1
|
Zuo Q, Song L, Gao X, Cen M, Fu X, Qin S, Wu J. Associations of metabolic syndrome with cognitive function and dementia risk: Evidence from the UK Biobank cohort. Diabetes Obes Metab 2024; 26:6023-6033. [PMID: 39360436 DOI: 10.1111/dom.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
AIM To investigate the associations of metabolic syndrome (MetS) with cognitive function, dementia and its subtypes. METHODS Based on the participants recruited by UK Biobank, this study aims to investigate the associations of MetS with cognitive function, dementia and its subtypes. Generalized estimating equations, Cox proportional risk models, and multiple linear regression models were respectively used to assess associations between MetS and dementia-related outcomes. RESULTS Among the 363,231 participants, 95,713 had MetS at baseline. The results showed that MetS was significantly associated with cognitive function related to fluid intelligence and prospective memory at follow-up. Among participants aged ≥60 years, MetS was correlated with elevated risk of all-cause dementia, particularly vascular dementia (VaD) [hazard ratio 1.115 (95% confidence interval: 1.047, 1.187), hazard ratio 1.393 (95% confidence interval: 1.233, 1.575), respectively]. With increasing MetS components, the risk of all-cause dementia and VaD tended to be elevated. MetS has also been associated with dementia-related structural changes in the brain, including alterations in overall brain volume, white matter volume, grey matter volume and white matter integrity. CONCLUSION MetS was associated with poorer cognitive performance and might increase the risk of all-cause dementia as well as VaD, but the effect on Alzheimer's disease was not significant. Holistic control of the MetS may benefit the prevention and control of cognitive impairment and dementia.
Collapse
Affiliation(s)
- Qianlin Zuo
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manqiu Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xihang Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shifan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Paramasivam P, Choi SW, Poddar R, Paul S. Impairment of neuronal tyrosine phosphatase STEP worsens post-ischemic inflammation and brain injury under hypertensive condition. J Neuroinflammation 2024; 21:271. [PMID: 39438980 PMCID: PMC11515672 DOI: 10.1186/s12974-024-03227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Hypertension is associated with poor outcome and higher mortality in patients with ischemic stroke. The impairment of adaptive vascular mechanisms under hypertensive condition compromises collateral blood flow after arterial occlusion in patients with acute ischemic stroke resulting in hypoperfusion. The increased oxidative stress caused by hypoperfusion is thought to be a trigger for the rapid evolution of ischemic infarct volume under hypertensive condition. However, the cellular factors and pathways that contribute to the exacerbation of ischemic brain injury under hypertensive condition is not yet understood. The current study reveals that predisposition to hypertension leads to basal loss of function of the neuron-specific tyrosine phosphatase STEP, which plays a crucial role in neuroprotection against excitotoxic insult. The findings further show that a mild ischemic insult in hypertensive rats triggers an early onset and sustained activation of the neuronal extracellular signal regulated kinase (ERK MAPK), a member of the mitogen activated protein kinase family and a substrate of STEP. This leads to rapid increase in the activation of neuronal NF-κB, expression of neuronal cyclooxygenase-2 and subsequent biosynthesis of the pro-inflammatory mediator prostaglandin E2, resulting in rapid morphological transformation of microglia to the pro-inflammatory state and subsequent exacerbation of ischemic brain injury. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the pro-inflammatory response in neurons, activation of microglia, and ischemic brain injury. The findings suggest that the basal loss of STEP function under hypertensive condition contributes to the exacerbation of ischemic brain injury by enhancing post-ischemic inflammatory response. The study not only presents a novel role of STEP in regulating neuroimmune communication but also highlights the therapeutic potential of a STEP-mimetic in mitigating ischemic brain damage under hypertensive condition.
Collapse
Affiliation(s)
- Prabu Paramasivam
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Seong Won Choi
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
3
|
Yeung SHS, Lee RHS, Cheng GWY, Ma IWT, Kofler J, Kent C, Ma F, Herrup K, Fornage M, Arai K, Tse KH. White matter hyperintensity genetic risk factor TRIM47 regulates autophagy in brain endothelial cells. FASEB J 2024; 38:e70059. [PMID: 39331575 DOI: 10.1096/fj.202400689rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. Genome-wide association studies identified TRIM47 at the 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found highly expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we predicted a highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription, and vacuole formation. Together, we demonstrate that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation.
Collapse
Affiliation(s)
- Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Julia Kofler
- Division of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Candice Kent
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fulin Ma
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Myriam Fornage
- Human Genetics Center, Division of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Muer JD, Didier KD, Wannebo BM, Sanchez S, Khademi Motlagh H, Haley TL, Carter KJ, Banks NF, Eldridge MW, Serlin RC, Wieben O, Schrage WG. Sex differences in gray matter, white matter, and regional brain perfusion in young, healthy adults. Am J Physiol Heart Circ Physiol 2024; 327:H847-H858. [PMID: 39120466 PMCID: PMC11482274 DOI: 10.1152/ajpheart.00341.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Cerebrovascular and neurological diseases exhibit sex-specific patterns in prevalence, severity, and regional specificity, some of which are associated with altered cerebral blood flow (CBF). Females often exhibit higher resting CBF, but understanding the impact of sex per se on CBF is hampered by study variability in age, comorbidities, medications, and control for menstrual cycle or hormone therapies. A majority of studies report whole brain CBF without differentiating between gray and white matter or without assessing regional CBF. Thus fundamental sex differences in regional or whole brain CBF remain unclarified. While controlling for the above confounders, we tested the hypothesis that females will exhibit higher total gray and white matter perfusion as well as regional gray matter perfusion. Adults 18-30 yr old (females = 22 and males = 26) were studied using arterial spin labeling (ASL) magnetic resonance imaging (MRI) scans followed by computational anatomy toolbox (CAT12) analysis in statistical parametric mapping (SPM12) to quantify CBF relative to brain volume. Females displayed 40% higher perfusion globally (females = 62 ± 9 and males = 45 ± 10 mL/100 g/min, P < 0.001), gray matter (females = 75 ± 11 and males = 54 ± 12 mL/100 g/min, P < 0.001), and white matter (females = 44 ± 6 and males = 32 ± 7 mL/100 g/min, P < 0.001). Females exhibited greater perfusion than males in 67 of the 68 regions tested, ranging from 14% to 66% higher. A second MRI approach (4-dimensional flow) focused on large arteries confirmed the sex difference in global CBF. These data indicate strikingly higher basal CBF in females at global, gray, and white matter levels and across dozens of brain regions and offer new clarity into fundamental sex differences in global and regional CBF regulation before aging or pathology.NEW & NOTEWORTHY MRI used to measure cerebral blood flow (CBF) in gray matter, white matter, and 68 regions in healthy men and women. This study demonstrated that CBF is 40% higher in women, the highest sex difference reported, when controlling for numerous important clinical confounders like age, smoking, menstrual cycle, comorbidities, and medications.
Collapse
Affiliation(s)
- Jessica D Muer
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Kaylin D Didier
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Brett M Wannebo
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Sophie Sanchez
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Hedyeh Khademi Motlagh
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Travis L Haley
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Katrina J Carter
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Nile F Banks
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Marlowe W Eldridge
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ronald C Serlin
- Department of Educational Physcology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Oliver Wieben
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
5
|
Ridha M, Hannawi Y, Murthy S, Carvalho Poyraz F, Kumar A, Park S, Roh D, Sekar P, Woo D, Burke J. Premorbid Blood Pressure Control Modifies Risk of DWI Lesions With Acute Blood Pressure Reduction in Intracerebral Hemorrhage. Hypertension 2024; 81:2113-2123. [PMID: 39069917 PMCID: PMC11410531 DOI: 10.1161/hypertensionaha.124.23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Hypoperfusion due to blood pressure (BP) reduction is a potential mechanism of cerebral ischemia after intracerebral hemorrhage. However, prior evaluations of the relationship between BP reduction and ischemia have been conflicting. Untreated chronic hypertension is common in intracerebral hemorrhage and alters cerebral autoregulation. We hypothesized that the risk of diffusion-weighted imaging (DWI) hyperintensities from acute BP reduction is modified by premorbid BP control. METHODS Individuals enrolled in the ERICH study (Ethnic/Racial Variations of Intracerebral Hemorrhage) from 2010 to 2015 were categorized as untreated, treated, or nonhypertensive based on preintracerebral hemorrhage diagnosis and antihypertensive medication use. The percent reduction of systolic BP (SBP) was calculated between presentation and 24 hours from admission. The primary outcome was the presence of DWI lesions. Using logistic regression, we tested the association between chronic hypertension status, SBP reduction, and their interaction with DWI lesion presence. RESULTS From 3000 participants, 877 with available magnetic resonance imaging met inclusion (mean age, 60.5±13.3 years; 42.5% women). DWI lesions were detected in 25.9%. Untreated, treated, and no hypertension accounted for 32.6%, 47.9%, and 19.5% of cases, respectively. SBP reduction was not directly associated with DWI lesions; however, an interaction effect was observed between SBP reduction and chronic hypertension status (P=0.036). Nonhypertensive subjects demonstrated a linear risk of DWI lesion presence with greater SBP reduction, whereas untreated hypertension demonstrated a stable risk across a wide range of SBP reduction (P=0.023). CONCLUSIONS Premorbid BP control, especially untreated hypertension, may influence the relationship between DWI lesions and acute BP reduction after intracerebral hemorrhage. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT01202864.
Collapse
Affiliation(s)
- Mohamed Ridha
- Department of Neurology, Ohio State University, Columbus (M.R., Y.H., J.B.)
| | - Yousef Hannawi
- Department of Neurology, Ohio State University, Columbus (M.R., Y.H., J.B.)
| | - Santosh Murthy
- Department of Neurology, Weil Cornell Medical Center, New York, NY (S.M.)
| | | | - Aditya Kumar
- Department of Neurology, Barrow Neurologic Institute, Phoenix, AZ (A.K.)
| | - Soojin Park
- Department of Neurology, Columbia University Medical Center, New York, NY (S.P., D.R.)
| | - David Roh
- Department of Neurology, Columbia University Medical Center, New York, NY (S.P., D.R.)
| | - Padmini Sekar
- Department of Neurology, University of Cincinnati, OH (P.S., D.W.)
| | - Daniel Woo
- Department of Neurology, University of Cincinnati, OH (P.S., D.W.)
| | - James Burke
- Department of Neurology, Ohio State University, Columbus (M.R., Y.H., J.B.)
| |
Collapse
|
6
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
7
|
Abakumow M, Przybylski M, Słoma M, Markowska O, Sowa K, Jaśkiewicz P, Kowalczuk K. Aggressive and Autoaggressive Behaviors in Patients with Autism Spectrum Disorder in Correlation with Middle Cerebral Artery Flow Velocity. J Pers Med 2024; 14:1010. [PMID: 39338264 PMCID: PMC11433028 DOI: 10.3390/jpm14091010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives The purpose of this study was to see whether there is a correlation between the behavior of autism spectrum disorder patients and brain abnormalities based on the velocity of blood flow in the MCA (middle cerebral artery). Methods: The use of HAP (High Altitude Protection) suits, which are used in aviation, to treat patients with ASD (autism spectrum disorder) causes significant changes in their functioning and physiological processes. These changes are not only noted in psychological tests but are observed in cerebral blood flow using transcranial Doppler ultrasound of the MCA. Results The results of this study made it possible to distinguish two groups with different flow velocities, which can be characterized as flows of less than 80 cm/s and flows of more than 80 cm/s. In addition, it was shown that in patients with elevated blood flow velocity, aggressive behaviors account for 86.96%, while self-aggressive behaviors account for 65.2%. On the other hand, in the case of patients with reduced flow velocity, i.e., less than 80 cm/s, the rate of aggressive behavior is 20% and that of self-aggressive behavior is 50%. The experiment showed that after therapy, there is a normalization of blood flow, which increased in the case of patients with a reduced flow rate below 80 cm/s and, in the case of elevated blood velocity after therapy, decreased towards normal levels. Conclusions The observed rate of normalization of flow velocities in the MCA translated into significant changes in the behavior and functioning of patients in the neurotypical direction, which was noticeable in the psychological tests conducted.
Collapse
Affiliation(s)
| | - Maciej Przybylski
- Department of Radiology, Military Institute of Aviation Medicine, 01-755 Warsaw, Poland
| | | | - Olga Markowska
- Psychological and Pedagogical Counselling Center No. IV, 00-950 Warsaw, Poland
| | - Katarzyna Sowa
- Simulator Research and Aeromedical Training Department, Military Institute of Aviation Medicine, 01-755 Warsaw, Poland
| | | | - Krzysztof Kowalczuk
- Simulator Research and Aeromedical Training Department, Military Institute of Aviation Medicine, 01-755 Warsaw, Poland
| |
Collapse
|
8
|
Feron J, Segaert K, Rahman F, Fosstveit SH, Joyce KE, Gilani A, Lohne-Seiler H, Berntsen S, Mullinger KJ, Lucas SJE. Determinants of cerebral blood flow and arterial transit time in healthy older adults. Aging (Albany NY) 2024; 16:12473-12497. [PMID: 39302230 PMCID: PMC11466485 DOI: 10.18632/aging.206112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024]
Abstract
Cerebral blood flow (CBF) and arterial transit time (ATT), markers of brain vascular health, worsen with age. The primary aim of this cross-sectional study was to identify modifiable determinants of CBF and ATT in healthy older adults (n = 78, aged 60-81 years). Associations between cardiorespiratory fitness and CBF or ATT were of particular interest because the impact of cardiorespiratory fitness is not clear within existing literature. Secondly, this study assessed whether CBF or ATT relate to cognitive function in older adults. Multiple post-labelling delay pseudo-continuous arterial spin labelling estimated resting CBF and ATT in grey matter. Results from multiple linear regressions found higher BMI was associated with lower global CBF (β = -0.35, P = 0.008) and a longer global ATT (β = 0.30, P = 0.017), global ATT lengthened with increasing age (β = 0.43, P = 0.004), and higher cardiorespiratory fitness was associated with longer ATT in parietal (β = 0.44, P = 0.004) and occipital (β = 0.45, P = 0.003) regions. Global or regional CBF or ATT were not associated with processing speed, working memory, or attention. In conclusion, preventing excessive weight gain may help attenuate age-related declines in brain vascular health. ATT may be more sensitive to age-related decline than CBF, and therefore useful for early detection and management of cerebrovascular impairment. Finally, cardiorespiratory fitness appears to have little effect on CBF but may induce longer ATT in specific regions.
Collapse
Affiliation(s)
- Jack Feron
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Katrien Segaert
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Foyzul Rahman
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
- College of Psychology, Birmingham City University, Birmingham, UK
| | - Sindre H. Fosstveit
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Kelsey E. Joyce
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Ahmed Gilani
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Hilde Lohne-Seiler
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Sveinung Berntsen
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Karen J Mullinger
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Liu Y, Hu H, Zheng W, Deng Z, Yang J, Zhang X, Li Z, Chen L, Chen F, Ji N, Huang G. Association between hypertension requiring medication and postoperative 30-day mortality in adult patients with tumor craniotomy: an analysis of data using propensity score matching. Front Neurol 2024; 15:1412471. [PMID: 39355090 PMCID: PMC11442953 DOI: 10.3389/fneur.2024.1412471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
Background Reliable quantification of the association between hypertension requiring medication and postoperative 30-day mortality in adult patients who undergo craniotomy for tumor resection is limited. We aimed to explore the associations between these factors. Materials and methods This work was a retrospective cohort study that used propensity score matching (PSM) among 18,642 participants from the American College of Surgeons National Surgical Quality Improvement Program database between 2012 and 2015. Hypertension requiring medication and postoperative 30-day mortality were the independent and dependent target variables, respectively. PSM was conducted via nonparsimonious multivariate logistic regression to balance the confounders. Robust estimation methods were used to investigate the association between hypertension requiring medication and postoperative 30-day mortality. Results A total of 18,642 participants (52.6% male and 47.4% female) met our inclusion criteria; 7,116 (38.17%) participants with hypertension required medication and had a 3.74% mortality rate versus an overall mortality rate of 2.46% in the adult cohort of patients who underwent craniotomy for tumor resection. In the PSM cohort, the risk of postoperative 30-day mortality significantly increased by 39.0% among patients with hypertension who required medication (OR = 1.390, 95% confidence interval (CI): 1.071-1.804, p = 0.01324) after adjusting for the full covariates. Compared with participants without hypertension requiring medication, those with hypertension requiring medication had a 34.0% greater risk of postoperative 30-day mortality after adjusting for the propensity score (OR = 1.340, 95% CI: 1.040-1.727, p = 0.02366) and a 37.6% greater risk of postoperative 30-day mortality in the inverse probability of treatment weights (IPTW) cohort (OR = 1.376, 95% CI: 1.202, 1.576, p < 0.00001). Conclusion Among U.S. adult patients undergoing craniotomy for tumor resection, hypertension requiring medication is a notable contributor to 30-day mortality after surgery, with odds ratios ranging from 1.34 to 1.39.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haofei Hu
- Nephrological Department, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenjian Zheng
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhong Deng
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jihu Yang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiejun Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lei Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Nan Ji
- Neurosurgical Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Arif Y, Killanin AD, Zhu J, Willett MP, Okelberry HJ, Johnson HJ, Wilson TW. Hypertension Impacts the Oscillatory Dynamics Serving the Encoding Phase of Verbal Working Memory. Hypertension 2024; 81:1609-1618. [PMID: 38690668 PMCID: PMC11168866 DOI: 10.1161/hypertensionaha.124.22698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Chronic hypertension is known to be a major contributor to cognitive decline, with executive function and working memory being among the domains most commonly affected. Despite the growing literature on such dysfunction in patients with hypertension, the underlying neural processes are poorly understood. METHODS In this cross-sectional study, we examine these neural processes by having participants with controlled hypertension, uncontrolled hypertension, and healthy controls perform a verbal working memory task during magnetoencephalography. Neural oscillations associated with the encoding and maintenance components of the working memory task were imaged and statistically evaluated among the 3 groups. RESULTS Differences related to hypertension emerged during the encoding phase, where the hypertension groups exhibited weaker α-β oscillatory responses compared with controls in the left parietal cortices, whereas such oscillatory activity differed between the 2 hypertension groups in the right prefrontal regions. Importantly, these neural responses in the prefrontal and parietal cortices during encoding were also significantly associated with behavioral performance across all participants. CONCLUSIONS Overall, our data suggest that hypertension is associated with neurophysiological abnormalities during working memory encoding, whereas the neural processes serving maintenance seem to be preserved. The right hemispheric neural responses likely reflected compensatory processing, which patients with controlled hypertension may use to achieve verbal working memory function at the level of controls, as opposed to the uncontrolled hypertension group where diminished resources may have limited such additional recruitment.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Abraham D. Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Jingqi Zhu
- University of Michigan, Ann Arbor, MI, USA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
11
|
Zhang Y, Xu Z, Shan M, Cao J, Zhou Y, Chen Y, Shi L. Arterial Smooth Muscle Cell AKAP150 Mediates Exercise-Induced Repression of Ca V1.2 Channel Function in Cerebral Arteries of Hypertensive Rats. Arterioscler Thromb Vasc Biol 2024; 44:1202-1221. [PMID: 38602101 DOI: 10.1161/atvbaha.124.319543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Hypertension is a major, prevalent risk factor for the development and progression of cerebrovascular disease. Regular exercise has been recommended as an excellent choice for the large population of individuals with mild-to-moderate elevations in blood pressure, but the mechanisms that underlie its vascular-protective and antihypertensive effects remain unknown. Here, we describe a mechanism by which myocyte AKAP150 (A-kinase anchoring protein 150) inhibition induced by exercise training alleviates voltage-dependent L-type Ca2+ channel (CaV1.2) activity and restores cerebral arterial function in hypertension. METHODS Spontaneously hypertensive rats and newly generated smooth muscle-specific AKAP150 knockin mice were used to assess the role of myocyte AKAP150/CaV1.2 channel in regulating cerebral artery function after exercise intervention. RESULTS Activation of the AKAP150/PKCα (protein kinase Cα) signaling increased CaV1.2 activity and Ca2+ influx of cerebral arterial myocyte, thus enhancing vascular tone in spontaneously hypertensive rats. Smooth muscle-specific AKAP150 knockin mice were hypertensive with higher CaV1.2 channel activity and increased vascular tone. Furthermore, treatment of Ang II (angiotensin II) resulted in a more pronounced increase in blood pressure in smooth muscle-specific AKAP150 knockin mice. Exercise training significantly reduced arterial myocyte AKAP150 expression and alleviated CaV1.2 channel activity, thus restoring cerebral arterial function in spontaneously hypertensive rats and smooth muscle-specific AKAP150 knockin mice. AT1R (AT1 receptor) and AKAP150 were interacted closely in arterial myocytes. Exercise decreased the circulating Ang II and Ang II-involved AT1R-AKAP150 association in myocytes of hypertension. CONCLUSIONS The current study demonstrates that aerobic exercise ameliorates CaV1.2 channel function via inhibiting myocyte AKAP150, which contributes to reduced cerebral arterial tone in hypertension.
Collapse
MESH Headings
- Animals
- A Kinase Anchor Proteins/metabolism
- A Kinase Anchor Proteins/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/genetics
- Rats, Inbred SHR
- Hypertension/physiopathology
- Hypertension/metabolism
- Hypertension/genetics
- Cerebral Arteries/metabolism
- Cerebral Arteries/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Male
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Physical Conditioning, Animal/physiology
- Protein Kinase C-alpha/metabolism
- Protein Kinase C-alpha/genetics
- Calcium Signaling
- Mice, Inbred C57BL
- Mice
- Rats
- Rats, Inbred WKY
- Angiotensin II
- Blood Pressure
- Signal Transduction
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport (Y. Zhang, L.S.), Beijing Sport University, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education (Y. Zhang, L.S.), Beijing Sport University, China
| | - Zhaoxia Xu
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Meiling Shan
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Jiaqi Cao
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Yang Zhou
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Yu Chen
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
| | - Lijun Shi
- Department of Exercise Physiology (Y. Zhang, Z.X., M.S., J.C., Y. Zhou, Y.C., L.S.), Beijing Sport University, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport (Y. Zhang, L.S.), Beijing Sport University, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education (Y. Zhang, L.S.), Beijing Sport University, China
| |
Collapse
|
12
|
Yang L, Du H, Zhang X, Zhang D, Su X, Qiao Z, Gao B. Evaluation of the correlation between cerebral hemodynamics and blood pressure by comparative analysis of variation in cerebral blood flow in hypertensive versus normotensive individuals: A systematic review and meta-analysis. BIOMOLECULES & BIOMEDICINE 2024; 24:775-786. [PMID: 38709773 PMCID: PMC11293236 DOI: 10.17305/bb.2024.10230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024]
Abstract
Current understanding of the cerebral vascular response to variations in blood pressure (BP) among individuals with hypertension is limited. The aim of this meta-analysis was to determine the correlation between hypertension, risk of stroke, and cerebral blood flow (CBF). We reviewed studies published between 2000 and 2023 from PubMed, Google Scholar, and Science Direct that compared mean CBF in normotensive (NTN) and hypertensive (HTN) patients. A random effects model was used to construct the risk ratio (RR), 95% confidence interval (CI), forest plot, and inverse variance weighting. Additionally, a mixed-effects meta-regression was employed to examine the impact of study-specific patient variables. This meta-analysis included eight prospective cross-sectional studies published from 2002 to 2023. It revealed a significant average difference in the standard mean CBF of -0.45 (95% CI -0.60 to -0.30, I2 = 69%, P < 0.00001), distinguishing NTN from HTN subjects. A RR of 0.90 (95% CI 0.63 to 1.30, I2 = 89%, P = 0.04) indicated a significant decrease in CBF among individuals with hypertension. We found a statistically significant relationship between changes in diastolic and systolic BPs and the mean CBF (R -0.81, P = 0.001 and R = -0.90, P = 0.005, respectively). Our research demonstrates a strong relationship between elevated BP and reduced CBF, with hypertension reducing CBF compared to NTN individuals, by increasing cerebrovascular resistance.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Hong Du
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuejing Zhang
- Center of Medical Research, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Dongliang Zhang
- Department of Neurosurgery, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Xianhui Su
- Department of Neurosurgery, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Zongrong Qiao
- Department of Neurosurgery, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Bulang Gao
- Center of Medical Research, Shijiazhuang People’s Hospital, Shijiazhuang, China
| |
Collapse
|
13
|
Pacholko A, Iadecola C. Hypertension, Neurodegeneration, and Cognitive Decline. Hypertension 2024; 81:991-1007. [PMID: 38426329 PMCID: PMC11023809 DOI: 10.1161/hypertensionaha.123.21356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Elevated blood pressure is a well-established risk factor for age-related cognitive decline. Long linked to cognitive impairment on vascular bases, increasing evidence suggests a potential association of hypertension with the neurodegenerative pathology underlying Alzheimer disease. Hypertension is well known to disrupt the structural and functional integrity of the cerebral vasculature. However, the mechanisms by which these alterations lead to brain damage, enhance Alzheimer pathology, and promote cognitive impairment remain to be established. Furthermore, critical questions concerning whether lowering blood pressure by antihypertensive medications prevents cognitive impairment have not been answered. Recent developments in neurovascular biology, brain imaging, and epidemiology, as well as new clinical trials, have provided insights into these critical issues. In particular, clinical and basic findings on the link between neurovascular dysfunction and the pathobiology of neurodegeneration have shed new light on the overlap between vascular and Alzheimer pathology. In this review, we will examine the progress made in the relationship between hypertension and cognitive impairment and, after a critical evaluation of the evidence, attempt to identify remaining knowledge gaps and future research directions that may advance our understanding of one of the leading health challenges of our time.
Collapse
Affiliation(s)
- Anthony Pacholko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
14
|
Son JJ, Arif Y, Oludipe D, Weyrich L, Killanin AD, Wiesman AI, Okelberry HJ, Willett MP, Johnson HJ, Wilson TW. Multispectral brain connectivity during visual attention distinguishes controlled from uncontrolled hypertension. J Physiol 2024; 602:1775-1790. [PMID: 38516712 PMCID: PMC11150863 DOI: 10.1113/jp285568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Hypertension-related changes in brain function place individuals at higher risk for cognitive impairment and Alzheimer's disease. The existing functional neuroimaging literature has identified important neural and behavioural differences between normotensive and hypertensive individuals. However, previously-used methods (i.e. magnetic resonance imaging, functional near-infrared spectroscopy) rely on neurovascular coupling, which is a useful but indirect measure of neuronal activity. Furthermore, most studies fail to distinguish between controlled and uncontrolled hypertensive individuals, who exhibit significant behavioural and clinical differences. To partially remedy this gap in the literature, we used magnetoencephalography (MEG) to directly examine neuronal activity that is invariant to neurovascular coupling changes induced by hypertension. Our study included 52 participants (19 healthy controls, 15 controlled hypertensives, 18 uncontrolled hypertensives) who completed a modified flanker attention task during MEG. We identified significant oscillatory neural responses in two frequencies (alpha: 8-14 Hz, gamma: 48-60 Hz) for imaging and used grand-averaged images to determine seeds for whole-brain connectivity analysis. We then conducted Fisher-z tests for each pair of groups, using the relationship between the neural connectivity and behavioural attention effects. This highlighted a distributed network of regions associated with cognitive control and selective attention, including frontal-occipital and interhemispheric occipital connections. Importantly, the inferior frontal cortex exhibited a unique neurobehavioural relationship that distinguished the uncontrolled hypertensive group from the controlled hypertensive and normotensive groups. This is the first investigation of hypertension using MEG and identifies critical whole-brain connectivity differences based on hypertension profiles. KEY POINTS: Structural and functional changes in brain circuitry scale with hypertension severity and increase the risk of cognitive impairment and Alzheimer's disease. We harness the excellent spatiotemporal precision of magnetoencephalography (MEG) to directly quantify dynamic functional connectivity in healthy control, controlled hypertensive and uncontrolled hypertensive groups during a flanker task. In the first MEG study of hypertension, we show that there are neurobehavioural relationships that distinguish the uncontrolled hypertensive group from healthy and controlled hypertensive group in the prefrontal cortex. These results provide novel insights into the differential impact of hypertension on brain dynamics underlying selective attention.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Davina Oludipe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lucas Weyrich
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
15
|
Hao S, He Q, Yuan Y, Mu Q. The protective effects of Irbesartan in cognitive impairment in hypertension. Aging (Albany NY) 2024; 16:5065-5076. [PMID: 38526331 PMCID: PMC11006462 DOI: 10.18632/aging.205589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 03/26/2024]
Abstract
Vascular cognitive impairment (VCI) is claimed as the second most common type of dementia after Alzheimer's disease (AD), in which hypertension is a critical inducer. Currently, hypertension-induced cognitive impairment lacks clinical treatments. Irbesartan is a long-acting angiotensin receptor antagonist with promising antihypertensive properties. Our research will focus on the potential function of Irbesartan on hypertension-induced cognitive impairment. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats were orally dosed with normal saline or 20 mg/kg/day Irbesartan for 14 consecutive days, with 4 groups divided shown as below: WKY, Irbesartan, SHR, SHR+ Irbesartan. Firstly, the markedly increased systolic blood pressure observed in SHR rats was signally repressed by Irbesartan on Day 7 and 14 post-dosing. Moreover, notably decreased time of exploring the novel object in the object recognition task (ORT) test, elevated escape latency, and reduced time in the target quadrant in the Morris water maze (MWM) test were observed in SHR rats, which were prominently reversed by Irbesartan. Furthermore, the declined superoxide dismutase (SOD) activity, elevated malondialdehyde (MDA) level, increased cyclin-dependent kinase-5 (CDK5) activity, and enhanced protein level of p35/p25, p-Tau (pSer214)/Tau46, and brain-derived neurotrophic factor (BDNF) were memorably rescued by Irbesartan. Lastly, the activity of cAMP/cAMP response element binding protein (CREB) signaling in the hippocampus of SHR rats was markedly repressed, accompanied by an upregulation of phosphodiesterase 4B (PDE4B), which was observably rescued by Irbesartan. Collectively, Irbesartan protected against the hypertension-induced cognitive impairment in SHR rats by regulating the cAMP/CREB signaling.
Collapse
Affiliation(s)
- Shengyun Hao
- Department of General Medical, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Qian He
- Department of General Medical, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Yuan Yuan
- Department of General Medical, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Qiong Mu
- Department of General Medical, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| |
Collapse
|
16
|
van Koeverden AK, Afiat BC, Nguyen CT, Bui BV, Lee PY. Understanding how ageing impacts ganglion cell susceptibility to injury in glaucoma. Clin Exp Optom 2024; 107:147-155. [PMID: 37980904 DOI: 10.1080/08164622.2023.2279734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide, with a marked increase in prevalence with advancing age. Due to the multifactorial nature of glaucoma pathogenesis, dissecting how ageing impacts upon glaucoma risk requires analysis and synthesis of evidence from a vast literature. While there is a wealth of human clinical studies examining glaucoma pathogenesis and why older patients have increased risk, many aspects of the disease such as adaptations of retinal ganglion cells to stress, autophagy and the role of glial cells in glaucoma, require the use of animal models to study the complex cellular processes and interactions. Additionally, the accelerated nature of ageing in rodents facilitates the longitudinal study of changes that would not be feasible in human clinical studies. This review article examines evidence derived predominantly from rodent models on how the ageing process impacts upon various aspects of glaucoma pathology from the retinal ganglion cells themselves, to supporting cells and tissues such as glial cells, connective tissue and vasculature, in addition to oxidative stress and autophagy. An improved understanding of how ageing modifies these factors may lead to the development of different therapeutic strategies that target specific risk factors or processes involved in glaucoma.
Collapse
Affiliation(s)
- Anna K van Koeverden
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brianna C Afiat
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Christine To Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pei Ying Lee
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Yeung SHS, Lee RHS, Cheng GWY, Ma IWT, Kofler J, Kent C, Ma F, Herrup K, Fornage M, Arai K, Tse KH. White matter hyperintensity genetic risk factor TRIM47 regulates autophagy in brain endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.566359. [PMID: 38187529 PMCID: PMC10769267 DOI: 10.1101/2023.12.18.566359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. GWAS identified TRIM47 at 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found selectively expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially-induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we identified the highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription and vacuole formation. Together, we confirm that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation. SUMMARY STATEMENT TRIM47, top genetic risk factor for white matter hyperintensity formation, is a negative regulator of autophagy in brain endothelial cells and implicates a novel cellular mechanism for age-related cerebrovascular changes.
Collapse
|
18
|
Zorzi S, Ayako Minemura Ordinola A, Cunha De Souza Lima E, Martins Teixeira G, Salvagno M, Sterchele ED, Taccone FS. A glimpse into multimodal neuromonitoring in acute liver failure: a case report. Ann Med Surg (Lond) 2024; 86:539-544. [PMID: 38222739 PMCID: PMC10783349 DOI: 10.1097/ms9.0000000000001519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Acute liver failure (ALF) is a rapidly progressing, life-threatening syndrome characterized by liver-related coagulopathy and hepatic encephalopathy (HE). Given that higher HE grades correlate with poorer outcomes, clinical management of ALF necessitates close neurological monitoring. The primary objective of this case report is to highlight the diagnostic value of utilizing multimodal neuromonitoring (MNM) in a patient suffering from ALF. Case report A 56-year-old male patient with a history of chronic alcoholism, without prior chronic liver disease, and recent acetaminophen use was admitted to the hospital due to fatigue and presenting with a mild flapping tremor. The primary hypothesis was an acute hepatic injury caused by acetaminophen intoxication. In the following hours, the patient's condition deteriorated, accompanied by neurological decline and rising ammonia levels. The patient's neurological status was closely monitored using MNM. Bilaterally altered pupillary light reflex assessed by decreasing in the Neurological Pupil Index values, using automated pupillometry, initially suggested severe brain oedema. However, ultrasound measurements of the optic nerve sheath diameter showed normal values in both eyes, P2/P1 noninvasive intracranial pressure waveform assessment was within normal ranges and the cerebral computed tomography-scan revealed no signs of cerebral swelling. Increased middle cerebral artery velocities measured by Transcranial Doppler and the initiation of electroencephalography monitoring yielded the presence of status epilepticus. Discussion The utilization of MNM facilitated a more comprehensive understanding of the mechanisms underlying the patient's clinical deterioration in the setting of HE. Nonetheless, future studies are needed to show feasibility and to yield valuable insights that can enhance the outcomes for patients with HE using such an approach. Given the absence of specific guidelines in this particular context, it is advisable for physicians to give further consideration to the incorporation of MNM in the management of unconscious patients with ALF.
Collapse
Affiliation(s)
- Stefano Zorzi
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
19
|
Baggeroer CE, Cambronero FE, Savan NA, Jefferson AL, Santisteban MM. Basic Mechanisms of Brain Injury and Cognitive Decline in Hypertension. Hypertension 2024; 81:34-44. [PMID: 37732479 PMCID: PMC10840624 DOI: 10.1161/hypertensionaha.123.19939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Dementia affects almost 50 million adults worldwide, and remains a major cause of death and disability. Hypertension is a leading risk factor for dementia, including Alzheimer disease and Alzheimer disease-related dementias. Although this association is well-established, the mechanisms underlying hypertension-induced cognitive decline remain poorly understood. By exploring the mechanisms mediating the detrimental effects of hypertension on the brain, studies have aimed to provide therapeutic insights and strategies on how to protect the brain from the effects of blood pressure elevation. In this review, we focus on the basic mechanisms contributing to the cerebrovascular adaptions to elevated blood pressure and hypertension-induced microvascular injury. We also assess the cellular mechanisms of neurovascular unit dysfunction, focusing on the premise that cognitive impairment ensues when the dynamic metabolic demands of neurons are not met due to neurovascular uncoupling, and summarize cognitive deficits across various rodent models of hypertension as a resource for investigators. Despite significant advances in antihypertensive therapy, hypertension remains a critical risk factor for cognitive decline, and several questions remain about the development and progression of hypertension-induced cognitive impairment.
Collapse
Affiliation(s)
- Caroline E. Baggeroer
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN
| | - Francis E. Cambronero
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN
| | - N. Anna Savan
- Medical Scientist Training Program, Yale University, New Haven, CT
| | - Angela L. Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Monica M. Santisteban
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
20
|
Lyon M, Fullerton JL, Kennedy S, Work LM. Hypertension & dementia: Pathophysiology & potential utility of antihypertensives in reducing disease burden. Pharmacol Ther 2024; 253:108575. [PMID: 38052309 DOI: 10.1016/j.pharmthera.2023.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Dementia is a common cause of disability and dependency among the elderly due to its progressive neurodegenerative nature. As there is currently no curative therapy, it is of major importance to identify new ways to reduce its prevalence. Hypertension is recognised as a modifiable risk factor for dementia, particularly for the two most common subtypes; vascular dementia (VaD) and Alzheimer's disease (AD). From the current literature, identified through a comprehensive literature search of PubMed and Cochrane Library, this review aims to establish the stage in adulthood when hypertension becomes a risk for cognitive decline and dementia, and whether antihypertensive treatment is effective as a preventative therapy. Observational studies generally found hypertension in mid-life (age 45-64) to be correlated with an increased risk of cognitive decline and dementia incidence, including both VaD and AD. Hypertension manifesting in late life (age ≥ 65) was demonstrated to be less of a risk, to the extent that incidences of high blood pressure (BP) in the very elderly (age ≥ 75) may even be related to reduced incidence of dementias. Despite the evidence linking hypertension to dementia, there were conflicting findings as to whether the use of antihypertensives was beneficial for its prevention and this conflicting evidence and inconsistent results could be due to the methodological differences between the reviewed observational and randomised controlled trials. Furthermore, dihydropyridine calcium channel blockers and potassium-sparing diuretics were proposed to have neuroprotective properties in addition to BP lowering. Overall, if antihypertensives are confirmed to be beneficial by larger-scale homogenous trials with longer follow-up durations, treatment of hypertension, particularly in mid-life, could be an effective strategy to considerably lower the prevalence of dementia. Furthermore, greater clarification of the neuroprotective properties that some antihypertensives possess will allow for better clinical practice guidance on the choice of antihypertensive class for both BP lowering and dementia prevention.
Collapse
Affiliation(s)
- Mara Lyon
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Josie L Fullerton
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Simon Kennedy
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Lorraine M Work
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
21
|
Fang X, Fan F, Border JJ, Roman RJ. Cerebrovascular Dysfunction in Alzheimer's Disease and Transgenic Rodent Models. JOURNAL OF EXPERIMENTAL NEUROLOGY 2024; 5:42-64. [PMID: 38434588 PMCID: PMC10906803 DOI: 10.33696/neurol.5.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Alzheimer's Disease (AD) and Alzheimer's Disease-Related Dementia (ADRD) are the primary causes of dementia that has a devastating effect on the quality of life and is a tremendous economic burden on the healthcare system. The accumulation of extracellular beta-amyloid (Aβ) plaques and intracellular hyperphosphorylated tau-containing neurofibrillary tangles (NFTs) in the brain are the hallmarks of AD. They are also thought to be the underlying cause of inflammation, neurodegeneration, brain atrophy, and cognitive impairments that accompany AD. The discovery of APP, PS1, and PS2 mutations that increase Aβ production in families with early onset familial AD led to the development of numerous transgenic rodent models of AD. These models have provided new insight into the role of Aβ in AD; however, they do not fully replicate AD pathology in patients. Familial AD patients with mutations that elevate the production of Aβ represent only a small fraction of dementia patients. In contrast, those with late-onset sporadic AD constitute the majority of cases. This observation, along with the failure of previous clinical trials targeting Aβ or Tau and the modest success of recent trials using Aβ monoclonal antibodies, has led to a reappraisal of the view that Aβ accumulation is the sole factor in the pathogenesis of AD. More recent studies have established that cerebral vascular dysfunction is one of the earliest changes seen in AD, and 67% of the candidate genes linked to AD are expressed in the cerebral vasculature. Thus, there is an increasing appreciation of the vascular contribution to AD, and the National Institute on Aging (NIA) and the Alzheimer's Disease Foundation recently prioritized it as a focused research area. This review summarizes the strengths and limitations of the most commonly used transgenic AD animal models and current views about the contribution of Aβ accumulation versus cerebrovascular dysfunction in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fan Fan
- Department of Physiology, Augusta University, Augusta, GA 30912, USA
| | - Jane J. Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
22
|
Soler-Rico M, Di Santo M, Vaz G, Joris V, Fomekong E, Guillaume S, Van Boven M, Raftopoulos C. How to reduce the complication rate of multiple burr holes surgery in moyamoya angiopathy. Acta Neurochir (Wien) 2023; 165:3613-3622. [PMID: 37993630 DOI: 10.1007/s00701-023-05876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE This study is aimed at analyzing clinical outcome, absence of stroke recurrence, revascularization, and complications and long-term follow-up in the surgical treatment of moyamoya angiopathy (MMA) using the multiple burr holes (MBH) technique with dura opening and arachnoid preservation as a single procedure. To the best of our knowledge, this is the first to describe an MBH technique with arachnoid preservation. METHOD We retrospectively reviewed all patients operated from June 2001 to March 2021, for a symptomatic and progressive MMA operated with opening of the dura but arachnoid preservation. Clinical examinations were obtained in all patients, and radiological monitoring was performed by cerebral 3D-magnetic resonance angiography (MRA) with perfusion or single-photon emission computed tomography (SPECT) with acetazolamide. RESULTS In total, 21 consecutive patients (6 children and 15 adults) were included with a mean age of 7.4 years in the pediatric group and 36.9 years in the adult group. Initial presentation was permanent ischemic stroke in 15 cases, transient ischemic attack (TIA) in 5 cases, and cerebral hemorrhage in one case. The MBH with dura opening and arachnoid preservation was performed bilaterally in 9 cases (43%) and unilaterally in 12 cases (57%). One patient died due to intraoperative bilateral ischemic stroke. Of the 20 other patients, 30% demonstrated clinical stability and 70% showed partial or complete recovery. Although one patient experienced a perioperative stroke, we did not observe any pseudomeningocele or postoperative ischemic stroke (IS) recurrence in all surviving cases during the average follow-up period of 55.5 months (range: 1-195). These outcomes emphasize the importance of preoperative monitoring to ensure the effectiveness and safety of the intervention. Postoperative angiography studies showed revascularization in 96.3% of treated hemispheres (100% in the adult group vs 80% in the pediatric group). CONCLUSIONS Our results on this small cohort suggest that the MBH technique with opening of the dura and arachnoids preservation can prevent recurrent strokes and reduce the risk of pseudomeningocele.
Collapse
Affiliation(s)
- M Soler-Rico
- Neurosurgery Department, St-Luc Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - M Di Santo
- Neurosurgery Department, St-Luc Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - G Vaz
- Neurosurgery Department, St-Luc Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - V Joris
- Neurosurgery Department, St-Luc Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - E Fomekong
- Neurosurgery Department, St-Luc Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - S Guillaume
- Medical Imaging Department, St-Luc Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - M Van Boven
- Anesthesiology Department, St-Luc Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - C Raftopoulos
- Neurosurgery Department, St-Luc Hospital, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
23
|
Li LY, Liu SF, Zhuang JL, Li MM, Huang ZP, Chen YH, Chen XR, Chen CN, Lin S, Ye LC. Recent research progress on metabolic syndrome and risk of Parkinson's disease. Rev Neurosci 2023; 34:719-735. [PMID: 36450297 DOI: 10.1515/revneuro-2022-0093] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/06/2022] [Indexed: 10/05/2023]
Abstract
Parkinson's disease (PD) is one of the most widespread neurodegenerative diseases. PD is associated with progressive loss of substantia nigra dopaminergic neurons, including various motor symptoms (e.g., bradykinesia, rigidity, and resting tremor), as well as non-motor symptoms (e.g., cognitive impairment, constipation, fatigue, sleep disturbance, and depression). PD involves multiple biological processes, including mitochondrial or lysosomal dysfunction, oxidative stress, insulin resistance, and neuroinflammation. Metabolic syndrome (MetS), a collection of numerous connected cerebral cardiovascular conditions, is a common and growing public health problem associated with many chronic diseases worldwide. MetS components include central/abdominal obesity, systemic hypertension, diabetes, and atherogenic dyslipidemia. MetS and PD share multiple pathophysiological processes, including insulin resistance, oxidative stress, and chronic inflammation. In recent years, MetS has been linked to an increased risk of PD, according to studies; however, the specific mechanism remains unclear. Researchers also found that some related metabolic therapies are potential therapeutic strategies to prevent and improve PD. This article reviews the epidemiological relationship between components of MetS and the risk of PD and discusses the potentially relevant mechanisms and recent progress of MetS as a risk factor for PD. Furthermore, we conclude that MetS-related therapies are beneficial for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Lin-Yi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Shu-Fen Liu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Jian-Long Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou 362000, China
| | - Mi-Mi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Zheng-Ping Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Yan-Hong Chen
- Department of Neurology, Shishi General Hospital, Quanzhou 362000, Fujian Province, China
| | - Xiang-Rong Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Chun-Nuan Chen
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, NSW, Australia
| | - Li-Chao Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
24
|
Kamabu LK, Bbosa GS, Lekuya HM, Cho EJ, Kyaruzi VM, Nyalundja AD, Deng D, Sekabunga JN, Kataka LM, Obiga DOD, Kiryabwire J, Kaddumukasa MN, Kaddumukasa M, Fuller AT, Galukande M. Burden, risk factors, neurosurgical evacuation outcomes, and predictors of mortality among traumatic brain injury patients with expansive intracranial hematomas in Uganda: a mixed methods study design. BMC Surg 2023; 23:326. [PMID: 37880635 PMCID: PMC10601114 DOI: 10.1186/s12893-023-02227-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Expansive intracranial hematomas (EIH) following traumatic brain injury (TBI) continue to be a public health problem in Uganda. Data is limited regarding the neurosurgical outcomes of TBI patients. This study investigated the neurosurgical outcomes and associated risk factors of EIH among TBI patients at Mulago National Referral Hospital (MNRH). METHODS A total of 324 subjects were enrolled using a prospective cohort study. Socio-demographic, risk factors and complications were collected using a study questionnaire. Study participants were followed up for 180 days. Univariate, multivariable, Cox regression analyses, Kaplan Meir survival curves, and log rank tests were sequentially conducted. P-values of < 0.05 at 95% Confidence interval (CI) were considered to be statistically significant. RESULTS Of the 324 patients with intracranial hematomas, 80.6% were male. The mean age of the study participants was 37.5 ± 17.4 years. Prevalence of EIH was 59.3% (0.59 (95% CI: 0.54 to 0.65)). Participants who were aged 39 years and above; PR = 1.54 (95% CI: 1.20 to 1.97; P = 0.001), and those who smoke PR = 1.21 (95% CI: 1.00 to 1.47; P = 0.048), and presence of swirl sign PR = 2.26 (95% CI: 1.29 to 3.95; P = 0.004) were found to be at higher risk for EIH. Kaplan Meier survival curve indicated that mortality at the 16-month follow-up was 53.4% (95% CI: 28.1 to 85.0). Multivariate Cox regression indicated that the predictors of mortality were old age, MAP above 95 mmHg, low GCS, complications such as infection, spasticity, wound dehiscence, CSF leaks, having GOS < 3, QoLIBRI < 50, SDH, contusion, and EIH. CONCLUSION EIH is common in Uganda following RTA with an occurrence of 59.3% and a 16-month higher mortality rate. An increased age above 39 years, smoking, having severe systemic disease, and the presence of swirl sign are independent risk factors. Old age, MAP above 95 mmHg, low GCS, complications such as infection, spasticity, wound dehiscence, CSF leaks, having a GOS < 3, QoLIBRI < 50, ASDH, and contusion are predictors of mortality. These findings imply that all patients with intracranial hematomas (IH) need to be monitored closely and a repeat CT scan to be done within a specific period following their initial CT scan. We recommend the development of a protocol for specific surgical and medical interventions that can be implemented for patients at moderate and severe risk for EIH.
Collapse
Affiliation(s)
- Larrey Kasereka Kamabu
- Department of Surgery, Neurosurgery, College of Medicine, Makerere University, Kampala, Uganda.
- Faculty of Medicine, Université Catholique du Graben, Butembo, Democratic Republic of the Congo.
- Department of Surgery, Makerere University College of Health Medicine, Mulago Upper Hill, Kampala, Uganda.
| | - Godfrey S Bbosa
- Department of Pharmacology & Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Hervé Monka Lekuya
- Department of Surgery, Neurosurgery, College of Medicine, Makerere University, Kampala, Uganda
- Directorate of Surgical Services, Neurosurgical Unit, Mulago National Referral Hospital, Kampala, Uganda
- Department of Human Structure & Repair/ Neurosurgery, Faculty of Medicine, Ghent University, Ghent, Belgium
| | | | - Victor Meza Kyaruzi
- Department of Surgery, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Arsene Daniel Nyalundja
- Faculty of Medicine, Université Catholique de Bukavu, Bukavu, South Kivu, Democratic Republic of the Congo
| | - Daniel Deng
- Duke Global Neurosurgery, Neurology and Health System, Duke University, Durham, NC, USA
| | - Juliet Nalwanga Sekabunga
- Department of Surgery, Neurosurgery, College of Medicine, Makerere University, Kampala, Uganda
- Directorate of Surgical Services, Neurosurgical Unit, Mulago National Referral Hospital, Kampala, Uganda
| | - Louange Maha Kataka
- Faculty of Medicine, Université Catholique du Graben, Butembo, Democratic Republic of the Congo
| | - Doomwin Oscar Deogratius Obiga
- Department of Surgery, Neurosurgery, College of Medicine, Makerere University, Kampala, Uganda
- Directorate of Surgical Services, Neurosurgical Unit, Mulago National Referral Hospital, Kampala, Uganda
| | - Joel Kiryabwire
- Department of Surgery, Neurosurgery, College of Medicine, Makerere University, Kampala, Uganda
- Directorate of Surgical Services, Neurosurgical Unit, Mulago National Referral Hospital, Kampala, Uganda
| | - Martin N Kaddumukasa
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Mark Kaddumukasa
- Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Anthony T Fuller
- Duke University, Durham, NC, USA
- Duke Global Neurosurgery, Neurology and Health System, Duke University, Durham, NC, USA
| | - Moses Galukande
- Department of Surgery, Neurosurgery, College of Medicine, Makerere University, Kampala, Uganda
| |
Collapse
|
25
|
Davidson CG, Woodford SJ, Mathur S, Valle DB, Foster D, Kioutchoukova I, Mahmood A, Lucke-Wold B. Investigation into the vascular contributors to dementia and the associated treatments. EXPLORATION OF NEUROSCIENCE 2023; 2:224-237. [PMID: 37981945 PMCID: PMC10655228 DOI: 10.37349/en.2023.00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 11/21/2023]
Abstract
As the average lifespan has increased, memory disorders have become a more pressing public health concern. However, dementia in the elderly population is often neglected in light of other health priorities. Therefore, expanding the knowledge surrounding the pathology of dementia will allow more informed decision-making regarding treatment within elderly and older adult populations. An important emerging avenue in dementia research is understanding the vascular contributors to dementia. This review summarizes potential causes of vascular cognitive impairment like stroke, microinfarction, hypertension, atherosclerosis, blood-brain-barrier dysfunction, and cerebral amyloid angiopathy. Also, this review address treatments that target these vascular impairments that also show promising results in reducing patient's risk for and experience of dementia.
Collapse
Affiliation(s)
| | | | - Shreya Mathur
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Devon Foster
- University of Central Florida, Orlando, FL 32816, USA
| | | | - Arman Mahmood
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Bastrup JA, Jepps TA. Proteomic mapping reveals dysregulated angiogenesis in the cerebral arteries of rats with early-onset hypertension. J Biol Chem 2023; 299:105221. [PMID: 37660920 PMCID: PMC10558802 DOI: 10.1016/j.jbc.2023.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Hypertension is associated with the presence of vascular abnormalities, including remodeling and rarefaction. These processes play an important role in cerebrovascular disease development; however, the mechanistic changes leading to these diseases are not well characterized. Using data-independent acquisition-based mass spectrometry analysis, here we determined the protein changes in cerebral arteries in pre- and early-onset hypertension from the spontaneously hypertensive rat (SHR), a model that resembles essential hypertension in humans. Our analysis identified 125 proteins with expression levels that were significantly upregulated or downregulated in 12-week-old spontaneously hypertensive rats compared to normotensive Wistar Kyoto rats. Using an angiogenesis enrichment analysis, we further identified a critical imbalance in angiogenic proteins that promoted an anti-angiogenic profile in cerebral arteries at early onset of hypertension. In a comparison to previously published data, we demonstrate that this angiogenic imbalance is not present in mesenteric and renal arteries from age-matched SHRs. Finally, we identified two proteins (Fbln5 and Cdh13), whose expression levels were critically altered in cerebral arteries compared to the other arterial beds. The observation of an angiogenic imbalance in cerebral arteries from the SHR reveals critical protein changes in the cerebrovasculature at the early onset of hypertension and provides novel insights into the early pathology of cerebrovascular disease.
Collapse
Affiliation(s)
- Joakim A Bastrup
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Sin MK, Cheng Y, Roseman JM, Zamrini E, Ahmed A. Relationships between Late-Life Blood Pressure and Cerebral Microinfarcts in Octogenarians: An Observational Autopsy Study. J Clin Med 2023; 12:6080. [PMID: 37763020 PMCID: PMC10531732 DOI: 10.3390/jcm12186080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Mid-life high blood pressure (BP) is a risk factor for cerebral microinfarcts. Less is known about the relationship between late-life BP and cerebral microinfarcts, the examination of which is the objective of the current study. This case-control study analyzed data from 551 participants (94.6% aged ≥80 years; 58.6% women) in the Adult Changes in Thought (ACT) study who had autopsy data on microinfarcts and four values of systolic and diastolic blood pressure (SBP and DBP) before death. Using the average of four values, SBP was categorized using 10 mmHg intervals; a trend was defined as a ≥10 mmHg rise or fall from the first to fourth values (average gap of 6.5 years). Multivariable-adjusted regression models were used to examine the associations of BP and microinfarcts, adjusting for age, sex, last BP-to-death time, APOE genotype, and antihypertensive medication use. Microinfarcts were present in 274 (49.7%) participants; there were multiple in 51.8% of the participants, and they were located in cortical areas in 40.5%, subcortical areas in 29.6%, and both areas in 29.9% of the participants. All SBP categories (reference of 100-119 mmHg) and both SBP trends were associated with higher odds of both the presence and number of microinfarcts. The magnitude of these associations was numerically greater for subcortical than cortical microinfarcts. Similar associations were observed with DBP. These hypothesis-generating findings provide new information about the overall relationship between BP and cerebral microinfarcts in octogenarians.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | - Yan Cheng
- Biomedical Informatics Center and School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA; (Y.C.); (A.A.)
| | - Jeffrey M. Roseman
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Edward Zamrini
- Biomedical Informatics Center and School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA; (Y.C.); (A.A.)
- Irvine Clinical Research, Irvine, CA 92614, USA
- VA Medical Center, Washington, DC 20242, USA
| | - Ali Ahmed
- Biomedical Informatics Center and School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA; (Y.C.); (A.A.)
- VA Medical Center, Washington, DC 20242, USA
- School of Medicine, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
28
|
Kovács KB, Bencs V, Hudák L, Oláh L, Csiba L. Hemorrhagic Transformation of Ischemic Strokes. Int J Mol Sci 2023; 24:14067. [PMID: 37762370 PMCID: PMC10531605 DOI: 10.3390/ijms241814067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemic stroke, resulting from insufficient blood supply to the brain, is among the leading causes of death and disability worldwide. A potentially severe complication of the disease itself or its treatment aiming to restore optimal blood flow is hemorrhagic transformation (HT) increasing morbidity and mortality. Detailed summaries can be found in the literature on the pathophysiological background of hemorrhagic transformation, the potential clinical risk factors increasing its chance, and the different biomarkers expected to help in its prediction and clinical outcome. Clinicopathological studies also contribute to the improvement in our knowledge of hemorrhagic transformation. We summarized the clinical risk factors of the hemorrhagic transformation of ischemic strokes in terms of risk reduction and collected the most promising biomarkers in the field. Also, auxiliary treatment options in reperfusion therapies have been reviewed and collected. We highlighted that the optimal timing of revascularization treatment for carefully selected patients and the individualized management of underlying diseases and comorbidities are pivotal. Another important conclusion is that a more intense clinical follow-up including serial cranial CTs for selected patients can be recommended, as clinicopathological investigations have shown HT to be much more common than clinically suspected.
Collapse
Affiliation(s)
| | | | | | | | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.B.K.); (V.B.); (L.H.); (L.O.)
| |
Collapse
|
29
|
Laporte JP, Faulkner ME, Gong Z, Akhonda MA, Ferrucci L, Egan JM, Bouhrara M. Hypertensive Adults Exhibit Lower Myelin Content: A Multicomponent Relaxometry and Diffusion Magnetic Resonance Imaging Study. Hypertension 2023; 80:1728-1738. [PMID: 37283066 PMCID: PMC10355798 DOI: 10.1161/hypertensionaha.123.21012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND It is unknown whether hypertension plays any role in cerebral myelination. To fill this knowledge gap, we studied 90 cognitively unimpaired adults, age range 40 to 94 years, who are participants in the Baltimore Longitudinal Study of Aging and the Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing to look for potential associations between hypertension and cerebral myelin content across 14 white matter brain regions. METHODS Myelin content was probed using our advanced multicomponent magnetic resonance relaxometry method of myelin water fraction, a direct and specific magnetic resonance imaging measure of myelin content, and longitudinal and transverse relaxation rates (R1 and R2), 2 highly sensitive magnetic resonance imaging metrics of myelin content. We also applied diffusion tensor imaging magnetic resonance imaging to measure fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity values, which are metrics of cerebral microstructural tissue integrity, to provide context with previous magnetic resonance imaging findings. RESULTS After adjustment of age, sex, systolic blood pressure, smoking status, diabetes status, and cholesterol level, our results indicated that participants with hypertension exhibited lower myelin water fraction, fractional anisotropy, R1 and R2 values and higher mean diffusivity, radial diffusivity, and axial diffusivity values, indicating lower myelin content and higher impairment to the brain microstructure. These associations were significant across several white matter regions, particularly in the corpus callosum, fronto-occipital fasciculus, temporal lobes, internal capsules, and corona radiata. CONCLUSIONS These original findings suggest a direct association between myelin content and hypertension and form the basis for further investigations including longitudinal assessments of this relationship.
Collapse
Affiliation(s)
- John P. Laporte
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mary E. Faulkner
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mohammad A.B.S. Akhonda
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Luigi Ferrucci
- Translational Gerontology Branch (L.F.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Josephine M. Egan
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation (J.P.L., M.E.F., Z.G., M.A.B.S.A., J.M.E., M.B.), National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
30
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
31
|
Roth R, Busby N, Wilmskoetter J, Schwen Blackett D, Gleichgerrcht E, Johnson L, Rorden C, Newman-Norlund R, Hillis AE, den Ouden DB, Fridriksson J, Bonilha L. Diabetes, brain health, and treatment gains in post-stroke aphasia. Cereb Cortex 2023; 33:8557-8564. [PMID: 37139636 PMCID: PMC10321080 DOI: 10.1093/cercor/bhad140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/05/2023] Open
Abstract
In post-stroke aphasia, language improvements following speech therapy are variable and can only be partially explained by the lesion. Brain tissue integrity beyond the lesion (brain health) may influence language recovery and can be impacted by cardiovascular risk factors, notably diabetes. We examined the impact of diabetes on structural network integrity and language recovery. Seventy-eight participants with chronic post-stroke aphasia underwent six weeks of semantic and phonological language therapy. To quantify structural network integrity, we evaluated the ratio of long-to-short-range white matter fibers within each participant's whole brain connectome, as long-range fibers are more susceptible to vascular injury and have been linked to high level cognitive processing. We found that diabetes moderated the relationship between structural network integrity and naming improvement at 1 month post treatment. For participants without diabetes (n = 59), there was a positive relationship between structural network integrity and naming improvement (t = 2.19, p = 0.032). Among individuals with diabetes (n = 19), there were fewer treatment gains and virtually no association between structural network integrity and naming improvement. Our results indicate that structural network integrity is associated with treatment gains in aphasia for those without diabetes. These results highlight the importance of post-stroke structural white matter architectural integrity in aphasia recovery.
Collapse
Affiliation(s)
- Rebecca Roth
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Janina Wilmskoetter
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Deena Schwen Blackett
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ezequiel Gleichgerrcht
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lisa Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | | | - Argye E Hillis
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Dirk B den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
32
|
Li Y, Chu X, Xie X, Guo J, Meng J, Si Q, Jiang P. Integrating transcriptomics and metabolomics to analyze the mechanism of hypertension-induced hippocampal injury. Front Mol Neurosci 2023; 16:1146525. [PMID: 37089694 PMCID: PMC10115962 DOI: 10.3389/fnmol.2023.1146525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
ObjectiveHypertension is a public health challenge worldwide due to its high prevalence and multiple complications. Hypertension-induced damage to the hippocampus leads to behavioral changes and various brain diseases. Despite the multifaceted effects of hypertension on the hippocampus, the mechanisms underlying hippocampal lesions are still unclear.MethodsThe 32-week-old spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were selected as the study subjects. Behavioral experiments such as an open field test (OFT), an elevated plus maze (EPM) test, and the Morris water maze (MWM) test were performed to show the behavioral characteristics of the rats. A comprehensive transcriptomic and metabolomic analysis was performed to understand the changes in the hippocampus at the metabolic and genetic levels.ResultsBehavioral tests showed that, compared to WKY rats, SHR showed not only reduced memory capacity but more hyperactive and impulsive behavior. In addition, transcriptomic analysis screened for 103 differentially expressed genes. Metabolomic analysis screened 56 metabolites with significant differences, including various amino acids and their related metabolites.ConclusionComprehensive analysis showed that hypertension-induced hippocampal lesions are closely associated with differential metabolites and differential genes detected in this study. The results provide a basis for analyzing the mechanisms of hypertension-induced hippocampal damage.
Collapse
Affiliation(s)
- Yanan Li
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
| | - Xue Chu
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
| | - Xin Xie
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, China
| | - Jinxiu Guo
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
| | - Qingying Si
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
- *Correspondence: Pei Jiang,
| |
Collapse
|
33
|
Zubair AS, Sheth KN. Hemorrhagic Conversion of Acute Ischemic Stroke. Neurotherapeutics 2023; 20:705-711. [PMID: 37085684 PMCID: PMC10275827 DOI: 10.1007/s13311-023-01377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Stroke is a leading cause of morbidity and mortality worldwide; a serious complication of ischemic stroke is hemorrhagic transformation. Current treatment of acute ischemic stroke includes endovascular thrombectomy and thrombolytic therapy. Both of these treatment options are linked with increased risks of hemorrhagic conversion. The diagnosis and timely management of patients with hemorrhagic conversion is critically important to patient outcomes. This review aims to discuss hemorrhagic conversion of acute ischemic stroke including discussion of the pathophysiology, review of risk factors, imaging considerations, and treatment of patients with hemorrhagic conversion.
Collapse
Affiliation(s)
- Adeel S Zubair
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Kevin N Sheth
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Division of Neurocritical Care and Emergency Neurology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
34
|
Mysiewicz S, North KC, Moreira L, Odum SJ, Bukiya AN, Dopico AM. Interspecies and regional variability of alcohol action on large cerebral arteries: regulation by KCNMB1 proteins. Am J Physiol Regul Integr Comp Physiol 2023; 324:R480-R496. [PMID: 36717168 PMCID: PMC10027090 DOI: 10.1152/ajpregu.00103.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Alcohol intake leading to blood ethanol concentrations (BEC) ≥ legal intoxication modifies brain blood flow with increases in some regions and decreases in others. Brain regions receive blood from the Willis' circle branches: anterior, middle (MCA) and posterior cerebral (PCA), and basilar (BA) arteries. Rats and mice have been used to identify the targets mediating ethanol-induced effects on cerebral arteries, with conclusions being freely interchanged, albeit data were obtained in different species/arterial branches. We tested whether ethanol action on cerebral arteries differed between male rat and mouse and/or across different brain regions and identified the targets of alcohol action. In both species and all Willis' circle branches, ethanol evoked reversible and concentration-dependent constriction (EC50s ≈ 37-86 mM; below lethal BEC in alcohol-naïve humans). Although showing similar constriction to depolarization, both species displayed differential responses to ethanol: in mice, MCA constriction was highly sensitive to the presence/absence of the endothelium, whereas in rat PCA was significantly more sensitive to ethanol than its mouse counterpart. In the rat, but not the mouse, BA was more ethanol sensitive than other branches. Both interspecies and regional variability were ameliorated by endothelium. Selective large conductance (BK) channel block in de-endothelialized vessels demonstrated that these channels were the effectors of alcohol-induced cerebral artery constriction across regions and species. Variabilities in alcohol actions did not fully matched KCNMB1 expression across vessels. However, immunofluorescence data from KCNMB1-/- mouse arteries electroporated with KCNMB1-coding cDNA demonstrate that KCNMB1 proteins, which regulate smooth muscle (SM) BK channel function and vasodilation, regulate interspecies and regional variability of brain artery responses to alcohol.
Collapse
Affiliation(s)
- Steven Mysiewicz
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Kelsey C North
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Luiz Moreira
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Schyler J Odum
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
35
|
Johnson AC. Hippocampal Vascular Supply and Its Role in Vascular Cognitive Impairment. Stroke 2023; 54:673-685. [PMID: 36848422 PMCID: PMC9991081 DOI: 10.1161/strokeaha.122.038263] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
The incidence of age-related dementia is increasing as the world population ages and due to lack of effective treatments for dementia. Vascular contributions to cognitive impairment and dementia are increasing as the prevalence of pathologies associated with cerebrovascular disease rise, including chronic hypertension, diabetes, and ischemic stroke. The hippocampus is a bilateral deep brain structure that is central to learning, memory, and cognitive function and highly susceptible to hypoxic/ischemic injury. Compared with cortical brain regions such as the somatosensory cortex, less is known about the function of the hippocampal vasculature that is critical in maintaining neurocognitive health. This review focuses on the hippocampal vascular supply, presenting what is known about hippocampal hemodynamics and blood-brain barrier function during health and disease, and discusses evidence that supports its contribution to vascular cognitive impairment and dementia. Understanding vascular-mediated hippocampal injury that contributes to memory dysfunction during healthy aging and cerebrovascular disease is essential to develop effective treatments to slow cognitive decline. The hippocampus and its vasculature may represent one such therapeutic target to mitigate the dementia epidemic.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington
| |
Collapse
|
36
|
Kant S, Banerjee D, Sabe SA, Sellke F, Feng J. Microvascular dysfunction following cardiopulmonary bypass plays a central role in postoperative organ dysfunction. Front Med (Lausanne) 2023; 10:1110532. [PMID: 36865056 PMCID: PMC9971232 DOI: 10.3389/fmed.2023.1110532] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Despite significant advances in surgical technique and strategies for tissue/organ protection, cardiac surgery involving cardiopulmonary bypass is a profound stressor on the human body and is associated with numerous intraoperative and postoperative collateral effects across different tissues and organ systems. Of note, cardiopulmonary bypass has been shown to induce significant alterations in microvascular reactivity. This involves altered myogenic tone, altered microvascular responsiveness to many endogenous vasoactive agonists, and generalized endothelial dysfunction across multiple vascular beds. This review begins with a survey of in vitro studies that examine the cellular mechanisms of microvascular dysfunction following cardiac surgery involving cardiopulmonary bypass, with a focus on endothelial activation, weakened barrier integrity, altered cell surface receptor expression, and changes in the balance between vasoconstrictive and vasodilatory mediators. Microvascular dysfunction in turn influences postoperative organ dysfunction in complex, poorly understood ways. Hence the second part of this review will highlight in vivo studies examining the effects of cardiac surgery on critical organ systems, notably the heart, brain, renal system, and skin/peripheral tissue vasculature. Clinical implications and possible areas for intervention will be discussed throughout the review.
Collapse
Affiliation(s)
| | | | | | | | - Jun Feng
- Cardiothoracic Surgery Research Laboratory, Department of Cardiothoracic Surgery, Rhode Island Hospital, Lifespan, Providence, RI, United States
| |
Collapse
|
37
|
McIntosh R, Hidalgo M, Lobo J, Dillon K, Szeto A, Hurwitz BE. Circulating endothelial and angiogenic cells predict hippocampal volume as a function of HIV status. J Neurovirol 2023; 29:65-77. [PMID: 36418739 DOI: 10.1007/s13365-022-01101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022]
Abstract
Circulating endothelial cells (CECs) and myeloid angiogenic cells (MACs) have the capacity to stabilize human blood vessels in vivo. Evidence suggests that these cells are depleted in dementia and in persons living with HIV (PWH), who have a higher prevalence of dementia and other cognitive deficits associated with aging. However, the associations of CECs and MACs with MRI-based measures of aging brain health, such as hippocampal gray matter volume, have not been previously demonstrated. The present study examined differences in these associations in 51 postmenopausal women with and without HIV infection. Gray matter volume was quantified using MRI. CECs and MACs were enumerated using fluorescence-activated cell sorting. Analyses examined the association of these cell counts with left and right hippocampal gray matter volume while controlling for age and hypertension status. The main finding was an interaction suggesting that compared to controls, postmenopausal PWH with greater levels of CECs and MACs had significantly greater hippocampus GMV. Further research is necessary to examine potential underlying pathophysiological mechanisms in HIV infection linking morpho-functional circulatory reparative processes with more diminished hippocampal volume in postmenopausal women.
Collapse
Affiliation(s)
- Roger McIntosh
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA.
- Behavioral Medicine Research Center, University of Miami, Miami, FL, USA.
- Division of Public Health Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Melissa Hidalgo
- Department of Internal Medicine, Broward Health North, Fort Lauderdale, FL, USA
| | - Judith Lobo
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Kaitlyn Dillon
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
| | - Angela Szeto
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
| | - Barry E Hurwitz
- Department of Psychology, College of Arts and Sciences, University of Miami, Miami, FL, USA
- Behavioral Medicine Research Center, University of Miami, Miami, FL, USA
- Division of Endocrinology, Diabetes and Metabolism, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
38
|
Reeve EH, Kronquist EK, Wolf JR, Lee B, Khurana A, Pham H, Cullen AE, Peterson JA, Meza A, Colton Bramwell R, Villasana L, Machin DR, Henson GD, Walker AE. Pyridoxamine treatment ameliorates large artery stiffening and cerebral artery endothelial dysfunction in old mice. J Cereb Blood Flow Metab 2023; 43:281-295. [PMID: 36189840 PMCID: PMC9903220 DOI: 10.1177/0271678x221130124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Age-related increases in large artery stiffness are associated with cerebrovascular dysfunction and cognitive impairment. Pyridoxamine treatment prevents large artery stiffening with advancing age, but the effects of pyridoxamine treatment on the cerebral vasculature or cognition is unknown. The purpose of this study was to investigate the effects of pyridoxamine on blood pressure, large artery stiffness, cerebral artery function, and cognitive function in old mice. Old male C57BL/6 mice consumed either pyridoxamine (2 g/L) or vehicle control in drinking water for ∼7.5 months and were compared with young male C57BL/6 mice. From pre- to post-treatment, systolic blood pressure increased in old control mice, but was maintained in pyridoxamine treated mice. Large artery stiffness decreased in pyridoxamine-treated mice but was unaffected in control mice. Pyridoxamine-treated mice had greater cerebral artery endothelium-dependent dilation compared with old control mice, and not different from young mice. Old control mice had impaired cognitive function; however, pyridoxamine only partially preserved cognitive function in old mice. In summary, pyridoxamine treatment in old mice prevented age-related increases in blood pressure, reduced large artery stiffness, preserved cerebral artery endothelial function, and partially preserved cognitive function. Taken together, these results suggest that pyridoxamine treatment may limit vascular aging.
Collapse
Affiliation(s)
- Emily H Reeve
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Elise K Kronquist
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Julia R Wolf
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Byron Lee
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Aleena Khurana
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Hanson Pham
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Abigail E Cullen
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Jessica A Peterson
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Antonio Meza
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - R Colton Bramwell
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Daniel R Machin
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, 7823, Florida State University, Tallahassee, FL, USA
| | - Grant D Henson
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
| | - Ashley E Walker
- Department of Human Physiology, 3265, University of Oregon, Eugene, OR, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
39
|
Ben-Shabat M, Awad-Igbaria Y, Sela S, Gross B, Yagil Y, Yagil C, Palzur E. Predisposition to cortical neurodegenerative changes in brains of hypertension prone rats. J Transl Med 2023; 21:51. [PMID: 36707861 PMCID: PMC9881299 DOI: 10.1186/s12967-023-03916-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Substantial evidence suggests that hypertension is a significant risk factor for cognitive decline. However, it is unclear whether the genetic predisposition to hypertension is also associated with cellular dysfunction that promotes neurodegeneration. METHODS Changes in blood pressure were evaluated following dietary salt-loading or administration of a regular diet in Sabra Normotensive (SBN/y) and Sabra Hypertension-prone rats (SBH/y). We performed quantitative RT-PCR and immunofluorescence staining in brain cortical tissues before salt loading and 6 and 9 months after salt loading. To examine the expression of brain cortical proteins involved in the gene regulation (Histone Deacetylase-HDAC2; Histone Acetyltransferase 1-HAT1), stress response (Activating Transcription Factor 4-ATF4; Eukaryotic Initiation Factor 2- eIF2α), autophagy (Autophagy related 4A cysteine peptidase- Atg4a; light-chain 3-LC3A/B; mammalian target of rapamycin complex 1- mTORC1) and apoptosis (caspase-3). RESULTS Prior to salt loading, SBH/y compared to SBN/y expressed a significantly higher level of cortical HAT1 (protein), Caspase-3 (mRNA/protein), LC3A, and ATF4 (mRNA), lower levels of ATG4A (mRNA/protein), LC3A/B, HDAC2 (protein), as well as a lower density of cortical neurons. Following dietary salt loading, SBH/y but not SBN/y developed high blood pressure. In hypertensive SBH/y, there was significant upregulation of cortical HAT1 (protein), Caspase-3 (protein), and eIF2α ~ P (protein) and downregulation of HDAC2 (protein) and mTORC1 (mRNA), and cortical neuronal loss. CONCLUSIONS The present findings suggest that genetic predisposition to hypertension is associated in the brain cortex with disruption in autophagy, gene regulation, an abnormal response to cellular stress, and a high level of cortical apoptosis, and could therefore exacerbate cellular dysfunction and thereby promote neurodegeneration.
Collapse
Affiliation(s)
- Moti Ben-Shabat
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel ,grid.415839.2Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Yaseen Awad-Igbaria
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shifra Sela
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.415839.2Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Bella Gross
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel ,grid.415839.2Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Yoram Yagil
- Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon, Israel ,grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Chana Yagil
- Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon, Israel ,grid.7489.20000 0004 1937 0511Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Eilam Palzur
- grid.415839.2Research Institute of Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
40
|
Lapi D, Federighi G, Lonardo MS, Chiurazzi M, Muscariello E, Tenore G, Colantuoni A, Novellino E, Scuri R. Effects of physical exercise associated with a diet enriched with natural antioxidants on cerebral hypoperfusion and reperfusion injury in spontaneously hypertensive rats. Front Physiol 2023; 14:1091889. [PMID: 36755790 PMCID: PMC9900024 DOI: 10.3389/fphys.2023.1091889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress is implicated in the pathogenesis of arterial hypertension. The reduction in the bioavailability of nitric oxide (NO) causes endothelial dysfunction, altering the functions of cerebral blood vessels. Physical exercise and intake of antioxidants improve the redox state, increasing the vascular NO production and/or the decrease in NO scavenging by reactive oxygen species (ROS). The present study was aimed at assessing the effects of physical exercise associated with a diet enriched with antioxidants from the Annurca apple in preventing the microvascular damage due to cerebral hypoperfusion and reperfusion injury in spontaneously hypertensive rats (SHRs). The rat pial microcirculation was investigated by intravital fluorescence microscopy through a parietal closed cranial window. As expected, SHRs subjected to physical exercise or an antioxidants-enriched diet showed a reduction of microvascular permeability, ROS formation, and leukocyte adhesion to venular walls, with a major effect of the antioxidants-enriched diet, when compared to untreated SHRs. Moreover, capillary perfusion was preserved by both treatments in comparison with untreated SHRs. Unexpectedly, the combined treatments did not induce higher effects than the single treatment. In conclusion, our results support the efficacy of physical activity or antioxidant supplement in reducing the microvascular alterations due to hypertension and ascribe to an antioxidants-enriched diet effective microvascular protection in SHRs.
Collapse
Affiliation(s)
- Dominga Lapi
- Department of Biology, University of Pisa, Pisa, Italy,*Correspondence: Dominga Lapi,
| | - Giuseppe Federighi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Serena Lonardo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Martina Chiurazzi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Espedita Muscariello
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Giancarlo Tenore
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | | | - Rossana Scuri
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Guan J, Li F, Kang D, Anderson T, Pitcher T, Dalrymple-Alford J, Shorten P, Singh-Mallah G. Cyclic Glycine-Proline (cGP) Normalises Insulin-Like Growth Factor-1 (IGF-1) Function: Clinical Significance in the Ageing Brain and in Age-Related Neurological Conditions. Molecules 2023; 28:molecules28031021. [PMID: 36770687 PMCID: PMC9919809 DOI: 10.3390/molecules28031021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) function declines with age and is associated with brain ageing and the progression of age-related neurological conditions. The reversible binding of IGF-1 to IGF binding protein (IGFBP)-3 regulates the amount of bioavailable, functional IGF-1 in circulation. Cyclic glycine-proline (cGP), a metabolite from the binding site of IGF-1, retains its affinity for IGFBP-3 and competes against IGF-1 for IGFBP-3 binding. Thus, cGP and IGFBP-3 collectively regulate the bioavailability of IGF-1. The molar ratio of cGP/IGF-1 represents the amount of bioavailable and functional IGF-1 in circulation. The cGP/IGF-1 molar ratio is low in patients with age-related conditions, including hypertension, stroke, and neurological disorders with cognitive impairment. Stroke patients with a higher cGP/IGF-1 molar ratio have more favourable clinical outcomes. The elderly with more cGP have better memory retention. An increase in the cGP/IGF-1 molar ratio with age is associated with normal cognition, whereas a decrease in this ratio with age is associated with dementia in Parkinson disease. In addition, cGP administration reduces systolic blood pressure, improves memory, and aids in stroke recovery. These clinical and experimental observations demonstrate the role of cGP in regulating IGF-1 function and its potential clinical applications in age-related brain diseases as a plasma biomarker for-and an intervention to improve-IGF-1 function.
Collapse
Affiliation(s)
- Jian Guan
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- The cGP Lab Limited New Zealand, Auckland 1021, New Zealand
- Correspondence: ; Tel.: +64-9-923-6134
| | - Fengxia Li
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510075, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Dali Kang
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Brain Research New Zealand, The Centre for Research Excellent, Dunedin 9016, New Zealand
- Shenyang Medical College, Shenyang 110034, China
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch 4710, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
| | - John Dalrymple-Alford
- Department of Neurology, Canterbury District Health Board, Christchurch 4710, New Zealand
- Department of Psychology, University of Canterbury, Christchurch 4710, New Zealand
| | - Paul Shorten
- AgResearch Ltd., Ruakura Research Centre, Hamilton 3214, New Zealand
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
| | - Gagandeep Singh-Mallah
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
42
|
Abstract
Hypertension affects a significant proportion of the adult and aging population and represents an important risk factor for vascular cognitive impairment and late-life dementia. Chronic high blood pressure continuously challenges the structural and functional integrity of the cerebral vasculature, leading to microvascular rarefaction and dysfunction, and neurovascular uncoupling that typically impairs cerebral blood supply. Hypertension disrupts blood-brain barrier integrity, promotes neuroinflammation, and may contribute to amyloid deposition and Alzheimer pathology. The mechanisms underlying these harmful effects are still a focus of investigation, but studies in animal models have provided significant molecular and cellular mechanistic insights. Remaining questions relate to whether adequate treatment of hypertension may prevent deterioration of cognitive function, the threshold for blood pressure treatment, and the most effective antihypertensive drugs. Recent advances in neurovascular biology, advanced brain imaging, and detection of subtle behavioral phenotypes have begun to provide insights into these critical issues. Importantly, a parallel analysis of these parameters in animal models and humans is feasible, making it possible to foster translational advancements. In this review, we provide a critical evaluation of the evidence available in experimental models and humans to examine the progress made and identify remaining gaps in knowledge.
Collapse
Affiliation(s)
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Daniela Carnevale
- Department of Molecular Medicine, “Sapienza” University of Rome, Italy
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
43
|
Modifiable risk factors of dementia linked to excitation-inhibition imbalance. Ageing Res Rev 2023; 83:101804. [PMID: 36410620 DOI: 10.1016/j.arr.2022.101804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Recent evidence identifies 12 potentially modifiable risk factors for dementia to which 40% of dementia cases are attributed. While the recognition of these risk factors has paved the way for the development of new prevention measures, the link between these risk factors and the underlying pathophysiology of dementia is yet not well understood. A growing number of recent clinical and preclinical studies support a role of Excitation-Inhibition (E-I) imbalance in the pathophysiology of dementia. In this review, we aim to propose a conceptual model on the links between the modifiable risk factors and the E-I imbalance in dementia. This model, which aims to address the current gap in the literature, is based on 12 mediating common mechanisms: the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neuroinflammation, oxidative stress, mitochondrial dysfunction, cerebral hypo-perfusion, blood-brain barrier (BBB) dysfunction, beta-amyloid deposition, elevated homocysteine level, impaired neurogenesis, tau tangles, GABAergic dysfunction, and glutamatergic dysfunction. We believe this model serves as a framework for future studies in this field and facilitates future research on dementia prevention, discovery of new biomarkers, and developing new interventions.
Collapse
|
44
|
Gibson M, Yiallourou S, Pase MP. The Association Between 24-Hour Blood Pressure Profiles and Dementia. J Alzheimers Dis 2023; 94:1303-1322. [PMID: 37458039 DOI: 10.3233/jad-230400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Midlife hypertension increases risk for dementia. Around one third of adults have diagnosed hypertension; however, many adults are undiagnosed, or remain hypertensive despite diagnosis or treatment. Since blood pressure (BP) follows a circadian rhythm, ambulatory BP monitoring allows for the assessment of BP over a 24-hour period and provides an important tool for improving the diagnosis and management of hypertension. The measurement of 24-hour BP profiles, especially nocturnal BP, demonstrate better predictive ability for cardiovascular disease and mortality than office measurement. However, few studies have examined 24-hour BP profiles with respect to dementia risk. This is an important topic since improvements in BP management could facilitate the primary prevention of vascular cognitive impairment and dementia. Therefore, this review discusses the evidence linking BP to dementia, with a focus on whether the implementation of 24-hour BP measurements can improve risk prediction and prevention strategies. Pathways linking nocturnal BP to dementia are also discussed as are risk reduction strategies. Overall, limited research suggests an association between 24-hour BP elevation and poorer cognition, cerebral small vessel disease, and dementia. However, most studies were cross-sectional. Further evidence is needed to substantiate 24-hour BP profiles, over and above office BP, as predictors of vascular cognitive impairment and incident dementia.
Collapse
Affiliation(s)
- Madeline Gibson
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Stephanie Yiallourou
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Matthew P Pase
- The Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
45
|
Sabharwal R, Chapleau MW, Gerhold TD, Baumbach GL, Faraci FM. Plasticity of cerebral microvascular structure and mechanics during hypertension and following recovery of arterial pressure. Am J Physiol Heart Circ Physiol 2022; 323:H1108-H1117. [PMID: 36269650 PMCID: PMC9678426 DOI: 10.1152/ajpheart.00292.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Changes in vascular structure contribute to vascular events and loss of brain health. We examined changes in cerebral arterioles at the onset of hypertension and the hypothesis that alterations during hypertension would recover with the return of mean arterial pressure (MAP) to normal. MAP was measured with radiotelemetry in awake male C57BL/6J mice at baseline and during infusion of vehicle or angiotensin II (ANG II, 1.4 mg/kg/day using osmotic pumps) for 28 days, followed by a 28-day recovery. With ANG II treatment, MAP increased through day 28. On day 30, MAP began to recover, reaching levels not different from vehicle on day 37. We measured intravascular pressure, diameter, wall thickness (WT), wall:lumen ratio (W:L), cross-sectional area (CSA), and slope of the tangential elastic modulus (ET) in maximally dilated arterioles. Variables were similar in both groups at day 1, with no significant change with vehicle treatment. With ANG II treatment, CSA, WT, and W:L increased on days 7-28. Internal and external diameter was reduced at 14 and 28 days. ET versus wall stress was reduced on days 7-28. During recovery, the diameter remained at days 14 and 28 values, whereas other variables returned partly or completely to normal. Thus, CSA, WT, W:L, and ET versus wall stress changed rapidly during hypertension and recovered with MAP. In contrast, inward remodeling developed slowly and did not recover. This lack of recovery has mechanistic implications for the long-term impact of hypertension on vascular determinants of brain health.NEW & NOTEWORTHY Changes in vascular structure contribute to vascular events and loss of brain health. We examined the inherent structural plasticity of cerebral arterioles during and after a period of hypertension. Arteriolar wall thickness, diameter, wall-to-lumen ratio, and biological stiffness changed rapidly during hypertension and recovered with blood pressure. In contrast, inward remodeling developed slowly and did not recover. This lack of recovery of arteriolar diameter has implications for the long-term impact of hypertension on vascular determinants of brain health.
Collapse
Affiliation(s)
- Rasna Sabharwal
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Mark W Chapleau
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Thomas D Gerhold
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Gary L Baumbach
- Department of Pathology, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| | - Frank M Faraci
- Department of Internal Medicine, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Francois M. Abboud Cardiovascular Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
46
|
Guo F, Jia S, Wang Q, Liu Q, Hu M, Wang W, Liu S, Li Q, Lu B, Zheng Y. Which Predictor, SctO2 or SstO2, Is more Sensitive for Postoperative Cognitive Dysfunction in Spine Surgery: A Prospective Observational Study? Orthop Surg 2022; 15:276-285. [PMID: 36394155 PMCID: PMC9837245 DOI: 10.1111/os.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Patients undergoing spinal surgery in the prone position may experience venous stasis, often resulting in edema in dependent areas of the body, including the head, and increased postoperative cognitive dysfunction (POCD). Not only does POCD present challenges for post-operative care and recovery, it can also cause permanent damage to the patient's brain and increase mortality and social costs. We aimed to clarify the incidence of POCD in patients with hypertension after prone spine surgery and to further determine the association between intraoperative somatic tissue oxygen saturation (SstO2)/cerebral tissue oxygen saturation (SctO2) and POCD. METHODS Patients with hypertension scheduled for open prone spine surgery from January 2020 to April 2021 were included in this single-center, prospective, observational study. SctO2 and SstO2 were monitored by near-infrared spectroscopy continuously throughout the surgery. The primary outcome was POCD assessed using the Mini-Mental Status Examination (MMSE). The association of SstO2 and SctO2 with POCD was evaluated with unadjusted analyses and multivariable logistic regression. RESULTS One hundred and one of 112 identified patients were included, 28 (27.8%) of whom developed POCD. None of the investigated SctO2 indices were predictive of POCD. However, the patients with POCD had greater decreases in intraoperative absolute SstO2 and relative SstO2 than the patients without POCD (P = 0.037, P = 0.036). Moreover, three SstO2 indices were associated with POCD, including a greater absolute SstO2 decrease (P = 0.021), a greater relative SstO2 decrease (P = 0.032), and a drop below 90% of the baseline SstO2 (P = 0.002), independent of ASA III status, preoperative platelets and postoperative sepsis. In addition, there was no correlation between intraoperative SctO2 and intraoperative SstO2 or between their respective absolute declines. CONCLUSION Twenty-eight (27.7%) of 101 patients developed POCD in patients with hypertension undergoing prone spine surgery, and intraoperative SstO2 is associated with POCD, whereas SctO2 shows no association with POCD. This study may initially provide a valuable new approach to the prevention of POCD in this population.
Collapse
Affiliation(s)
- Fei Guo
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Shuaiying Jia
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina,Department of AnesthesiologyThe Affiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Qiyan Wang
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Qinyu Liu
- Translational Medicine Center, the Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Mingquan Hu
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Wenzhang Wang
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Shijian Liu
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Qiang Li
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Bin Lu
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Yeying Zheng
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| |
Collapse
|
47
|
Guy R, Herman S, Benyamini H, Ben-Zur T, Kobo H, Pasmanik-Chor M, Yaacobi D, Barel E, Yagil C, Yagil Y, Offen D. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Proposed Therapy in a Rat Model of Cerebral Small Vessel Disease. Int J Mol Sci 2022; 23:ijms231911211. [PMID: 36232513 PMCID: PMC9569832 DOI: 10.3390/ijms231911211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been employed in the past decade as therapeutic agents in various diseases, including central nervous system (CNS) disorders. We currently aimed to use MSC-EVs as potential treatment for cerebral small vessel disease (CSVD), a complex disorder with a variety of manifestations. MSC-EVs were intranasally administrated to salt-sensitive hypertension prone SBH/y rats that were DOCA-salt loaded (SBH/y-DS), which we have previously shown is a model of CSVD. MSC-EVs accumulated within brain lesion sites of SBH/y-DS. An in vitro model of an inflammatory environment in the brain demonstrated anti-inflammatory properties of MSC-EVs. Following in vivo MSC-EV treatment, gene set enrichment analysis (GSEA) of SBH/y-DS cortices revealed downregulation of immune system response-related gene sets. In addition, MSC-EVs downregulated gene sets related to apoptosis, wound healing and coagulation, and upregulated gene sets associated with synaptic signaling and cognition. While no specific gene was markedly altered upon treatment, the synergistic effect of all gene alternations was sufficient to increase animal survival and improve the neurological state of affected SBH/y-DS rats. Our data suggest MSC-EVs act as microenvironment modulators, through various molecular pathways. We conclude that MSC-EVs may serve as beneficial therapeutic measure for multifactorial disorders, such as CSVD.
Collapse
Affiliation(s)
- Reut Guy
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shay Herman
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University, Jerusalem 9103401, Israel
| | - Tali Ben-Zur
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hila Kobo
- Genomics Research Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Yaacobi
- Department of Plastic and Reconstructive Surgery, Rabin Medical Center, Petah-Tikva 49100, Israel
| | - Eric Barel
- Department of Plastic and Reconstructive Surgery, Rabin Medical Center, Petah-Tikva 49100, Israel
| | - Chana Yagil
- Israeli Rat Genome Center, Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon 78306, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yoram Yagil
- Israeli Rat Genome Center, Laboratory for Molecular Medicine, Barzilai University Medical Center, Ashkelon 78306, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Daniel Offen
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence: ; Tel.: +972-523-342-737
| |
Collapse
|
48
|
Cansino S, Torres-Trejo F, Estrada-Manilla C, Mercado-Canales A, Medina-Velázquez D, Esquivel-García R, Ruiz-Velasco S. Effects of hypotension and hypertension on source memory and working memory. Aging Ment Health 2022; 26:1738-1746. [PMID: 34225518 DOI: 10.1080/13607863.2021.1942435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The effects of chronic low and high blood pressure on memory are unclear due to divergent results, originating in part due to participant misclassifications. The aim of this study was to compare source memory and working memory performance in individuals diagnosed with hypotension or hypertension with the performance of normotensive participants. Hypertensive and hypotensive individuals were receiving medical treatment. METHOD From a sample of 1656 participants, 219 were identified as hypertensive, and 37 were identified as hypotensive. Each of these two groups was compared with normotensive individuals matched by age, education and sex. Source memory performance and working memory performance were assessed through computerized tasks. RESULTS Source memory accuracy was poorer in hypotensive and hypertensive individuals than in normotensive individuals, and spatial working memory discrimination was inferior in hypertensive participants compared to normotensive individuals. CONCLUSION Blood pressure impairment should be considered a major concern because it has been linked to severe cardiovascular and cerebrovascular diseases. Furthermore, here we show that it has negative effects on the two types of memory that are most essential for preserving a self-sufficient lifestyle.
Collapse
Affiliation(s)
- Selene Cansino
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Frine Torres-Trejo
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Cinthya Estrada-Manilla
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Andrés Mercado-Canales
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Daniela Medina-Velázquez
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Ricardo Esquivel-García
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Silvia Ruiz-Velasco
- Department of Probability and Statistics, Applied Mathematics and Systems Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
49
|
Tang C, Liu Z, Li L. Mechanical Sensors for Cardiovascular Monitoring: From Battery-Powered to Self-Powered. BIOSENSORS 2022; 12:651. [PMID: 36005046 PMCID: PMC9405976 DOI: 10.3390/bios12080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide. Long-term and real-time monitoring of cardiovascular indicators is required to detect abnormalities and conduct early intervention in time. To this end, the development of flexible wearable/implantable sensors for real-time monitoring of various vital signs has aroused extensive interest among researchers. Among the different kinds of sensors, mechanical sensors can reflect the direct information of pressure fluctuations in the cardiovascular system with the advantages of high sensitivity and suitable flexibility. Herein, we first introduce the recent advances of four kinds of mechanical sensors for cardiovascular system monitoring, based on capacitive, piezoresistive, piezoelectric, and triboelectric principles. Then, the physio-mechanical mechanisms in the cardiovascular system and their monitoring are described, including pulse wave, blood pressure, heart rhythm, endocardial pressure, etc. Finally, we emphasize the importance of real-time physiological monitoring in the treatment of cardiovascular disease and discuss its challenges in clinical translation.
Collapse
Affiliation(s)
- Chuyu Tang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Li
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Melgarejo JD, Maestre GE, Gutierrez J, Thijs L, Mena LJ, Gaona C, Leendertz R, Lee JH, Chávez CA, Calmon G, Silva E, Wei D, Terwilliger JD, Vanassche T, Janssens S, Verhamme P, Bos D, Zhang ZY. Subclinical Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease in Relation to Office and Ambulatory Blood Pressure Measurements. Front Neurol 2022; 13:908260. [PMID: 35911921 PMCID: PMC9330602 DOI: 10.3389/fneur.2022.908260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTwenty-four-hour and nighttime blood pressure (BP) levels are more strongly associated with cardiovascular risk than office or daytime BP measurements. However, it remains undocumented which of the office and ambulatory BP measurements have the strongest association and predictive information in relation to the presence of type I, or arteriolosclerosis type, cerebral small vessel diseases (CSVD).MethodsA subset of 429 participants from the Maracaibo Aging Study [aged ≥40 years (women, 73.7%; mean age, 59.3 years)] underwent baseline brain magnetic resonance imaging (MRI) to visualize CSVD, which included log-transformed white matter hyperintensities (log-WMH) volume and the presence (yes/no) of lacunes, cerebral microbleeds (CMB), or enlarged perivascular spaces (EPVS). Linear and logistic regression models were applied to examine the association between CSVD and each +10-mmHg increment in the office and ambulatory systolic BP measurements. Improvement in the fit of nested logistic models was assessed by the log-likelihood ratio and the generalized R2 statistic.ResultsOffice and ambulatory systolic BP measurements were related to log-WMH (β-correlation coefficients ≥0.08; P < 0.001). Lacunes and CMB were only associated with ambulatory systolic BP measurements (odds ratios [OR] ranged from 1.31 [95% confidence interval, 1.10-1.55] to 1.46 [1.17–1.84], P ≤ 0.003). Accounted for daytime systolic BP, both the 24-h (β-correlation, 0.170) and nighttime (β-correlation, 0.038) systolic BP measurements remained related to log-WMH. When accounted for 24-h or daytime systolic BP levels, the nighttime systolic BP retained the significant association with lacunes (ORs, 1.05–1.06; 95% CIs, ≥1.01 to ≤ 1.13), whereas the 24-h and daytime systolic BP levels were not associated with lacunes after adjustments for nighttime systolic BP (ORs, ≤ 0.88; 95% CI, ≥0.77 to ≤ 1.14). On top of covariables and office systolic BP, ambulatory systolic BP measurements significantly improved model performance (1.05% ≥ R2 ≤ 3.82%). Compared to 24-h and daytime systolic BP, nighttime systolic BP had the strongest improvement in the model performance; for WMH (1.46 vs. 1.05%) and lacunes (3.06 vs. ≤ 2.05%).ConclusionsTwenty-four-hour and nighttime systolic BP were the more robust BP measurements associated with CSVD, but the nighttime systolic BP level had the strongest association. Controlling ambulatory BP levels might provide additional improvement in the prevention of CSVD.
Collapse
Affiliation(s)
- Jesus D. Melgarejo
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, Studies Coordinating Center, KU Leuven, Leuven, Belgium
- Laboratory of Neurosciences, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Gladys E. Maestre
- Laboratory of Neurosciences, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
- Department of Neurosciences and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States
- Alzheimer's Disease Resource Center for Minority Aging Research, University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas ADRC, Laredo, TX, United States
| | - Jose Gutierrez
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Lutgarde Thijs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, Studies Coordinating Center, KU Leuven, Leuven, Belgium
| | - Luis J. Mena
- Department of Informatics, Universidad Politécnica de Sinaloa, Mazatlán, Mexico
| | - Ciro Gaona
- Laboratory of Neurosciences, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Reinier Leendertz
- Laboratory of Neurosciences, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Joseph H. Lee
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain and the G.H. Sergievsky Center at Columbia University Medical Center, New York, NY, United States
- Departments of Epidemiology and Neurology, Columbia University Medical Center, New York, NY, United States
| | - Carlos A. Chávez
- Laboratory of Neurosciences, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Gustavo Calmon
- Laboratory of Ambulatory Recordings, Cardiovascular Institute (IECLUZ), University of Zulia, Maracaibo, Venezuela
| | - Egle Silva
- Laboratory of Ambulatory Recordings, Cardiovascular Institute (IECLUZ), University of Zulia, Maracaibo, Venezuela
| | - Dongmei Wei
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, Studies Coordinating Center, KU Leuven, Leuven, Belgium
| | - Joseph D. Terwilliger
- Department of Genetics and Development, Department of Psychiatry, and G.H. Sergievsky Center, Columbia University, New York, NY, United States
- Division of Medical Genetics, New York State Psychiatric Institute, New York, NY, United States
- Division of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Thomas Vanassche
- Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Janssens
- Division of Cardiology, Department of Internal Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| | - Peter Verhamme
- Division of Cardiology, Department of Internal Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| | - Daniel Bos
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Zhen-Yu Zhang
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, Studies Coordinating Center, KU Leuven, Leuven, Belgium
- *Correspondence: Zhen-Yu Zhang
| |
Collapse
|