1
|
Ryu Y, Wague A, Liu X, Feeley BT, Ferguson AR, Morioka K. Cellular signaling pathways in the nervous system activated by various mechanical and electromagnetic stimuli. Front Mol Neurosci 2024; 17:1427070. [PMID: 39430293 PMCID: PMC11486767 DOI: 10.3389/fnmol.2024.1427070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
Mechanical stimuli, such as stretch, shear stress, or compression, activate a range of biomolecular responses through cellular mechanotransduction. In the nervous system, studies on mechanical stress have highlighted key pathophysiological mechanisms underlying traumatic injury and neurodegenerative diseases. However, the biomolecular pathways triggered by mechanical stimuli in the nervous system has not been fully explored, especially compared to other body systems. This gap in knowledge may be due to the wide variety of methods and definitions used in research. Additionally, as mechanical stimulation techniques such as ultrasound and electromagnetic stimulation are increasingly utilized in psychological and neurorehabilitation treatments, it is vital to understand the underlying biological mechanisms in order to develop accurate pathophysiological models and enhance therapeutic interventions. This review aims to summarize the cellular signaling pathways activated by various mechanical and electromagnetic stimuli with a particular focus on the mammalian nervous system. Furthermore, we briefly discuss potential cellular mechanosensors involved in these processes.
Collapse
Affiliation(s)
- Youngjae Ryu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Aboubacar Wague
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Adam R. Ferguson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- Zuckerberg San Francisco General Hospital and Trauma CenterOrthopaedic Trauma Institute, , San Francisco, CA, United States
| |
Collapse
|
2
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
3
|
Grobbelaar S, Mercier AE, van den Bout I, Durandt C, Pepper MS. Considerations for enhanced mesenchymal stromal/stem cell myogenic commitment in vitro. Clin Transl Sci 2024; 17:e13703. [PMID: 38098144 PMCID: PMC10787211 DOI: 10.1111/cts.13703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 01/15/2024] Open
Abstract
The generation of tissue from stem cells is an alluring concept as it holds a number of potential applications in clinical therapeutics and regenerative medicine. Mesenchymal stromal/stem cells (MSCs) can be isolated from a number of different somatic sources, and have the capacity to differentiate into adipogenic, osteogenic, chondrogenic, and myogenic lineages. Although the first three have been extensively investigated, there remains a paucity of literature on the latter. This review looks at the various strategies available in vitro to enhance harvested MSC commitment and differentiation into the myogenic pathway. These include chemical inducers, myogenic-enhancing cell culture substrates, and mechanical and dynamic culturing conditions. Drawing on information from embryonic and postnatal myogenesis from somites, satellite, and myogenic progenitor cells, the mechanisms behind the chemical and mechanical induction strategies can be studied, and the sequential gene and signaling cascades can be used to monitor the progression of myogenic differentiation in the laboratory. Increased understanding of the stimuli and signaling mechanisms in the initial stages of MSC myogenic commitment will provide tools with which we can enhance their differentiation efficacy and advance the process to clinical translation.
Collapse
Affiliation(s)
- Simone Grobbelaar
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Anne E. Mercier
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Iman van den Bout
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Centre for Neuroendocrinology, Department of Immunology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
4
|
Khalifa MO, Moriwaki T, Zhang S, Zhou W, Ito K, Li TS. Negative pressure induces dedifferentiation of hepatocytes via RhoA/ROCK pathway. Biochem Biophys Res Commun 2023; 667:104-110. [PMID: 37210870 DOI: 10.1016/j.bbrc.2023.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Biomechanical forces are known to regulate the biological behaviors of cells. Although negative pressure has been used for wound healing, it is still unknown about its role in regulating cell plasticity. We investigated whether negative pressure could induce the dedifferentiation of hepatocytes. Using a commercial device, we found that the exposure of primary human hepatocytes to -50 mmHg quickly induced the formation of stress fibers and obviously changed cell morphology in 72 h. Moreover, the exposure of hepatocytes to -50 mmHg significantly upregulated RhoA, ROCK1, and ROCK2 in 1-6 h, and dramatically enhanced the expression of marker molecules on "stemness", such as OCT4, SOX2, KLF4, MYC, NANOG, and CD133 in 6-72 h. However, all these changes in hepatocytes induced by -50 mmHg stimulation were almost abrogated by ROCK inhibitor Y27623. Our data suggest that an appropriate force of negative pressure stimulation can effectively induce the dedifferentiation of hepatocytes via RhoA/ROCK pathway activation.
Collapse
Affiliation(s)
- Mahmoud Osman Khalifa
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Department of Anatomy and Embryology, Veterinary Medicine, Aswan University, Aswan, Egypt; Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Takahito Moriwaki
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Wei Zhou
- Department of Gastrointestinal Surgery, Jiangxi Provincial Cancer Hospital Nanchang, Jiangxi Province, China
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
5
|
Manso AM, Romaine A, Christensen G, Ross RS. Integrins in Cardiac Form, Function, and Disease. BIOLOGY OF EXTRACELLULAR MATRIX 2023:135-183. [DOI: 10.1007/978-3-031-23781-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, Cartron PF, Castel H, Chevet E, Chneiweiss H, Clavreul A, Constantin B, Coronas V, Daubon T, Dontenwill M, Ducray F, Enz-Werle N, Figarella-Branger D, Fournier I, Frenel JS, Gabut M, Galli T, Gavard J, Huberfeld G, Hugnot JP, Idbaih A, Junier MP, Mathivet T, Menei P, Meyronet D, Mirjolet C, Morin F, Mosser J, Moyal ECJ, Rousseau V, Salzet M, Sanson M, Seano G, Tabouret E, Tchoghandjian A, Turchi L, Vallette FM, Vats S, Verreault M, Virolle T. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 2023; 9:9-27. [PMID: 36400694 DOI: 10.1016/j.trecan.2022.09.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France.
| | - Cristine Alves da Costa
- Côte d'Azur University, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Team "Laboratory of Excellence (LABEX) Distalz", F-06560 Nice, France
| | - Tony Avril
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Jean-Vianney Barnier
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Luc Bauchet
- Montpellier University Medical Center, Department of Neurosurgery, INSERM U1191, F-34090 Montpellier, France
| | - Lucie Brisson
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | | | - Hélène Castel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Eric Chevet
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Hervé Chneiweiss
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Anne Clavreul
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - Bruno Constantin
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Valérie Coronas
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Thomas Daubon
- Bordeaux University, CNRS, IBGC, UMR 5095, F-33 077 Bordeaux, France
| | - Monique Dontenwill
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Francois Ducray
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Natacha Enz-Werle
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Dominique Figarella-Branger
- Aix-Marseille University, Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, F-13385 Marseille, France
| | - Isabelle Fournier
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Jean-Sébastien Frenel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Mathieu Gabut
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Julie Gavard
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Gilles Huberfeld
- College de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Université PSL, Paris 75005, France
| | - Jean-Philippe Hugnot
- Montpellier University, Institut de Génomique Fonctionnelle, CNRS, INSERM, F-34094 Montpellier, France
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Marie-Pierre Junier
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Thomas Mathivet
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | - Philippe Menei
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - David Meyronet
- Institute of Neuropathology, Hospices Civils de Lyon, F-69008, Lyon, France
| | - Céline Mirjolet
- Centre Georges-François Leclerc, UNICANCER, Dijon, France. Inserm U1231, Equipe Cadir, F-21000 Dijon, France
| | - Fabrice Morin
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Jean Mosser
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Elisabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud, NSERM 1037, CRCT Team RADOPT, Département de Radiothérapie, IUCT-Oncopole, F-31100 Toulouse, France
| | - Véronique Rousseau
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Michel Salzet
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marc Sanson
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Giorgio Seano
- Curie Institute Research Center, Tumor Microenvironment Laboratory, PSL Research University, Inserm U1021, CNRS UMR3347, F-91898 Orsay, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Laurent Turchi
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| | - Francois M Vallette
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Somya Vats
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Maité Verreault
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Thierry Virolle
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| |
Collapse
|
7
|
Jia L, Limeng D, Xiaoyin T, Junwen W, Xintong Z, Gang X, Yun B, Hong G. A Novel Splicing Mutation c.335-1 G > A in the Cardiac Transcription Factor NKX2-5 Leads to Familial Atrial Septal Defect Through miR-19 and PYK2. Stem Cell Rev Rep 2022; 18:2646-2661. [PMID: 35778654 DOI: 10.1007/s12015-022-10400-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 10/17/2022]
Abstract
Mutations of NKX2-5 largely contribute to congenital heart diseases (CHDs), especially atrial septal defect (ASD). We identified a novel heterozygous splicing mutation c.335-1G > A in NKX2-5 gene in an ASD family via whole exome sequencing (WES) and linkage analysis. Utilizing the human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) as a disease model, we showed that haploinsufficiency of NKX2-5 contributed to aberrant orchestration of apoptosis and proliferation in ASD patient-derived hiPSC-CMs. RNA-seq profiling and dual-luciferase reporter assay revealed that NKX2-5 acts upstream of PYK2 via miR-19a and miR-19b (miR-19a/b) to regulate cardiomyocyte apoptosis. Meanwhile, miR-19a/b are also downstream mediators of NKX2-5 during cardiomyocyte proliferation. The novel splicing mutation c.335-1G > A in NKX2-5 and its potential pathogenic roles in ASD were demonstrated. Our work provides clues not only for deep understanding of NKX2-5 in cardia development, but also for better knowledge in the molecular mechanisms of CHDs.
Collapse
Affiliation(s)
- Li Jia
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Dai Limeng
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Tan Xiaoyin
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Wang Junwen
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Zhu Xintong
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038
| | - Xiong Gang
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Bai Yun
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038.
| | - Guo Hong
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, 30#, Gaotanyan St., Shapingba District, Chongqing, People's Republic of China, 400038.
| |
Collapse
|
8
|
Chang YW, Song ZH, Chen CC. FAK regulates cardiomyocyte mitochondrial fission and function through Drp1. FEBS J 2021; 289:1897-1910. [PMID: 34739186 DOI: 10.1111/febs.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
Loss of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) in cardiomyocytes results in energy shortage and heart failure. We aim to understand the intracellular signal pathway and extracellular factors regulating Drp1 phosphorylation and mitochondrial morphology and function in cardiomyocytes. We found cyclic mechanical stretching induced mitochondrial fission through Drp1 and focal adhesion kinase (FAK) in neonatal rat ventricular myocytes (NRVMs). FAK regulated phosphorylation of Drp1 and mitochondrial Drp1 levels. Extracellular fibronectin activated Drp1 and caused mitochondrial fission through FAK and extracellular signal-regulated kinase 1/2 (ERK1/2). Fibronectin increased NRVMs oxygen consumption rate and ATP content via FAK-ERK1/2-Drp1. Inhibition of the FAK-ERK1/2-Drp1 pathway caused cellular energy shortage. In addition, the FAK-ERK1/2-Drp1 pathway was rapidly activated by adrenergic agonists and contributed to agonists-stimulated NRVMs respiration. Interestingly, fibronectin limited the adrenergic agonists-induced NRVMs respiration by restricting phosphorylation of Drp1. Our results suggest that extracellular fibronectin and adrenergic stimulations use the FAK-ERK1/2-Drp1 pathway to regulate mitochondrial morphology and function in cardiomyocytes.
Collapse
Affiliation(s)
- Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | - Zong-Han Song
- Institute of Biomedical Sciences, Academia Sinica, Taiwan
| | | |
Collapse
|
9
|
Wang X, Steinberg T, Dieterle MP, Ramminger I, Husari A, Tomakidi P. FAK Shutdown: Consequences on Epithelial Morphogenesis and Biomarker Expression Involving an Innovative Biomaterial for Tissue Regeneration. Int J Mol Sci 2021; 22:ijms22189774. [PMID: 34575938 PMCID: PMC8470904 DOI: 10.3390/ijms22189774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
By employing an innovative biohybrid membrane, the present study aimed at elucidating the mechanistic role of the focal adhesion kinase (FAK) in epithelial morphogenesis in vitro over 4, 7, and 10 days. The consequences of siRNA-mediated FAK knockdown on epithelial morphogenesis were monitored by quantifying cell layers and detecting the expression of biomarkers of epithelial differentiation and homeostasis. Histologic examination of FAK-depleted samples showed a significant increase in cell layers resembling epithelial hyperplasia. Semiquantitative fluorescence imaging (SQFI) revealed tissue homeostatic disturbances by significantly increased involucrin expression over time, persistence of yes-associated protein (YAP) and an increase of keratin (K) 1 at day 4. The dysbalanced involucrin pattern was underscored by ROCK-IISer1366 activity at day 7 and 10. SQFI data were confirmed by quantitative PCR and Western blot analysis, thereby corroborating the FAK shutdown-related expression changes. The artificial FAK shutdown was also associated with a significantly higher expression of filaggrin at day 10, sustained keratinocyte proliferation, and the dysregulated expression of K19 and vimentin. These siRNA-induced consequences indicate the mechanistic role of FAK in epithelial morphogenesis by simultaneously considering prospective biomaterial-based epithelial regenerative approaches.
Collapse
Affiliation(s)
- Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Correspondence:
| | - Martin P. Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| |
Collapse
|
10
|
Narasimhan BN, Horrocks MS, Malmström J. Hydrogels with Tunable Physical Cues and Their Emerging Roles in Studies of Cellular Mechanotransduction. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Badri Narayanan Narasimhan
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| | - Matthew S. Horrocks
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| |
Collapse
|
11
|
Castillo-Badillo JA, Gautam N. An optogenetic model reveals cell shape regulation through FAK and fascin. J Cell Sci 2021; 134:269115. [PMID: 34114634 DOI: 10.1242/jcs.258321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Cell shape regulation is important, but the mechanisms that govern shape are not fully understood, in part due to limited experimental models in which cell shape changes and underlying molecular processes can be rapidly and non-invasively monitored in real time. Here, we used an optogenetic tool to activate RhoA in the middle of mononucleated macrophages to induce contraction, resulting in a side with the nucleus that retained its shape and a non-nucleated side that was unable to maintain its shape and collapsed. In cells overexpressing focal adhesion kinase (FAK; also known as PTK2), the non-nucleated side exhibited a wide flat morphology and was similar in adhesion area to the nucleated side. In cells overexpressing fascin, an actin-bundling protein, the non-nucleated side assumed a spherical shape and was similar in height to the nucleated side. This effect of fascin was also observed in fibroblasts even without inducing furrow formation. Based on these results, we conclude that FAK and fascin work together to maintain cell shape by regulating adhesion area and height, respectively, in different cell types. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jean A Castillo-Badillo
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA.,Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
12
|
Zhang D, Zhang R, Song X, Yan KC, Liang H. Uniaxial Cyclic Stretching Promotes Chromatin Accessibility of Gene Loci Associated With Mesenchymal Stem Cells Morphogenesis and Osteogenesis. Front Cell Dev Biol 2021; 9:664545. [PMID: 34307349 PMCID: PMC8294092 DOI: 10.3389/fcell.2021.664545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023] Open
Abstract
It has been previously demonstrated that uniaxial cyclic stretching (UCS) induces differentiation of mesenchymal stem cells (MSCs) into osteoblasts in vitro. It is also known that interactions between cells and external forces occur at various aspects including cell–matrix, cytoskeleton, nucleus membrane, and chromatin. However, changes in chromatin landscape during this process are still not clear. The present study was aimed to determine changes of chromatin accessibility under cyclic stretch. The influence of cyclic stretching on the morphology, proliferation, and differentiation of hMSCs was characterized. Changes of open chromatin sites were determined by assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq). Our results showed that UCS induced cell reorientation and actin stress fibers realignment, and in turn caused nuclear reorientation and deformation. Compared with unstrained group, the expression of osteogenic and chondrogenic marker genes were the highest in group of 1 Hz + 8% strain; this condition also led to lower cell proliferation rate. Furthermore, there were 2022 gene loci with upregulated chromatin accessibility in 1 Hz + 8% groups based on the analysis of chromatin accessibility. These genes are associated with regulation of cell morphogenesis, cell–substrate adhesion, and ossification. Signaling pathways involved in osteogenic differentiation were found in up-regulated GO biological processes. These findings demonstrated that UCS increased the openness of gene loci associated with regulation of cell morphogenesis and osteogenesis as well as the corresponding transcription activities. Moreover, the findings also connect the changes in chromatin accessibility with cell reorientation, nuclear reorientation, and deformation. Our study may provide reference for directed differentiation of stem cells induced by mechanical microenvironments.
Collapse
Affiliation(s)
- Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Ran Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Karen Chang Yan
- Mechanical Engineering and Biomedical Engineering, The College of New Jersey, Ewing Township, NJ, United States
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
13
|
Sala S, Oakes PW. Stress fiber strain recognition by the LIM protein testin is cryptic and mediated by RhoA. Mol Biol Cell 2021; 32:1758-1771. [PMID: 34038160 PMCID: PMC8684727 DOI: 10.1091/mbc.e21-03-0156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The actin cytoskeleton is a key regulator of mechanical processes in cells. The family of LIM domain proteins have recently emerged as important mechanoresponsive cytoskeletal elements capable of sensing strain in the actin cytoskeleton. The mechanisms regulating this mechanosensitive behavior, however, remain poorly understood. Here we show that the LIM domain protein testin is peculiar in that despite the full-length protein primarily appearing diffuse in the cytoplasm, the C-terminal LIM domains alone recognize focal adhesions and strained actin, while the N-terminal domains alone recognize stress fibers. Phosphorylation mutations in the dimerization regions of testin, however, reveal its mechanosensitivity and cause it to relocate to focal adhesions and sites of strain in the actin cytoskeleton. Finally, we demonstrate that activated RhoA causes testin to adorn stress fibers and become mechanosensitive. Together, our data show that testin’s mechanoresponse is regulated in cells and provide new insights into LIM domain protein recognition of the actin cytoskeleton’s mechanical state.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153
| | - Patrick W Oakes
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153
| |
Collapse
|
14
|
Kilian LS, Voran J, Frank D, Rangrez AY. RhoA: a dubious molecule in cardiac pathophysiology. J Biomed Sci 2021; 28:33. [PMID: 33906663 PMCID: PMC8080415 DOI: 10.1186/s12929-021-00730-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Ras homolog gene family member A (RhoA) is the founding member of Rho GTPase superfamily originally studied in cancer cells where it was found to stimulate cell cycle progression and migration. RhoA acts as a master switch control of actin dynamics essential for maintaining cytoarchitecture of a cell. In the last two decades, however, RhoA has been coined and increasingly investigated as an essential molecule involved in signal transduction and regulation of gene transcription thereby affecting physiological functions such as cell division, survival, proliferation and migration. RhoA has been shown to play an important role in cardiac remodeling and cardiomyopathies; underlying mechanisms are however still poorly understood since the results derived from in vitro and in vivo experiments are still inconclusive. Interestingly its role in the development of cardiomyopathies or heart failure remains largely unclear due to anomalies in the current data available that indicate both cardioprotective and deleterious effects. In this review, we aimed to outline the molecular mechanisms of RhoA activation, to give an overview of its regulators, and the probable mechanisms of signal transduction leading to RhoA activation and induction of downstream effector pathways and corresponding cellular responses in cardiac (patho)physiology. Furthermore, we discuss the existing studies assessing the presented results and shedding light on the often-ambiguous data. Overall, we provide an update of the molecular, physiological and pathological functions of RhoA in the heart and its potential in cardiac therapeutics.
Collapse
Affiliation(s)
- Lucia Sophie Kilian
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Jakob Voran
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany. .,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Daliri K, Pfannkuche K, Garipcan B. Effects of physicochemical properties of polyacrylamide (PAA) and (polydimethylsiloxane) PDMS on cardiac cell behavior. SOFT MATTER 2021; 17:1156-1172. [PMID: 33427281 DOI: 10.1039/d0sm01986k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In vitro cell culture is commonly applied in laboratories around the world. Cultured cells are either of primary origin or established cell lines. Such transformed cell lines are increasingly replaced by pluripotent stem cell derived organotypic cells with more physiological properties. The quality of the culture conditions and matrix environment is of considerable importance in this regard. In fact, mechanical cues of the extracellular matrix have substantial effects on the cellular physiology. This is especially true if contractile cells such as cardiomyocytes are cultured. Therefore, elastic biomaterials have been introduced as scaffolds in 2D and 3D culture models for different cell types, cardiac cells among them. In this review, key aspects of cell-matrix interaction are highlighted with focus on cardiomyocytes and chemical properties as well as strengths and potential pitfalls in using two commonly applied polymers for soft matrix engineering, polyacrylamide (PAA) and polydimethylsiloxane (PDMS) are discussed.
Collapse
Affiliation(s)
- Karim Daliri
- Institute for Neurophysiology, University of Cologne, Medical Faculty, Robert Koch Str. 39, 50931 Cologne, Germany.
| | - Kurt Pfannkuche
- Institute for Neurophysiology, University of Cologne, Medical Faculty, Robert Koch Str. 39, 50931 Cologne, Germany. and Department for Pediatric Cardiology, University Hospital Cologne, Cologne, Germany and Marga-and-Walter-Boll Laboratory for Cardiac Tissue Engineering, University of Cologne, Germany and Center for Molecular Medicine, University of Cologne, Germany
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, Cengelkoy, 34684, Istanbul, Turkey.
| |
Collapse
|
16
|
Broadwell LJ, Smallegan MJ, Rigby KM, Navarro-Arriola JS, Montgomery RL, Rinn JL, Leinwand LA. Myosin 7b is a regulatory long noncoding RNA (lncMYH7b) in the human heart. J Biol Chem 2021; 296:100694. [PMID: 33895132 PMCID: PMC8141895 DOI: 10.1016/j.jbc.2021.100694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 11/01/2022] Open
Abstract
Myosin heavy chain 7b (MYH7b) is an ancient member of the myosin heavy chain motor protein family that is expressed in striated muscles. In mammalian cardiac muscle, MYH7b RNA is expressed along with two other myosin heavy chains, β-myosin heavy chain (β-MyHC) and α-myosin heavy chain (α-MyHC). However, unlike β-MyHC and α-MyHC, which are maintained in a careful balance at the protein level, the MYH7b locus does not produce a full-length protein in the heart due to a posttranscriptional exon-skipping mechanism that occurs in a tissue-specific manner. Whether this locus has a role in the heart beyond producing its intronic microRNA, miR-499, was unclear. Using cardiomyocytes derived from human induced pluripotent stem cells as a model system, we found that the noncoding exon-skipped RNA (lncMYH7b) affects the transcriptional landscape of human cardiomyocytes, independent of miR-499. Specifically, lncMYH7b regulates the ratio of β-MyHC to α-MyHC, which is crucial for cardiac contractility. We also found that lncMYH7b regulates beat rate and sarcomere formation in cardiomyocytes. This regulation is likely achieved through control of a member of the TEA domain transcription factor family (TEAD3, which is known to regulate β-MyHC). Therefore, we conclude that this ancient gene has been repurposed by alternative splicing to produce a regulatory long-noncoding RNA in the human heart that affects cardiac myosin composition.
Collapse
Affiliation(s)
- Lindsey J Broadwell
- Department of Biochemistry, CU Boulder, Boulder, Colorado, USA; BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA
| | - Michael J Smallegan
- BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA; Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA
| | | | - Jose S Navarro-Arriola
- Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA
| | | | - John L Rinn
- Department of Biochemistry, CU Boulder, Boulder, Colorado, USA; BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA
| | - Leslie A Leinwand
- BioFrontiers Institute, CU Boulder, Boulder, Colorado, USA; Department of Molecular, Cellular, and Developmental Biology, CU Boulder, Boulder, Colorado, USA.
| |
Collapse
|
17
|
The intercalated disc: a mechanosensing signalling node in cardiomyopathy. Biophys Rev 2020; 12:931-946. [PMID: 32661904 PMCID: PMC7429531 DOI: 10.1007/s12551-020-00737-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyocytes, the cells generating contractile force in the heart, are connected to each other through a highly specialised structure, the intercalated disc (ID), which ensures force transmission and transduction between neighbouring cells and allows the myocardium to function in synchrony. In addition, cardiomyocytes possess an intrinsic ability to sense mechanical changes and to regulate their own contractile output accordingly. To achieve this, some of the components responsible for force transmission have evolved to sense changes in tension and to trigger a biochemical response that results in molecular and cellular changes in cardiomyocytes. This becomes of particular importance in cardiomyopathies, where the heart is exposed to increased mechanical load and needs to adapt to sustain its contractile function. In this review, we will discuss key mechanosensing elements present at the intercalated disc and provide an overview of the signalling molecules involved in mediating the responses to changes in mechanical force.
Collapse
|
18
|
Chen HY, Gao LT, Yuan JQ, Zhang YJ, Liu P, Wang G, Ni X, Liu WN, Gao L. Decrease in SHP-1 enhances myometrium remodeling via FAK activation leading to labor. Am J Physiol Endocrinol Metab 2020; 318:E930-E942. [PMID: 32343611 DOI: 10.1152/ajpendo.00068.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Preterm birth is one of the most common complications during human pregnancy and is associated with a dramatic switch within the uterus from quiescence to contractility. However, the mechanisms underlying uterine remodeling are largely unknown. Protein kinases and phosphatases play critical roles in regulating the phosphorylation of proteins involved in the smooth muscle cell functions. In the present study, we found that Src-homology phosphatase type-1 (SHP-1, PTPN6) was significantly decreased in human myometrium in labor compared with that not in labor. Timed-pregnant mice injected intraperitoneally with the specific SHP-1 inhibitor protein tyrosine phosphatase inhibitor I (PTPI-1) manifested significantly preterm labor, with enriched plasmalemmal dense plaques between myometrial cells and increased phosphorylation at Tyr397 and Tyr576/577 sites of focal adhesion kinase (FAK) in myometrial cells, which remained to the time of labor, whereas the phosphorylation levels of ERK1/2 and phosphatidylinositol 3 kinase (PI3K) showed a rapid increase upon PTPI-1 injection but fell back to normal at the time of labor. The Tyr576/577 in FAK played an important role in the interaction between FAK and SHP-1. Knockdown of SHP-1 dramatically increased the spontaneous contraction of human uterine smooth muscle cells (HUSMCs), which was reversed by coinfection of a FAK-knockdown lentivirus. PGF2α downregulated SHP-1 via PLCβ-PKC-NF-κB or PI3K-NF-κB pathways, suggesting the regenerative downregulation of SHP-1 enhances the uterine remodeling and plasticity by activating FAK and subsequent focal adhesion pathway, which eventually facilitates myometrium contraction and leads to labor. The study sheds new light on understanding of mechanisms that underlie the initiation of labor, and interventions for modulation of SHP-1 may provide a potential strategy for preventing preterm birth.
Collapse
Affiliation(s)
- Huai-Yan Chen
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Ling-Tong Gao
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Jian-Qiang Yuan
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yu-Ji Zhang
- Department of Physiology, Second Military Medical University, Shanghai, China
- Department of Cardiovascular Surgery, Shenyang Northern Hospital, Shenyang, China
| | - Pei Liu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Gang Wang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Wei-Na Liu
- Department of Physiology, Second Military Medical University, Shanghai, China
- Department of Obstetrics and Gynecology, Chinese Eastern Theatre Naval Hospital, Ningbo, China
| | - Lu Gao
- Department of Physiology, Second Military Medical University, Shanghai, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
19
|
Zheng YB, Gong JH, Zhen YS. Focal adhesion kinase is activated by microtubule-depolymerizing agents and regulates membrane blebbing in human endothelial cells. J Cell Mol Med 2020; 24:7228-7238. [PMID: 32452639 PMCID: PMC7339229 DOI: 10.1111/jcmm.15273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/01/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Microtubule‐depolymerizing agents can selectively disrupt tumor vessels via inducing endothelial membrane blebbing. However, the mechanism regulating blebbing is largely unknown. IMB5046 is a newly discovered microtubule‐depolymerizing agent. Here, the functions of focal adhesion kinase (FAK) during IMB5046‐induced blebbing and the relevant mechanism are studied. We found that IMB5046 induced membrane blebbing and reassembly of focal adhesions in human vascular endothelial cells. Both FAK inhibitor and knock‐down expression of FAK inhibited IMB5046‐induced blebbing. Mechanism study revealed that IMB5046 induced the activation of FAK via GEF‐H1/ Rho/ ROCK/ MLC2 pathway. cRGD peptide, a ligand of integrin, also blocked IMB5046‐induced blebbing. After activation, FAK further promoted the phosphorylation of MLC2. This positive feedback loop caused more intensive actomyosin contraction and continuous membrane blebbing. FAK inhibitor blocked membrane blebbing via inhibiting actomyosin contraction, and stimulated stress fibre formation via promoting the phosphorylation of HSP27. Conclusively, these results demonstrate that FAK is a molecular switch controlling endothelial blebbing and stress fibre formation. Our study provides a new molecular mechanism for microtubule‐depolymerizing agents to be used as vascular disrupting agents.
Collapse
Affiliation(s)
- Yan-Bo Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Hua Gong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Enhancement of FAK alleviates ventilator-induced alveolar epithelial cell injury. Sci Rep 2020; 10:419. [PMID: 31942012 PMCID: PMC6962166 DOI: 10.1038/s41598-019-57350-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/16/2019] [Indexed: 01/19/2023] Open
Abstract
Mechanical ventilation induces lung injury by damaging alveolar epithelial cells (AECs), but the pathogenesis remains unknown. Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase that is involved in cell growth and intracellular signal transduction pathways. This study explored the potential role of FAK in AECs during lung injury induced by mechanical ventilation. High-volume mechanical ventilation (HMV) was used to create a mouse lung injury model, which was validated by analysis of lung weight, bronchoalveolar lavage fluid and histological investigation. The expression of FAK and Akt in AECs were evaluated. In addition, recombinant FAK was administered to mice via the tail vein, and then the extent of lung injury was assessed. Mouse AECs were cultured in vitro, and FAK expression in cells under stretch was investigated. The effects of FAK on cell proliferation, migration and apoptosis were investigated. The results showed that HMV decreased FAK expression in AECs of mice, while FAK supplementation attenuated lung injury, reduced protein levels/cell counts in the bronchoalveolar lavage fluid and decreased histological lung injury and oedema. The protective effect of FAK promoted AEC proliferation and migration and prevented cells from undergoing apoptosis, which restored the integrity of the alveoli through Akt pathway. Therefore, the decrease in FAK expression by HMV is essential for injury to epithelial cells and the disruption of alveolar integrity. FAK supplementation can reduce AEC injury associated with HMV.
Collapse
|
21
|
Veith A, Conway D, Mei L, Eskin SG, McIntire LV, Baker AB. Effects of Mechanical Forces on Cells and Tissues. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Anaruma CP, Pereira RM, Cristina da Cruz Rodrigues K, Ramos da Silva AS, Cintra DE, Ropelle ER, Pauli JR, Pereira de Moura L. Rock protein as cardiac hypertrophy modulator in obesity and physical exercise. Life Sci 2019; 254:116955. [PMID: 31626788 DOI: 10.1016/j.lfs.2019.116955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 01/03/2023]
Abstract
Obesity and cardiovascular diseases are worldwide public health issues. In this review, we discussed the participation of ROCK protein in cardiac hypertrophy, mainly through the modulation of leptin and insulin signaling pathways. Leptin plays a role in cardiovascular disease development and, through the Rho-associated protein kinase (ROCK), promotes cardiac hypertrophy. ROCK protein, is regulated by small Rho-GTPases and has two isoforms with high homology. ROCK is able to activate the MAP kinase (MAPK) pathway and modulate insulin signaling in the heart, participating in cardiac hypertrophy development of concentric and eccentric left ventricle growth. Although different types of stimulus can lead to morphologically antagonistic heart growth, physical exercise promotes improvements in hemodynamic function, emerging as a promising non-pharmacological tool to improve overall health. Leptin can activate ROCK in a pathological way, increasing MAPK activity and decreasing insulin signaling via insulin receptor substrate 1 (IRS1) serine 307 residue phosphorylation, phosphatase and tensin homolog, and protein kinase Cβ2. In turn, physical exercise decreases leptin levels and positively modulates insulin signaling as well as increases ROCK-dependent IRS1 (Ser632/635) phosphorylation, improving phosphatidylinositol 3-kinase/protein kinase B axis and promoting physiologic heart growth. Currently, there is a lack of studies about differences in ROCK isoforms, especially during exercise and/or obesity. However, the understanding of its biological function and the complex mechanism underlying the distinct types of cardiac hypertrophy development can be a useful tool in the improvement and treatment of cardiovascular outcomes.
Collapse
Affiliation(s)
- Chadi Pellegrini Anaruma
- Department of Physical Education, Institute of Biosciences - São Paulo State University (UNESP), Rio Claro, SP, Brazil; Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - Rodrigo Martins Pereira
- Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Kellen Cristina da Cruz Rodrigues
- Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil
| | | | - Dennys Esper Cintra
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Nutritional Genomics (LabGeN), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - Eduardo Rochete Ropelle
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - José Rodrigo Pauli
- CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil; Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science - University of Campinas, Limeira, SP, Brazil
| | - Leandro Pereira de Moura
- Department of Physical Education, Institute of Biosciences - São Paulo State University (UNESP), Rio Claro, SP, Brazil; Exercise Cell Biology Lab (ECEBIL), School of Applied Science - University of Campinas, Limeira, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences - University of Campinas (UNICAMP), Limeira, SP, Brazil.
| |
Collapse
|
23
|
Shi J, Surma M, Yang Y, Wei L. Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging. FASEB J 2019; 33:7348-7362. [PMID: 30848941 DOI: 10.1096/fj.201802510r] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, we investigated the pathophysiological impact of Rho-associated coiled-coil-containing protein kinase (ROCK)1 and ROCK2 double deletion vs. single deletion on cardiac remodeling. Utilizing a cardiomyocyte-specific and tamoxifen-inducible MerCreMer recombinase (MCM), 3 mouse lines (MCM/ROCK1fl/fl/ROCK2fl/fl, MCM/ROCK1fl/fl, and MCM/ROCK2fl/fl) were generated. As early as 5 d after inducible deletion, the double ROCK knockout hearts exhibited reduced phosphorylation of myosin light chain (MLC) and focal adhesion kinase (FAK), supporting a role for ROCK activity in regulating the nonsarcomeric cytoskeleton. Moreover, the autophagy marker microtubule-associated proteins 1A-1B light chain 3B was increased in the double ROCK knockout, and these early molecular features persisted throughout aging. Mechanistically, the double ROCK knockout promoted age-associated or starvation-induced autophagy concomitant with reduced protein kinase B (AKT), mammalian target of rapamycin (mTOR), Unc-51-like kinase signaling, and cardiac fibrosis. In contrast, ROCK2 knockout hearts showed increased phosphorylated (p)-MLC and p-FAK levels, which were mostly attributable to a compensatory ROCK1 overactivation. Autophagy was inhibited at the baseline accompanying increased mTOR activity, leading to increased cardiac fibrosis in the ROCK2 knockout hearts. Finally, the loss of ROCK1 had no significant effect on p-MLC and p-FAK levels, mTOR signaling, or autophagy at baseline. In summary, deletions of ROCK isoforms in cardiomyocytes have different, even opposite, effects on endogenous ROCK activity and the MLC/FAK/AKT/mTOR signaling pathway, which is involved in autophagy and fibrosis of the heart.-Shi, J., Surma, M., Yang, Y., Wei, L. Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Michelle Surma
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Yang Yang
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Cardiovascular Surgery, Xiangya Hospital, Central South University School of Medicine, Changsha, China; and
| | - Lei Wei
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
24
|
Mkrtschjan MA, Solís C, Wondmagegn AY, Majithia J, Russell B. PKC epsilon signaling effect on actin assembly is diminished in cardiomyocytes when challenged to additional work in a stiff microenvironment. Cytoskeleton (Hoboken) 2018; 75:363-371. [PMID: 30019430 DOI: 10.1002/cm.21472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 01/14/2023]
Abstract
The stiffness of the microenvironment surrounding a cell can result in cytoskeletal remodeling, leading to altered cell function and tissue macrostructure. In this study, we tuned the stiffness of the underlying substratum on which neonatal rat cardiomyocytes were grown in culture to mimic normal (10 kPa), pathological stiffness of fibrotic myocardium (100 kPa), and a nonphysiological extreme (glass). Cardiomyocytes were then challenged by beta adrenergic stimulation through isoproterenol treatment to investigate the response to acute work demand for cells grown on surfaces of varying stiffness. In particular, the PKCɛ signaling pathway and its role in actin assembly dynamics were examined. Significant changes in contractile metrics were seen on cardiomyocytes grown on different surfaces, but all cells responded to isoproterenol treatment, eventually reaching similar time to peak tension. In contrast, the assembly rate of actin was significantly higher on stiff surfaces, so that only cells grown on soft surfaces were able to respond to acute isoproterenol treatment. Förster Resonance Energy Transfer of immunofluorescence on the cytoskeletal fraction of cardiomyocytes confirmed that the molecular interaction of PKCɛ with the actin capping protein, CapZ, was very low on soft substrata but significantly increased with isoproterenol treatment, or on stiff substrata. Therefore, the stiffness of the culture surface chosen for in vitro experiments might mask the normal signaling and affect the ability to translate basic science more effectively into human therapy.
Collapse
Affiliation(s)
- Michael A Mkrtschjan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Christopher Solís
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Admasu Y Wondmagegn
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Janki Majithia
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
25
|
Bastounis EE, Yeh YT, Theriot JA. Matrix stiffness modulates infection of endothelial cells by Listeria monocytogenes via expression of cell surface vimentin. Mol Biol Cell 2018; 29:1571-1589. [PMID: 29718765 PMCID: PMC6080647 DOI: 10.1091/mbc.e18-04-0228] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix stiffness (ECM) is one of the many mechanical forces acting on mammalian adherent cells and an important determinant of cellular function. While the effect of ECM stiffness on many aspects of cellular behavior has been studied previously, how ECM stiffness might mediate susceptibility of host cells to infection by bacterial pathogens is hitherto unexplored. To address this open question, we manufactured hydrogels of varying physiologically relevant stiffness and seeded human microvascular endothelial cells (HMEC-1) on them. We then infected HMEC-1 with the bacterial pathogen Listeria monocytogenes (Lm) and found that adhesion of Lm to host cells increases monotonically with increasing matrix stiffness, an effect that requires the activity of focal adhesion kinase (FAK). We identified cell surface vimentin as a candidate surface receptor mediating stiffness-dependent adhesion of Lm to HMEC-1 and found that bacterial infection of these host cells is decreased when the amount of surface vimentin is reduced. Our results provide the first evidence that ECM stiffness can mediate the susceptibility of mammalian host cells to infection by a bacterial pathogen.
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Yi-Ting Yeh
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Julie A Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
26
|
Ito Y, Maejima Y, Tamura N, Shiheido-Watanabe Y, Konishi M, Ashikaga T, Hirao K, Isobe M. Synergistic effects of HMG-CoA reductase inhibitor and angiotensin II receptor blocker on load-induced heart failure. FEBS Open Bio 2018; 8:799-816. [PMID: 29744294 PMCID: PMC5929928 DOI: 10.1002/2211-5463.12416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/15/2018] [Accepted: 03/12/2018] [Indexed: 01/19/2023] Open
Abstract
5-Hydroxy-3-methylglutaryl-CoA reductase inhibitors (statins) have beneficial effects in patients with heart failure (HF), regardless of serum cholesterol levels. However, their synergic effects with angiotensin II receptor blocker (ARB) remain to be established. We assessed the existence and potential underlying mechanisms of the effects of combined ARB [losartan (LOS)] and statin [simvastatin (SIM)] on cardiac function in rats and mice with load-induced HF. Salt-loaded Dahl salt-sensitive (DS) rats were treated with vehicle, LOS, SIM, or LOS + SIM for 8 weeks. To mimic load-induced HF in vitro, cultured neonatal rat cardiomyocytes (NRCM) were cyclically stretched. We also investigated the effect of LOS + SIM on pressure overload-induced HF using mice with transverse aortic constriction (TAC). LOS + SIM improved left ventricular (LV) function and reduced LV hypertrophy more than the monotherapies in both salt-loaded DS rats and TAC-operated mice. LV-tissue increases in Rho kinase and matrix metalloproteinase-9 activity were decreased to a greater extent by LOS + SIM than by LOS and SIM monotherapies. Plasma levels of Exp-3174, a LOS metabolite, were higher in LOS + SIM-treated DS rats than in LOS-treated rats. Stretch-induced hypertrophy of NRCM pretreated with SIM + Exp-3174 was significantly attenuated from that with LOS, Exp-3174, SIM, or LOS + SIM. SIM administration significantly enhanced mitophagy in mouse hearts after TAC. However, LOS + SIM reduced mitophagy, and the salutary effect of SIM in mouse hearts after TAC was abolished in AT1R-/- mice. In conclusion, LOS and SIM have beneficial myocardial effects on load-induced HF via differential pleiotropic effects. Thus, combination therapy of these drugs thus has potential as a therapeutic strategy for HF.
Collapse
Affiliation(s)
- Yusuke Ito
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | - Natsuko Tamura
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | | | - Masanori Konishi
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | - Takashi Ashikaga
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | - Kenzo Hirao
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine Tokyo Medical and Dental University Japan.,Department of Cardiology Sakakibara Heart Institute Tokyo Japan
| |
Collapse
|
27
|
Chen R, Zhao H, Wu D, Zhao C, Zhao W, Zhou X. The role of SH3GL3 in myeloma cell migration/invasion, stemness and chemo-resistance. Oncotarget 2018; 7:73101-73113. [PMID: 27683032 PMCID: PMC5341966 DOI: 10.18632/oncotarget.12231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 09/12/2016] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is an incurable cancer characterized by clonal expansion of malignant plasma cells in the bone marrow and their egress into peripheral blood. The mechanisms of myeloma cells migration/invasion have remained unclear. Herein, we found SH3GL3 was highly expressed in the CD138-negative (CD138−) myeloma cells. The migration/invasion capability of CD138− cells was significantly higher than that in the CD138-positive (CD138+) cells. Silencing SH3GL3 using shRNA reduced myeloma cells migration/invasion. Conversely, overexpression of SH3GL3 increased myeloma cells migration/invasion. Moreover, SH3GL3 is also associated with the stemness and chemo-resistance of CD138− myeloma cells. Elevated expression of stem cell and multi-drug resistant markers were seen in the myeloma cells with overexpressed SH3GL3; while knocking-down SH3GL3 reduced the expression of these markers. A marked increase in p-PI3K and p-FAK was observed in the cells with overexpressed SH3GL3. To test if FAK/PI3K signaling pathway was involved in the SH3GL3-mediated myeloma cells migration, the cells transfected w/wo SH3GL3 cDNA were treated with FAK inhibitor 14 and PI3K inhibitor LY294002. Inhibition of FAK and PI3K attenuated SH3GL3-mediated migration /invasion. Our findings indicate that SH3GL3 plays an important role in myeloma cell migration/invasion, stemness and chemo-resistance. The SH3GL3-mediated myeloma cell migration/invasion is mediated by FAK/PI3K signaling pathway.
Collapse
Affiliation(s)
- Ruoying Chen
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Hong Zhao
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Dan Wu
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Chen Zhao
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Weiling Zhao
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC27157, USA.,College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Yoon JK, Lee TI, Bhang SH, Shin JY, Myoung JM, Kim BS. Stretchable Piezoelectric Substrate Providing Pulsatile Mechanoelectric Cues for Cardiomyogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22101-22111. [PMID: 28560866 DOI: 10.1021/acsami.7b03050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ex vivo induction of cardiomyogenic differentiation of mesenchymal stem cells (MSCs) before implantation would potentiate therapeutic efficacy of stem cell therapies for ischemic heart diseases because MSCs rarely undergo cardiomyogenic differentiation following implantation. In cardiac microenvironments, electric pulse and cyclic mechanical strain are sequentially produced. However, no study has applied the pulsatile mechanoelectric cues (PMEC) to stimulate cardiomyogenic differentiation of MSCs ex vivo. In this study, we developed a stretchable piezoelectric substrate (SPS) that can provide PMEC to human MSCs (hMSCs) for cardiomyogenic differentiation ex vivo. Our data showed that hMSCs subjected to PMEC by SPS underwent promoted cardiac phenotype development: cell alignment and the expression of cardiac markers (i.e., cardiac transcription factors, structural proteins, ion channel proteins, and gap junction proteins). The enhanced cardiac phenotype development was mediated by the upregulation of cardiomyogenic differentiation-related autocrine factor expression, focal adhesion kinase, and extracellular signal-regulated kinases signaling pathways. Thus, SPS providing electrical and mechanical regulation of stem cells may be utilized to potentiate hMSC therapies for myocardial infarction and provide a tool for the study of stem cell biology.
Collapse
Affiliation(s)
| | - Tae Il Lee
- Department of BioNano Technology, Gachon University , Seongnam 13557, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | | | - Jae-Min Myoung
- Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Republic of Korea
| | | |
Collapse
|
29
|
Shen N, Knopf A, Westendorf C, Kraushaar U, Riedl J, Bauer H, Pöschel S, Layland SL, Holeiter M, Knolle S, Brauchle E, Nsair A, Hinderer S, Schenke-Layland K. Steps toward Maturation of Embryonic Stem Cell-Derived Cardiomyocytes by Defined Physical Signals. Stem Cell Reports 2017; 9:122-135. [PMID: 28528699 PMCID: PMC5511039 DOI: 10.1016/j.stemcr.2017.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/18/2023] Open
Abstract
Cardiovascular disease remains a leading cause of mortality and morbidity worldwide. Embryonic stem cell-derived cardiomyocytes (ESC-CMs) may offer significant advances in creating in vitro cardiac tissues for disease modeling, drug testing, and elucidating developmental processes; however, the induction of ESCs to a more adult-like CM phenotype remains challenging. In this study, we developed a bioreactor system to employ pulsatile flow (1.48 mL/min), cyclic strain (5%), and extended culture time to improve the maturation of murine and human ESC-CMs. Dynamically-cultured ESC-CMs showed an increased expression of cardiac-associated proteins and genes, cardiac ion channel genes, as well as increased SERCA activity and a Raman fingerprint with the presence of maturation-associated peaks similar to primary CMs. We present a bioreactor platform that can serve as a foundation for the development of human-based cardiac in vitro models to verify drug candidates, and facilitates the study of cardiovascular development and disease. Custom-made bioreactor exposes ESC-CMs to defined shear stress and cyclic stretch Physical signals and extended culture significantly improve maturation of ESC-CMs Biochemical fingerprint of dynamically cultured ESC-CMs is similar to primary CMs
Collapse
Affiliation(s)
- Nian Shen
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Anne Knopf
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Claas Westendorf
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany
| | - Udo Kraushaar
- Department of Cell Biology, Electrophysiology, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Julia Riedl
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Hannah Bauer
- Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Simone Pöschel
- Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Shannon Lee Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Monika Holeiter
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Stefan Knolle
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Cell Biology, Electrophysiology, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Eva Brauchle
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Ali Nsair
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories (CVRL), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; Broad Stem Cell Research Center, David School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Svenja Hinderer
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Katja Schenke-Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories (CVRL), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Vernardis SI, Terzoudis K, Panoskaltsis N, Mantalaris A. Human embryonic and induced pluripotent stem cells maintain phenotype but alter their metabolism after exposure to ROCK inhibitor. Sci Rep 2017; 7:42138. [PMID: 28165055 PMCID: PMC5292706 DOI: 10.1038/srep42138] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are adhesion-dependent cells that require cultivation in colonies to maintain growth and pluripotency. Robust differentiation protocols necessitate single cell cultures that are achieved by use of ROCK (Rho kinase) inhibitors. ROCK inhibition enables maintenance of stem cell phenotype; its effects on metabolism are unknown. hPSCs were exposed to 10 μM ROCK inhibitor for varying exposure times. Pluripotency (TRA-1-81, SSEA3, OCT4, NANOG, SOX2) remained unaffected, until after prolonged exposure (96 hrs). Gas chromatography–mass spectrometry metabolomics analysis identified differences between ROCK-treated and untreated cells as early as 12 hrs. Exposure for 48 hours resulted in reduction in glycolysis, glutaminolysis, the citric acid (TCA) cycle as well as the amino acids pools, suggesting the adaptation of the cells to the new culture conditions, which was also reflected by the expression of the metabolic regulators, mTORC1 and tp53 and correlated with cellular proliferation status. While gene expression and protein levels did not reveal any changes in the physiology of the cells, metabolomics revealed the fluctuating state of the metabolism. The above highlight the usefulness of metabolomics in providing accurate and sensitive information on cellular physiological status, which could lead to the development of robust and optimal stem cell bioprocesses.
Collapse
Affiliation(s)
- Spyros I Vernardis
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, UK
| | - Konstantinos Terzoudis
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, UK
| | - Nicki Panoskaltsis
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, UK.,Department of Haematology, Imperial College, London, UK
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, UK
| |
Collapse
|
31
|
Abstract
Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell-substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact.
Collapse
Affiliation(s)
- Colin D Paul
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
| | - Wei-Chien Hung
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218;
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering
- Institute for NanoBioTechnology, and
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218;
| |
Collapse
|
32
|
Zhu LA, Fang NY, Gao PJ, Jin X, Wang HY, Liu Z. Differential ERK1/2 Signaling and Hypertrophic Response to Endothelin-1 in Cardiomyocytes from SHR and Wistar-Kyoto Rats: A Potential Target for Combination Therapy of Hypertension. Curr Vasc Pharmacol 2016; 13:467-74. [PMID: 25360842 PMCID: PMC4997939 DOI: 10.2174/1570161112666141014150007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/29/2014] [Accepted: 05/21/2014] [Indexed: 11/26/2022]
Abstract
Extracellular signal regulated kinase½ (ERK1/2) signaling is critical to endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. This study was to investigate ERK1/2 signaling and hypertrophic response to ET-1 stimulation in cardiomyocytes (CMs) from spontaneous hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Primary neonatal SHR and WKY CMs were exposed to ET-1 for up to 24 hrs. Minimal basal ERK1/2 phosphorylation was present in WKY CMs, while a significant baseline ERK1/2 phosphorylation was observed in SHR CMs. ET-1 induced a time- and dose-dependent increase in ERK1/2 phosphorylation in both SHR and WKY CMs. However, ET-1-induced ERK1/2 activation occurred much earlier with significantly higher peak phosphorylation level, and stayed elevated for longer duration in SHR CMs than that in WKY CMs. ET-1-induced hypertrophic response was more prominent in SHR CMs than that in WKY CMs as reflected by increased cell surface area, intracellular actin density, and protein synthesis. Pre-treatment with ERK1/2 phosphorylation inhibitor PD98059 completely prevented ET-1-induced ERK1/2 phosphorylation and increases in cell surface area and protein synthesis in SHR and WKY CMs. The specific PI3 kinase inhibitor LY294002 blocked ET-1-induced Akt and ERK1/2 phosphorylation, and protein synthesis in CMs. These data indicated that ERK1/2 signaling was differentially enhanced in CMs, and was associated with increased cardiac hypertrophic response to ET-1 in SHR. ET-1-induced ERK1/2 activation and cardiac hypertrophy appeared to be mediated via PI3 kinase/Akt signaling in SHR and WKY. The differential ERK1/2 activation in SHR CMs by ET-1 might represent a potential target for combination therapy of hypertension.
Collapse
Affiliation(s)
| | - Ning-Yuan Fang
- Department of Geriatrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shan-Dong Middle Road, Shanghai 200001, China.
| | | | | | | | - Zhenguo Liu
- Davis Heart & Lung Research Institute, the Ohio State University Medical Center, DHLRI Suite 200; 473 West 12th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Kushida N, Yamaguchi O, Kawashima Y, Akaihata H, Hata J, Ishibashi K, Aikawa K, Kojima Y. Uni-axial stretch induces actin stress fiber reorganization and activates c-Jun NH2 terminal kinase via RhoA and Rho kinase in human bladder smooth muscle cells. BMC Urol 2016; 16:9. [PMID: 26928204 PMCID: PMC4772493 DOI: 10.1186/s12894-016-0127-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/23/2016] [Indexed: 01/10/2023] Open
Abstract
Background Excessive mechanical overload may be involved in bladder wall remodelling. Since the activity of Rho kinase is known to be upregulated in the obstructed bladder, we investigate the roles of the RhoA/Rho kinase pathway in mechanical overloaded bladder smooth muscle cells. Methods Human bladder smooth muscle cells were stimulated on silicon culture plates by 15 % elongated uni-axial cyclic stretch at 1 Hz. The activity of c-Jun NH2-terminal kinase was measured by western blotting and actin stress fibers were observed by stained with phallotoxin conjugated with Alexa-Fluor 594. Results The activity of c-Jun NH2-terminal kinase 1 peaked at 30 min (4.7-fold increase vs. before stretch) and this activity was partially abrogated by the RhoA inhibitor, C3 exoenzoyme or by the Rho kinase inhibitor, Y-27632. Stretch induced the strong formation of actin stress fibers and these fibers re-orientated in a direction that was perpendicular to the stretch direction. The average angle of the fibers from the perpendicular to the direction of stretch was significantly different between before, and 4 h after, stretch. Actin stress fibers reorganization was also suppressed by the C3 exoenzyme or Y-27632. Conclusions Bladder smooth muscle cells appear to have elaborate mechanisms for sensing mechanical stress and for adapting to mechanical stress overload by cytoskeletal remodeling and by activating cell growth signals such as c-Jun NH2-terminal kinase via RhoA/Rho kinase pathways.
Collapse
Affiliation(s)
- Nobuhiro Kushida
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Osamu Yamaguchi
- Division of Bioengineering and LUTD Research, Nihon University School of Engineering, Nihon University, 1, Nakagawara, Tokusada, Tamura, Koriyama, 963-8642, Japan.
| | - Yohei Kawashima
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Hidenori Akaihata
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Junya Hata
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Kei Ishibashi
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Ken Aikawa
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295, Japan.
| |
Collapse
|
34
|
Stoppel WL, Kaplan DL, Black LD. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliv Rev 2016; 96:135-55. [PMID: 26232525 DOI: 10.1016/j.addr.2015.07.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 12/19/2022]
Abstract
The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro.
Collapse
|
35
|
Snyder J, Rin Son A, Hamid Q, Wang C, Lui Y, Sun W. Mesenchymal stem cell printing and process regulated cell properties. Biofabrication 2015; 7:044106. [DOI: 10.1088/1758-5090/7/4/044106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Choi JH, Lim SM, Yoo YI, Jung J, Park JW, Kim GJ. Microenvironmental Interaction Between Hypoxia and Endothelial Cells Controls the Migration Ability of Placenta-Derived Mesenchymal Stem Cells via α4 Integrin and Rho Signaling. J Cell Biochem 2015; 117:1145-57. [PMID: 26448639 DOI: 10.1002/jcb.25398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are a powerful source for cell therapy in degenerative diseases. The migration ability of MSCs is an important factor that enhances the therapeutic effect of the cells when they are transplanted into target tissues or organs. Hypoxia and the endothelial barrier, which are representative migration microenvironmental factors, are known to be regulated by the integrin-mediated pathway in several cancers. However, their regulatory mechanisms in MSCs remain unclear. Here, the objectives of the study were to compare the expression of markers related to integrin-mediated signaling in placenta-derived MSCs (PDMSCs) dependent on hypoxia and co-cultured with human umbilical vein endothelial cells (HUVECs) and to evaluate their correlations between migration ability and microenvironmetal factors including hypoxia and endothelial cells. The migration abilities of PDMSCs exposed to hypoxic conditions were significantly increased compared with normal fibroblasts (WI-38) and control (P < 0.05). Interestingly, decreased integrin α4 in PDMSCs under hypoxia induce to increase migration abilities of PDMSCs. Also, Rho family-related markers were significantly increased in PDMSCs under hypoxic conditions compared with normoxia (P < 0.05). Furthermore, the migration ability of PDMSCs was decreased by Rho kinase inhibitor treatment (Y-27632) and co-culturing with HUVECs in an ex vivo system. ROCK activity was increased by inhibiting integrin α4 with HUVECs and hypoxia compared with the absence of HUVECs and under normoxia. The findings suggest microenvironment event by hypoxia and the interaction with endothelial cells may be useful as a regulator of MSC migration and provide insight into the migratory mechanism of MSCs in stem cell-based therapy.
Collapse
Affiliation(s)
- Jong Ho Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Seung Mook Lim
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Yong In Yoo
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| | - Jieun Jung
- Department of Nanobiomedical Science, Dankook University, Cheonan-si, Republic of Korea
| | - Jong-Won Park
- Department of Biomedical Sciences and Pharmacology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam-si, Republic of Korea
| |
Collapse
|
37
|
Graham ZA, Gallagher PM, Cardozo CP. Focal adhesion kinase and its role in skeletal muscle. J Muscle Res Cell Motil 2015; 36:305-15. [PMID: 26142360 PMCID: PMC4659753 DOI: 10.1007/s10974-015-9415-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
Skeletal muscle has a remarkable ability to respond to different physical stresses. Loading muscle through exercise, either anaerobic or aerobic, can lead to increases in muscle size and function while, conversely, the absence of muscle loading stimulates rapid decreases in size and function. A principal mediator of this load-induced change is focal adhesion kinase (FAK), a downstream non-receptor tyrosine kinase that translates the cytoskeletal stress and strain signals transmitted across the cytoplasmic membrane by integrins to activate multiple anti-apoptotic and cell growth pathways. Changes in FAK expression and phosphorylation have been found to correlate to specific developmental states in myoblast differentiation, muscle fiber formation and muscle size in response to loading and unloading. With the capability to regulate costamere formation, hypertrophy and glucose metabolism, FAK is a molecule with diverse functions that are important in regulating muscle cell health.
Collapse
Affiliation(s)
- Zachary A Graham
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Christopher P Cardozo
- Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, 130 W. Kingsbridge Rd., Bronx, NY, 10468, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
38
|
Tzenaki N, Aivaliotis M, Papakonstanti EA. Focal adhesion kinase phosphorylates the phosphatase and tensin homolog deleted on chromosome 10 under the control of p110δ phosphoinositide-3 kinase. FASEB J 2015; 29:4840-52. [PMID: 26251180 DOI: 10.1096/fj.15-274589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022]
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is regulated by various mechanisms that are not fully understood. This includes regulation by Tyr phosphorylation by a mechanism that remains elusive. Here, we show that focal adhesion kinase (FAK) phosphorylates PTEN in vitro, in cell-free systems and in cells. Furthermore, by mass spectrometry, we identified Tyr336 on PTEN as being phosphorylated by FAK. Tyr336 phosphorylation increased phosphatase activity, protein-lipid interaction, and protein stability of PTEN. In cells, including primary mouse macrophages and human cancer cell lines, FAK was found to be negatively regulated by p110δ phosphoinositide-3 kinase (PI3K), whereas the activation of FAK was positively regulated by RhoA-associated kinase (ROCK). Indeed, the phosphorylation of FAK was unexpectedly increased in macrophages derived from mice expressing kinase-dead p110δ. Pharmacologic inactivation of RhoA/ROCK reduced the phosphorylation of FAK to normal levels in cells with genetically inactivated p110δ. Likewise, pharmacologic inactivation of FAK reduced the phosphorylation of PTEN in cells expressing kinase-dead p110δ and restored the functional defects of p110δ inactivation, including Akt phosphorylation and cell proliferation. This work identifies FAK as a target of p110δ PI3K that links RhoA with PTEN and establishes for the first time that PTEN is a substrate of FAK-mediated Tyr phosphorylation.
Collapse
Affiliation(s)
- Niki Tzenaki
- *Department of Biochemistry, School of Medicine, University of Crete, Vassilika Vouton, Heraklion, Greece; and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Michalis Aivaliotis
- *Department of Biochemistry, School of Medicine, University of Crete, Vassilika Vouton, Heraklion, Greece; and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Evangelia A Papakonstanti
- *Department of Biochemistry, School of Medicine, University of Crete, Vassilika Vouton, Heraklion, Greece; and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| |
Collapse
|
39
|
Abstract
Dendritic protein synthesis and actin cytoskeleton reorganization are important events required for the consolidation of hippocampal LTP and memory. However, the temporal and spatial relationships between these two processes remain unclear. Here, we report that treatment of adult rat hippocampal slices with BDNF or with tetraethylammonium (TEA), which induces a chemical form of LTP, produces a rapid and transient increase in RhoA protein levels. Changes in RhoA were restricted to dendritic spines of CA3 and CA1 and require de novo protein synthesis regulated by mammalian target of rapamycin (mTOR). BDNF-mediated stimulation of RhoA activity, cofilin phosphorylation, and actin polymerization were completely suppressed by protein synthesis inhibitors. Furthermore, intrahippocampal injections of RhoA antisense oligodeoxynucleotides inhibited theta burst stimulation (TBS)-induced RhoA upregulation in dendritic spines and prevented LTP consolidation. Addition of calpain inhibitors after BDNF or TEA treatment maintained RhoA levels elevated and prolonged the effects of BDNF and TEA on actin polymerization. Finally, the use of isoform-selective calpain inhibitors revealed that calpain-2 was involved in RhoA synthesis, whereas calpain-1 mediated RhoA degradation. Overall, this mechanism provides a novel link between dendritic protein synthesis and reorganization of the actin cytoskeleton in hippocampal dendritic spines during LTP consolidation.
Collapse
|
40
|
Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular Signaling of Cardiac Fibroblasts. Compr Physiol 2015; 5:721-60. [DOI: 10.1002/cphy.c140044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Hsiao YF, Pan HJ, Tung YC, Chen CC, Lee CH. Effects of hydraulic pressure on cardiomyoblasts in a microfluidic device. BIOMICROFLUIDICS 2015; 9:024111. [PMID: 25945137 PMCID: PMC4393411 DOI: 10.1063/1.4917080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/27/2015] [Indexed: 05/05/2023]
Abstract
We employed a microfluidic device to study the effects of hydraulic pressure on cardiomyoblast H9c2. The 170 mm Hg pressure increased the cellular area and the expression of atrial natriuretic peptide. With the same device, we demonstrated that the effects of hydraulic pressure on the cardiomyoblast could be reduced by the inhibitor of focal adhesion kinase. This mechanical-chemical antagonism could lead to a potential therapeutic strategy of hypertension-induced cardiac hypertrophy.
Collapse
Affiliation(s)
| | - Huei-Jyuan Pan
- Research Center for Applied Sciences , Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences , Academia Sinica, Taipei 11529, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences , Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
42
|
Banerjee I, Carrion K, Serrano R, Dyo J, Sasik R, Lund S, Willems E, Aceves S, Meili R, Mercola M, Chen J, Zambon A, Hardiman G, Doherty TA, Lange S, del Álamo JC, Nigam V. Cyclic stretch of embryonic cardiomyocytes increases proliferation, growth, and expression while repressing Tgf-β signaling. J Mol Cell Cardiol 2015; 79:133-44. [PMID: 25446186 PMCID: PMC4302020 DOI: 10.1016/j.yjmcc.2014.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 10/14/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022]
Abstract
Perturbed biomechanical stimuli are thought to be critical for the pathogenesis of a number of congenital heart defects, including Hypoplastic Left Heart Syndrome (HLHS). While embryonic cardiomyocytes experience biomechanical stretch every heart beat, their molecular responses to biomechanical stimuli during heart development are poorly understood. We hypothesized that biomechanical stimuli activate specific signaling pathways that impact proliferation, gene expression and myocyte contraction. The objective of this study was to expose embryonic mouse cardiomyocytes (EMCM) to cyclic stretch and examine key molecular and phenotypic responses. Analysis of RNA-Sequencing data demonstrated that gene ontology groups associated with myofibril and cardiac development were significantly modulated. Stretch increased EMCM proliferation, size, cardiac gene expression, and myofibril protein levels. Stretch also repressed several components belonging to the Transforming Growth Factor-β (Tgf-β) signaling pathway. EMCMs undergoing cyclic stretch had decreased Tgf-β expression, protein levels, and signaling. Furthermore, treatment of EMCMs with a Tgf-β inhibitor resulted in increased EMCM size. Functionally, Tgf-β signaling repressed EMCM proliferation and contractile function, as assayed via dynamic monolayer force microscopy (DMFM). Taken together, these data support the hypothesis that biomechanical stimuli play a vital role in normal cardiac development and for cardiac pathology, including HLHS.
Collapse
Affiliation(s)
- Indroneal Banerjee
- Department of Cardiology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Katrina Carrion
- Department of Pediatrics (Cardiology), University of California San Diego, United States
| | - Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, University of California San Diego, United States
| | - Jeffrey Dyo
- Department of Pediatrics (Cardiology), University of California San Diego, United States
| | - Roman Sasik
- Biomedical Genomics Microarray Core Facility, University of California San Diego, United States
| | - Sean Lund
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Erik Willems
- Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Seema Aceves
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States; Department of Pediatrics (Allergy), University of California San Diego, United States; Rady Children's Hospital San Diego, United States
| | - Rudolph Meili
- Department of Mechanical and Aerospace Engineering, University of California San Diego, United States; Cell and Developmental Biology, University of California San Diego, United States
| | - Mark Mercola
- Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Ju Chen
- Department of Cardiology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Alexander Zambon
- School of Pharmacology Keck Graduate Institute, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Gary Hardiman
- Department of Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC 29425, United States
| | - Taylor A Doherty
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Stephan Lange
- Department of Cardiology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Juan C del Álamo
- Department of Mechanical and Aerospace Engineering, University of California San Diego, United States; Institute for Engineering in Medicine, University of California San Diego, United States
| | - Vishal Nigam
- Department of Pediatrics (Cardiology), University of California San Diego, United States; Rady Children's Hospital San Diego, United States; Institute for Engineering in Medicine, University of California San Diego, United States.
| |
Collapse
|
43
|
Yang YC, Wang XD, Huang K, Wang L, Jiang ZL, Qi YX. Temporal phosphoproteomics to investigate the mechanotransduction of vascular smooth muscle cells in response to cyclic stretch. J Biomech 2014; 47:3622-9. [DOI: 10.1016/j.jbiomech.2014.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/27/2014] [Accepted: 10/05/2014] [Indexed: 12/28/2022]
|
44
|
Huang Y, Chen JB, Yang B, Shen H, Liang JJ, Luo Q. RhoA/ROCK pathway regulates hypoxia-induced myocardial cell apoptosis. ASIAN PAC J TROP MED 2014; 7:884-8. [DOI: 10.1016/s1995-7645(14)60154-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/10/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022] Open
|
45
|
Lauriol J, Keith K, Jaffré F, Couvillon A, Saci A, Goonasekera SA, McCarthy JR, Kessinger CW, Wang J, Ke Q, Kang PM, Molkentin JD, Carpenter C, Kontaridis MI. RhoA signaling in cardiomyocytes protects against stress-induced heart failure but facilitates cardiac fibrosis. Sci Signal 2014; 7:ra100. [PMID: 25336613 DOI: 10.1126/scisignal.2005262] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras-related guanosine triphosphatase RhoA mediates pathological cardiac hypertrophy, but also promotes cell survival and is cardioprotective after ischemia/reperfusion injury. To understand how RhoA mediates these opposing roles in the myocardium, we generated mice with a cardiomyocyte-specific deletion of RhoA. Under normal conditions, the hearts from these mice showed functional, structural, and growth parameters similar to control mice. Additionally, the hearts of the cardiomyocyte-specific, RhoA-deficient mice subjected to transverse aortic constriction (TAC)-a procedure that induces pressure overload and, if prolonged, heart failure-exhibited a similar amount of hypertrophy as those of the wild-type mice subjected to TAC. Thus, neither normal cardiac homeostasis nor the initiation of compensatory hypertrophy required RhoA in cardiomyocytes. However, in response to chronic TAC, hearts from mice with cardiomyocyte-specific deletion of RhoA showed greater dilation, with thinner ventricular walls and larger chamber dimensions, and more impaired contractile function than those from control mice subjected to chronic TAC. These effects were associated with aberrant calcium signaling, as well as decreased activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT. In addition, hearts from mice with cardiomyocyte-specific RhoA deficiency also showed less fibrosis in response to chronic TAC, with decreased transcriptional activation of genes involved in fibrosis, including myocardin response transcription factor (MRTF) and serum response factor (SRF), suggesting that the fibrotic response to stress in the heart depends on cardiomyocyte-specific RhoA signaling. Our data indicated that RhoA regulates multiple pathways in cardiomyocytes, mediating both cardioprotective (hypertrophy without dilation) and cardio-deleterious effects (fibrosis).
Collapse
Affiliation(s)
- Jessica Lauriol
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Kimberly Keith
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Fabrice Jaffré
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Anthony Couvillon
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Abdel Saci
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Sanjeewa A Goonasekera
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Jason R McCarthy
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chase W Kessinger
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jianxun Wang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Qingen Ke
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Peter M Kang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | | | - Maria I Kontaridis
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Datla SR, McGrail DJ, Vukelic S, Huff LP, Lyle AN, Pounkova L, Lee M, Seidel-Rogol B, Khalil MK, Hilenski LL, Terada LS, Dawson MR, Lassègue B, Griendling KK. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization. Am J Physiol Heart Circ Physiol 2014; 307:H945-57. [PMID: 25063792 DOI: 10.1152/ajpheart.00918.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner.
Collapse
Affiliation(s)
- Srinivasa Raju Datla
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta
| | | | - Sasa Vukelic
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta
| | - Lauren P Huff
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta
| | - Alicia N Lyle
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta
| | - Lily Pounkova
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta
| | - Minyoung Lee
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta
| | - Bonnie Seidel-Rogol
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta
| | - Mazen K Khalil
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta
| | - Lula L Hilenski
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta
| | - Lance S Terada
- Department of Internal Medicine, Division of Pulmonary and Critical Care, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michelle R Dawson
- Department of Chemical and Biomolecular Engineering and The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Bernard Lassègue
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta
| | - Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta;
| |
Collapse
|
47
|
Xu B, Ju Y, Song G. Role of p38, ERK1/2, focal adhesion kinase, RhoA/ROCK and cytoskeleton in the adipogenesis of human mesenchymal stem cells. J Biosci Bioeng 2014; 117:624-31. [DOI: 10.1016/j.jbiosc.2013.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/27/2013] [Accepted: 10/23/2013] [Indexed: 12/26/2022]
|
48
|
Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett 2014; 588:2663-70. [PMID: 24747426 DOI: 10.1016/j.febslet.2014.04.012] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023]
Abstract
Organ size is controlled by the concerted action of biochemical and physical processes. Although mechanical forces are known to regulate cell and tissue behavior, as well as organogenesis, the precise molecular events that integrate mechanical and biochemical signals to control these processes are not fully known. The recently delineated Hippo-tumor suppressor network and its two nuclear effectors, YAP and TAZ, shed light on these mechanisms. YAP and TAZ are proto-oncogene proteins that respond to complex physical milieu represented by the rigidity of the extracellular matrix, cell geometry, cell density, cell polarity and the status of the actin cytoskeleton. Here, we review the current knowledge of how YAP and TAZ function as mechanosensors and mechanotransducers. We also suggest that by deciphering the mechanical and biochemical signals controlling YAP/TAZ function, we will gain insights into new strategies for cancer treatment and organ regeneration.
Collapse
Affiliation(s)
- Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, 117411, Republic of Singapore; Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Republic of Singapore.
| | - Catherine Qiurong Pan
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, 117411, Republic of Singapore
| | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, 117411, Republic of Singapore
| | - Alexander Bershadsky
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, 117411, Republic of Singapore; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, 117411, Republic of Singapore
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, 117411, Republic of Singapore; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
49
|
Angiotensin II and the ERK pathway mediate the induction of leptin by mechanical cyclic stretch in cultured rat neonatal cardiomyocytes. Clin Sci (Lond) 2014; 126:483-95. [PMID: 24063596 DOI: 10.1042/cs20130235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mechanical cyclic stretch of cardiomyocytes causes cardiac hypertrophy through cardiac-restricted gene expression. Leptin induces cardiomyocyte hypertrophy in response to myocardial stress. In the present study, we evaluated the expression of leptin under cyclic stretch and its role in regulating genetic transcription in cardiomyocytes. Cultured rat neonatal cardiomyocytes were subjected to cyclic stretch, and the expression levels of leptin, ROS (reactive oxygen species) and AngII (angiotensin II) were evaluated. Signal transduction inhibitors were used to identify the pathway of leptin expression. EMSAs were used to identify the binding of leptin/STAT3 (signal transducer and activator of transcription 3) and luciferase assays were used to identify the transcription of leptin in cardiomyocytes. The study also used an in vivo model of AV (aortocaval) shunt in rats to investigate leptin, ROS and AngII expression. Leptin and leptin receptor levels increased after cyclic stretch with the earlier expression of AngII and ROS. Leptin expression was suppressed by AngII receptor blockers, an ROS scavenger [NAC (N-acetylcysteine)], an ERK (extracellular-signal-regulated kinase) pathway inhibitor (PD98059) and ERK siRNA. Binding of leptin/STAT3 was identified by EMSAs, and luciferase assays confirmed the transcription of leptin in neonatal cardiomyocytes after cyclic stretch. Increased MHC (myosin heavy chain) expression and [3H]-proline incorporation in cardiomyocytes was detected after cyclic stretch, which were inhibited by leptin siRNA and NAC. The in vivo model of AV shunt also demonstrated increased levels of plasma and myocardial leptin, ROS and AngII expression after cyclic stretch. Mechanical cyclic stretch in cardiomyocytes increased leptin expression mediated by the induction of AngII, ROS and the ERK pathway to cause cardiomyocyte hypertrophy. Myocardial hypertrophy can be identified by increased transcriptional activity and an enhanced hypertrophic phenotype of cardiomyocytes.
Collapse
|
50
|
Cell shape-dependent early responses of fibroblasts to cyclic strain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3415-3425. [DOI: 10.1016/j.bbamcr.2013.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 10/04/2013] [Accepted: 10/10/2013] [Indexed: 01/16/2023]
|