1
|
Zinno C, Agnesi F, D'Alesio G, Dushpanova A, Brogi L, Camboni D, Bernini F, Terlizzi D, Casieri V, Gabisonia K, Alibrandi L, Grigoratos C, Magomajew J, Aquaro GD, Schmitt S, Detemple P, Oddo CM, Lionetti V, Micera S. Implementation of an epicardial implantable MEMS sensor for continuous and real-time postoperative assessment of left ventricular activity in adult minipigs over a short- and long-term period. APL Bioeng 2024; 8:026102. [PMID: 38633836 PMCID: PMC11023704 DOI: 10.1063/5.0169207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
The sensing of left ventricular (LV) activity is fundamental in the diagnosis and monitoring of cardiovascular health in high-risk patients after cardiac surgery to achieve better short- and long-term outcome. Conventional approaches rely on noninvasive measurements even if, in the latest years, invasive microelectromechanical systems (MEMS) sensors have emerged as a valuable approach for precise and continuous monitoring of cardiac activity. The main challenges in designing cardiac MEMS sensors are represented by miniaturization, biocompatibility, and long-term stability. Here, we present a MEMS piezoresistive cardiac sensor capable of continuous monitoring of LV activity over time following epicardial implantation with a pericardial patch graft in adult minipigs. In acute and chronic scenarios, the sensor was able to compute heart rate with a root mean square error lower than 2 BPM. Early after up to 1 month of implantation, the device was able to record the heart activity during the most important phases of the cardiac cycle (systole and diastole peaks). The sensor signal waveform, in addition, closely reflected the typical waveforms of pressure signal obtained via intraventricular catheters, offering a safer alternative to heart catheterization. Furthermore, histological analysis of the LV implantation site following sensor retrieval revealed no evidence of myocardial fibrosis. Our results suggest that the epicardial LV implantation of an MEMS sensor is a suitable and reliable approach for direct continuous monitoring of cardiac activity. This work envisions the use of this sensor as a cardiac sensing device in closed-loop applications for patients undergoing heart surgery.
Collapse
Affiliation(s)
- C. Zinno
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - F. Agnesi
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - G. D'Alesio
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - L. Brogi
- Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - D. Camboni
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - F. Bernini
- BioMedLab, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | - D. Terlizzi
- Fondazione Toscana “G. Monasterio,” Pisa, Italy
| | - V. Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | - K. Gabisonia
- BioMedLab, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | - L. Alibrandi
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center “Health Science,” Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - J. Magomajew
- Department of Chemistry, Fraunhofer Institute for Microengineering and Microsystems, 55129 Mainz, Germany
| | | | - S. Schmitt
- Department of Chemistry, Fraunhofer Institute for Microengineering and Microsystems, 55129 Mainz, Germany
| | - P. Detemple
- Department of Chemistry, Fraunhofer Institute for Microengineering and Microsystems, 55129 Mainz, Germany
| | - C. M. Oddo
- The BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - S. Micera
- Author to whom correspondence should be addressed:
| |
Collapse
|
2
|
Durr AJ, Korol AS, Hathaway QA, Kunovac A, Taylor AD, Rizwan S, Pinti MV, Hollander JM. Machine learning for spatial stratification of progressive cardiovascular dysfunction in a murine model of type 2 diabetes mellitus. PLoS One 2023; 18:e0285512. [PMID: 37155623 PMCID: PMC10166525 DOI: 10.1371/journal.pone.0285512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
Speckle tracking echocardiography (STE) has been utilized to evaluate independent spatial alterations in the diabetic heart, but the progressive manifestation of regional and segmental cardiac dysfunction in the type 2 diabetic (T2DM) heart remains understudied. Therefore, the objective of this study was to elucidate if machine learning could be utilized to reliably describe patterns of the progressive regional and segmental dysfunction that are associated with the development of cardiac contractile dysfunction in the T2DM heart. Non-invasive conventional echocardiography and STE datasets were utilized to segregate mice into two pre-determined groups, wild-type and Db/Db, at 5, 12, 20, and 25 weeks. A support vector machine model, which classifies data using a single line, or hyperplane, that best separates each class, and a ReliefF algorithm, which ranks features by how well each feature lends to the classification of data, were used to identify and rank cardiac regions, segments, and features by their ability to identify cardiac dysfunction. STE features more accurately segregated animals as diabetic or non-diabetic when compared with conventional echocardiography, and the ReliefF algorithm efficiently ranked STE features by their ability to identify cardiac dysfunction. The Septal region, and the AntSeptum segment, best identified cardiac dysfunction at 5, 20, and 25 weeks, with the AntSeptum also containing the greatest number of features which differed between diabetic and non-diabetic mice. Cardiac dysfunction manifests in a spatial and temporal fashion, and is defined by patterns of regional and segmental dysfunction in the T2DM heart which are identifiable using machine learning methodologies. Further, machine learning identified the Septal region and AntSeptum segment as locales of interest for therapeutic interventions aimed at ameliorating cardiac dysfunction in T2DM, suggesting that machine learning may provide a more thorough approach to managing contractile data with the intention of identifying experimental and therapeutic targets.
Collapse
Affiliation(s)
- Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Anna S Korol
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Saira Rizwan
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- West Virginia University School of Pharmacy, Morgantown, West Virginia, United States of America
- Department of Physiology and Pharmacology, West Virginia University School of Pharmacy, Morgantown, West Virginia, United States of America
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
| |
Collapse
|
3
|
Regional Characterization of the Gottingen Minipig Brain by [18 F]FDG Dynamic Pet Modeling. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Abstract
Purpose
To determine the best kinetic model to be applied on dynamic brain [18 F]FDG PET images by characterizing the regional brain glucose metabolism of normal Göttingen minipigs.
Methods
Nine Göttingen minipigs were scanned with a clinical PET/CT tomograph, starting from the injection of an intravenous bolus of [18 F]FDG, for about 25 min. Dynamic images were reconstructed and nine brain regions of interest (ROI), plus a vascular region, were defined and time-activity curves (TAC) were determined.
Three kinetic models were considered for fitting with experimental TACs: one-tissue compartment model 1TC, two-tissue irreversible compartment model 2TCi and two-tissue reversible model 2TC. Akaike Information Criterion was considered to evaluate the goodness of each model fitting. Regional and global kinetic parameter values were evaluated, in addition to the partition coefficient, net influx rate and retention index (RI).
Results
Both 2TCi and 2TC models turned out to be good choices for the next analysis. Parameter values were very similar between the different brain regions, with similar values to when the brain as a whole is considered (kinetic parameters mean values, from 2TCi model: K1 = 1.0 ml/g/min, k2 = 0.49 min− 1, k3 = 0.034 min− 1, K1/k2 = 2.14ml/g, Ki =0.069 ml/g/min; from 2TC model: K1 = 1.10 ml/g/min, k2 = 0.54 min− 1, k3 = 0.058 min− 1, k4 = 0.039 min− 1, K1/k2 = 2.18 ml/g, Ki = 0.10 ml/g/min; RI mean ± sd: 0.147 ± 0.037 min− 1), with the exception of the cerebellum (mean values from the 2TCi model: K1 = 0.52 ml/g/min, k2 = 0.56 min− 1, k3 = 0.025 min− 1, K1/k2 = 0.98ml/g, Ki=0.022 ml/g/min; from 2TC model: K1 = 0.54 ml/g/min, k2 = 0.61 min− 1, k3 = 0.044 min− 1, k4 = 0.038 min− 1, K1/k2 = 0.95ml/g, Ki=0.032 ml/g/min; RI mean ± sd: 0.071 ± 0.018 min− 1).
Conclusion
The two-tissue model is able to describe the regional brain metabolism in Göttingen minipigs. Compared to the 2TCi model, in the 2TC model the k4 micro-parameter was also evaluated. This led to adjustments of the other microparameters, especially k3 and consequently the net influx rate Ki. For healthy minipigs, the glucose metabolism was similar in all of the brain regions analyzed, with the exception of the cerebellum, where the FDG uptake was lower.
Collapse
|
4
|
Arkadievich OD. Metabolic markers of myocardium insulin resistance in dogs with heart failure. Open Vet J 2021; 10:363-370. [PMID: 33614430 PMCID: PMC7830177 DOI: 10.4314/ovj.v10i4.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Heart failure syndrome is an aspect of primary or secondary heart disease and is associated with decompensation, formation, and activation of pathological interactions between regulation systems. This results in myocardial energy metabolism alteration. This study was carried out to defy some metabolic aspects of myocardial tissue insulin resistance (IRM) development in canine heart failure. Aim To investigate the myocardial tissue concentration of adenosine triphosphate (ATP), glucose transporters 1 and 4, pyruvate dehydrogenase (PDH), hexokinase 2, insulin receptor (InsR), and adropin (ADR) protein and to screen metabolic changes and IRM in canine myocardium with heart failure. Methods We studied 28 dogs of different sexes, ages, and breeds. Groups were formed according to primary pathology: apparently healthy dogs (HD, n = 6); dogs with CDVD (CDVDD, n = 8); dogs with DCM (DCMD, n = 6); and dogs with doxorubicin chemotherapy and doxorubicin-induced cardiomyopathy (DoxCMD, n = 8). Animals in the study were diagnosed for primary disease by standard methods and algorithms. Animals were euthanized due to incurable neurological disease, refractory heart failure, or by owners will. The material was obtained immediately after death, fixed in liquid nitrogen, and stored in -80°C refrigerator. Studied proteins concentrations were analyzed in a specialized research laboratory, using ELISA kits, provided by Cloud-Clone Corp. Results ATP, GLUT1, and GLUT4 concentrations in myocardial tissue from the valvular disease group did not differ from the HD group. In CDVD, we found depression of PDH, hexokinase II (HX2), and ADR concentrations in comparison to HD. InsR was significantly lower in the CDVD and DoxCMD groups in comparison to the HD group, but in the DCM group, it was twofold higher than in the HD group. In the DCMD and DoxCMD groups, all parameters were lower than in the HD group. ATP, HX2, ADR, GLUT1, and GLUT4 were higher in the CDVD group, than in the DCM and DoxCM groups. PDH in the CDVD and DoxCM groups did not differ. PDH was depleted in the DCM to CDVD and DoxCM groups. InsR did not differ between the CDVD and DoxCM groups, but was upregulated in the DCM to CDVD and DoxCM groups. Conclusion Development of myocardial tissue IRM is a part of the structural, functional and metabolic remodeling in dogs with heart failure of different etiology. At the late stages, we found significant changes in energy supply availability and production in the myocardium.
Collapse
|
5
|
Agrimi J, Baroni C, Anakor E, Lionetti V. Perioperative Heart-Brain Axis Protection in Obese Surgical Patients: The Nutrigenomic Approach. Curr Med Chem 2020; 27:258-281. [PMID: 30324875 DOI: 10.2174/0929867325666181015145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The number of obese patients undergoing cardiac and noncardiac surgery is rapidly increasing because they are more prone to concomitant diseases, such as diabetes, thrombosis, sleep-disordered breathing, cardiovascular and cerebrovascular disorders. Even if guidelines are already available to manage anesthesia and surgery of obese patients, the assessment of the perioperative morbidity and mortality from heart and brain disorders in morbidly obese surgical patients will be challenging in the next years. The present review will recapitulate the new mechanisms underlying the Heart-brain Axis (HBA) vulnerability during the perioperative period in healthy and morbidly obese patients. Finally, we will describe the nutrigenomics approach, an emerging noninvasive dietary tool, to maintain a healthy body weight and to minimize the HBA propensity to injury in obese individuals undergoing all types of surgery by personalized intake of plant compounds that may regulate the switch from health to disease in an epigenetic manner. Our review provides current insights into the mechanisms underlying HBA response in obese surgical patients and how they are modulated by epigenetically active food constituents.
Collapse
Affiliation(s)
- Jacopo Agrimi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ekene Anakor
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,UOS Anesthesiology, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
6
|
Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I, Ali H, Braga L, Gorgodze N, Bernini F, Burchielli S, Collesi C, Zandonà L, Sinagra G, Piacenti M, Zacchigna S, Bussani R, Recchia FA, Giacca M. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 2019; 569:418-422. [PMID: 31068698 PMCID: PMC6768803 DOI: 10.1038/s41586-019-1191-6] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
Prompt coronary catheterization and revascularization have dramatically improved
the outcome of myocardial infarction, but also have resulted in a growing number of
survived patients with permanent structural damage of the heart, which frequently leads to
heart failure. Finding new treatments for this condition is a largely unmet clinical need
1, especially because of the incapacity of
cardiomyocytes to replicate after birth and thus achieve regeneration of the lost
contractile tissue 2. Here we show that expression
of human microRNA-199a in infarcted pig hearts is capable of stimulating cardiac repair.
One month after myocardial infarction and delivery of this microRNA through an
adeno-associated viral vector, the treated animals showed marked improvements in both
global and regional contractility, increased muscle mass and reduced scar size. These
functional and morphological findings correlated with cardiomyocyte de-differentiation and
proliferation. At longer follow-up, however, persistent and uncontrolled expression of the
microRNA resulted in sudden arrhythmic death of most of the treated pigs. Such events were
concurrent with myocardial infiltration of proliferating cells displaying a poorly
differentiated myoblastic phenotype. These results show that achieving cardiac repair
through the stimulation of endogenous cardiomyocyte proliferation is attainable in large
mammals, however this therapy needs to be tightly dosed.
Collapse
Affiliation(s)
- Khatia Gabisonia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giulia Prosdocimo
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | | - Lucia Carlucci
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Ilaria Secco
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, UK
| | - Hashim Ali
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, UK
| | - Luca Braga
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, UK
| | - Nikoloz Gorgodze
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Bernini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Chiara Collesi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Lorenzo Zandonà
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Serena Zacchigna
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.,Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Rossana Bussani
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy. .,Fondazione Toscana Gabriele Monasterio, Pisa, Italy. .,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy. .,School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, UK. .,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
7
|
Benitez‐Amaro A, Samouillan V, Jorge E, Dandurand J, Nasarre L, de Gonzalo‐Calvo D, Bornachea O, Amoros‐Figueras G, Lacabanne C, Vilades D, Leta R, Carreras F, Gallardo A, Lerma E, Cinca J, Guerra JM, Llorente‐Cortés V. Identification of new biophysical markers for pathological ventricular remodelling in tachycardia-induced dilated cardiomyopathy. J Cell Mol Med 2018; 22:4197-4208. [PMID: 29921039 PMCID: PMC6111813 DOI: 10.1111/jcmm.13699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/17/2018] [Indexed: 11/28/2022] Open
Abstract
Our aim was to identify biophysical biomarkers of ventricular remodelling in tachycardia-induced dilated cardiomyopathy (DCM). Our study includes healthy controls (N = 7) and DCM pigs (N = 10). Molecular analysis showed global myocardial metabolic abnormalities, some of them related to myocardial hibernation in failing hearts, supporting the translationality of our model to study cardiac remodelling in dilated cardiomyopathy. Histological analysis showed unorganized and agglomerated collagen accumulation in the dilated ventricles and a higher percentage of fibrosis in the right (RV) than in the left (LV) ventricle (P = .016). The Fourier Transform Infrared Spectroscopy (FTIR) 1st and 2nd indicators, which are markers of the myofiber/collagen ratio, were reduced in dilated hearts, with the 1st indicator reduced by 45% and 53% in the RV and LV, respectively, and the 2nd indicator reduced by 25% in the RV. The 3rd FTIR indicator, a marker of the carbohydrate/lipid ratio, was up-regulated in the right and left dilated ventricles but to a greater extent in the RV (2.60-fold vs 1.61-fold, P = .049). Differential scanning calorimetry (DSC) showed a depression of the freezable water melting point in DCM ventricles - indicating structural changes in the tissue architecture - and lower protein stability. Our results suggest that the 1st, 2nd and 3rd FTIR indicators are useful markers of cardiac remodelling. Moreover, the 2nd and 3rd FITR indicators, which are altered to a greater extent in the right ventricle, are associated with greater fibrosis.
Collapse
Affiliation(s)
- Aleyda Benitez‐Amaro
- Group of Lipids and Cardiovascular PathologyICCC ProgramBiomedical Research Institute Sant Pau (IIB Sant Pau)Hospital de la Santa Creu i Sant PauBarcelonaSpain
- Institute of Biomedical Research of Barcelona (IIBB)Spanish National Research Council (CSIC)BarcelonaSpain
| | - Valerie Samouillan
- CIRIMATUniversité de ToulouseUniversité Paul Sabatier, Physique des PolymèresToulouseFrance
| | - Esther Jorge
- CIBERCVBarcelonaSpain
- Department of CardiologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant Pau (IIB Sant Pau)Universitat Autonoma de BarcelonaBarcelonaSpain
| | - Jany Dandurand
- CIRIMATUniversité de ToulouseUniversité Paul Sabatier, Physique des PolymèresToulouseFrance
| | - Laura Nasarre
- Group of Lipids and Cardiovascular PathologyICCC ProgramBiomedical Research Institute Sant Pau (IIB Sant Pau)Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - David de Gonzalo‐Calvo
- Group of Lipids and Cardiovascular PathologyICCC ProgramBiomedical Research Institute Sant Pau (IIB Sant Pau)Hospital de la Santa Creu i Sant PauBarcelonaSpain
- Institute of Biomedical Research of Barcelona (IIBB)Spanish National Research Council (CSIC)BarcelonaSpain
- CIBERCVBarcelonaSpain
| | - Olga Bornachea
- Group of Lipids and Cardiovascular PathologyICCC ProgramBiomedical Research Institute Sant Pau (IIB Sant Pau)Hospital de la Santa Creu i Sant PauBarcelonaSpain
- Institute of Biomedical Research of Barcelona (IIBB)Spanish National Research Council (CSIC)BarcelonaSpain
| | - Gerard Amoros‐Figueras
- CIBERCVBarcelonaSpain
- Department of CardiologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant Pau (IIB Sant Pau)Universitat Autonoma de BarcelonaBarcelonaSpain
| | - Colette Lacabanne
- CIRIMATUniversité de ToulouseUniversité Paul Sabatier, Physique des PolymèresToulouseFrance
| | - David Vilades
- Department of CardiologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant Pau (IIB Sant Pau)Universitat Autonoma de BarcelonaBarcelonaSpain
| | - Ruben Leta
- Department of CardiologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant Pau (IIB Sant Pau)Universitat Autonoma de BarcelonaBarcelonaSpain
| | - Francesc Carreras
- CIBERCVBarcelonaSpain
- Department of CardiologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant Pau (IIB Sant Pau)Universitat Autonoma de BarcelonaBarcelonaSpain
| | - Alberto Gallardo
- Department of PathologyHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Enrique Lerma
- Department of PathologyHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Juan Cinca
- CIBERCVBarcelonaSpain
- Department of CardiologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant Pau (IIB Sant Pau)Universitat Autonoma de BarcelonaBarcelonaSpain
| | - Jose M. Guerra
- CIBERCVBarcelonaSpain
- Department of CardiologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant Pau (IIB Sant Pau)Universitat Autonoma de BarcelonaBarcelonaSpain
| | - Vicenta Llorente‐Cortés
- Group of Lipids and Cardiovascular PathologyICCC ProgramBiomedical Research Institute Sant Pau (IIB Sant Pau)Hospital de la Santa Creu i Sant PauBarcelonaSpain
- Institute of Biomedical Research of Barcelona (IIBB)Spanish National Research Council (CSIC)BarcelonaSpain
- CIBERCVBarcelonaSpain
| |
Collapse
|
8
|
Aquaro GD, Pizzino F, Terrizzi A, Carerj S, Khandheria BK, Di Bella G. Diastolic dysfunction evaluated by cardiac magnetic resonance: the value of the combined assessment of atrial and ventricular function. Eur Radiol 2018; 29:1555-1564. [PMID: 30128617 DOI: 10.1007/s00330-018-5571-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/14/2018] [Accepted: 05/28/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES We sought to evaluate the role of cardiac magnetic resonance imaging (CMR) in the evaluation of diastolic function by a combined assessment of left ventricular (LV) and left atrial (LA) function in a cohort of subjects with various degrees of diastolic dysfunction (DD) detected by echocardiography. METHODS Forty patients with different stages of DD and 18 healthy controls underwent CMR. Short-axis cine steady-state free precession images covering the entire LA and LV were acquired. Parameters of diastolic function were measured by the analysis of the LV and LA volume/time (V/t) curves and the respective derivative dV/dt curves. RESULTS At receiver operating characteristic (ROC) curve analysis, the peak of emptying rate A indexed by the LV filling volume with a cut-off of 3.8 was able to detect patients with grade I DD from other groups (area under the curve [AUC] 0.975, 95% confidence interval [CI] 0.86-1). ROC analysis showed that LA ejection fraction with a cut-off of ≤36% was able to distinguish controls and grade I DD patients from those with grade II and grade III DD (AUC 0.996, 95% CI 0.92-1, p < 0.001). The isovolumetric pulmonary vein transit ratio with a cut-off of 2.4 allowed class III DD to be distinguished from other groups (AUC 1.0, 95%CI 0.93-1, p < 0.001). CONCLUSIONS Analysis of LV and LA V/t curves by CMR may be useful for the evaluation of DD. KEY POINTS • Combined atrial and ventricular volume/time curves allow evaluation of diastolic function. • Atrial emptying fraction allows distinction between impaired relaxation and restrictive/pseudo-normal filling. • Isovolumetric pulmonary vein transit ratio allows distinction between restrictive and pseudo-normal filling.
Collapse
Affiliation(s)
| | - Fausto Pizzino
- Scuola Superiore Sant'Anna di Studi Universitari e di Perfezionamento, Pisa, Italy
| | - Anna Terrizzi
- Dipartimento di Medicina Clinica e Sperimentale, University of Messina, Messina, Italy
| | - Scipione Carerj
- Dipartimento di Medicina Clinica e Sperimentale, University of Messina, Messina, Italy
| | - Bijoy K Khandheria
- Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, University of Wisconsin School of Medicine and Public Health, Milwaukee, WI, USA
| | - Gianluca Di Bella
- Dipartimento di Medicina Clinica e Sperimentale, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Duchenne J, Claus P, Pagourelias ED, Mada RO, Van Puyvelde J, Vunckx K, Verbeken E, Gheysens O, Rega F, Voigt JU. Sheep can be used as animal model of regional myocardial remodeling and controllable work. Cardiol J 2018; 26:375-384. [PMID: 29570208 DOI: 10.5603/cj.a2018.0007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pacing the right heart has been shown to induce reversible conduction delay and subse-quent asymmetric remodeling of the left ventricle (LV) in dogs and pigs. Both species have disadvantages in animal experiments. Therefore the aim of this study was to develop a more feasible and easy-to-use animal model in sheep. METHODS Dual-chamber (DDD) pacemakers with epicardial leads on the right atrium and right ven-tricular free wall were implanted in 13 sheep. All animals underwent 8 weeks of chronic rapid pacing at 180 bpm. Reported observations were made at 110 bpm. RESULTS DDD pacing acutely induced a left bundle branch block (LBBB) - like pattern with almost doubling in QRS width and the appearance of a septal flash, indicating mechanical dyssynchrony. Atrial pacing (AAI) resulted in normal ventricular conduction and function. During 8 weeks of rapid DDD pacing, animals developed LV remodeling (confirmed with histology) with septal wall thinning (-30%, p < 0.05), lateral wall thickening (+22%, p < 0.05), LV volume increase (+32%, p < 0.05), decrease of LV ejection fraction (-31%, p < 0.05), and functional mitral regurgitation. After 8 weeks, segmental pressure-strain-loops, representing regional myocardial work, were recorded. Switching from AAI to DDD pacing decreased immediately work in the septum and increased it in the lateral wall (-69 and +41%, respectively, p < 0.05). Global LV stroke work and dP/dtmax decreased (-27% and -25%, respectively, p < 0.05). CONCLUSIONS This study presents the development a new sheep model with an asymmetrically remod-eled LV. Simple pacemaker programing allows direct modulation of regional myocardial function and work. This animal model provides a new and valuable alternative for canine or porcine models and has the potential to become instrumental for investigating regional function and loading conditions on regional LV remodeling.
Collapse
Affiliation(s)
- Jürgen Duchenne
- Department of Cardiovascular Sciences and Department of Cardiovascular Diseases, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium.
| | - Piet Claus
- Department of Cardiovascular Sciences and Department of Cardiovascular Diseases, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Efstathios D Pagourelias
- Department of Cardiovascular Sciences and Department of Cardiovascular Diseases, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Razvan O Mada
- Department of Cardiovascular Sciences and Department of Cardiovascular Diseases, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Joeri Van Puyvelde
- Department of Cardiovascular Sciences and Department of Cardiothoracic Surgery, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Kathleen Vunckx
- Department of Imaging and Pathology and Department of Nuclear Medicine, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Eric Verbeken
- Department of Imaging and Pathology and Department of Pathology, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Olivier Gheysens
- Department of Imaging and Pathology and Department of Nuclear Medicine, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Filip Rega
- Department of Cardiovascular Sciences and Department of Cardiothoracic Surgery, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences and Department of Cardiovascular Diseases, KU Leuven - University of Leuven and University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Abstract
Tachypacing-induced heart failure is a well-established large animal model that recapitulates numerous pathophysiological, structural and molecular features of dilated cardiomyopathy and, more in general, of end-stage congestive heart failure. The left or the right ventricle is instrumented with pacing electrodes to impose supernormal heart rates, usually three times higher than baseline values, for a length of time that typically ranges between 3 and 5 weeks. The animal of choice is the dog, although this protocol has been successfully implemented also in pigs, sheep, and rabbits. This chapter provides detailed methodology and description of the dog model utilized in our laboratory, which is one of the variants described in literature. Chronic instrumentation is completed by adding probes and catheters necessary to obtain measures of cardiac function and hemodynamics and to withdraw blood samples from various vascular districts. The progression from compensated to decompensated heart failure is highly reproducible, therefore, due also to the phylogenetic proximity of dogs to humans, tachypacing-induced heart failure is considered a highly clinically relevant model for testing the efficacy of novel pharmacological and nonpharmacological therapeutic agents. This model typically produces heart failure as defined by an LV dP/dt max <1500 mmHg/s, end-diastolic pressure >25 mmHg, mean arterial pressure <85 mmHg, and an ejection fraction <35%. One can expect a mortality rate of 5-10% due to fatal arrhythmias.
Collapse
Affiliation(s)
- Jeffery C Powers
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Fabio Recchia
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Bigazzi F, Adorni MP, Puntoni M, Sbrana F, Lionetti V, Pino BD, Favari E, Recchia FA, Bernini F, Sampietro T. Analysis of Serum Cholesterol Efflux Capacity in a Minipig Model of Nonischemic Heart Failure. J Atheroscler Thromb 2017; 24:853-862. [PMID: 27980243 PMCID: PMC5556192 DOI: 10.5551/jat.37101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Circulating levels of high-density lipoprotein cholesterol (HDL-C) are decreased in patients with heart failure (HF). We tested whether HDL-C serum levels are associated with cardiac contractile dysfunction in a minipig HF model. Methods: Blood samples were collected from 13 adult male minipigs: 1) before pacemaker implantation, 2) 10 days after surgery, and 3) 3 weeks after high-rate LV pacing. Serum cholesterol efflux capacity (CEC), an index of HDL functionality, was assessed through four mechanisms: ATP Binding Cassette transporter A1 (ABCA1), ATP Binding Cassette transporter G1 (ABCG1), Scavenger Receptor-Class B Type I (SR-BI) and Passive Diffusion (PD). Results: HDL-C serum levels significantly decrease in minipigs with HF compared with baseline (p < 0.0001). Serum CEC mediated by PD and SR-BI, but not ABCA1 or ABCG1, significantly decrease in animals with HF (p < 0.05 and p < 0.005, respectively). Discussion: HDL-C serum levels and partial serum CEC reduction may play a pathophysiological role in the cardiac function decay sustained by high-rate LV pacing, opening new avenues to understand of the pathogenesis of nonischemic myocardial remodeling.
Collapse
Affiliation(s)
| | | | | | | | - Vincenzo Lionetti
- Fondazione Toscana Gabriele Monasterio.,Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna
| | | | | | - Fabio A Recchia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna.,Department of Physiology, Temple University School of Medicine
| | | | | |
Collapse
|
12
|
Patel MD, Mohan J, Schneider C, Bajpai G, Purevjav E, Canter CE, Towbin J, Bredemeyer A, Lavine KJ. Pediatric and adult dilated cardiomyopathy represent distinct pathological entities. JCI Insight 2017; 2:94382. [PMID: 28724792 DOI: 10.1172/jci.insight.94382] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/06/2017] [Indexed: 01/15/2023] Open
Abstract
Pediatric dilated cardiomyopathy (DCM) is the most common indication for heart transplantation in children. Despite similar genetic etiologies, medications routinely used in adult heart failure patients do not improve outcomes in the pediatric population. The mechanistic basis for these observations is unknown. We hypothesized that pediatric and adult DCM comprise distinct pathological entities, in that children do not undergo adverse remodeling, the target of adult heart failure therapies. To test this hypothesis, we examined LV specimens obtained from pediatric and adult donor controls and DCM patients. Consistent with the established pathophysiology of adult heart failure, adults with DCM displayed marked cardiomyocyte hypertrophy and myocardial fibrosis compared with donor controls. In contrast, pediatric DCM specimens demonstrated minimal cardiomyocyte hypertrophy and myocardial fibrosis compared with both age-matched controls and adults with DCM. Strikingly, RNA sequencing uncovered divergent gene expression profiles in pediatric and adult patients, including enrichment of transcripts associated with adverse remodeling and innate immune activation in adult DCM specimens. Collectively, these findings reveal that pediatric and adult DCM represent distinct pathological entities, provide a mechanistic basis to explain why children fail to respond to adult heart failure therapies, and suggest the need to develop new approaches for pediatric DCM.
Collapse
Affiliation(s)
| | - Jayaram Mohan
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Caralin Schneider
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Geetika Bajpai
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Enkhsaikhan Purevjav
- Department of Pediatrics, Division of Cardiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Jeffrey Towbin
- Department of Pediatrics, Division of Cardiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Andrea Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Developmental Biology, and.,Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Abstract
Dyssynchronous contraction of the ventricle significantly worsens morbidity and mortality in patients with heart failure (HF). Approximately one-third of patients with HF have cardiac dyssynchrony and are candidates for cardiac resynchronization therapy (CRT). The initial understanding of dyssynchrony and CRT was in terms of global mechanics and hemodynamics, but lack of clinical benefit in a sizable subgroup of recipients who appear otherwise appropriate has challenged this paradigm. This article reviews current understanding of these cellular and subcellular mechanisms, arguing that these aspects are key to improving CRT use, as well as translating its benefits to a wider HF population.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 858, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 858, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol 2017; 230:70-75. [DOI: 10.1016/j.ijcard.2016.12.083] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/12/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
|
15
|
Aortic elasticity indices by magnetic resonance predict progression of ascending aorta dilation. Eur Radiol 2016; 27:1395-1403. [DOI: 10.1007/s00330-016-4501-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 01/15/2023]
|
16
|
Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria. PLoS One 2015; 10:e0146033. [PMID: 26720696 PMCID: PMC4697822 DOI: 10.1371/journal.pone.0146033] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/12/2015] [Indexed: 01/14/2023] Open
Abstract
Although diabetes has been identified as a major risk factor for atrial fibrillation, little is known about glucose metabolism in the healthy and diabetic atria. Glucose transport into the cell, the rate-limiting step of glucose utilization, is regulated by the Glucose Transporters (GLUTs). Although GLUT4 is the major isoform in the heart, GLUT8 has recently emerged as a novel cardiac isoform. We hypothesized that GLUT-4 and -8 translocation to the atrial cell surface will be regulated by insulin and impaired during insulin-dependent diabetes. GLUT protein content was measured by Western blotting in healthy cardiac myocytes and type 1 (streptozotocin-induced, T1Dx) diabetic rodents. Active cell surface GLUT content was measured using a biotinylated photolabeled assay in the perfused heart. In the healthy atria, insulin stimulation increased both GLUT-4 and -8 translocation to the cell surface (by 100% and 240%, respectively, P<0.05). Upon insulin stimulation, we reported an increase in Akt (Th308 and s473 sites) and AS160 phosphorylation, which was positively (P<0.05) correlated with GLUT4 protein content in the healthy atria. During diabetes, active cell surface GLUT-4 and -8 content was downregulated in the atria (by 70% and 90%, respectively, P<0.05). Akt and AS160 phosphorylation was not impaired in the diabetic atria, suggesting the presence of an intact insulin signaling pathway. This was confirmed by the rescued translocation of GLUT-4 and -8 to the atrial cell surface upon insulin stimulation in the atria of type 1 diabetic subjects. In conclusion, our data suggest that: 1) both GLUT-4 and -8 are insulin-sensitive in the healthy atria through an Akt/AS160 dependent pathway; 2) GLUT-4 and -8 trafficking is impaired in the diabetic atria and rescued by insulin treatment. Alterations in atrial glucose transport may induce perturbations in energy production, which may provide a metabolic substrate for atrial fibrillation during diabetes.
Collapse
|
17
|
Direct epicardial assist device using artificial rubber muscle in a swine model of pediatric dilated cardiomyopathy. Int J Artif Organs 2015; 38:588-94. [PMID: 26659480 DOI: 10.5301/ijao.5000447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 11/20/2022]
Abstract
PURPOSE Ventricular assist devices are a potent alternative or bridge therapy to heart transplants for dilated cardiomyopathy patients. However, ventricular assist devices have problems related to biocompatibility, hemocompatibility, and thromboembolic events, especially in younger patients. The present study examined the hemodynamic effects of a direct cardiac compression device using circumferential artificial rubber muscles in a young swine model of dilated cardiomyopathy. METHODS Dilated cardiomyopathy was established in 6 pigs (6-8 weeks of rapid right ventricular pacing; average weight, 22.6 ± 2.1 kg). The device was designed using pneumatic rubber muscles (Fluidic Muscle, Festo). Hemodynamic parameters were monitored under baseline conditions, after the assistance, and after inducing ventricular fibrillation. Hemodynamic data were acquired using a PiCCO, multilumened thermodilution catheter in the pulmonary artery, left ventricular pressure monitoring, and epicardial echocardiography. RESULTS Direct epicardial assistance resulted in a significant improvement in hemodynamic data. Cardiac output improved from 1.39 ± 0.24 L/min to 1.96 ± 0.46 (p = 0.02). Stroke volume (14.5 ± 3.2 mL versus 20.1 ± 4.3 ml, p<0.01) and ejection fraction (25.2 ± 3.6% versus 47.7 ± 7.8%, p<0.01) also improved after assistance. After inducing ventricular fibrillation, cardiac output was maintained at 1.33 ± 0.28 L/min. CONCLUSIONS Use of a circumferential direct epicardial assistant device resulted in improvement in hemodynamic data in a dilated cardiomyopathy model. Although there is still a need for improvements in device components, the direct cardiac assist device may be a good alternative to recent heart failure device therapies.
Collapse
|
18
|
Abstract
Dyssynchronous contraction of the ventricle significantly worsens morbidity and mortality in patients with heart failure (HF). Approximately one-third of patients with HF have cardiac dyssynchrony and are candidates for cardiac resynchronization therapy (CRT). The initial understanding of dyssynchrony and CRT was in terms of global mechanics and hemodynamics, but lack of clinical benefit in a sizable subgroup of recipients who appear otherwise appropriate has challenged this paradigm. This article reviews current understanding of these cellular and subcellular mechanisms, arguing that these aspects are key to improving CRT use, as well as translating its benefits to a wider HF population.
Collapse
Affiliation(s)
- Jonathan A Kirk
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 858, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 858, 720 Rutland Avenue, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Myocardial interstitial remodelling in non-ischaemic dilated cardiomyopathy: insights from cardiovascular magnetic resonance. Heart Fail Rev 2015; 20:731-49. [DOI: 10.1007/s10741-015-9509-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Woitek F, Zentilin L, Hoffman NE, Powers JC, Ottiger I, Parikh S, Kulczycki AM, Hurst M, Ring N, Wang T, Shaikh F, Gross P, Singh H, Kolpakov MA, Linke A, Houser SR, Rizzo V, Sabri A, Madesh M, Giacca M, Recchia FA. Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy. J Am Coll Cardiol 2015; 66:139-53. [PMID: 26160630 DOI: 10.1016/j.jacc.2015.04.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. OBJECTIVES This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. METHODS Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. RESULTS Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. CONCLUSIONS Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure.
Collapse
Affiliation(s)
- Felix Woitek
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania; University of Leipzig-Heart Center, Department of Cardiology/Internal Medicine, Leipzig, Germany
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nicholas E Hoffman
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Jeffery C Powers
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Isabel Ottiger
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania; University of Leipzig-Heart Center, Department of Cardiology/Internal Medicine, Leipzig, Germany
| | - Suraj Parikh
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Anna M Kulczycki
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Marykathryn Hurst
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Nadja Ring
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Tao Wang
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Farah Shaikh
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Polina Gross
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Harinder Singh
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mikhail A Kolpakov
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Axel Linke
- University of Leipzig-Heart Center, Department of Cardiology/Internal Medicine, Leipzig, Germany
| | - Steven R Houser
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Victor Rizzo
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Abdelkarim Sabri
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Muniswamy Madesh
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Fabio A Recchia
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
21
|
Aquaro GD, Frijia F, Positano V, Menichetti L, Santarelli MF, Lionetti V, Giovannetti G, Recchia FA, Landini L. Cardiac Metabolism in a Pig Model of Ischemia–Reperfusion by Cardiac Magnetic Resonance with Hyperpolarized 13C-Pyruvate. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ijcme.2015.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Markers of fibrosis, inflammation, and remodeling pathways in heart failure. Clin Chim Acta 2015; 443:29-38. [DOI: 10.1016/j.cca.2014.09.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/22/2014] [Accepted: 09/03/2014] [Indexed: 01/13/2023]
|
23
|
Assessment of atrial diastolic function in patients with hypertrophic cardiomyopathy by cine magnetic resonance imaging. Radiol Med 2015; 120:714-22. [PMID: 25663567 DOI: 10.1007/s11547-015-0497-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/18/2014] [Indexed: 01/16/2023]
Abstract
PURPOSE This study was conducted to assess the role of atrial function by cardiac magnetic resonance (CMR) for the evaluation of diastolic physiology in patients with hypertrophic cardiomyopathy (HCM) compared to healthy controls. MATERIALS AND METHODS We enrolled 23 consecutive patients affected by HCM and 43 healthy subjects as age-matched control cases (CC). CMR was performed through acquisition of cine steady-state free precession sequences using a 1.5-T scanner. Image postprocessing was carried out using Tracking Tool software. RESULTS Atrial volumes were significantly higher in patients with HCM compared to CC: maximum atrial volume (p = 0.007) and minimum atrial volume (p = 0.01). A statistically significant difference was also observed in atrial ejection fraction in patients with HCM (p < 0.0001). The atrial volume curves defined as cavity volume over time (dV/t) showed significant differences: early atrial peak emptying rate (PERE) (maximum rate of emptying independent of atrial contraction) in HCM was -146 ± 53 ml/s versus -227 ± 86 ml/s in CC (p < 0.0001); active atrial peak emptying rate (PERA) (maximum rate of emptying secondary to atrial contraction) in HCM was -256 ± 80 ml/s versus -216 ± 104 ml/s in CC (p = 0.05); the atrial PER E/A ratio in HCM was 0.6 ± 0.2 versus 1.05 ± 0.5 in CC (p < 0.0001). CONCLUSIONS This study demonstrated that in HCM patients with early diastolic dysfunction the parameters of left atrial function assessed by CMR are impaired before the ventricular diastolic indexes such as the early peak filling rate and the active peak filling rate.
Collapse
|
24
|
Choy JS, Zhang ZD, Pitsillides K, Sosa M, Kassab GS. Longitudinal hemodynamic measurements in swine heart failure using a fully implantable telemetry system. PLoS One 2014; 9:e103331. [PMID: 25119289 PMCID: PMC4131878 DOI: 10.1371/journal.pone.0103331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
Chronic monitoring of heart rate, blood pressure, and flow in conscious free-roaming large animals can offer considerable opportunity to understand the progression of cardiovascular diseases and can test new diagnostics and therapeutics. The objective of this study was to demonstrate the feasibility of chronic, simultaneous measurement of several hemodynamic parameters (left ventricular pressure, systemic pressure, blood flow velocity, and heart rate) using a totally implantable multichannel telemetry system in swine heart failure models. Two solid-state blood pressure sensors were inserted in the left ventricle and the descending aorta for pressure measurements. Two Doppler probes were placed around the left anterior descending (LAD) and the brachiocephalic arteries for blood flow velocity measurements. Electrocardiographic (ECG) electrodes were attached to the surface of the left ventricle to monitor heart rate. The telemeter body was implanted in the right side of the abdomen under the skin for approximately 4 to 6 weeks. The animals were subjected to various heart failure models, including volume overload (A-V fistula, n = 3), pressure overload (aortic banding, n = 2) and dilated cardiomyopathy (pacing-induced tachycardia, n = 3). Longitudinal changes in hemodynamics were monitored during the progression of the disease. In the pacing-induced tachycardia animals, the systemic blood pressure progressively decreased within the first 2 weeks and returned to baseline levels thereafter. In the aortic banding animals, the pressure progressively increased during the development of the disease. The pressure in the A-V fistula animals only showed a small increase during the first week and remained stable thereafter. The results demonstrated the ability of this telemetry system of long-term, simultaneous monitoring of blood flow, pressure and heart rate in heart failure models, which may offer significant utility for understanding cardiovascular disease progression and treatment.
Collapse
Affiliation(s)
- Jenny S. Choy
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Zhen-Du Zhang
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | | | - Margo Sosa
- Transonic Systems Inc., Ithaca, New York, United States of America
| | - Ghassan S. Kassab
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Department of Surgery, Indiana University, Indianapolis, Indiana, United States of America
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
25
|
Lionetti V, Matteucci M, Ribezzo M, Di Silvestre D, Brambilla F, Agostini S, Mauri P, Padeletti L, Pingitore A, Delsedime L, Rinaldi M, Recchia FA, Pucci A. Regional mapping of myocardial hibernation phenotype in idiopathic end-stage dilated cardiomyopathy. J Cell Mol Med 2014; 18:396-414. [PMID: 24444256 PMCID: PMC3955147 DOI: 10.1111/jcmm.12198] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/28/2013] [Indexed: 01/18/2023] Open
Abstract
Myocardial hibernation (MH) is a well-known feature of human ischaemic cardiomyopathy (ICM), whereas its presence in human idiopathic dilated cardiomyopathy (DCM) is still controversial. We investigated the histological and molecular features of MH in left ventricle (LV) regions of failing DCM or ICM hearts. We examined failing hearts from DCM (n = 11; 41.9 ± 5.45 years; left ventricle-ejection fraction (LV-EF), 18 ± 3.16%) and ICM patients (n = 12; 58.08 ± 1.7 years; LVEF, 21.5 ± 6.08%) undergoing cardiac transplantation, and normal donor hearts (N, n = 8). LV inter-ventricular septum (IVS) and antero-lateral free wall (FW) were transmurally (i.e. sub-epicardial, mesocardial and sub-endocardial layers) analysed. LV glycogen content was shown to be increased in both DCM and ICM as compared with N hearts (P < 0.001), with a U-shaped transmural distribution (lower values in mesocardium). Capillary density was homogenously reduced in both DCM and ICM as compared with N (P < 0.05 versus N), with a lower decrease independent of the extent of fibrosis in sub-endocardial and sub-epicardial layers of DCM as compared with ICM. HIF1-α and nestin, recognized ischaemic molecular hallmarks, were similarly expressed in DCM-LV and ICM-LV myocardium. The proteomic profile was overlapping by ˜50% in DCM and ICM groups. Morphological and molecular features of MH were detected in end-stage ICM as well as in end-stage DCM LV, despite epicardial coronary artery patency and lower fibrosis in DCM hearts. Unravelling the presence of MH in the absence of coronary stenosis may be helpful to design a novel approach in the clinical management of DCM.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione CNR-Regione Toscana "G. Monasterio", Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Del Ry S, Cabiati M, Martino A, Cavallini C, Caselli C, Aquaro G, Battolla B, Prescimone T, Giannessi D, Mattii L, Lionetti V. High concentration of C-type natriuretic peptide promotes VEGF-dependent vasculogenesis in the remodeled region of infarcted swine heart with preserved left ventricular ejection fraction. Int J Cardiol 2013; 168:2426-34. [DOI: 10.1016/j.ijcard.2013.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/23/2013] [Accepted: 03/05/2013] [Indexed: 11/28/2022]
|
27
|
Romano SL, Lionetti V. From cell phenotype to epigenetic mechanisms: new insights into regenerating myocardium. Can J Physiol Pharmacol 2013; 91:579-85. [DOI: 10.1139/cjpp-2012-0392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The self-regenerating property of the adult myocardium is not a new discovery. Even though we could not confirm that the adult myocardium is a post-mitotic tissue, we should consider that its plasticity is extremely low. Studies are still in progress to decipher the mechanisms underlying the abovementioned potential fetal features of the adult heart. The modest results of several clinical trials based on the transplantation of millions of autologous stem cells into the dysfunctional heart have confirmed that the cross-talk of different signals, such as the microenvironment, promotes the regeneration of adult myocardium. Recent scientific evidence has revealed that cellular cross-talk does not depend on the action of a single cell phenotype. It is conceivable that the limited turnover of cardiomyocytes is ensured by the interplay of adult cardiac cells in response to environmental changes. The epigenetic state of a cell serves as a dynamic interface between the environment and phenotype. The epigenetic modulation of the adult cardiac cells by natural active compounds encourages further studies to improve myocardial plasticity. In this review, we will highlight the most relevant studies demonstrating the epigenetic modulation of myocardial regeneration without the use of stem cell transplantation.
Collapse
Affiliation(s)
- Simone Lorenzo Romano
- Laboratory of Medical Science, Institute of Life Sciences, Via G. Moruzzi, 1, Scuola Superiore Sant’Anna, 56124 Pisa, Italy
- Cardiac and Thoracic Department, Azienda Ospedaliero – Universitaria Pisana, Pisa, Italy
| | - Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Via G. Moruzzi, 1, Scuola Superiore Sant’Anna, 56124 Pisa, Italy
- Fondazione CNR – Regione Toscana “G. Monasterio”, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
28
|
Aquaro GD, Cagnolo A, Tiwari KK, Todiere G, Bevilacqua S, Di Bella G, Ait-Ali L, Festa P, Glauber M, Lombardi M. Age-dependent changes in elastic properties of thoracic aorta evaluated by magnetic resonance in normal subjects. Interact Cardiovasc Thorac Surg 2013; 17:674-9. [PMID: 23760356 DOI: 10.1093/icvts/ivt261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Aortic stiffness is an independent cardiovascular risk factor. Cardiac magnetic resonance (CMR) allows evaluation of aortic elastic properties by different indexes such as distensibility, the maximum rate of systolic distension (MRSD) and pulse wave velocity (PWV). We sought to define age-dependent changes of indexes of elastic properties of the thoracic aorta in healthy subjects. METHODS We enrolled 85 healthy subjects (53 males) free of overt cardiovascular disease subdivided into 6 classes of age (from 15 to >60 years). Distensibility, MRSD and PWV were measured by the analysis of CMR images acquired using a 1.5 T clinical scanner. RESULTS MRSD and distensibility decreased progressively through the classes of age (P < 0.001) after an initial plateau between 20 and 30 years in males and 15 and 20 years in females. Pulse wave velocity increased progressively with the age (P < 0.001). Distensibility was related to body mass index (P = 0.002), surface area (P < 0.005), weight (P = 0.005) and to left ventricular parameters such as mass index (P < 0.001) and end-diastolic volume index (P = 0.002). MRSD was related to end-diastolic volume index (P < 0.001) but not to body parameters. PWV was not related to body and ventricular parameters. CONCLUSIONS This study confirmed that physiological ageing is associated with a progressive impairment of the elastic properties of the aortic wall. Results of this study may be useful for the early identification of subjects with impaired aortic wall properties providing referral values of elasticity indexes assessed by CMR in different classes of age.
Collapse
|
29
|
Apoptotic transcriptional profile remains activated in late remodeled left ventricle after myocardial infarction in swine infarcted hearts with preserved ejection fraction. Pharmacol Res 2013; 70:41-9. [DOI: 10.1016/j.phrs.2012.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 12/31/2022]
|
30
|
Caselli C, Lionetti V, Cabiati M, Prescimone T, Aquaro GD, Ottaviano V, Bernini F, Mattii L, Del Ry S, Giannessi D. Regional evidence of modulation of cardiac adiponectin level in dilated cardiomyopathy: pilot study in a porcine animal model. Cardiovasc Diabetol 2012; 11:143. [PMID: 23164042 PMCID: PMC3537584 DOI: 10.1186/1475-2840-11-143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/07/2012] [Indexed: 12/30/2022] Open
Abstract
Background The role of systemic and myocardial adiponectin (ADN) in dilated cardiomyopathy is still debated. We tested the regulation of both systemic and myocardial ADN and the relationship with AMP-activated protein kinase (AMPK) activity in a swine model of non-ischemic dilated cardiomyopathy. Methods and results Cardiac tissue was collected from seven instrumented adult male minipigs by pacing the left ventricular (LV) free wall (180 beats/min, 3 weeks), both from pacing (PS) and opposite sites (OS), and from five controls. Circulating ADN levels were inversely related to global and regional cardiac function. Myocardial ADN in PS was down-regulated compared to control (p < 0.05), yet ADN receptor 1 was significantly up-regulated (p < 0.05). No modifications of AMPK were observed in either region of the failing heart. Similarly, myocardial mRNA levels of PPARγ, PPARα, TNFα, iNOS were unchanged compared to controls. Conclusions Paradoxically, circulating ADN did not show any cardioprotective effect, confirming its role as negative prognostic biomarker of heart failure. Myocardial ADN was reduced in PS compared to control in an AMPK-independent fashion, suggesting the occurrence of novel mechanisms by which reduced cardiac ADN levels may regionally mediate the decline of cardiac function.
Collapse
Affiliation(s)
- Chiara Caselli
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Del Ry S, Cabiati M, Lionetti V, Aquaro GD, Martino A, Mattii L, Morales MA. Pacing-induced regional differences in adenosine receptors mRNA expression in a swine model of dilated cardiomyopathy. PLoS One 2012; 7:e47011. [PMID: 23071699 PMCID: PMC3470544 DOI: 10.1371/journal.pone.0047011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/11/2012] [Indexed: 01/09/2023] Open
Abstract
The adenosinergic system is essential in the mediation of intrinsic protection and myocardial resistance to insult; it may be considered a cardioprotective molecule and adenosine receptors (ARs) represent potential therapeutic targets in the setting of heart failure (HF). The aim of the study was to test whether differences exist between mRNA expression of ARs in the anterior left ventricle (LV) wall (pacing site: PS) compared to the infero septal wall (opposite region: OS) in an experimental model of dilated cardiomyopathy. Cardiac tissue was collected from LV PS and OS of adult male minipigs with pacing-induced HF (n = 10) and from a control group (C, n = 4). ARs and TNF–α mRNA expression was measured by Real Time-PCR and the results were normalized with the three most stably expressed genes (GAPDH, HPRT1, TBP). Immunohistochemistry analysis was also performed. After 3 weeks of pacing higher levels of expression for each analyzed AR were observed in PS except for A1R (A1R: C = 0.6±0.2, PS = 0.1±0.04, OS = 0.04±0.01, p<0.0001 C vs. PS and OS respectively; A2AR: C = 1.04±0.59, PS = 2.62±0.79, OS = 2.99±0.79; A2BR: C = 1.2±0.1, PS = 5.59±2.3, OS = 1.59±0.46; A3R: C = 0.76±0.18, PS = 8.40±3.38, OS = 4.40±0.83). Significant contractile impairment and myocardial hypoperfusion were observed at PS after three weeks of pacing as compared to OS. TNF-α mRNA expression resulted similar in PS (6.3±2.4) and in OS (5.9±2.7) although higher than in control group (3.4±1.5). ARs expression was mainly detected in cardiomyocytes. This study provided new information on ARs local changes in the setting of LV dysfunction and on the role of these receptors in relation to pacing-induced abnormalities of myocardial perfusion and contraction. These results suggest a possible therapeutic role of adenosine in patients with HF and dyssynchronous LV contraction.
Collapse
MESH Headings
- Animals
- Cardiac Pacing, Artificial
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/physiopathology
- Cardiomyopathy, Dilated/therapy
- Disease Models, Animal
- Gene Expression Regulation
- Heart Failure/genetics
- Heart Failure/physiopathology
- Heart Rate/genetics
- Heart Ventricles/physiopathology
- Magnetic Resonance Imaging
- Male
- RNA, Messenger
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Swine
- Swine, Miniature
- Tumor Necrosis Factor-alpha/genetics
- Ventricular Dysfunction, Left/physiopathology
Collapse
|
32
|
Abstract
A heart attack kills off many cells in the heart. Parts of the heart become thin and fail to contract properly following the replacement of lost cells by scar tissue. However, the notion that the same adult cardiomyocytes beat throughout the lifespan of the organ and organism, without the need for a minimum turnover, gives way to a fascinating investigations. Since the late 1800s, scientists and cardiologists wanted to demonstrate that the cardiomyocytes cannot be generated after the perinatal period in human beings. This curiosity has been passed down in subsequent years and has motivated more and more accurate studies in an attempt to exclude the presence of renewed cardiomyocytes in the tissue bordering the ischaemic area, and then to confirm the dogma of the heart as terminally differentiated organ. Conversely, peri-lesional mitosis of cardiomyocytes were discovered initially by light microscopy and subsequently confirmed by more sophisticated technologies. Controversial evidence of mechanisms underlying myocardial regeneration has shown that adult cardiomyocytes are renewed through a slow turnover, even in the absence of damage. This turnover is ensured by the activation of rare clusters of progenitor cells interspersed among the cardiac cells functionally mature. Cardiac progenitor cells continuously interact with each other, with the cells circulating in the vessels of the coronary microcirculation and myocardial cells in auto-/paracrine manner. Much remains to be understood; however, the limited functional recovery in human beings after myocardial injury clearly demonstrates weak regenerative potential of cardiomyocytes and encourages the development of new approaches to stimulate this process.
Collapse
Affiliation(s)
- Lucio Barile
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
33
|
Cell-to-cell variability in troponin I phosphorylation in a porcine model of pacing-induced heart failure. Basic Res Cardiol 2012; 107:244. [PMID: 22237651 PMCID: PMC3329882 DOI: 10.1007/s00395-012-0244-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 12/12/2011] [Accepted: 12/31/2011] [Indexed: 01/26/2023]
Abstract
We tested the hypothesis that myocardial contractile protein phosphorylation and the Ca2+ sensitivity of force production are dysregulated in a porcine model of pacing-induced heart failure (HF). The level of protein kinase A (PKA)-dependent cardiac troponin I (TnI) phosphorylation was lower in the myocardium surrounding the pacing electrode (pacing site) of the failing left ventricle (LV) than in the controls. Immunohistochemical assays of the LV pacing site pointed to isolated clusters of cardiomyocytes exhibiting a reduced level of phosphorylated TnI. Flow cytometry on isolated and permeabilized cardiomyocytes revealed a significantly larger cell-to-cell variation in the level of TnI phosphorylation of the LV pacing site than in the opposite region in HF or in either region in the controls: the interquartile range (IQR) on the distribution histogram of relative TnI phosphorylation was wider at the pacing site (IQR = 0.53) than that at the remote site of HF (IQR = 0.42; P = 0.0047) or that of the free wall of the control animals (IQR = 0.36; P = 0.0093). Additionally, the Ca2+ sensitivities of isometric force production were higher and appeared to be more variable in single permeabilized cardiomyocytes from the HF pacing site than in the healthy myocardium. In conclusion, the level of PKA-dependent TnI phosphorylation and the Ca2+ sensitivity of force production exhibited a high cell-to-cell variability at the LV pacing site, possibly explaining the abnormalities of the regional myocardial contractile function in a porcine model of pacing-induced HF.
Collapse
|
34
|
Paslawska U, Gajek J, Kiczak L, Noszczyk-Nowak A, Skrzypczak P, Bania J, Tomaszek A, Zacharski M, Sambor I, Dziegiel P, Zysko D, Banasiak W, Jankowska EA, Ponikowski P. Development of porcine model of chronic tachycardia-induced cardiomyopathy. Int J Cardiol 2011; 153:36-41. [DOI: 10.1016/j.ijcard.2010.08.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 07/23/2010] [Accepted: 08/07/2010] [Indexed: 11/29/2022]
|
35
|
Ware B, Bevier M, Nishijima Y, Rogers S, Carnes CA, Lacombe VA. Chronic heart failure selectively induces regional heterogeneity of insulin-responsive glucose transporters. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1300-6. [PMID: 21849635 DOI: 10.1152/ajpregu.00822.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glucose uptake across the sarcolemma is regulated by a family of membrane proteins called glucose transporters (GLUTs), which includes GLUT4 (the major cardiac isoform) and GLUT12 (a novel, second insulin-sensitive isoform). Potential regional patterns in glucose transport across the cardiac chambers have not been examined; thus, we hypothesized that insulin-responsive GLUT4 and -12 protein and gene expression would be chamber specific in healthy subjects and during chronic heart failure (HF). Using a canine model of tachypacing-induced, progressive, chronic HF, total GLUT protein and messenger RNA in both ventricles and atria (free wall and appendage) were investigated by immunoblotting and real-time PCR. In controls, GLUT4, but not GLUT12, protein content was significantly higher in the atria compared with the ventricles, with the highest content in the right atrium (RA; P < 0.001). GLUT4 and GLUT12 mRNA levels were similar across the cardiac chambers. During chronic HF, GLUT4 and GLUT12 protein content was highest in the left ventricle (LV; by 2.5- and 4.2-fold, respectively, P < 0.01), with a concomitant increase in GLUT4 and GLUT12 mRNA (P < 0.001). GLUT4, but not GLUT12, protein content was decreased in RA during chronic HF (P = 0.001). In conclusion, GLUT4 protein was differentially expressed across the chambers in the healthy heart, and this regional pattern was reversed during HF. Our data suggest that LV was the primary site dependent on both GLUT4 and GLUT12 during chronic HF. In addition, the paradoxical decrease in GLUT4 content in RA may induce perturbations in atrial energy production during chronic HF.
Collapse
Affiliation(s)
- Bruce Ware
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Meloni A, Al-Saadi N, Torheim G, Hoebel N, Reynolds HG, De Marchi D, Positano V, Burchielli S, Lombardi M. Myocardial first-pass perfusion: influence of spatial resolution and heart rate on the dark rim artifact. Magn Reson Med 2011; 66:1731-8. [PMID: 21702061 DOI: 10.1002/mrm.22969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 03/21/2011] [Accepted: 03/25/2011] [Indexed: 11/12/2022]
Abstract
Myocardial perfusion images can be affected by the dark rim artifact. This study aimed to evaluate the effects of the spatial resolution and heart rate on the transmural extent of the artifact. Six pigs under anesthesia were scanned at 1.5T using an echo-planar imaging/fast gradient echo sequence with a nonselective saturation preparation pulse. Three short-axis slices were acquired every heart beat during the first pass of a contrast agent bolus. Two different in-plane spatial resolutions (2.65 and 3.75 mm) and two different heart rates (normal and tachycardia) were used, generating a set of four perfusion scans. The percentage drop of signal in the subendocardium compared to the epicardium and the transmural extent of the artifact were extracted. Additionally, the signal-to-noise and the contrast-to-noise ratios were evaluated. The signal drop as well as the width of the dark rim artifact increased with decreased spatial resolution and with increased heart rates. No significant slice-to-slice variability was detected for signal drop and width of the rim within the four considered groups. signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) ratios decreased with increasing spatial resolution. In conclusion, low spatial and temporal resolution could be correlated with increased extent of the dark-rim artifact and with lower SNR and CNR.
Collapse
Affiliation(s)
- Antonella Meloni
- Fondazione G Monasterio CNR-Regione Toscana and Institute of Clinical Physiology, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Simioniuc A, Campan M, Lionetti V, Marinelli M, Aquaro GD, Cavallini C, Valente S, Di Silvestre D, Cantoni S, Bernini F, Simi C, Pardini S, Mauri P, Neglia D, Ventura C, Pasquinelli G, Recchia FA. Placental stem cells pre-treated with a hyaluronan mixed ester of butyric and retinoic acid to cure infarcted pig hearts: a multimodal study. Cardiovasc Res 2011; 90:546-556. [PMID: 21257613 DOI: 10.1093/cvr/cvr018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
39
|
Martino A, Cabiati M, Campan M, Prescimone T, Minocci D, Caselli C, Rossi AM, Giannessi D, Del Ry S. Selection of reference genes for normalization of real-time PCR data in minipig heart failure model and evaluation of TNF-α mRNA expression. J Biotechnol 2011; 153:92-9. [PMID: 21510983 DOI: 10.1016/j.jbiotec.2011.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/14/2011] [Accepted: 04/02/2011] [Indexed: 10/18/2022]
Abstract
Real-time PCR is the benchmark method for measuring mRNA expression levels, but the accuracy and reproducibility of its data greatly depend on appropriate normalization strategies. Though the minipig model is largely used to study cardiovascular disease, no specific reference genes have been identified in porcine myocardium. The aim of the study was to identify and validate reference gene to be used in RT-PCR studies of failing (HF) and non-failing pig hearts. Eight candidate reference genes (GAPDH, ACTB, B2M, TBP, HPRT-1, PPIA, TOP2B, YWHAZ) were selected to compare cardiac tissue of normal (n=4) and HF (n=5) minipigs. The most stable genes resulted: HPRT-1, TBP, PPIA (right and left atrium); PPIA, GAPDH, ACTB (right ventricle); HPRT-1, TBP, GAPDH (left ventricle). The normalization strategy was tested analyzing mRNA expression of TNF-α, which is known to be up-regulated in HF and whose variations resulted more significant when normalized with the appropriately selected reference genes. The findings obtained in this study underline the importance to provide a set of reference genes to normalize mRNA expression in HF and control minipigs. The use of unvalidated reference genes can generate biased results because also their expression could be altered by the experimental conditions.
Collapse
|
40
|
Giannessi D, Caselli C, Del Ry S, Maltinti M, Pardini S, Turchi S, Cabiati M, Sampietro T, Abraham N, L'abbate A, Neglia D. Adiponectin is associated with abnormal lipid profile and coronary microvascular dysfunction in patients with dilated cardiomyopathy without overt heart failure. Metabolism 2011; 60:227-33. [PMID: 20199784 PMCID: PMC3706193 DOI: 10.1016/j.metabol.2009.12.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/14/2009] [Accepted: 12/29/2009] [Indexed: 01/08/2023]
Abstract
Reduced plasma adiponectin has been associated with abnormal lipid profile, reduced left ventricle (LV) function, and the extent of coronary atherosclerosis in coronary artery disease. The aim of this study was to assess these relationships in patients with dilated cardiomyopathy (DCM) without overt heart failure. Plasma adiponectin was measured in 55 DCM patients (age, 59 ± 12 years; male, 36; body mass index [BMI], 26.9 ± 0.49 kg/m²; LV ejection fraction, 39.8% ± 1.3%; New York Heart Association class I-II) and in 40 age- and BMI-matched healthy controls. In a subset of 25 patients, myocardial blood flow (MBF) was measured at rest and during intravenous dipyridamole (0.56 mg/kg in 4 minutes) by positron emission tomography and ¹³N-ammonia as a flow tracer. Adiponectin was 6.6 ± 0.34 μg/mL in controls and 10.9 ± 0.85 μg/mL in DCM patients (P < .001), where it was related inversely with BMI (P = .009) and directly with brain natriuretic peptide (P = .017), high-density lipoprotein (HDL) cholesterol (P = .002), and MBF dipyridamole (P = .020). Adiponectin lesser than median value in patients was associated with higher total to HDL cholesterol ratio (4.8 ± 0.24 vs 3.9 ± 0.18, P = .009) and lower MBF reserve (1.76 ± 0.16 vs 2.43 ± 0.19, P = .01). These results could suggest that down-regulation of the adiponectin levels and reduced HDL cholesterol have a key role in causing impaired coronary function and myocardial perfusion in DCM.
Collapse
Affiliation(s)
- Daniela Giannessi
- Research National Council (CNR) Institute of Clinical Physiology-Laboratory of Cardiovascular Biochemistry, Pisa 56124, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Guiducci L, Lionetti V, Burchielli S, Simi C, Masi S, Liistro T, Pardini S, Porciello C, Di Cecco P, Vettor R, Calcagno A, Ciociaro D, Recchia FA, Salvadori PA, Iozzo P. A dose-response elevation in hepatic glucose uptake is paralleled by liver triglyceride synthesis and release. Endocr Res 2011; 36:9-18. [PMID: 21226563 DOI: 10.3109/07435800.2010.534751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Enhanced release of triglycerides (TG) by the liver is implicated in the pathogenesis of the metabolic syndrome. The aim of the study was to evaluate whether a primary elevation in hepatic glucose utilization (HGU), as induced by an acute rise in circulating glucose values during physiological hyperinsulinemia, promotes TG synthesis in spite of the reduction in free fatty acids (FFA) levels. METHODS Glucose dose-response studies were conducted in anesthetized pigs using positron emission tomography (PET) to quantify HGU during fasting euglycemic conditions (EF), and under two-step hyperglycemic hyperinsulinemia (1st-HH +3.0, 2nd-HH +6.0 mmol/L over EF glucose values). Liver biopsies were obtained in three animals to evaluate the relationship between glucose exposure and hepatic fat content. RESULTS Plasma glucose levels were progressively increased in the two-step studies, and otherwise stable within every hour of PET scanning. HGU increased almost fivefold with raising glucose levels, from 0.033 ± 0.009 in EF to 0.149 ± 0.043 in 1st-HH, p = 0.02, and to 0.138 ± 0.050 μmol/min/g in 2nd-HH, p = 0.03. Circulating TG concentrations increased by 50 and 100% in the two hyperglycemic conditions (p = 0.03 2nd-HH vs. EF), in spite of a 70% suppression in plasma FFA levels. The hepatic TG content paralleled the glucose loads. Plasma γ-glutamyl transferase (γ-GT) was increased by 17% (p < 0.05). CONCLUSIONS A short-term elevation in circulating glucose levels within the physiological postprandial range was sufficient to increase HGU, resulting in a significant synthesis and release of TG by the liver, which was accompanied by an acute rise in γ-GT and liver fat content.
Collapse
Affiliation(s)
- Letizia Guiducci
- Institute of Clinical Physiology, CNR National Research Council, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Masci PG, Marinelli M, Piacenti M, Lorenzoni V, Positano V, Lombardi M, L'Abbate A, Neglia D. Myocardial Structural, Perfusion, and Metabolic Correlates of Left Bundle Branch Block Mechanical Derangement in Patients With Dilated Cardiomyopathy. Circ Cardiovasc Imaging 2010; 3:482-90. [DOI: 10.1161/circimaging.109.934638] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background—
Left bundle branch block (LBBB) influences on regional left ventricular (LV) structure, perfusion, and metabolism have not yet been thoroughly investigated in dilated cardiomyopathy patients.
Methods and Results—
Eleven dilated cardiomyopathy patients with LBBB (mean±SD age, 62±11 years; LV ejection fraction, 35±8%) and 7 dilated cardiomyopathy patients without LBBB (mean±SD age, 58±9 years; LV ejection fraction, 37±10%) were studied by cardiac magnetic resonance and positron emission tomography. The left ventricle was divided in 3 regions: septum, adjacent (anterior-inferior walls), and lateral. Regional midwall circumferential strain, maximum shortening, and strain rate were obtained from tagged cardiac magnetic resonance. The systolic stretch index was calculated as positive strain rate (stretching) divided by total strain rate. Myocardial metabolic rate of glucose and resting and hyperemic myocardial blood flow were quantified by 2-[
18
F]fluoro-2-deoxyglucose and [
13
N]ammonia positron emission tomography, respectively. Compared with non-LBBB patients, LBBB patients showed a highly inhomogeneous systolic deformation pattern that changed gradually, moving from a discoordinate [(systolic stretch index, 0.485 (0.284)] and poorly contracting (maximum shortening, −1.14±0.96%) septum to a coordinate [systolic stretch index, 0.002 (0.168)] and strongly contracting (maximum shortening, −13.63±2.58%) lateral region (both
P
<0.0001). This pattern was closely matched to the myocardial metabolic rate of glucose, disclosing lowest, intermediate, and highest values in the septum, adjacent, and lateral regions, respectively (
P
<0.0001). Septal-to-lateral thickness ratio was lower in LBBB than in non-LBBB patients (
P
=0.03). In both groups, the LV distribution of resting and hyperemic myocardial blood flow and myocardial blood flow reserve did not differ significantly.
Conclusions—
In dilated cardiomyopathy patients, the extensive LV contraction abnormalities induced by LBBB cause regional myocardial metabolic and structural remodeling, without consistent changes in blood flow.
Collapse
Affiliation(s)
- Pier Giorgio Masci
- From the Fondazione G. Monasterio-Regione Toscana/CNR (P.G.M., M.P., V.P., M.L., D.N.), Scuola Superiore Sant' Anna (M.M., A.L.), and Institute of Clinical Physiology/CNR (M.M., V.L., D.N.), Pisa, Italy
| | - Martina Marinelli
- From the Fondazione G. Monasterio-Regione Toscana/CNR (P.G.M., M.P., V.P., M.L., D.N.), Scuola Superiore Sant' Anna (M.M., A.L.), and Institute of Clinical Physiology/CNR (M.M., V.L., D.N.), Pisa, Italy
| | - Marcello Piacenti
- From the Fondazione G. Monasterio-Regione Toscana/CNR (P.G.M., M.P., V.P., M.L., D.N.), Scuola Superiore Sant' Anna (M.M., A.L.), and Institute of Clinical Physiology/CNR (M.M., V.L., D.N.), Pisa, Italy
| | - Valentina Lorenzoni
- From the Fondazione G. Monasterio-Regione Toscana/CNR (P.G.M., M.P., V.P., M.L., D.N.), Scuola Superiore Sant' Anna (M.M., A.L.), and Institute of Clinical Physiology/CNR (M.M., V.L., D.N.), Pisa, Italy
| | - Vincenzo Positano
- From the Fondazione G. Monasterio-Regione Toscana/CNR (P.G.M., M.P., V.P., M.L., D.N.), Scuola Superiore Sant' Anna (M.M., A.L.), and Institute of Clinical Physiology/CNR (M.M., V.L., D.N.), Pisa, Italy
| | - Massimo Lombardi
- From the Fondazione G. Monasterio-Regione Toscana/CNR (P.G.M., M.P., V.P., M.L., D.N.), Scuola Superiore Sant' Anna (M.M., A.L.), and Institute of Clinical Physiology/CNR (M.M., V.L., D.N.), Pisa, Italy
| | - Antonio L'Abbate
- From the Fondazione G. Monasterio-Regione Toscana/CNR (P.G.M., M.P., V.P., M.L., D.N.), Scuola Superiore Sant' Anna (M.M., A.L.), and Institute of Clinical Physiology/CNR (M.M., V.L., D.N.), Pisa, Italy
| | - Danilo Neglia
- From the Fondazione G. Monasterio-Regione Toscana/CNR (P.G.M., M.P., V.P., M.L., D.N.), Scuola Superiore Sant' Anna (M.M., A.L.), and Institute of Clinical Physiology/CNR (M.M., V.L., D.N.), Pisa, Italy
| |
Collapse
|
43
|
Cabiati M, Campan M, Caselli C, Prescimone T, Giannessi D, Del Ry S. Sequencing and cardiac expression of natriuretic peptide receptors A and C in normal and heart failure pigs. ACTA ACUST UNITED AC 2010; 162:12-7. [PMID: 20171990 DOI: 10.1016/j.regpep.2010.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 01/08/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
Pharmacological treatments able to activate natriuretic receptors (NPRs) and inhibit cardiac remodelling in heart failure (HF) patients, are currently under investigation. To better understand the therapeutic potential of the NPRs activation is necessary to dispose of experimental models devoid of confounding effects. The pig constitutes an animal model largely used but its genome is not completely sequenced. Aims of this study were to sequence NPR-A and NPR-C in Susscrofa and to evaluate ANP, BNP and NPRs mRNA expression in cardiac tissue of normal and HF minipigs in order to have a starting point for future studies devoted to check new potential drugs. Cardiac tissue was collected from adult male minipigs without (n=4) and with HF (n=5). Pig NPR-A (179bp) and NPR-C (203bp) mRNA were partially sequenced (GenBank n.: FJ518622, FJ518621). Compared to control, ANP and BNP gene expression resulted higher in all the cardiac chambers of HF heart. This increase is associated to a down-regulation of NPR-A and an up-regulation of NPR-C in HF. These sequences will provide a new tool to investigate the role of natriuretic peptides and of their receptors under physiological and pathological conditions and their response to therapeutic interventions.
Collapse
Affiliation(s)
- M Cabiati
- Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
44
|
GEMIGNANI VINCENZO, BIANCHINI ELISABETTA, FAITA FRANCESCO, LIONETTI VINCENZO, CAMPAN MANUELA, RECCHIA FABIOANASTASIO, PICANO EUGENIO, BOMBARDINI TONINO. Transthoracic Sensor for Noninvasive Assessment of Left Ventricular Contractility: Validation in A Minipig Model of Chronic Heart Failure. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2010; 33:795-803. [DOI: 10.1111/j.1540-8159.2009.02684.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Severe Mechanical Dyssynchrony Causes Regional Hibernation-Like Changes in Pigs With Nonischemic Heart Failure. J Card Fail 2009; 15:920-8. [DOI: 10.1016/j.cardfail.2009.06.436] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/04/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
|
46
|
Del Ry S, Cabiati M, Lionetti V, Simioniuc A, Caselli C, Prescimone T, Emdin M, Giannessi D. Asymmetrical myocardial expression of natriuretic peptides in pacing-induced heart failure. Peptides 2009; 30:1710-3. [PMID: 19540894 DOI: 10.1016/j.peptides.2009.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 06/11/2009] [Accepted: 06/11/2009] [Indexed: 11/28/2022]
Abstract
High-frequency pacing of the left ventricle (LV) free wall causes a dyssynchronous pattern of contraction that leads to progressive heart failure (HF) with pronounced differences in regional contractility. Aim of this study was to evaluate possible changes in brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) mRNA expression in the anterior/anterior lateral region (pacing site, PS) as compared to the infero-septal region (opposite site, OS) and to explore possible association between the contractiling pattern and biomarker expression. Cardiac tissue was collected from minipigs with pacing-induced HF (n=8) and without (control, n=6). The samples were selectively harvested from the anterior left ventricular (LV) wall, PS, and from an area remote to the pacing-site, OS. BNP and CNP mRNA expression was evaluated by semi-quantitative polymerase chain reaction (PCR). A significant difference in BNP expression was found in the PS between HF animals and controls (BNP/GAPDH: 0.65+/-0.11 vs. 0.35+/-0.04, p=0.02), but not in the OS (BNP/GAPDH: 0.36+/-0.05, ns vs. controls). CNP expression was not different compared to controls, although higher levels were observed in the PS and in the OS with respect to the controls (CNP/GAPDH: controls 0.089+/-0.036, PS 0.289+/-0.23, OS 0.54+/-0.16). This finding was in tune with an increase of CNP tissue concentration (controls: 0.69+/-0.13; PS=1.56+/-0.19; OS=1.70+/-0.42 pg/mg protein; p=0.039 controls vs. OS). Higher BNP mRNA expression in the PS is consistent with a reduction in contractile function in this region, while higher CNP mRNA expression in the OS suggests the presence of concomitant endothelial dysfunction in the remote region.
Collapse
Affiliation(s)
- Silvia Del Ry
- CNR Institute of Clinical Physiology and G. Monasterio Foundation-CNR Regione Toscana, Via Giuseppe Moruzzi 1, Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Del Ry S, Cabiati M, Lionetti V, Emdin M, Recchia FA, Giannessi D. Expression of C-type natriuretic peptide and of its receptor NPR-B in normal and failing heart. Peptides 2008; 29:2208-15. [PMID: 18848850 DOI: 10.1016/j.peptides.2008.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/08/2008] [Accepted: 09/08/2008] [Indexed: 11/20/2022]
Abstract
C-type natriuretic peptide (CNP) was recently found in the myocardium, but possible insights into differences between atrium and ventricle production are so far lacking. Our aim was to evaluate, in an experimental model of pacing-induced heart failure (HF), plasma and tissue levels of CNP and mRNA expression of the peptide and of its specific receptor, NPR-B. Cardiac tissue was collected from male adult minipigs without (control, n=5) and with pacing-induced HF (n=5). Blood samples were collected at baseline and after pacing (10 min, 1, 2, 3 weeks). CNP in plasma and in cardiac extracts was determined by a radioimmunoassay, while the expression of mRNA by real time PCR. Compared to control, plasma CNP was increased after 1 week of pacing stress (36.9+/-10.4 pg/ml vs.16.7+/-1.1, p=0.013, mean+/-S.E.M.). As to myocardial extract, at baseline, CNP was found in all cardiac chambers and its content was 10-fold higher in atria than in ventricles (RA: 13.7+/-1.9 pg/mg protein; LA: 8.7+/-3.8; RV: 1.07+/-0.33; LV: 0.93+/-0.17). At 3 weeks of pacing, myocardial levels of CNP in left ventricle were higher than in controls (15.8+/-9.9 pg/mg protein vs. 0.9+/-0.17, p=0.01). CNP gene expression was observed in controls and at 3 weeks of pacing. NPR-B gene expression was found in all cardiac regions analyzed, and a down-regulation was observed in ventricles after HF. The co-localization of the CNP system and NPR-B suggests a possible role of CNP in HF and may prompt novel therapeutical strategies.
Collapse
Affiliation(s)
- Silvia Del Ry
- CNR Institute of Clinical Physiology and Fondazione G. Monasterio, Laboratory of Cardiovascular Biochemistry, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|