1
|
Barbalho SM, de Alvares Goulart R, Minniti G, Bechara MD, de Castro MVM, Dias JA, Laurindo LF. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2681-2699. [PMID: 37966572 DOI: 10.1007/s00210-023-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Rho-associated kinases (ROCKs) are crucial during the adipocyte differentiation process. KD025 (Belumosudil) is a newly developed inhibitor that selectively targets ROCK2. It has exhibited consistent efficacy in impeding adipogenesis across a spectrum of in vitro models of adipogenic differentiation. Given the novelty of this treatment, a comprehensive systematic review has not been conducted yet. This systematic review aims to fill this knowledge void by providing readers with an extensive examination of the rationale behind KD025 and its impacts on adipogenesis. Preclinical evidence was gathered owing to the absence of clinical trials. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and the study's quality was assessed using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews. In various in vitro models, such as 3T3-L1 cells, human orbital fibroblasts, and human adipose-derived stem cells, KD025 demonstrated potent anti-adipogenic actions. At a molecular level, KD025 had significant effects, including decreasing fibronectin (Fn) expression, inhibiting ROCK2 and CK2 activity, suppressing lipid droplet formation, and reducing the expression of proadipogenic genes peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Additionally, KD025 resulted in the suppression of fatty acid-binding protein 4 (FABP4 or AP2) expression, a decrease in sterol regulatory element binding protein 1c (SREBP-1c) and Glut-4 expression. Emphasis must be placed on the fact that while KD025 shows potential in preclinical studies and experimental models, extensive research is crucial to assess its efficacy, safety, and potential therapeutic applications thoroughly and directly in human subjects.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
| |
Collapse
|
2
|
Liu X, Cai YD, Chiu JC. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J Biol Chem 2024; 300:105616. [PMID: 38159854 PMCID: PMC10810748 DOI: 10.1016/j.jbc.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA.
| |
Collapse
|
3
|
Raman-Nair J, Cron G, MacLeod K, Lacoste B. Sex-Specific Acute Cerebrovascular Responses to Photothrombotic Stroke in Mice. eNeuro 2024; 11:ENEURO.0400-22.2023. [PMID: 38164600 PMCID: PMC10849032 DOI: 10.1523/eneuro.0400-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024] Open
Abstract
Mechanisms underlying cerebrovascular stroke outcomes are poorly understood, and the effects of biological sex on cerebrovascular regulation post-stroke have yet to be fully comprehended. Here, we explore the overlapping roles of gonadal sex hormones and rho-kinase (ROCK), two important modulators of cerebrovascular tone, on the acute cerebrovascular response to photothrombotic (PT) focal ischemia in mice. Male mice were gonadectomized and female mice were ovariectomized to remove gonadal hormones, whereas control ("intact") animals received a sham surgery prior to stroke induction. Intact wild-type (WT) males showed a delayed drop in cerebral blood flow (CBF) compared with intact WT females, whereby maximal CBF drop was observed 48 h following stroke. Gonadectomy in males did not alter this response. However, ovariectomy in WT females produced a "male-like" phenotype. Intact Rock2+/- males also showed the same phenotypic response, which was not altered by gonadectomy. Alternatively, intact Rock2+/- females showed a significant difference in CBF values compared with intact WT females, displaying higher CBF values immediately post-stroke and showing a maximal CBF drop 48 h post-stroke. This pattern was not altered by ovariectomy. Altogether, these data illustrate sex differences in acute CBF responses to PT stroke, which seem to involve gonadal female sex hormones and ROCK2. Overall, this study provides a framework for exploring sex differences in acute CBF responses to focal ischemic stroke in mice.
Collapse
Affiliation(s)
- Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Gregory Cron
- Neurology Department, Stanford University, Stanford 94305, California
| | - Kathleen MacLeod
- Pharmaceutical Sciences, University of British Colombia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
4
|
Zanin-Zhorov A, Chen W, Moretti J, Nyuydzefe MS, Zhorov I, Munshi R, Ghosh M, Serdjebi C, MacDonald K, Blazar BR, Palmer M, Waksal SD. Selectivity matters: selective ROCK2 inhibitor ameliorates established liver fibrosis via targeting inflammation, fibrosis, and metabolism. Commun Biol 2023; 6:1176. [PMID: 37980369 PMCID: PMC10657369 DOI: 10.1038/s42003-023-05552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
The pathogenesis of hepatic fibrosis is driven by dysregulated metabolism precipitated by chronic inflammation. Rho-associated coiled-coil-containing protein kinases (ROCKs) have been implicated in these processes, however the ability of selective ROCK2 inhibition to target simultaneously profibrotic, pro-inflammatory and metabolic pathways remains undocumented. Here we show that therapeutic administration of GV101, a selective ROCK2 inhibitor with more than 1000-fold selectivity over ROCK1, attenuates established liver fibrosis induced by thioacetamide (TAA) in combination with high-fat diet in mice. GV101 treatment significantly reduces collagen levels in liver, associated with downregulation of pCofilin, pSTAT3, pAkt, while pSTAT5 and pAMPK levels are increased in tissues of treated mice. In vitro, GV101 inhibits profibrogenic markers expression in fibroblasts, adipogenesis in primary adipocytes and TLR-induced cytokine secretion in innate immune cells via targeting of Akt-mTOR-S6K signaling axis, further uncovering the ROCK2-specific complex mechanism of action and therapeutic potential of highly selective ROCK2 inhibitors in liver fibrosis.
Collapse
Affiliation(s)
| | - Wei Chen
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | - Julien Moretti
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | - Iris Zhorov
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | | | | | - Kelli MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapies, University of MN, Masonic Cancer Center and Department of Pediatrics, Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
5
|
Daniels LJ, Macindoe C, Koutsifeli P, Annandale M, James SL, Watson LE, Coffey S, Raaijmakers AJA, Weeks KL, Bell JR, Janssens JV, Curl CL, Delbridge LMD, Mellor KM. Myocardial deformation imaging by 2D speckle tracking echocardiography for assessment of diastolic dysfunction in murine cardiopathology. Sci Rep 2023; 13:12344. [PMID: 37524893 PMCID: PMC10390581 DOI: 10.1038/s41598-023-39499-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Diastolic dysfunction is increasingly identified as a key, early onset subclinical condition characterizing cardiopathologies of rising prevalence, including diabetic heart disease and heart failure with preserved ejection fraction (HFpEF). Diastolic dysfunction characterization has important prognostic value in management of disease outcomes. Validated tools for in vivo monitoring of diastolic function in rodent models of diabetes are required for progress in pre-clinical cardiology studies. 2D speckle tracking echocardiography has emerged as a powerful tool for evaluating cardiac wall deformation throughout the cardiac cycle. The aim of this study was to examine the applicability of 2D speckle tracking echocardiography for comprehensive global and regional assessment of diastolic function in a pre-clinical murine model of cardio-metabolic disease. Type 2 diabetes (T2D) was induced in C57Bl/6 male mice using a high fat high sugar dietary intervention for 20 weeks. Significant impairment in left ventricle peak diastolic strain rate was evident in longitudinal, radial and circumferential planes in T2D mice. Peak diastolic velocity was similarly impaired in the longitudinal and radial planes. Regional analysis of longitudinal peak diastolic strain rate revealed that the anterior free left ventricular wall is particularly susceptible to T2D-induced diastolic dysfunction. These findings provide a significant advance on characterization of diastolic dysfunction in a pre-clinical mouse model of cardiopathology and offer a comprehensive suite of benchmark values for future pre-clinical cardiology studies.
Collapse
Affiliation(s)
- L J Daniels
- Cellular and Molecular Cardiology Laboratory, Department of Physiology, University of Auckland, Auckland, New Zealand
- Radcliffe Department of Medicine, OCDEM, University of Oxford, Oxford, UK
| | - C Macindoe
- Cellular and Molecular Cardiology Laboratory, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - P Koutsifeli
- Cellular and Molecular Cardiology Laboratory, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - M Annandale
- Cellular and Molecular Cardiology Laboratory, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - S L James
- Cellular and Molecular Cardiology Laboratory, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - L E Watson
- Cellular and Molecular Cardiology Laboratory, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - S Coffey
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - A J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - K L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - J R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Australia
| | - J V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - C L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - L M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - Kimberley M Mellor
- Cellular and Molecular Cardiology Laboratory, Department of Physiology, University of Auckland, Auckland, New Zealand.
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia.
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:907757. [PMID: 35784531 PMCID: PMC9240190 DOI: 10.3389/fendo.2022.907757] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disease that is increasing in prevalence and causes many complications. Diabetic cardiomyopathy (DCM) is a complication of diabetes that is associated with high mortality, but it is not well defined. Nevertheless, it is generally accepted that DCM refers to a clinical disease that occurs in patients with diabetes and involves ventricular dysfunction, in the absence of other cardiovascular diseases, such as coronary atherosclerotic heart disease, hypertension, or valvular heart disease. However, it is currently uncertain whether the pathogenesis of DCM is directly attributable to metabolic dysfunction or secondary to diabetic microangiopathy. Oxidative stress (OS) is considered to be a key component of its pathogenesis. The production of reactive oxygen species (ROS) in cardiomyocytes is a vicious circle, resulting in further production of ROS, mitochondrial DNA damage, lipid peroxidation, and the post-translational modification of proteins, as well as inflammation, cardiac hypertrophy and fibrosis, ultimately leading to cell death and cardiac dysfunction. ROS have been shown to affect various signaling pathways involved in the development of DCM. For instance, OS causes metabolic disorders by affecting the regulation of PPARα, AMPK/mTOR, and SIRT3/FOXO3a. Furthermore, OS participates in inflammation mediated by the NF-κB pathway, NLRP3 inflammasome, and the TLR4 pathway. OS also promotes TGF-β-, Rho-ROCK-, and Notch-mediated cardiac remodeling, and is involved in the regulation of calcium homeostasis, which impairs ATP production and causes ROS overproduction. In this review, we summarize the signaling pathways that link OS to DCM, with the intention of identifying appropriate targets and new antioxidant therapies for DCM.
Collapse
Affiliation(s)
- Meng-ling Peng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chu-wen Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hang Ren
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Shan-shan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Shan-shan Zhou,
| |
Collapse
|
7
|
Wei L, Shi J. Insight Into Rho Kinase Isoforms in Obesity and Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:886534. [PMID: 35769086 PMCID: PMC9234286 DOI: 10.3389/fendo.2022.886534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity and associated complications increasingly jeopardize global health and contribute to the rapidly rising prevalence of type 2 diabetes mellitus and obesity-related diseases. Developing novel methods for the prevention and treatment of excess body adipose tissue expansion can make a significant contribution to public health. Rho kinase is a Rho-associated coiled-coil-containing protein kinase (Rho kinase or ROCK). The ROCK family including ROCK1 and ROCK2 has recently emerged as a potential therapeutic target for the treatment of metabolic disorders. Up-regulated ROCK activity has been involved in the pathogenesis of all aspects of metabolic syndrome including obesity, insulin resistance, dyslipidemia and hypertension. The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in both white and beige adipogenesis. Studies using ROCK pan-inhibitors in animal models of obesity, diabetes, and associated complications have demonstrated beneficial outcomes. Studies via genetically modified animal models further established isoform-specific roles of ROCK in the pathogenesis of metabolic disorders including obesity. However, most reported studies have been focused on ROCK1 activity during the past decade. Due to the progress in developing ROCK2-selective inhibitors in recent years, a growing body of evidence indicates more attention should be devoted towards understanding ROCK2 isoform function in metabolism. Hence, studying individual ROCK isoforms to reveal their specific roles and principal mechanisms in white and beige adipogenesis, insulin sensitivity, energy balancing regulation, and obesity development will facilitate significant breakthroughs for systemic treatment with isoform-selective inhibitors. In this review, we give an overview of ROCK functions in the pathogenesis of obesity and insulin resistance with a particular focus on the current understanding of ROCK isoform signaling in white and beige adipogenesis, obesity and thermogenesis in adipose tissue and other major metabolic organs involved in energy homeostasis regulation.
Collapse
Affiliation(s)
- Lei Wei
- *Correspondence: Lei Wei, ; Jianjian Shi,
| | | |
Collapse
|
8
|
Abstract
Insulin receptors are highly expressed in the heart and vasculature. Insulin signaling regulates cardiac growth, survival, substrate uptake, utilization, and mitochondrial metabolism. Insulin signaling modulates the cardiac responses to physiological and pathological stressors. Altered insulin signaling in the heart may contribute to the pathophysiology of ventricular remodeling and heart failure progression. Myocardial insulin signaling adapts rapidly to changes in the systemic metabolic milieu. What may initially represent an adaptation to protect the heart from carbotoxicity may contribute to amplifying the risk of heart failure in obesity and diabetes. This review article presents the multiple roles of insulin signaling in cardiac physiology and pathology and discusses the potential therapeutic consequences of modulating myocardial insulin signaling.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
9
|
Rome S, Blandin A, Le Lay S. Adipocyte-Derived Extracellular Vesicles: State of the Art. Int J Mol Sci 2021; 22:ijms22041788. [PMID: 33670146 PMCID: PMC7916840 DOI: 10.3390/ijms22041788] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
White adipose tissue (WAT) is involved in long-term energy storage and represents 10–15% of total body weight in healthy humans. WAT secretes many peptides (adipokines), hormones and steroids involved in its homeostatic role, especially in carbohydrate–lipid metabolism regulation. Recently, adipocyte-derived extracellular vesicles (AdEVs) have been highlighted as important actors of intercellular communication that participate in metabolic responses to control energy flux and immune response. In this review, we focus on the role of AdEVs in the cross-talks between the different cellular types composing WAT with regard to their contribution to WAT homeostasis and metabolic complications development. We also discuss the AdEV cargoes (proteins, lipids, RNAs) which may explain AdEV’s biological effects and demonstrate that, in terms of proteins, AdEV has a very specific signature. Finally, we list and suggest potential therapeutic strategies to modulate AdEV release and composition in order to reduce their deleterious effects during the development of metabolic complications associated with obesity.
Collapse
Affiliation(s)
- Sophie Rome
- CarMeN Laboratory, INSERM/1060- INRAE/1397, University of Lyon, Lyon-Sud Faculty of Medicine, 69310 Pierre Benite, France
- Institute of Functional Genomic of Lyon (IGFL), ENS, CNRS UMR 5242, University of Lyon, 69364 Lyon, France
- Correspondence: (S.R.); (S.L.L.)
| | - Alexia Blandin
- Université de Nantes, CNRS, INSERM, L’Institut du Thorax, F-44000 Nantes, France;
- Univ Angers, SFR ICAT, F-49000 Angers, France
| | - Soazig Le Lay
- Université de Nantes, CNRS, INSERM, L’Institut du Thorax, F-44000 Nantes, France;
- Univ Angers, SFR ICAT, F-49000 Angers, France
- Correspondence: (S.R.); (S.L.L.)
| |
Collapse
|
10
|
Batista TM, Jayavelu AK, Wewer Albrechtsen NJ, Iovino S, Lebastchi J, Pan H, Dreyfuss JM, Krook A, Zierath JR, Mann M, Kahn CR. A Cell-Autonomous Signature of Dysregulated Protein Phosphorylation Underlies Muscle Insulin Resistance in Type 2 Diabetes. Cell Metab 2020; 32:844-859.e5. [PMID: 32888406 PMCID: PMC7875546 DOI: 10.1016/j.cmet.2020.08.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/26/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Skeletal muscle insulin resistance is the earliest defect in type 2 diabetes (T2D), preceding and predicting disease development. To what extent this reflects a primary defect or is secondary to tissue cross talk due to changes in hormones or circulating metabolites is unknown. To address this question, we have developed an in vitro disease-in-a-dish model using iPS cells from T2D patients differentiated into myoblasts (iMyos). We find that T2D iMyos in culture exhibit multiple defects mirroring human disease, including an altered insulin signaling, decreased insulin-stimulated glucose uptake, and reduced mitochondrial oxidation. More strikingly, global phosphoproteomic analysis reveals a multidimensional network of signaling defects in T2D iMyos going beyond the canonical insulin-signaling cascade, including proteins involved in regulation of Rho GTPases, mRNA splicing and/or processing, vesicular trafficking, gene transcription, and chromatin remodeling. These cell-autonomous defects and the dysregulated network of protein phosphorylation reveal a new dimension in the cellular mechanisms underlying the fundamental defects in T2D.
Collapse
Affiliation(s)
- Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nicolai J Wewer Albrechtsen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Salvatore Iovino
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jasmin Lebastchi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hui Pan
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan M Dreyfuss
- Bioinformatics and Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Seccia TM, Rigato M, Ravarotto V, Calò LA. ROCK (RhoA/Rho Kinase) in Cardiovascular-Renal Pathophysiology: A Review of New Advancements. J Clin Med 2020; 9:jcm9051328. [PMID: 32370294 PMCID: PMC7290501 DOI: 10.3390/jcm9051328] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Rho-associated, coiled-coil containing kinases (ROCK) were originally identified as effectors of the RhoA small GTPase and found to belong to the AGC family of serine/threonine kinases. They were shown to be downstream effectors of RhoA and RhoC activation. They signal via phosphorylation of proteins such as MYPT-1, thereby regulating many key cellular functions including proliferation, motility and viability and the RhoA/ROCK signaling has been shown to be deeply involved in arterial hypertension, cardiovascular–renal remodeling, hypertensive nephropathy and posttransplant hypertension. Given the deep involvement of ROCK in cardiovascular–renal pathophysiology and the interaction of ROCK signaling with other signaling pathways, the reports of trials on the clinical beneficial effects of ROCK’s pharmacologic targeting are growing. In this current review, we provide a brief survey of the current understanding of ROCK-signaling pathways, also integrating with the more novel data that overall support a relevant role of ROCK for the cardiovascular–renal physiology and pathophysiology.
Collapse
Affiliation(s)
- Teresa M. Seccia
- Department of Medicine, Hypertension Clinic, University of Padova, 35128 Padova, Italy;
| | - Matteo Rigato
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, 35128 Padova, Italy; (M.R.); (V.R.)
| | - Verdiana Ravarotto
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, 35128 Padova, Italy; (M.R.); (V.R.)
| | - Lorenzo A. Calò
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, 35128 Padova, Italy; (M.R.); (V.R.)
- Correspondence: ; Tel.: +39-049-8213071; Fax: +39-049-8217921
| |
Collapse
|
12
|
Posner DC, Lin H, Meigs JB, Kolaczyk ED, Dupuis J. Convex combination sequence kernel association test for rare-variant studies. Genet Epidemiol 2020; 44:352-367. [PMID: 32100372 DOI: 10.1002/gepi.22287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
We propose a novel variant set test for rare-variant association studies, which leverages multiple single-nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at α = 2.5 × 1 0 - 6 and has greater power than SKAT(-O) when SNV weights are not misspecified and sample sizes are large ( N ≥ 5 , 000 ). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome-wide significant associations between fasting glucose and 4-kb windows of rare variants ( p < 1 0 - 7 ) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 ( p = 2.1 × 1 0 - 5 ) and within CPLX1 ( p = 5.3 × 1 0 - 5 ). These two genes were previously reported to be involved in obesity-mediated insulin resistance and glucose-induced insulin secretion by pancreatic beta-cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.
Collapse
Affiliation(s)
- Daniel C Posner
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Honghuang Lin
- National Heart Lung and Blood Institute's, Boston University's Framingham Heart Study, Framingham, Massachusetts.,Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - James B Meigs
- Division of General Internal Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric D Kolaczyk
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts.,National Heart Lung and Blood Institute's, Boston University's Framingham Heart Study, Framingham, Massachusetts
| |
Collapse
|
13
|
Wang J, Jiang W. The Effects of RKI-1447 in a Mouse Model of Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet and in HepG2 Human Hepatocellular Carcinoma Cells Treated with Oleic Acid. Med Sci Monit 2020; 26:e919220. [PMID: 32026851 PMCID: PMC7020744 DOI: 10.12659/msm.919220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background This study aimed to investigate the effects of RKI-1447, a selective inhibitor of Rho-associated ROCK kinases, in a mouse model of nonalcoholic fatty liver disease (NAFLD) induced by a high-fat diet, and in oleic acid-treated HepG2 human hepatocellular carcinoma cells in vitro. Material/Methods Four study groups of mice included: the control group; the high-fat diet (HFD) group; the HFD+RKI-1447 (2 mg/kg) group; and the HFD+RKI-1447 (8 mg/kg) group. Mice were fed a high-fat diet for 12 weeks. Mice in the HFD+RKI-1447 groups were fed a high-fat diet for 12 weeks and treated with RKI-1447 twice weekly for three weeks. The HepG2 human hepatocellular carcinoma cells were treated with or without RKI-1447 for 2 h and treated with oleic acid for 24 h. Results In the mouse model of NAFLD, RKI-1447 reduced insulin resistance and the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total cholesterol, triglyceride, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and superoxide dismutase (SOD). RKI-1447 reduced the histological changes in the mouse model of NAFLD in mice fed a high-fat diet and significantly inhibited the generations of triglyceride, IL-6, and TNF-α. RKI-1447 reduced the levels of oxidative stress in HepG2 cells treated with oleic acid and significantly down-regulated the expression of RhoA, ROCK1, ROCK2, toll-like receptor 4 (TLR4), p-TBK1, and p-IRF3. RKI-1447 treatment also inhibited RhoA expression. Conclusions In a mouse model of NAFLD, RKI-1447 inhibited ROCK and modulated insulin resistance, oxidative stress, and inflammation through the ROCK/TLR4/TBK1/IRF3 pathway.
Collapse
Affiliation(s)
- Jinshan Wang
- Department of Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland)
| | - Wentao Jiang
- Department of Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland)
| |
Collapse
|
14
|
Wei L, Surma M, Yang Y, Tersey S, Shi J. ROCK2 inhibition enhances the thermogenic program in white and brown fat tissue in mice. FASEB J 2019; 34:474-493. [PMID: 31914704 DOI: 10.1096/fj.201901174rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in adipogenesis. The two ROCK isoforms, ROCK1 and ROCK2, are highly homologous. The contribution of ROCK2 to adipogenesis in vivo has not been elucidated. The present study aimed at the in vivo and in vitro roles of ROCK2 in the regulation of adipogenesis and the development of obesity. We performed molecular, histological, and metabolic analyses in ROCK2+/- and ROCK2+/KD mouse models, the latter harboring an allele with a kinase-dead (KD) mutation. Both ROCK2+/- and ROCK2+/KD mouse models showed a lean body mass phenotype during aging, associated with increased amounts of beige cells in subcutaneous white adipose tissue (sWAT) and increased thermogenic gene expression in all fat depots. ROCK2+/- mice on a high-fat diet showed increased energy expenditure accompanying by reduced obesity, and improved insulin sensitivity. In vitro differentiated ROCK2+/- stromal-vascular (SV) cells revealed increased beige adipogenesis associated with increased thermogenic gene expressions. Treatment with a selective ROCK2 inhibitor, KD025, to inhibit ROCK2 activity in differentiated SV cells reproduced the pro-beige phenotype of ROCK2+/- SV cells. In conclusion, ROCK2 activity-mediated actin cytoskeleton dynamics contribute to the inhibition of beige adipogenesis in WAT, and also promotes age-related and diet-induced fat mass gain and insulin resistance.
Collapse
Affiliation(s)
- Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michelle Surma
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Yang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah Tersey
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Anaruma CP, Pereira RM, Cristina da Cruz Rodrigues K, Ramos da Silva AS, Cintra DE, Ropelle ER, Pauli JR, Pereira de Moura L. Rock protein as cardiac hypertrophy modulator in obesity and physical exercise. Life Sci 2019; 254:116955. [PMID: 31626788 DOI: 10.1016/j.lfs.2019.116955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 01/03/2023]
Abstract
Obesity and cardiovascular diseases are worldwide public health issues. In this review, we discussed the participation of ROCK protein in cardiac hypertrophy, mainly through the modulation of leptin and insulin signaling pathways. Leptin plays a role in cardiovascular disease development and, through the Rho-associated protein kinase (ROCK), promotes cardiac hypertrophy. ROCK protein, is regulated by small Rho-GTPases and has two isoforms with high homology. ROCK is able to activate the MAP kinase (MAPK) pathway and modulate insulin signaling in the heart, participating in cardiac hypertrophy development of concentric and eccentric left ventricle growth. Although different types of stimulus can lead to morphologically antagonistic heart growth, physical exercise promotes improvements in hemodynamic function, emerging as a promising non-pharmacological tool to improve overall health. Leptin can activate ROCK in a pathological way, increasing MAPK activity and decreasing insulin signaling via insulin receptor substrate 1 (IRS1) serine 307 residue phosphorylation, phosphatase and tensin homolog, and protein kinase Cβ2. In turn, physical exercise decreases leptin levels and positively modulates insulin signaling as well as increases ROCK-dependent IRS1 (Ser632/635) phosphorylation, improving phosphatidylinositol 3-kinase/protein kinase B axis and promoting physiologic heart growth. Currently, there is a lack of studies about differences in ROCK isoforms, especially during exercise and/or obesity. However, the understanding of its biological function and the complex mechanism underlying the distinct types of cardiac hypertrophy development can be a useful tool in the improvement and treatment of cardiovascular outcomes.
Collapse
Affiliation(s)
- Chadi Pellegrini Anaruma
- Department of Physical Education, Institute of Biosciences - São Paulo State University (UNESP), Rio Claro, SP, Brazil; Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - Rodrigo Martins Pereira
- Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Kellen Cristina da Cruz Rodrigues
- Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil
| | | | - Dennys Esper Cintra
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Nutritional Genomics (LabGeN), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - Eduardo Rochete Ropelle
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - José Rodrigo Pauli
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - Leandro Pereira de Moura
- Department of Physical Education, Institute of Biosciences - São Paulo State University (UNESP), Rio Claro, SP, Brazil; Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil.
| |
Collapse
|
16
|
ROCK2 promotes ryanodine receptor phosphorylation and arrhythmic calcium release in diabetic cardiomyocytes. Int J Cardiol 2019; 281:90-98. [DOI: 10.1016/j.ijcard.2019.01.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 01/08/2019] [Accepted: 01/18/2019] [Indexed: 11/16/2022]
|
17
|
Regulation of hepatic Na+/K+-ATPase in obese female and male rats: involvement of ERK1/2, AMPK, and Rho/ROCK. Mol Cell Biochem 2017; 440:77-88. [DOI: 10.1007/s11010-017-3157-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/05/2017] [Indexed: 12/22/2022]
|
18
|
Changes in cardiac Na +/K +-ATPase expression and activity in female rats fed a high-fat diet. Mol Cell Biochem 2017; 436:49-58. [PMID: 28567564 DOI: 10.1007/s11010-017-3077-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/25/2017] [Indexed: 12/27/2022]
Abstract
The aim of this study was to investigate whether the presence of endogenous estradiol alters the effects of a high-fat (HF) diet on activity/expression of the cardiac Na+/K+-ATPase, via PI3K/IRS and RhoA/ROCK signalling cascades in female rats. For this study, female Wistar rats (8 weeks old, 150-200 g) were fed a standard diet or a HF diet (balanced diet for laboratory rats enriched with 42% fat) for 10 weeks. The results show that rats fed a HF diet exhibited a decrease in phosphorylation of the α1 subunit of Na+/K+-ATPase by 30% (p < 0.05), expression of total α1 subunit of Na+/K+-ATPase by 31% (p < 0.05), and association of IRS1 with p85 subunit of PI3K by 42% (p < 0.05), while the levels of cardiac RhoA and ROCK2 were significantly increased by 84% (p < 0.01) and 62% (p < 0.05), respectively. Our results suggest that a HF diet alters cardiac Na+/K+-ATPase expression via molecular mechanisms involving RhoA/ROCK and IRS-1/PI3K signalling in female rats.
Collapse
|
19
|
Zhou Q, Wei SS, Wang H, Wang Q, Li W, Li G, Hou JW, Chen XM, Chen J, Xu WP, Li YG, Wang YP. Crucial Role of ROCK2-Mediated Phosphorylation and Upregulation of FHOD3 in the Pathogenesis of Angiotensin II-Induced Cardiac Hypertrophy. Hypertension 2017; 69:1070-1083. [PMID: 28438902 DOI: 10.1161/hypertensionaha.116.08662] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/12/2016] [Accepted: 03/21/2017] [Indexed: 01/01/2023]
Abstract
Cardiac hypertrophy is characterized by increased myofibrillogenesis. Angiotensin II (Ang-II) is an essential mediator of the pressure overload-induced cardiac hypertrophy in part through RhoA/ROCK (small GTPase/Rho-associated coiled-coil containing protein kinase) pathway. FHOD3 (formin homology 2 domain containing 3), a cardiac-restricted member of diaphanous-related formins, is crucial in regulating myofibrillogenesis in cardiomyocytes. FHOD3 maintains inactive through autoinhibition by an intramolecular interaction between its C- and N-terminal domains. Phosphorylation of the 3 highly conserved residues (1406S, 1412S, and 1416T) within the C terminus (CT) of FHOD3 by ROCK1 is sufficient for its activation. However, it is unclear whether ROCK-mediated FHOD3 activation plays a role in the pathogenesis of Ang-II-induced cardiac hypertrophy. In this study, we detected increases in FHOD3 expression and phosphorylation in cardiomyocytes from Ang-II-induced rat cardiac hypertrophy models. Valsartan attenuated such increases. In cultured neonate rat cardiomyocytes, overexpression of phosphor-mimetic mutant FHOD3-DDD, but not wild-type FHOD3, resulted in myofibrillogenesis and cardiomyocyte hypertrophy. Expression of a phosphor-resistant mutant FHOD3-AAA completely abolished myofibrillogenesis and attenuated Ang-II-induced cardiomyocyte hypertrophy. Pretreatment of neonate rat cardiomyocytes with ROCK inhibitor Y27632 reduced Ang-II-induced FHOD3 activation and upregulation, suggesting the involvement of ROCK activities. Silencing of ROCK2, but not ROCK1, in neonate rat cardiomyocytes, significantly lessened Ang-II-induced cardiomyocyte hypertrophy. ROCK2 can directly phosphorylate FHOD3 at both 1412S and 1416T in vitro and is more potent than ROCK1. Both kinases failed to phosphorylate 1406S. Coexpression of FHOD3 with constitutively active ROCK2 induced more stress fiber formation than that with constitutively active ROCK1. Collectively, our results demonstrated the importance of ROCK2 regulated FHOD3 expression and activation in Ang-II-induced myofibrillogenesis, thus provided a novel mechanism for the pathogenesis of Ang-II-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Qing Zhou
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Si-Si Wei
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Hong Wang
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Qian Wang
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Wei Li
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Gang Li
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Jian-Wen Hou
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Xiao-Meng Chen
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Jie Chen
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Wei-Ping Xu
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China
| | - Yi-Gang Li
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China.
| | - Yue-Peng Wang
- From the Molecular Cardiology Research Laboratory, Department of Cardiology (Q.Z., H.W., Q.W., W.L., G.L., J.-W.H., X.-M.C., J.C., W.-P.X., Y.-G.L., Y.-P.W.) and Department of Pediatrics (S.-S.W.), Affiliated Xinhua Hospital, Shanghai Jiaotong University (SJTU) School of Medicine, China.
| |
Collapse
|
20
|
Chen K, Zheng X, Feng M, Li D, Zhang H. Gut Microbiota-Dependent Metabolite Trimethylamine N-Oxide Contributes to Cardiac Dysfunction in Western Diet-Induced Obese Mice. Front Physiol 2017; 8:139. [PMID: 28377725 PMCID: PMC5359299 DOI: 10.3389/fphys.2017.00139] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/23/2017] [Indexed: 12/24/2022] Open
Abstract
Excessive consumption of diets high in sugars and saturated fat, frequently known as western diet (WD), may lead to obesity and metabolic syndrome. Recent evidence shows that WD-induced obesity impairs cardiac function, but the underlying mechanisms are not fully understood. Trimethylamine N-oxide (TMAO), a gut microbiota-dependent metabolite of specific dietary nutrients, has emerged as a key contributor to cardiovascular disease pathogenesis. We tested the hypothesis that elevated circulating TMAO levels contribute to cardiac dysfunction in WD-induced obesity. CD1 mice were fed a normal diet (ND) or a WD, without or with 1.0% 3,3-Dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) in drinking water for 8 weeks. Compared with mice fed a ND, mice fed a WD showed a significant increase in body weight and dyslipidemia, and had markedly higher plasma TMAO levels at the end of the feeding protocol. Echocardiography revealed that cardiac systolic and diastolic function was impaired in mice fed a WD. DMB treatment had no effects on body weight and dyslipidemia, but significantly reduced plasma TMAO levels and prevented cardiac dysfunction in mice fed a WD. In addition, mice fed a WD had elevated expression of pro-inflammatory cytokines tumor necrosis factor-α and interleukin IL-1β, decreased expression of anti-inflammatory cytokine IL-10, and increased interstitial fibrosis in the hearts, all of which were prevented by DMB treatment. Notably, DMB treatment also reduced plasma TMAO levels in mice fed a ND but did not alter other parameters. These results suggest that consumption of a WD increases circulating TMAO levels, which lead to cardiac inflammation and fibrosis, contributing to cardiac dysfunction. Interventions that reduce circulating TMAO levels may be a novel therapeutic strategy for prevention and treatment of WD-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Kui Chen
- Department of Anesthesiology, Jining NO.1 People's Hospital Jining, China
| | - Xiaoqian Zheng
- Outpatient Department, Jining NO.1 People's Hospital Jining, China
| | - Mingchen Feng
- Department of Critical Care Medicine, Jining NO.1 People's Hospital Jining, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University Jinan, China
| | - Hongqi Zhang
- Department of Anesthesiology, Jining NO.1 People's Hospital Jining, China
| |
Collapse
|
21
|
da Costa RM, Fais RS, Dechandt CRP, Louzada-Junior P, Alberici LC, Lobato NS, Tostes RC. Increased mitochondrial ROS generation mediates the loss of the anti-contractile effects of perivascular adipose tissue in high-fat diet obese mice. Br J Pharmacol 2017; 174:3527-3541. [PMID: 27930804 DOI: 10.1111/bph.13687] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Obesity is associated with structural and functional changes in perivascular adipose tissue (PVAT), favouring release of reactive oxygen species (ROS), vasoconstrictor and proinflammatory factors. The cytokine TNF-α induces vascular dysfunction and is produced by PVAT. We tested the hypothesis that obesity-associated PVAT dysfunction was mediated by augmented mitochondrial ROS (mROS) generation due to increased TNF-α production in this tissue. EXPERIMENTAL APPROACH C57Bl/6J and TNF-α receptor-deficient mice received control or high fat diet (HFD) for 18 weeks. We used pharmacological tools to determine the participation of mROS in PVAT dysfunction. Superoxide anion (O2.- ) and H2 O2 were assayed in PVAT and aortic rings were used to assess vascular function. KEY RESULTS Aortae from HFD-fed obese mice displayed increased contractions to phenylephrine and loss of PVAT anti-contractile effect. Inactivation of O2.- , dismutation of mitochondria-derived H2 O2 , uncoupling of oxidative phosphorylation and Rho kinase inhibition, decreased phenylephrine-induced contractions in aortae with PVAT from HFD-fed mice. O2.- and H2 O2 were increased in PVAT from HFD-fed mice. Mitochondrial respiration analysis revealed decreased O2 consumption rates in PVAT from HFD-fed mice. TNF-α inhibition reduced H2 O2 levels in PVAT from HFD-fed mice. PVAT dysfunction, i.e. increased contraction to phenylephrine in PVAT-intact aortae, was not observed in HFD-obese mice lacking TNF-α receptors. Generation of H2 O2 was prevented in PVAT from TNF-α receptor deficient obese mice. CONCLUSION AND IMPLICATIONS TNF-α-induced mitochondrial oxidative stress is a key and novel mechanism involved in obesity-associated PVAT dysfunction. These findings elucidate molecular mechanisms whereby oxidative stress in PVAT could affect vascular function. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Rafael Menezes da Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rafael S Fais
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Carlos R P Dechandt
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Paulo Louzada-Junior
- Division of Clinical Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luciane C Alberici
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Núbia S Lobato
- Department of Medicine, Federal University of Goias, Jatai, GO, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
22
|
Nandipati KC, Subramanian S, Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol Cell Biochem 2016; 426:27-45. [PMID: 27868170 DOI: 10.1007/s11010-016-2878-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Collapse
Affiliation(s)
- Kalyana C Nandipati
- Department of Surgery, Creighton University School of Medicine, 601 N. 30th Street, Suite # 3700, Omaha, NE, 68131, USA.
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA.
| | - Saravanan Subramanian
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500, California Plaza, Room # 510, Criss II, Omaha, NE, 68131, USA
| |
Collapse
|
23
|
Boly CA, Eringa EC, Bouwman RA, van den Akker RFP, de Man FS, Schalij I, Loer SA, Boer C, van den Brom CE. The effect of perioperative insulin treatment on cardiodepression in mild adiposity in mice. Cardiovasc Diabetol 2016; 15:135. [PMID: 27651131 PMCID: PMC5029087 DOI: 10.1186/s12933-016-0453-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/13/2016] [Indexed: 02/02/2023] Open
Abstract
Background While most studies focus on cardiovascular morbidity following anesthesia and surgery in excessive obesity, it is unknown whether these intraoperative cardiovascular alterations also occur in milder forms of adiposity without type 2 diabetes and if insulin is a possible treatment to improve intraoperative myocardial performance. In this experimental study we investigated whether mild adiposity without metabolic alterations is already associated with cardiometabolic dysfunction during anesthesia, mechanical ventilation and surgery and whether these myocardial alterations can be neutralized by intraoperative insulin treatment. Methods Mice were fed a western (WD) or control diet (CD) for 4 weeks. After metabolic profiling, mice underwent general anesthesia, mechanical ventilation and surgery. Cardiac function was determined with echocardiography and left-ventricular pressure–volume analysis. Myocardial perfusion was determined with contrast-enhanced echocardiography. WD-fed mice were subsequently treated with insulin by hyperinsulinemic euglycemic clamping followed by the same measurements of cardiac function and perfusion. Results Western-type diet feeding led to a 13 % increase in bodyweight, (p < 0.0001) and increased adipose tissue mass, without metabolic alterations. Despite this mild phenotype, WD-fed mice had decreased systolic and diastolic function (end-systolic elastance was 2.0 ± 0.5 versus 4.1 ± 2.4 mmHg/μL, p = 0.01 and diastolic beta was 0.07 ± 0.03 versus 0.04 ± 0.01 mmHg/μL, p = 0.02) compared to CD-fed mice. Ventriculo-arterial coupling and myocardial perfusion were decreased by 48 % (p = 0.003) and 43 % (p = 0.03) respectively. Insulin treatment in WD-fed mice improved echo-derived systolic function (fractional shortening 42 ± 5 % to 46 ± 3, p = 0.05), likely due to decreased afterload, but there was no effect on load-independent measures of systolic function or myocardial perfusion. However, there was a trend towards improved diastolic function after insulin treatment (43 % improvement, p = 0.05) in WD-fed mice. Conclusions Mild adiposity without metabolic alterations already affected cardiac function and perfusion during anesthesia, mechanical ventilation and surgery in mice. Intraoperative insulin may be beneficial to reduce afterload and enhance intraoperative ventricular relaxation, but not to improve ventricular contractility or myocardial perfusion.
Collapse
Affiliation(s)
- Chantal A Boly
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| | - Etto C Eringa
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - R Arthur Bouwman
- Department of Anesthesiology, Catharina Hospital, Eindhoven, The Netherlands
| | - Rob F P van den Akker
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Frances S de Man
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.,Pulmonology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Ingrid Schalij
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.,Pulmonology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Stephan A Loer
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Christa Boer
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Abstract
Hypertensive cardiac remodeling is characterized by left ventricular hypertrophy and interstitial fibrosis, which can lead to heart failure with preserved ejection fraction. The Rho-associated coiled-coil containing kinases (ROCKs) are members of the serine/threonine protein kinase family, which mediates the downstream effects of the small GTP-binding protein RhoA. There are 2 isoforms: ROCK1 and ROCK2. They have different functions in different types of cells and tissues. There is growing evidence that ROCKs contribute to the development of cardiovascular diseases, including cardiac fibrosis, hypertrophy, and subsequent heart failure. Recent experimental studies using ROCK inhibitors, such as fasudil, have shown the benefits of ROCK inhibition in cardiac remodeling. Mice lacking each ROCK isoform also exhibit reduced myocardial fibrosis in a variety of pathological models of cardiac remodeling. Indeed, clinical studies with fasudil have suggested that ROCKs could be potential novel therapeutic targets for cardiovascular diseases. In this review, we summarize the current understanding of the roles of ROCKs in the development of cardiac fibrosis and hypertrophy and discuss their therapeutic potential for deleterious cardiac remodeling. (Circ J 2016; 80: 1491-1498).
Collapse
Affiliation(s)
- Toru Shimizu
- Section of Cardiology, Department of Medicine, University of Chicago
| | | |
Collapse
|
25
|
Soliman H, Varela JN, Nyamandi V, Garcia-Patino M, Lin G, Bankar GR, Jia Z, MacLeod KM. Attenuation of obesity-induced insulin resistance in mice with heterozygous deletion of ROCK2. Int J Obes (Lond) 2016; 40:1435-43. [PMID: 27163743 DOI: 10.1038/ijo.2016.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 03/26/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity-associated insulin resistance is a major risk factor for the development of type 2 diabetes, cardiovascular disease and non-alcoholic liver disease. Over-activation of the RhoA-Rho kinase (ROCK) pathway has been implicated in the development of obesity-induced insulin resistance, but the relative contribution of ROCK2 has not been elucidated. This was investigated in the present study. METHODS Male ROCK2+/- mice and their wild-type (WT) littermate controls were fed normal chow or a high fat diet (HFD) for 18 weeks. Glucose and insulin tolerance tests were conducted 8 and 16 weeks after the start of feeding. At termination, isoform-specific ROCK activity and insulin signaling were evaluated in epididymal adipose tissue. Adipocyte size was assessed morphometrically, while adipose tissue production of PPARγ was determined by western blotting, and inflammatory cytokines were evaluated by RT-PCR and immunofluorescence. RESULTS The decrease in systemic insulin sensitivity and glucose tolerance produced by high fat feeding was attenuated in ROCK2+/- mice. There was no reduction in food intake, body weight or epididymal fat pad weight in HFD-ROCK2+/- mice. However, the increase in adipocyte size detected in HFD-WT mice was attenuated in HFD-ROCK2+/- mice. The increase in adipose tissue ROCK2 activity produced by high fat feeding in WT mice was also prevented in ROCK2+/- mice, and this was accompanied by improved insulin-induced phosphorylation of Akt. The expression of both isoforms of PPARγ was increased in adipose tissue from HFD-ROCK2+/- mice, while adipocyte hypertrophy and production of inflammatory cytokines were reduced compared with HFD-WT mice. CONCLUSIONS These data suggest that activation of ROCK2 in adipose tissue contributes to obesity-induced insulin resistance. This may result in part from suppression of PPARγ expression, leading to adipocyte hypertrophy and an increase in inflammatory cytokine production. ROCK2 may be a suitable target to improve insulin sensitivity in obesity.
Collapse
Affiliation(s)
- H Soliman
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - J N Varela
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - V Nyamandi
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Garcia-Patino
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Lin
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - G R Bankar
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Z Jia
- Neurosciences and Mental Health, the Hospital for Sick Children, and Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - K M MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J. Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016; 64:259-78. [PMID: 26725045 PMCID: PMC4930737 DOI: 10.1007/s00005-015-0382-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) is a major downstream effector of the small GTPase RhoA. The ROCK family, consisting of ROCK1 and ROCK2, plays a central role in the organization of the actin cytoskeleton, and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation, and apoptosis. Since the discovery of effective inhibitors such as fasudil and Y27632, the biological roles of ROCK have been extensively explored in numerous diseases, including cancer. Accumulating evidence supports the concept that ROCK plays important roles in tumor development and progression through regulating many key cellular functions associated with malignancy, including tumorigenicity, tumor growth, metastasis, angiogenesis, tumor cell apoptosis/survival and chemoresistance as well. This review focuses on the new advances of the most recent 5 years from the studies on the roles of ROCK in cancer development and progression; the discussion is mainly focused on the potential value of ROCK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Lei Wei
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA. .,Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Michelle Surma
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Stephanie Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Nathan Lambert-Cheatham
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
27
|
Hartmann S, Ridley AJ, Lutz S. The Function of Rho-Associated Kinases ROCK1 and ROCK2 in the Pathogenesis of Cardiovascular Disease. Front Pharmacol 2015; 6:276. [PMID: 26635606 PMCID: PMC4653301 DOI: 10.3389/fphar.2015.00276] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/03/2015] [Indexed: 01/26/2023] Open
Abstract
Rho-associated kinases ROCK1 and ROCK2 are serine/threonine kinases that are downstream targets of the small GTPases RhoA, RhoB, and RhoC. ROCKs are involved in diverse cellular activities including actin cytoskeleton organization, cell adhesion and motility, proliferation and apoptosis, remodeling of the extracellular matrix and smooth muscle cell contraction. The role of ROCK1 and ROCK2 has long been considered to be similar; however, it is now clear that they do not always have the same functions. Moreover, depending on their subcellular localization, activation, and other environmental factors, ROCK signaling can have different effects on cellular function. With respect to the heart, findings in isoform-specific knockout mice argue for a role of ROCK1 and ROCK2 in the pathogenesis of cardiac fibrosis and cardiac hypertrophy, respectively. Increased ROCK activity could play a pivotal role in processes leading to cardiovascular diseases such as hypertension, pulmonary hypertension, angina pectoris, vasospastic angina, heart failure, and stroke, and thus ROCK activity is a potential new biomarker for heart disease. Pharmacological ROCK inhibition reduces the enhanced ROCK activity in patients, accompanied with a measurable improvement in medical condition. In this review, we focus on recent findings regarding ROCK signaling in the pathogenesis of cardiovascular disease, with a special focus on differences between ROCK1 and ROCK2 function.
Collapse
Affiliation(s)
- Svenja Hartmann
- Institute of Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research, Göttingen, Germany
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK
| | - Susanne Lutz
- Institute of Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research, Göttingen, Germany
| |
Collapse
|