subendothelial stiffness, endothelial mechanics and variation of the endothelial cell transcriptome, and reveal that subendothelial stiffness, while critically altering endothelial cells’ mechanical behavior, minimally affects their transcriptome.
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195-1800, USA
| | - Yi-Ting Yeh
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195-1800, USA.
| |
Collapse
|
31
|
Kim HJ, Yin MZ, Cho S, Kim SE, Choi SW, Ye SK, Yoo HY, Kim SJ. Increased inward rectifier K + current of coronary artery smooth muscle cells in spontaneously hypertensive rats; partial compensation of the attenuated endothelium-dependent relaxation via Ca 2+ -activated K + channels. Clin Exp Pharmacol Physiol 2019; 47:38-48. [PMID: 31444788 DOI: 10.1111/1440-1681.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 11/28/2022]
Abstract
Endothelium-dependent vasorelaxation is partly mediated by small-conductance (SK3) and intermediate-conductance Ca2+ -activated K+ channels (SK4) in the endothelium that results in endothelium-dependent hyperpolarization (EDH). Apart from the electrical propagation through myoendothelial gap junctions, the K+ released from the endothelium facilitates EDH by increasing inward rectifier K+ channel (Kir) conductance in smooth muscle cells. The EDH-dependent relaxation of coronary artery (CA) and Kir current in smooth muscle cells (CASMCs) of hypertensive animals are poorly understood despite the critical role of coronary flow in the hypertrophic heart. In spontaneously hypertensive (SHR) and control (WKY) rats, we found attenuation of the CA relaxation by activators of SK3 and SK4 (NS309 and 1-EBIO) in SHR. In isolated CASMCs, whole-cell patch-clamp study revealed larger IKir in SHR than WKY, whereas the myocytes of skeletal and cerebral arteries showed smaller IKir in SHR than WKY. While the treatment with IKir inhibitor (0.1 mmol/L Ba2+ ) alone did not affect the WKY-CA, the SHR-CA showed significant contractile response, suggesting relaxing influence of the higher IK ir in the CASMCs of SHR. Furthermore, the attenuation of NS309-induced relaxation of CA by the combined treatment with 0.1 mmol/L Ba2+ was more prominent in SHR than WKY. Our study firstly shows a distinct increase of IK ir in the CASMCs of SHR, which could partly compensate for the attenuated relaxation via endothelial SK3 and SK4.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ming Zhe Yin
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Suhan Cho
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Eun Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Woo Choi
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Kyu Ye
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Tandem 13-Lipoxygenase Genes in a Cluster Confers Yellow-Green Leaf in Cucumber. Int J Mol Sci 2019; 20:ijms20123102. [PMID: 31242619 PMCID: PMC6628033 DOI: 10.3390/ijms20123102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 11/21/2022] Open
Abstract
Some lipoxygenase (LOX) isoenzymes can co-oxidize carotenoids. Carotenoids are collectors of light energy for photosynthesis and can protect plants from reactive oxygen species and coloration. This study isolated the cucumber (Cucumis sativus L.) yellow-green leaf mutant (ygl1), which had yellow-green leaves with decreased chlorophyll synthesis, increased relative carotenoid content, and delayed chloroplast development. Genetic analysis demonstrated that the phenotype of ygl1 was caused by a recessive mutation in a nuclear gene. The bulked segregants were resequenced, and the candidate ygl1 locus identified was mapped to the 9.2 kb region of the chromosome 4. Sequence analysis revealed that ygl1 encodes the tandem 13-LOX genes in a cluster. Four missense mutations were found in four tandem 13-LOX genes (Csa4M286960, Csa4M287550, Csa4M288070, and Csa4M288080) in the ygl1 mutant, and the four 13-LOX genes showed high similarity with one another. The transient RNA interference and virus-induced gene silencing of these genes simultaneously resulted in yellow-green leaves with a reduced amount of chloroplasts and increased relative carotenoid content, which were observed in the ygl1 mutant. This evidence supported the non-synonymous SNPs (Single Nucleotide Polymorphism) in the four tandem 13-LOX genes as being the causative mutation for the yellow-green leaves. Furthermore, this study provides a new allele for breeding cucumbers with yellow-green leaves and serves as an additional resource for studying carotenoid biosynthesis.
Collapse
|
33
|
Yajima S, Miyagawa S, Fukushima S, Sakai Y, Iseoka H, Harada A, Isohashi K, Horitsugi G, Mori Y, Shiozaki M, Ohkawara H, Sakaniwa R, Hatazawa J, Yoshioka Y, Sawa Y. Prostacyclin Analogue-Loaded Nanoparticles Attenuate Myocardial Ischemia/Reperfusion Injury in Rats. JACC Basic Transl Sci 2019; 4:318-331. [PMID: 31312756 PMCID: PMC6609885 DOI: 10.1016/j.jacbts.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 11/21/2022]
Abstract
Intravenously injected ONO-1301–containing nanoparticles selectively accumulated in the ischemic border area of the myocardium. Prominent up-regulation occurred of proangiogenic cytokines such as vascular endothelial growth factor and angiopoietin-1 in the ischemic myocardium, which may have contributed to the preservation of the native vascular and capillary networks, thus preserving regional myocardial blood flow. Down-regulation of the proinflammatory cytokines interleukin-1β, interleukin-6, and tumor necrosis factor-α in the ischemic myocardium might have led to the attenuation of myocyte swelling and the suppression of the endothelial bleb formation, also contributing to the preservation of myocardial blood flow or the reduced infarct size.
Intravenously injected ONO-1301–containing nanoparticles (ONO-1301NPs), unlike an ONO-1301 solution, selectively accumulated in the ischemia/reperfusion (I/R)-injured myocardium of rats and contributed to the prolonged retention of ONO-1301 in the targeted myocardial tissue. In the ischemic area, proangiogenic cytokines were up-regulated and inflammatory cytokines were down-regulated upon ONO-1301NP administration. Consequently, ONO-1301NP–injected rats exhibited a smaller infarct size, better-preserved capillary networks, and a better-preserved myocardial blood flow at 24 h after I/R injury, compared with those in vehicle-injected or ONO-1301 solution–injected rats. ONO-1301NPs attenuate the myocardial I/R injury via proangiogenic and anti-inflammatory effects of the drug.
Collapse
Key Words
- ANG, angiopoietin
- EPR, enhanced permeability and retention
- I/R, ischemia/reperfusion
- IL, interleukin
- MBF, myocardial blood flow
- MRI, magnetic resonance imaging
- NP, nanoparticle
- ONO-1301
- PET, positron emission tomography
- PMNL, polymorphonuclear leukocyte
- VEGF, vascular endothelial growth factor
- ischemia/reperfusion injury
- nanoparticles
- prostacyclin
Collapse
Affiliation(s)
- Shin Yajima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sakai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Iseoka
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kayako Isohashi
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Genki Horitsugi
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Mori
- Department of Biofunctional Imaging Laboratory, Immunology Frontier Research Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Motoko Shiozaki
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirotatsu Ohkawara
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoto Sakaniwa
- Department of Public Health, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshichika Yoshioka
- Department of Biofunctional Imaging Laboratory, Immunology Frontier Research Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
34
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
35
|
Soloviev AI, Kizub IV. Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochem Pharmacol 2018; 159:121-139. [PMID: 30508525 DOI: 10.1016/j.bcp.2018.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Ionizing radiation (IR) leads to a variety of the cardiovascular diseases, including the arterial hypertension. A number of studies have demonstrated that blood vessels represent important target for IR, and the endothelium is one of the most vulnerable components of the vascular wall. IR causes an inhibition of nitric oxide (NO)-mediated endothelium-dependent vasodilatation and generation of reactive oxygen (ROS) and nitrogen (RNS) species trigger this process. Inhibition of NO-mediated vasodilatation could be due to endothelial NO synthase (eNOS) down-regulation, inactivation of endothelium-derived NO, and abnormalities in diffusion of NO from the endothelial cells (ECs) leading to a decrease in NO bioavailability. Beside this, IR suppresses endothelial large conductance Ca2+-activated K+ channels (BKCa) activity, which control NO synthesis. IR also leads to inhibition of the BKCa current in vascular smooth muscle cells (SMCs) which is mediated by protein kinase C (PKC). On the other hand, IR-evoked enhanced vascular contractility may result from PKC-mediated increase in SMCs myofilament Ca2+ sensitivity. Also, IR evokes vascular wall inflammation and atherosclerosis development. Vascular function damaged by IR can be effectively restored by quercetin-filled phosphatidylcholine liposomes and mesenchymal stem cells injection. Using RNA-interference technique targeted to different PKC isoforms can also be a perspective approach for pharmacological treatment of IR-induced vascular dysfunction.
Collapse
Affiliation(s)
- Anatoly I Soloviev
- Department of Pharmacology of Cellular Signaling Systems and Experimental Therapy, Institute of Pharmacology and Toxicology, National Academy of Medical Sciences of Ukraine, 14 Eugene Pottier Street, Kiev 03068, Ukraine
| | - Igor V Kizub
- Department of Pharmacology, New York Medical College, 15 Dana Road, Valhalla 10595, NY, United States.
| |
Collapse
|
36
|
Elfaki I, Mir R, Almutairi FM, Duhier FMA. Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac J Cancer Prev 2018; 19:2057-2070. [PMID: 30139042 PMCID: PMC6171375 DOI: 10.22034/apjcp.2018.19.8.2057] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytochromes P450s (CYPs) constitute a superfamily of enzymes that catalyze the metabolism of drugs and other substances. Endogenous substrates of CYPs include eicosanoids, estradiol, arachidonic acids, cholesterol, vitamin D and neurotransmitters. Exogenous substrates of CYPs include the polycyclic aromatic hydrocarbons and about 80% of currently used drugs. Some isoforms can activate procarcinogens to ultimate carcinogens. Genetic polymorphisms of CYPs may affect the enzyme catalytic activity and have been reported among different populations to be associated with various diseases and adverse drug reactions. With regard of drug metabolism, phenotypes for CYP polymorphism range from ultrarapid to poor metabolizers. In this review, we discuss some of the most clinically important CYPs isoforms (CYP2D6, CYP2A6, CYP2C19, CYP2C9, CYP1B1 and CYP1A2) with respect to gene polymorphisms and drug metabolism. Moreover, we review the role of CYPs in renal, lung, breast and prostate cancers and also discuss their significance for atherosclerosis and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
37
|
Soto ME, Guarner-Lans V, Herrera-Morales KY, Pérez-Torres I. Participation of Arachidonic Acid Metabolism in the Aortic Aneurysm Formation in Patients with Marfan Syndrome. Front Physiol 2018; 9:77. [PMID: 29483877 PMCID: PMC5816394 DOI: 10.3389/fphys.2018.00077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
Marfan syndrome (MFS) is a pleiotropic genetic disease involving the cardiovascular system where a fibrillin-1 mutation is present. This mutation is associated with accelerated activation of transforming growth factor β (TGFβ1) which contributes to the formation of aneurysms in the root of the aorta. There is an imbalance in the synthesis of thromboxane A2 (TXA2) and prostacyclin, that is a consequence of a differential protein expression of the isoforms of cyclooxygenases (COXs), suggesting an alteration of arachidonic acid (AA) metabolism. The aim of this study was to analyze the participation of AA metabolism associated with inflammatory factors in the dilation and dissection of the aortic aneurysm in patients with MFS. A decrease in AA (p = 0.02), an increase in oleic acid (OA), TGFβ1, tumor necrosis factor alpha (TNFα), prostaglandin E2 (PGE2) (p < 0.05), and COXs activity (p = 0.002) was found. The expressions of phospholipase A2 (PLA2), cytochrome P450 (CYP450 4A), 5-lipoxygenase (5-LOX), COX2 and TXA2R (p < 0.05) showed a significant increase in the aortic aneurysm of patients with MFS compared to control subjects. COX1, 6-keto-prostaglandin 1 alpha (6-keto-PG1α) and 8-isoprostane did not show significant changes. Histological examination of the aortas showed an increase of cystic necrosis, elastic fibers and collagen in MFS. The results suggest that there are inflammatory factors coupled to genetic factors that predispose to aortic endothelial dysfunction in the aortic tissue of patients with MFS. There is a decrease in the percentage of AA, associated with an increase of PLA2, COX2/TXA2R, CYP450 4A, and 5-LOX which leads to a greater synthesis of PGE2 than of 6-keto-PGF1α, thus contributing to the formation of the aortic aneurysm. The evident loss of the homeostasis in these mechanisms confirms that there is a participation of the AA pathway in the aneurysm progression in MFS.
Collapse
Affiliation(s)
- María E Soto
- Department of Immunology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Karla Y Herrera-Morales
- Cardiothoracic Surgery, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| |
Collapse
|
38
|
Manicam C, Ginter N, Li H, Xia N, Goloborodko E, Zadeh JK, Musayeva A, Pfeiffer N, Gericke A. Compensatory Vasodilator Mechanisms in the Ophthalmic Artery of Endothelial Nitric Oxide Synthase Gene Knockout Mice. Sci Rep 2017; 7:7111. [PMID: 28769073 PMCID: PMC5541003 DOI: 10.1038/s41598-017-07768-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/29/2017] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) plays an important role in the maintenance of ocular vascular homeostasis. Therefore, perturbations in vascular NO synthesis have been implicated in the pathogenesis of several ocular diseases. We recently reported that eNOS contributes significantly to vasodilation of the mouse ophthalmic artery. Interestingly, dilatory responses were also retained in eNOS gene-deficient mice (eNOS-/-), indicating inherent endothelial adaptive mechanism(s) that act as back-up systems in chronic absence of eNOS to preserve vasorelaxation. Thus, this study endeavoured to identify the compensatory mechanism(s) in the ophthalmic artery of eNOS-/- mice employing isolated arterial segments and pharmacological inhibitors in vitro. Endothelium removal virtually abolished acetylcholine (ACh)-induced vasodilation, suggesting an obligatory involvement of the endothelium in cholinergic control of vascular tone. However, non-NOS and non-cyclooxygenase components compensate for eNOS deficiency via endothelium-derived hyperpolarizing factors (EDHFs). Notably, arachidonic acid-derived metabolites of the 12-lipoxygenase pathway were key mediators in activating the inwardly rectifying potassium channels to compensate for chronic lack of eNOS. Conclusively, endothelium-dependent cholinergic responses of the ophthalmic artery in the eNOS-/- mice are largely preserved and, this vascular bed has the ability to compensate for the loss of normal vasodilator responses solely via EDHFs.
Collapse
Affiliation(s)
- Caroline Manicam
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Natalja Ginter
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Huige Li
- Institute of Pharmacology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ning Xia
- Institute of Pharmacology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Evgeny Goloborodko
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Aytan Musayeva
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
39
|
Siangjong L, Goldman DH, Kriska T, Gauthier KM, Smyth EM, Puli N, Kumar G, Falck JR, Campbell WB. Vascular hepoxilin and trioxilins mediate vasorelaxation through TP receptor inhibition in mouse arteries. Acta Physiol (Oxf) 2017; 219:188-201. [PMID: 26666460 DOI: 10.1111/apha.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/04/2015] [Accepted: 12/08/2015] [Indexed: 01/12/2023]
Abstract
AIM 12/15-lipoxygenase (12/15-LO) metabolizes arachidonic acid (AA) into several vasoactive eicosanoids. In mouse arteries, we previously characterized the enzyme's 15-LO metabolites 12(S)-hydroxyeicosatetraenoic acid (HETE), 15-HETE, hydroxyepoxyeicosatrienoic acids (HEETAs) and 11,12,15-trihydroxyeicosatrienoic acids (11,12,15-THETAs) as endothelium-derived relaxing factors. However, the observed 12-LO metabolites remained uncharacterized. The purpose of this study was to determine the structure and biological functions of eicosanoids generated by the enzyme's 12-LO activity. METHODS Metabolites extracted from aortas of C57BL/6 male mice were separated using a series of reverse and normal phase chromatographic steps and identified as hepoxilin A3 , trioxilin A3 and trioxilin C3 by mass spectrometry. Activities of these natural compounds were tested on isometric tension and intracellular calcium release. The role of thromboxane (TP) receptor was determined in HEK293 cells overexpressing TPα receptor (TPα -HEK). RESULTS All identified vascular 12-LO metabolites were biologically active. In mouse mesenteric arteries, trioxilin A3 , C3 and hepoxilin A3 (3 μm) relaxed arteries constricted with the thromboxane mimetic, U46619-constricted arteries (maximum relaxations of 78.9 ± 3.2, 29.7 ± 4.6, 82.2 ± 5.0 and 88.0 ± 2.4% respectively), but not phenylephrine-constricted arteries. In TPα-HEK cells, trioxilin A3 , C3 and hepoxilin A3 (10 μm) inhibited U46619 (10 nM)-induced increases in intracellular calcium by 53.0 ± 7.2%, 32.8 ± 5.0% and 37.9 ± 13.5% respectively. In contrast, trioxilin B3 and hepoxilin B3 were not synthesized in arteries and exhibited little biological activity. CONCLUSION Trioxilin A3 and C3 and hepoxilin A3 are endogenous vascular relaxing factors. They are not endothelium-derived hyperpolarizing factors but mediate vascular relaxation by inhibiting TP agonist-induced increases in intracellular calcium. Thus, they regulate vascular homeostasis by acting as endogenous TP antagonists.
Collapse
Affiliation(s)
- L. Siangjong
- Department of Pharmacology and Toxicology; Medical College of Wisconsin; Milwaukee WI USA
- Faculty of Pharmacy; Silpakorn University; Nakorn Pathom Thailand
| | - D. H. Goldman
- Department of Pharmacology and Toxicology; Medical College of Wisconsin; Milwaukee WI USA
| | - T. Kriska
- Department of Pharmacology and Toxicology; Medical College of Wisconsin; Milwaukee WI USA
| | - K. M. Gauthier
- Department of Pharmacology and Toxicology; Medical College of Wisconsin; Milwaukee WI USA
| | - E. M. Smyth
- Department of Pharmacology; University of Pennsylvania; Philadelphia PA USA
| | - N. Puli
- Department of Biochemistry; University of Texas Southwestern Medical Center; Dallas TX USA
| | - G. Kumar
- Department of Biochemistry; University of Texas Southwestern Medical Center; Dallas TX USA
| | - J. R. Falck
- Department of Biochemistry; University of Texas Southwestern Medical Center; Dallas TX USA
| | - W. B. Campbell
- Department of Pharmacology and Toxicology; Medical College of Wisconsin; Milwaukee WI USA
| |
Collapse
|
40
|
Armstrong M, van Hoorebeke C, Horn T, Deschamps J, Freedman JC, Kalyanaraman C, Jacobson MP, Holman T. Human 15-LOX-1 active site mutations alter inhibitor binding and decrease potency. Bioorg Med Chem 2016; 24:5380-5387. [PMID: 27647374 DOI: 10.1016/j.bmc.2016.08.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
Abstract
Human 15-lipoxygenase-1 (h15-LOX-1 or h12/15-LOX) reacts with polyunsaturated fatty acids and produces bioactive lipid derivatives that are implicated in many important human diseases. One such disease is stroke, which is the fifth leading cause of death and the first leading cause of disability in America. The discovery of h15-LOX-1 inhibitors could potentially lead to novel therapeutics in the treatment of stroke, however, little is known about the inhibitor/active site interaction. This study utilizes site-directed mutagenesis, guided in part by molecular modeling, to gain a better structural understanding of inhibitor interactions within the active site. We have generated eight mutants (R402L, R404L, F414I, F414W, E356Q, Q547L, L407A, I417A) of h15-LOX-1 to determine whether these active site residues interact with two h15-LOX-1 inhibitors, ML351 and an ML094 derivative, compound 18. IC50 values and steady-state inhibition kinetics were determined for the eight mutants, with four of the mutants affecting inhibitor potency relative to wild type h15-LOX-1 (F414I, F414W, E356Q and L407A). The data indicate that ML351 and compound 18, bind in a similar manner in the active site to an aromatic pocket close to F414 but have subtle differences in their specific binding modes. This information establishes the binding mode for ML094 and ML351 and will be leveraged to develop next-generation inhibitors.
Collapse
Affiliation(s)
- Michelle Armstrong
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Christopher van Hoorebeke
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Thomas Horn
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Joshua Deschamps
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - J Cody Freedman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94143, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94143, United States
| | - Theodore Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|
41
|
Chadderdon SM, Belcik JT, Bader L, Peters DM, Kievit P, Alkayed NJ, Kaul S, Grove KL, Lindner JR. Temporal Changes in Skeletal Muscle Capillary Responses and Endothelial-Derived Vasodilators in Obesity-Related Insulin Resistance. Diabetes 2016; 65:2249-57. [PMID: 27207517 PMCID: PMC4955987 DOI: 10.2337/db15-1574] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/05/2016] [Indexed: 12/18/2022]
Abstract
The inability of insulin to increase skeletal muscle capillary blood volume (CBV) reduces glucose uptake in insulin resistance (IR). We hypothesized that abnormalities in endothelial-derived vasodilator pathways are temporally associated with the development of IR and an impaired ability to increase skeletal muscle CBV. A comprehensive metabolic and vascular screening assessment was performed on 10 adult rhesus macaques at baseline and every 4-6 months for 2 years after starting a high-fat diet supplemented with fructose. Diet changes resulted in an 80% increase in truncal fat by 4 months. Hyperinsulinemia and decreased glucose utilization were observed from 4 to 18 months. At 24 months, pancreatic secretory function and the glucose utilization rate declined. CBV at rest and during an intravenous glucose tolerance test demonstrated a sustained increase from 4 to 18 months and then abruptly fell at 24 months. Nitric oxide bioavailability progressively decreased over 2 years. Conversely, endothelial-derived vasodilators progressively increased over 18 months and then abruptly decreased at 24 months in concert with the CBV. The increase in basal and glucose-mediated CBV early in IR may represent a compensatory response through endothelial-derived vasodilator pathways. The inability to sustain a vascular compensatory response limits glucose-mediated increases in CBV, which correlates with the severity of IR.
Collapse
Affiliation(s)
- Scott M Chadderdon
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Lindsay Bader
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Dawn M Peters
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Paul Kievit
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Nabil J Alkayed
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| | - Kevin L Grove
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
42
|
Fukushima S, Miyagawa S, Sakai Y, Sawa Y. A sustained-release drug-delivery system of synthetic prostacyclin agonist, ONO-1301SR: a new reagent to enhance cardiac tissue salvage and/or regeneration in the damaged heart. Heart Fail Rev 2016; 20:401-13. [PMID: 25708182 PMCID: PMC4464640 DOI: 10.1007/s10741-015-9477-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac failure is a major cause of mortality and morbidity worldwide, since the standard treatment for cardiac failure in the clinical practice is chiefly to focus on removal of insults against the heart or minimisation of additional factors to exacerbate cardiac failure, but not on regeneration of the damaged cardiac tissue. A synthetic prostacyclin agonist, ONO-1301, has been developed as a long-acting drug for acute and chronic pathologies related to regional ischaemia, inflammation and/or interstitial fibrosis by pre-clinical studies. In addition, poly-lactic co-glycolic acid-polymerised form of ONO-1301, ONO-1301SR, was generated to achieve a further sustained release of this drug into the targeted region. This unique reagent has been shown to act on fibroblasts, vascular smooth muscle cells and endothelial cells in the tissue via the prostaglandin IP receptor to exert paracrinal release of multiple protective factors, such as hepatocyte growth factor, vascular endothelial growth factor or stromal cell-derived factor-1, into the adjacent damaged tissue, which is salvaged and/or regenerated as a result. Our laboratory developed a new surgical approach to treat acute and chronic cardiac failure using a variety of animal models, in which ONO-1301SR is directly placed over the cardiac surface to maximise the therapeutic effects and minimise the systemic complications. This review summarises basic and pre-clinical information of ONO-1301 and ONO-1301SR as a new reagent to enhance tissue salvage and/or regeneration, with a particular focus on the therapeutic effects on acute and chronic cardiac failure and underlying mechanisms, to explore a potential in launching the clinical study.
Collapse
Affiliation(s)
- Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan,
| | | | | | | |
Collapse
|
43
|
Long A, Ma S, Li Q, Lin N, Zhan X, Lu S, Zhu Y, Jiang L, Tan L. Association between the maternal serum levels of 19 eicosanoids and pre-eclampsia. Int J Gynaecol Obstet 2016; 133:291-6. [PMID: 27039049 DOI: 10.1016/j.ijgo.2015.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 10/10/2015] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate whether serum levels of 19 eicosanoids are associated with pre-eclampsia. METHODS A case-control study was performed using data for pregnant women with pre-eclampsia, normotensive pregnant women, and nonpregnant women, for all of whom serum samples had been collected at a hospital in Shanghai, China, between December 2012 and December 2013. Ultra-performance liquid chromatography-tandem mass spectrometry was used to measure the serum levels of 19 eicosanoids. RESULTS Overall, 49 pregnant women with pre-eclampsia, 26 normotensive pregnant women, and 14 nonpregnant women were included. Women with pre-eclampsia had significantly higher serum levels of 11,12-epoxyeicosatrienoic acid (11,12-EET), the hydroxyeicosatetraenoic acids 5-HETE, 8-HETE, 12-HETE, and 15-HETE, and leukotriene B4 than did women with a normal pregnancy and nonpregnant women, both before and after the onset of pre-eclampsia (P<0.01 for all comparisons). Women with severe pre-eclampsia had significantly higher serum levels of 5-HETE, 15-HETE, and leukotriene B4 than did women with mild pre-eclampsia, women with a normal pregnancy, and nonpregnant women (P<0.01 for all comparisons). CONCLUSION The eicosanoids 11,12-EET, 5-HETE, 8-HETE, 12-HETE, 15-HETE, and leukotriene B4 might play important parts in the occurrence and development of pre-eclampsia.
Collapse
Affiliation(s)
- Anxiong Long
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China; Clinical Laboratory Department, People's Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Shungao Ma
- Clinical Laboratory Department, People's Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Qian Li
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China
| | - Na Lin
- Institute of Pediatrics, Xinhua Hospital, Shanghai, China
| | - Xia Zhan
- Institute of Pediatrics, Xinhua Hospital, Shanghai, China
| | - Shuaijun Lu
- Clinical Laboratory Department, Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yuli Zhu
- Clinical Laboratory Department, Jiujiang First People's Hospital, Jiujiang, China
| | - Liansheng Jiang
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China
| | - Longyi Tan
- Clinical Laboratory Department, Baoshan Branch of Shanghai First People's Hospital, Shanghai, China.
| |
Collapse
|
44
|
Sun Y, Lau CW, Jia Y, Li Y, Wang W, Ran J, Li F, Huang Y, Zhou H, Yang B. Functional inhibition of urea transporter UT-B enhances endothelial-dependent vasodilatation and lowers blood pressure via L-arginine-endothelial nitric oxide synthase-nitric oxide pathway. Sci Rep 2016; 6:18697. [PMID: 26739766 PMCID: PMC4703984 DOI: 10.1038/srep18697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022] Open
Abstract
Mammalian urea transporters (UTs), UT-A and UT-B, are best known for their role in urine concentration. UT-B is especially distributed in multiple extrarenal tissues with abundant expression in vascular endothelium, but little is known about its role in vascular function. The present study investigated the physiological significance of UT-B in regulating vasorelaxations and blood pressure. UT-B deletion in mice or treatment with UT-B inhibitor PU-14 in Wistar-Kyoto rats (WKYs) and spontaneous hypertensive rats (SHRs) reduced blood pressure. Acetylcholine-induced vasorelaxation was significantly augmented in aortas from UT-B null mice. PU-14 concentration-dependently produced endothelium-dependent relaxations in thoracic aortas and mesenteric arteries from both mice and rats and the relaxations were abolished by N(ω)-nitro-L-arginine methyl ester. Both expression and phosphorylation of endothelial nitric oxide synthase (eNOS) were up-regulated and expression of arginase I was down-regulated when UT-B was inhibited both in vivo and in vitro. PU-14 induced endothelium-dependent relaxations to a similar degree in aortas from 12 weeks old SHRs or WKYs. In summary, here we report for the first time that inhibition of UT-B plays an important role in regulating vasorelaxations and blood pressure via up-regulation of L-arginine-eNOS-NO pathway, and it may become another potential therapeutic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chi-Wai Lau
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yingli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weiling Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianhua Ran
- Department of Anatomy and Neuroscience Center, Chongqing Medical University, Chongqing, China
| | - Fei Li
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
45
|
Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 2015; 573:1-32. [PMID: 26216303 PMCID: PMC6728142 DOI: 10.1016/j.gene.2015.07.073] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes, which have been implicated in a number of physiological processes and in the pathogenesis of inflammatory, hyperproliferative and neurodegenerative diseases. They occur in two of the three domains of terrestrial life (bacteria, eucarya) and the human genome involves six functional LOX genes, which encode for six different LOX isoforms. One of these isoforms is ALOX15, which has first been described in rabbits in 1974 as enzyme capable of oxidizing membrane phospholipids during the maturational breakdown of mitochondria in immature red blood cells. During the following decades ALOX15 has extensively been characterized and its biological functions have been studied in a number of cellular in vitro systems as well as in various whole animal disease models. This review is aimed at summarizing the current knowledge on the protein-chemical, molecular biological and enzymatic properties of ALOX15 in various species (human, mouse, rabbit, rat) as well as its implication in cellular physiology and in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Igor Ivanov
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
46
|
Mezei Z, Zamani-Forooshani O, Csabafi K, Szikszai B, Papp E, Ónodi Á, Török D, Leprán Á, Telegdy G, Szabó G. The effect of kisspeptin on the regulation of vascular tone. Can J Physiol Pharmacol 2015; 93:787-91. [DOI: 10.1139/cjpp-2015-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Kisspeptin has been implicated in cardiovascular control. Eicosanoids play a crucial role in the activation of platelets and the regulation of vascular tone. In the present study, we investigated the effect of kisspeptins on eicosanoid synthesis in platelets and aorta in vitro. Platelets and aorta were isolated from Wistar–Kyoto rats. After preincubation with different doses of kisspeptin, samples were incubated with [1-14C]arachidonic acid (0.172 pmol/mL) in tissue culture Medium 199. The amount of labeled eicosanoids was measured with liquid scintillation, after separation with overpressure thin-layer chromatography. Kisspeptin-13 stimulated the thromboxane synthesis. The dose–response curve was bell-shaped and the most effective concentration was 2.5 × 10−8 mol/L, inducing a 27% increase. Lipoxygenase products of platelets displayed a dose-dependent elevation up to the dose of 5 × 10−8 mol/L. In the aorta, kisspeptin-13 induced a marked elevation in the production of 6-keto-prostaglandin F1α, the stable metabolite of prostacyclin, and lipoxygenase products. Different effects of kisspeptin on cyclooxygenase and lipoxygenase products indicate that beyond intracellular Ca2+ mobilization, other signaling pathways might also contribute to its actions. Our data suggest that kisspeptin, through the alteration of eicosanoid synthesis in platelets and aorta, may play a physiologic and (or) pathologic role in the regulation of vascular tone.
Collapse
Affiliation(s)
- Zsófia Mezei
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Omid Zamani-Forooshani
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Bence Szikszai
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Eszter Papp
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Ádám Ónodi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Dóra Török
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Ádám Leprán
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Gyula Telegdy
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Gyula Szabó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| |
Collapse
|
47
|
Sacerdoti D, Pesce P, Di Pascoli M, Brocco S, Cecchetto L, Bolognesi M. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension. Prostaglandins Other Lipid Mediat 2015; 120:80-90. [PMID: 26072731 DOI: 10.1016/j.prostaglandins.2015.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 12/12/2022]
Abstract
Increased resistance to portal flow and increased portal inflow due to mesenteric vasodilatation represent the main factors causing portal hypertension in cirrhosis. Endothelial cell dysfunction, defined as an imbalance between the synthesis, release, and effect of endothelial mediators of vascular tone, inflammation, thrombosis, and angiogenesis, plays a major role in the increase of resistance in portal circulation, in the decrease in the mesenteric one, in the development of collateral circulation. Reduced response to vasodilators in liver sinusoids and increased response in the mesenteric arterioles, and, viceversa, increased response to vasoconstrictors in the portal-sinusoidal circulation and decreased response in the mesenteric arterioles are also relevant to the pathophysiology of portal hypertension. Arachidonic acid (AA) metabolites through the three pathways, cyclooxygenase (COX), lipoxygenase, and cytochrome P450 monooxygenase and epoxygenase, are involved in endothelial dysfunction of portal hypertension. Increased thromboxane-A2 production by liver sinusoidal endothelial cells (LSECs) via increased COX-1 activity/expression, increased leukotriens, increased epoxyeicosatrienoic acids (EETs) (dilators of the peripheral arterial circulation, but vasoconstrictors of the portal-sinusoidal circulation), represent a major component in the increased portal resistance, in the decreased portal response to vasodilators and in the hyper-response to vasoconstrictors. Increased prostacyclin (PGI2) via COX-1 and COX-2 overexpression, and increased EETs/heme-oxygenase-1/K channels/gap junctions (endothelial derived hyperpolarizing factor system) play a major role in mesenteric vasodilatation, hyporeactivity to vasoconstrictors, and hyper-response to vasodilators. EETs, mediators of liver regeneration after hepatectomy and of angiogenesis, may play a role in the development of regenerative nodules and collateral circulation, through stimulation of vascular endothelial growth factor (VEGF) inside the liver and in the portal circulation. Pharmacological manipulation of AA metabolites may be beneficial for cirrhotic portal hypertension.
Collapse
Affiliation(s)
- David Sacerdoti
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy.
| | - Paola Pesce
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy
| | - Marco Di Pascoli
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy
| | - Silvia Brocco
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy
| | - Lara Cecchetto
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy
| | - Massimo Bolognesi
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy
| |
Collapse
|
48
|
Sheen JM, Yu HR, Tiao MM, Chen CC, Huang LT, Chang HY, Tain YL. Prenatal dexamethasone-induced programmed hypertension and renal programming. Life Sci 2015; 132:41-8. [PMID: 25921765 DOI: 10.1016/j.lfs.2015.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 01/19/2023]
Abstract
AIMS Antenatal glucocorticoids can induce long-term effects on offspring health, including hypertension. Programmed hypertension has been observed in a prenatal dexamethasone (DEX) exposure model. However, how renal programming responds to prenatal DEX at different stages of development and the impact of DEX on programmed hypertension remain unclear. Therefore, we utilized RNA next-generation sequencing (NGS) to analyze the renal transcriptome in the offspring to examine whether key genes and pathways are responsible for DEX-induced renal programming and hypertension. MAIN METHODS Pregnant rats received intraperitoneal dexamethasone from gestational day 16 to 22. Prenatal DEX-induced programmed hypertension was examined in male offspring at 16 weeks of age. KEY FINDINGS Prenatal DEX modified 431 renal transcripts from the nephrogenesis stage to adulthood in a constant manner. At the pre-hypertensive and established hypertension stages, we identified 11 and 13 differentially expressed genes related to blood pressure regulation, respectively. Among these genes, Npr3, Ptgs2, Agt, Edn3, Ephx2, Agtr1b, and Gucy1a3 are associated with endothelium-derived hyperpolarizing and contractile factors (EDHF and EDCF). Genes in the arachidonic acid metabolism pathway may potentially be key genes contributing to programmed hypertension. In addition, DEX induced soluble epoxide hydrolase expression (Ephx2 gene encoding protein). SIGNIFICANCE Prenatal DEX elicits an imbalance between EDHFs and EDCFs that might lead to renal programming and hypertension. The arachidonic acid metabolism pathway is a common pathway contributing to programmed hypertension. Our results highlight candidate genes and pathways involved in renal programming as targets for therapeutic approaches to prevent programmed hypertension in children exposed to antenatal corticosteroids.
Collapse
Affiliation(s)
- Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan; Department of Traditional Chinese Medicine, Chang Gung University, Linkow, Taiwan
| | - Hsin-Yu Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
49
|
Transcriptome analysis in rat kidneys: importance of genes involved in programmed hypertension. Int J Mol Sci 2015; 16:4744-58. [PMID: 25739086 PMCID: PMC4394446 DOI: 10.3390/ijms16034744] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/30/2022] Open
Abstract
Suboptimal conditions in pregnancy can elicit long-term effects on the health of offspring. The most common outcome is programmed hypertension. We examined whether there are common genes and pathways in the kidney are responsible for generating programmed hypertension among three different models using next generation RNA sequencing (RNA-Seq) technology. Pregnant Sprague-Dawley rats received dexamethasone (DEX, 0.1 mg/kg) from gestational day 16 to 22, 60% high-fructose (HF) diet, or NG-nitro-l-arginine-methyester (l-NAME, 60 mg/kg/day) to conduct DEX, HF, or l-NAME model respectively. All three models elicited programmed hypertension in adult male offspring. We observed five shared genes (Bcl6, Dmrtc1c, Egr1, Inmt, and Olr1668) among three different models. The identified differential genes (DEGs) that are related to regulation of blood pressure included Aqp2, Ptgs1, Eph2x, Hba-a2, Apln, Guca2b, Hmox1, and Npy. RNA-Seq identified genes in arachidonic acid metabolism are potentially gatekeeper genes contributing to programmed hypertension. In addition, HF and DEX increased expression and activity of soluble epoxide hydrolase (Ephx2 gene encoding protein). Conclusively, the DEGs in arachidonic acid metabolism are potentially gatekeeper genes in programmed hypertension. The roles of DEGs identified by the RNA-Seq in this study deserve further clarification, to develop the potential interventions in the prevention of programmed hypertension.
Collapse
|
50
|
Zúñiga-Muñoz AM, Guarner Lans V, Soria-Castro E, Diaz-Diaz E, Torrico-Lavayen R, Tena-Betancourt E, Pérez-Torres I. 17β Estradiol Modulates Perfusion Pressure and Expression of 5-LOX and CYP450 4A in the Isolated Kidney of Metabolic Syndrome Female Rats. Int J Endocrinol 2015; 2015:149408. [PMID: 26491436 PMCID: PMC4600504 DOI: 10.1155/2015/149408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/18/2015] [Accepted: 05/30/2015] [Indexed: 01/05/2023] Open
Abstract
Prevalence of metabolic syndrome and progression of nephropathy depend on sex. We examined a protective effect of estradiol against nephropathy in metabolic syndrome through the modulation of the arachidonic acid metabolism by activating the 5-lipoxygenase and cytochrome p450 4A pathways. 28 female Wistar rats were divided into four groups of seven animals each: control, intact metabolic syndrome, ovariectomized metabolic syndrome, and metabolic syndrome ovariectomized plus estradiol. Blood pressure, body weight, body fat, triglycerides, insulin, HOMA-index, albuminuria, and TNF-α were increased in ovariectomized metabolic syndrome rats (p < 0.001). The perfusion pressure in isolated kidneys of ovariectomized metabolic syndrome rats in presence of 4 μg of arachidonic acid was increased. The inhibitors of the arachidonic acid metabolism Baicalein, Miconazole, and Indomethacin in these rats decreased the perfusion pressure by 57.62%, 99.83%, and 108.5%, respectively and they decreased creatinine clearance and the arachidonic acid percentage. Phospholipase A2 expression in the kidney of ovariectomized metabolic syndrome rats was not modified. 5-lipoxygenase was increased in metabolic syndrome ovariectomized rats while cytochrome p450 4A was decreased. In conclusion, the loss of estradiol increases renal damage while the treatment with estradiol benefits renal function by modulating arachidonic acid metabolism through the 5-lipoxygenase and cytochrome p450 4A pathways.
Collapse
Affiliation(s)
- A. M. Zúñiga-Muñoz
- Department of Pathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Sección XVI, 14080 Tlalpan, DF, Mexico
| | - V. Guarner Lans
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Sección XVI, 14080 Tlalpan, DF, Mexico
| | - E. Soria-Castro
- Department of Pathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Sección XVI, 14080 Tlalpan, DF, Mexico
| | - E. Diaz-Diaz
- Department of Reproduction Biology, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Vasco de Quiroga 15, Sección XVI, 14000 Tlalpan, DF, Mexico
| | - R. Torrico-Lavayen
- Department of Pathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Sección XVI, 14080 Tlalpan, DF, Mexico
| | - E. Tena-Betancourt
- Animal Facility Services and Experimental Surgery, Facultad de Medicina Universidad La Salle, Avenue De las Fuentes 17, 14000 Tlalpan, DF, Mexico
| | - I. Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Sección XVI, 14080 Tlalpan, DF, Mexico
- *I. Pérez-Torres:
| |
Collapse
|