1
|
Polzin A, Benkhoff M, Thienel M, Barcik M, Mourikis P, Shchurovska K, Helten C, Ehreiser V, Zhe Z, von Wulffen F, Theiss A, Peri S, Cremer S, Ahlbrecht S, Zako S, Wildeis L, Al-Kassis G, Metzen D, Utz A, Hu H, Vornholz L, Pavic G, Lüsebrink E, Strecker J, Tiedt S, Cramer M, Gliem M, Ruck T, Meuth SG, Zeus T, Mayr C, Schiller HB, Simon L, Massberg S, Kelm M, Petzold T. Long-term FXa inhibition attenuates thromboinflammation after acute myocardial infarction and stroke by platelet proteome alteration. J Thromb Haemost 2025; 23:668-683. [PMID: 39551435 DOI: 10.1016/j.jtha.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Immediate activated factor (F)X (FXa) inhibition exerts direct antiplatelet effects in the context of arterial thrombosis but little is known about the impact of long-term therapy on platelet function in ischemic cardiovascular diseases. OBJECTIVES Therefore, we analyzed platelet-derived effects of long-term FXa inhibition in the setting of acute myocardial infarction (AMI) and stroke. METHODS We evaluated the effect of acute versus chronic FXa inhibition on thromboinflammation following AMI and stroke in mice in vivo. Mechanistically, we identified changes in platelet gene expression and proteome under chronic FXa nonvitamin K antagonist oral anticoagulant treatment and characterized its functional consequence on platelet physiology. In a prospectively recruited cohort of patients with AMI, we determined cardiovascular magnetic resonance based cardiac endpoints under FXa nonvitamin K antagonist oral anticoagulant effects on clinical endpoints in a cohort of patients with AMI. RESULTS Chronic but not acute FXa inhibition reduced cerebral and myocardial infarct size and improved cardiac function 24 hours after AMI in mice. Mechanistically, we identified an attenuated thromboinflammatory response with reduced neutrophil extracellular trap formation in mice and patient samples. Proteome and RNA expression analysis of FXa inhibitor treated patients revealed a reduction of key regulators within the membrane trafficking and secretion machinery hampering platelet α and dense granule release. Subsequent, thromboinflammatory neutrophil extracellular trap density in thrombi isolated from stroke and myocardial infarction patients was reduced. Patients with AMI treated with FXa inhibitors showed decreased infarct size after myocardial infarction compared to patients without anticoagulation treatment. CONCLUSION Long-term FXa inhibition induces antithromboinflammatory proteome signatures in platelets, improving infarct size after myocardial infarction and stroke.
Collapse
Affiliation(s)
- Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Düsseldorf, Germany; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Manuela Thienel
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Maike Barcik
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Mourikis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Khrystyna Shchurovska
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Carolin Helten
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vincent Ehreiser
- Deutsches Herzzentrum der Charité University Hospital Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany; Friede Springer, Centre of Cardiovascular Prevention at Charité, Charité University Medicine Berlin, Berlin, Germany
| | - Zhang Zhe
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Franziska von Wulffen
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Alexander Theiss
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Sameera Peri
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Sophie Cremer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Samantha Ahlbrecht
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Saif Zako
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Laura Wildeis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gabrielle Al-Kassis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Metzen
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Amelie Utz
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hao Hu
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lilian Vornholz
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Goran Pavic
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Enzo Lüsebrink
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Jan Strecker
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Mareike Cramer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Gliem
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph Mayr
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Experimental Pneumology, Ludwig-Maximilians University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Herbert B Schiller
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Experimental Pneumology, Ludwig-Maximilians University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Lukas Simon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA; Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA
| | - Steffen Massberg
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Düsseldorf, Germany
| | - Tobias Petzold
- Deutsches Herzzentrum der Charité University Hospital Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany; Friede Springer, Centre of Cardiovascular Prevention at Charité, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Liu J, Nabavizadeh P, Rao P, Derakhshandeh R, Han DD, Guo R, Murphy MB, Cheng J, Schick SF, Springer ML. Impairment of Endothelial Function by Aerosol From Marijuana Leaf Vaporizers. J Am Heart Assoc 2023; 12:e032969. [PMID: 38014661 PMCID: PMC10727338 DOI: 10.1161/jaha.123.032969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Marijuana leaf vaporizers, which heat plant material and sublimate Δ-9-tetrahydrocannabinol without combustion, are popular alternatives to smoking cannabis that are generally perceived to be less harmful. We have shown that smoke from tobacco and marijuana, as well as aerosol from e-cigarettes and heated tobacco products, impair vascular endothelial function in rats measured as arterial flow-mediated dilation (FMD). METHODS AND RESULTS We exposed 8 rats per group to aerosol generated by 2 vaporizer systems (Volcano and handheld Yocan) using marijuana with varying Δ-9-tetrahydrocannabinol levels, in a single pulsatile exposure session of 2 s/min over 5 minutes, and measured changes in FMD. To model secondhand exposure, we exposed rats for 1 minute to diluted aerosol approximating release of uninhaled Volcano aerosol into typical residential rooms. Exposure to aerosol from marijuana with and without cannabinoids impaired FMD by ≈50%. FMD was similarly impaired by aerosols from Yocan (237 °C), and from Volcano at both its standard temperature (185 °C) and the minimum sublimation temperature of Δ-9-tetrahydrocannabinol (157 °C), although the low-temperature aerosol condition did not effectively deliver Δ-9-tetrahydrocannabinol to the circulation. Modeled secondhand exposure based on diluted Volcano aerosol also impaired FMD. FMD was not affected in rats exposed to clean air or water vapor passed through the Volcano system. CONCLUSIONS Acute direct exposure and modeled secondhand exposure to marijuana leaf vaporizer aerosol, regardless of cannabinoid concentration or aerosol generation temperature, impair endothelial function in rats comparably to marijuana smoke. Our findings indicate that use of leaf vaporizers is unlikely to reduce the vascular risk burden of smoking marijuana.
Collapse
Affiliation(s)
- Jiangtao Liu
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoCAUSA
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Pooneh Nabavizadeh
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoCAUSA
- Present address:
Division of CardiologyUniversity of CincinnatiCincinnatiOHUSA
| | - Poonam Rao
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Center for Tobacco Control Research and EducationUniversity of California, San FranciscoSan FranciscoCAUSA
- Present address:
Christus Good Shepherd/Texas A&M University Internal Medicine Residency ProgramLongviewTXUSA
| | - Ronak Derakhshandeh
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Daniel D. Han
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Present address:
School of Medicine and DentistryUniversity of RochesterRochesterNYUSA
| | - Raymond Guo
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Present address:
Stanford UniversityStanfordCAUSA
| | - Morgan B. Murphy
- Division of Occupational and Environmental MedicineUniversity of California, San FranciscoSan FranciscoCAUSA
- Present address:
Sutter Health California Pacific Medical CenterStanfordCAUSA
| | - Jing Cheng
- Division of Oral Epidemiology and Dental Public HealthUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Suzaynn F. Schick
- Center for Tobacco Control Research and EducationUniversity of California, San FranciscoSan FranciscoCAUSA
- Division of Occupational and Environmental MedicineUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Matthew L. Springer
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoCAUSA
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Center for Tobacco Control Research and EducationUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
3
|
Rao P, Han DD, Tan K, Mohammadi L, Derakhshandeh R, Navabzadeh M, Goyal N, Springer ML. Comparable Impairment of Vascular Endothelial Function by a Wide Range of Electronic Nicotine Delivery Devices. Nicotine Tob Res 2022; 24:1055-1062. [PMID: 35100430 PMCID: PMC9199952 DOI: 10.1093/ntr/ntac019] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/29/2021] [Accepted: 01/28/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Electronic nicotine delivery systems (ENDS; ie, vaping devices) such as e-cigarettes, heated tobacco products, and newer coil-less ultrasonic vaping devices are promoted as less harmful alternatives to combustible cigarettes. However, their cardiovascular effects are understudied. We investigated whether exposure to aerosol from a wide range of ENDS devices, including a new ultrasonic vaping device, impairs endothelial function. AIMS AND METHODS We measured arterial flow-mediated dilation (FMD) in rats (n = 8/group) exposed to single session of 10 cycles of pulsatile 5-second exposure over 5 minutes to aerosol from e-liquids with and without nicotine generated from a USONICIG ultrasonic vaping device, previous generation e-cigarettes, 5% nicotine JUUL pods (Virginia Tobacco, Mango, Menthol), and an IQOS heated tobacco product; with Marlboro Red cigarette smoke and clean air as controls. We evaluated nicotine absorption and serum nitric oxide levels after exposure, and effects of different nicotine acidifiers on platelet aggregation. RESULTS Aerosol/smoke from all conditions except air significantly impaired FMD. Serum nicotine varied widely from highest in the IQOS group to lowest in USONICIG and previous generation e-cig groups. Nitric oxide levels were not affected by exposure. Exposure to JUUL and similarly acidified nicotine salt e-liquids did not affect platelet aggregation rate. Despite lack of heating coil, the USONICIG under airflow conditions heated e-liquid to ~77°C. CONCLUSIONS A wide range of ENDS, including multiple types of e-cigarettes with and without nicotine, a heated tobacco product, and an ultrasonic vaping device devoid of heating coil, all impair FMD after a single vaping session comparably to combusted cigarettes. IMPLICATIONS The need to understand the cardiovascular effects of various ENDS is of timely importance, as we have seen a dramatic increase in the use of these products in recent years, along with the growing assumption among its users that these devices are relatively benign. Our conclusion that a single exposure to aerosol from a wide range of ENDS impairs endothelial function comparably to cigarettes indicates that vaping can cause similar acute vascular functional impairment to smoking and is not a harmless activity.
Collapse
Affiliation(s)
- Poonam Rao
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel D Han
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Kelly Tan
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Leila Mohammadi
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Ronak Derakhshandeh
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Mina Navabzadeh
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Natasha Goyal
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew L Springer
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Jin L, Conklin DJ. A novel evaluation of endothelial dysfunction ex vivo: "Teaching an Old Drug a New Trick". Physiol Rep 2021; 9:e15120. [PMID: 34755498 PMCID: PMC8579072 DOI: 10.14814/phy2.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Many CVDs begin with endothelium dysfunction (ED), including hypertension, thrombosis, and atherosclerosis. Our assay evaluated ED in isolated murine aorta by quantifying phenylephrine-induced contractions (PE) in the presence of L-NAME, which blocked acetylcholine-induced relaxation (ACh %; >99%). The "L-NAME PE Contraction Ratio" (PECR) was defined as: "PE Tension post-L-NAME" divided by "PE Tension pre-L-NAME." We hypothesized that our novel PE Contraction Ratio would strongly correlate with alterations in endothelium function. Validation 1: PECR and ACh % values of naïve aortas were strongly and positively correlated (PECR vs. ACh %, r2 = 0.91, n = 7). Validation 2: Retrospective analyses of published aortic PECR and ACh % data of female mice exposed to filtered air, propylene glycol:vegetable glycerin (PG:VG), formaldehyde (FA), or acetaldehyde (AA) for 4d showed that the PECR in air-exposed mice (PECR = 1.43 ± 0.05, n = 16) correlated positively with the ACh % (r2 = 0.40) as seen in naïve aortas. Similarly, PECR values were significantly decreased in aortas with ED yet retained positive regression coefficients with ACh % (PG:VG r2 = 0.54; FA r2 = 0.55). Unlike other toxicants, inhaled AA significantly increased both PECR and ACh % values yet diminished their correlation (r2 = 0.09). Validation 3: To assess species-specific dependence, we tested PECR in rat aorta, and found PECR correlated with ACh % relaxation albeit less well in this aged and dyslipidemic model. Because the PECR reflects NOS function directly, it is a robust measure of both ED and vascular dysfunction. Therefore, it is a complementary index of existing tests of ED that also provides insight into mechanisms of vascular toxicity.
Collapse
Affiliation(s)
- Lexiao Jin
- American Heart Association‐Tobacco Regulation and Addiction CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Daniel J. Conklin
- American Heart Association‐Tobacco Regulation and Addiction CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Christina Lee Brown Envirome InstituteUniversity of LouisvilleLouisvilleKentuckyUSA
- Superfund Research CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Diabetes and Obesity CenterUniversity of LouisvilleLouisvilleKentuckyUSA
- Division of Environmental MedicineDepartment of MedicineUniversity of LouisvilleLouisvilleKentuckyUSA
| |
Collapse
|
5
|
Rao P, Liu J, Springer ML. JUUL and Combusted Cigarettes Comparably Impair Endothelial Function. TOB REGUL SCI 2020; 6:30-37. [PMID: 31930162 PMCID: PMC6953758 DOI: 10.18001/trs.6.1.4] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES JUUL and earlier generation electronic cigarettes (e-cigs) are promoted as being less hazardous than cigarettes. While JUUL Labs, in particular, claims that switching from smoking to vaping has beneficial impacts, the health effects of such products are not well understood. We investigated whether exposure to JUUL and previous generation e-cig aerosol impairs endothelial function comparably to cigarette smoke. METHODS We exposed rats to aerosol from Virginia Tobacco flavor JUUL, an e-cig tank system using unflavored freebase nicotine e-liquid, Marlboro Red combustible tobacco cigarettes, or clean air for 10 cycles of 2 second inhalation over 5 minutes. Endothelial function (FMD) was measured pre- and post-exposure. Blood was collected 20 mins post-exposure for serum nicotine analysis. RESULTS Aerosol/smoke from JUUL, previous generation e-cigs, and cigarettes all impaired FMD. The extent of impairment ranged from 34%-58%, although the differences between groups were insignificant. Nicotine was highest in serum from the JUUL group; for the other e-cig and cigarette groups, nicotine levels were lower and comparable to each other. CONCLUSIONS Aerosol from JUUL and previous generation e-cigs impairs endothelial function in rats, comparable to impairment by cigarette smoke.
Collapse
Affiliation(s)
- Poonam Rao
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Jiangtao Liu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Matthew L. Springer
- Division of Cardiology, University of California, San Francisco, San Francisco, California
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, California
| |
Collapse
|
6
|
Requirement of β1 integrin for endothelium-dependent vasodilation and collateral formation in hindlimb ischemia. Sci Rep 2019; 9:16931. [PMID: 31729436 PMCID: PMC6858366 DOI: 10.1038/s41598-019-53137-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023] Open
Abstract
An acute increase in blood flow triggers flow-mediated dilation (FMD), which is mainly mediated by endothelial nitric oxide synthase (eNOS). A long-term increase in blood flow chronically enlarges the arterial lumen, a process called arteriogenesis. In several common human diseases, these processes are disrupted for as yet unknown reasons. Here, we asked whether β1 integrin, a mechanosensory protein in endothelial cells, is required for FMD and arteriogenesis in the ischemic hindlimb. Permanent ligation of the femoral artery in C57BL/6 J mice enlarged pre-existing collateral arteries and increased numbers of arterioles in the thigh. In the lower leg, the numbers of capillaries increased. Notably, injection of β1 integrin-blocking antibody or tamoxifen-induced endothelial cell-specific deletion of the gene for β1 integrin (Itgb1) inhibited both arteriogenesis and angiogenesis. Using high frequency ultrasound, we demonstrated that β1 integrin-blocking antibody or endothelial cell-specific depletion of β1 integrin attenuated FMD of the femoral artery, and blocking of β1 integrin function did not further decrease FMD in eNOS-deficient mice. Our data suggest that endothelial β1 integrin is required for both acute and chronic widening of the arterial lumen in response to hindlimb ischemia, potentially via functional interaction with eNOS.
Collapse
|
7
|
Diaz M, Parikh V, Ismail S, Maxamed R, Tye E, Austin C, Dew T, Graf BA, Vanhees L, Degens H, Azzawi M. Differential effects of resveratrol on the dilator responses of femoral arteries, ex vivo. Nitric Oxide 2019; 92:1-10. [DOI: 10.1016/j.niox.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022]
|
8
|
Liu CC, Liu WM, Wu HT, Wang CH, Liu AB. In vivo assessment of endothelial function in small animals using an infrared pulse detector. Tzu Chi Med J 2019; 31:217-221. [PMID: 31867249 PMCID: PMC6905235 DOI: 10.4103/tcmj.tcmj_94_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/11/2018] [Accepted: 03/20/2018] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Endothelial dysfunction is the earliest change in atherosclerosis. Flow-mediated dilatation (FMD) is used to assess endothelial function in humans. However, this assessment is not easy in small animals. This study demonstrated the reliability and reproducibility of a proposed instrument for in vivo assessment of FMD in a rodent model using infrared pulse sensors. MATERIALS AND METHODS We used 24 adult male Wistar Kyoto rats randomly divided into three groups. FMD was measured under continuous infusion of normal saline followed by intra-arterial infusion of acetylcholine (Ach; n = 8), sodium nitroprusside (SNP; n = 8), or Nω-nitro-L-arginine methyl ester (L-NAME; n = 8). RESULTS The dilatation indices (DIs) of all three groups were similar before application of the vasoactive agents (1.82 ± 0.46, 1.81 ± 0.44, and 1.93 ± 0.40, P = 0.877, by one-way analysis of variance). The DI was significantly increased during infusion of Ach (2.97 ± 1.03 vs. 1.82 ± 0.46, P = 0.015), unchanged during infusion of SNP (1.81 ± 0.44 vs. 1.98 ± 0.40, P = 0.574), and attenuated during infusion of L-NAME (1.91 ± 0.40 vs. 1.42 ± 0.35; P = 0.028). CONCLUSION The results of this study correlated well with those of human studies, suggesting that this method can be used for in vivo evaluation of endothelial function in small animals.
Collapse
Affiliation(s)
- Cyuan-Cin Liu
- Department of Electrical Engineering, National Dong Hwa University, Hualien, Taiwan
| | - Wei-Min Liu
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Hsien-Tsai Wu
- Department of Electrical Engineering, National Dong Hwa University, Hualien, Taiwan
| | - Chien-Hsing Wang
- Department of Surgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - An-Bang Liu
- Department of Neurology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
9
|
Schuler D, Sansone R, Nicolaus C, Kelm M, Heiss C. Repetitive remote occlusion (RRO) stimulates eNOS-dependent blood flow and collateral expansion in hindlimb ischemia. Free Radic Biol Med 2018; 129:520-531. [PMID: 30336250 DOI: 10.1016/j.freeradbiomed.2018.10.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Collateral expansion is an important compensatory mechanism to alleviate tissue ischemia after arterial occlusion. We investigated the efficacy and mechanisms of temporary remote hindlimb occlusion to stimulate contralateral blood flow and collateral expansion after hindlimb ischemia in mice and evaluated translation to peripheral artery disease in humans. METHODS AND RESULTS We induced unilateral hindlimb ischemia via femoral artery excision in mice. We studied central hemodynamics, blood flow, and perfusion of the ischemic hindlimb during single and repetitive remote occlusion (RRO) of the contralateral non-ischemic hindlimb with a pressurized cuff. Similar experiments were performed in patients with unilateral peripheral artery disease (PAD). Contralateral occlusion of the non-ischemic hindlimb led to an acute increase in blood flow to the ischemic hindlimb without affecting central blood pressure and cardiac output. The increase in blood flow was sustained even after deflation of the pressure cuff. RRO over 12 days (8/day, each 5 min) led to significantly increased arterial inflow, lumen expansion of collateral arteries, and increased perfusion of the chronically ischemic hindlimb as compared to control. In NOS3-/- and after inhibition of NOS (L-NAME), and NO (ODQ), the acute and chronic effects of contralateral occlusion were abrogated and stimulation of guanylyl cyclase with cinaciguate exhibited a similar response as RRO and was not additive. Pilot studies in PAD patients demonstrated that contralateral occlusion increased arterial inflow to ischemic limbs and improved walking distance. CONCLUSIONS Repetitive remote contralateral occlusion stimulates arterial inflow, perfusion, and functional collateral expansion in chronic hindlimb ischemia via an eNOS-dependent mechanism underscoring the potential of remote occlusion as a novel treatment option in peripheral artery disease.
Collapse
Affiliation(s)
- Dominik Schuler
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Roberto Sansone
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Christopher Nicolaus
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Medical Faculty, Duesseldorf, Germany; CARID - Cardiovascular research Institute Duesseldorf, University Duesseldorf, Duesseldorf, Germany
| | - Christian Heiss
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Medical Faculty, Duesseldorf, Germany.
| |
Collapse
|
10
|
Nabavizadeh P, Liu J, Havel CM, Ibrahim S, Derakhshandeh R, Jacob Iii P, Springer ML. Vascular endothelial function is impaired by aerosol from a single IQOS HeatStick to the same extent as by cigarette smoke. Tob Control 2018; 27:s13-s19. [PMID: 30206183 PMCID: PMC6202192 DOI: 10.1136/tobaccocontrol-2018-054325] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Heated tobacco products (also called 'heat-not-burn' products) heat tobacco at temperatures below that of combustion, causing nicotine and other compounds to aerosolise. One such product, IQOS from Philip Morris International, is being marketed internationally with claims of harm reduction. We sought to determine whether exposure to IQOS aerosol impairs arterial flow-mediated dilation (FMD), a measure of vascular endothelial function that is impaired by tobacco smoke. METHODS We exposed anaesthetised rats (n=8/group) via nose cone to IQOS aerosol from single HeatSticks, mainstream smoke from single Marlboro Red cigarettes or clean air for a series of consecutive 30 s cycles over 1.5-5 min. Each cycle consisted of 15 or 5 s of exposure followed by removal from the nose cone. We measured pre-exposure and postexposure FMD, and postexposure serum nicotine and cotinine. RESULTS FMD was impaired comparably by ten 15 s exposures and ten 5 s exposures to IQOS aerosol and to cigarette smoke, but not by clean air. Serum nicotine levels were similar to plasma levels after humans have smoked one cigarette, confirming that exposure conditions had real-world relevance. Postexposure nicotine levels were ~4.5-fold higher in rats exposed to IQOS than to cigarettes, despite nicotine being measured in the IQOS aerosol at ~63% the amount measured in smoke. When IQOS exposure was briefer, leading to comparable serum nicotine levels to the cigarette group, FMD was still comparably impaired. CONCLUSIONS Acute exposures to IQOS aerosol impairs FMD in rats. IQOS use does not necessarily avoid the adverse cardiovascular effects of smoking cigarettes.
Collapse
Affiliation(s)
- Pooneh Nabavizadeh
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Jiangtao Liu
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Christopher M Havel
- Division of Clinical Pharmacology and Experimental Therapeutics, University of California, San Francisco, San Francisco, California, USA
| | - Sharina Ibrahim
- Division of Cardiology, University of California, San Francisco, San Francisco, California, USA
| | - Ronak Derakhshandeh
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Peyton Jacob Iii
- Division of Clinical Pharmacology and Experimental Therapeutics, University of California, San Francisco, San Francisco, California, USA
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, California, USA
| | - Matthew L Springer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, California, USA
- Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Zhao Y, Yang N, Li H, Cai W, Zhang X, Ma Y, Niu X, Yang G, Zhou X, Li Y. Systemic Evaluation of Vascular Dysfunction by High-Resolution Sonography in an N ω -Nitro-l-Arginine Methyl Ester Hydrochloride-Induced Mouse Model of Preeclampsia-Like Symptoms. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:657-666. [PMID: 28914979 DOI: 10.1002/jum.14380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate vascular function, including arterial resistance and endothelial function, by high-resolution sonography in an Nω -nitro-l-arginine methyl ester hydrochloride (l-NAME)-induced mouse model of preeclampsia-like symptoms. METHODS Pregnant mice were subcutaneously injected with a saline solution (control; n = 10) or l-NAME (n = 10) between the 7th and 18th days of gestation. The resistive index and pulsatility index (RI and PI, indicators of arterial resistance) of the uteroplacental, umbilical, femoral, and common carotid arteries and the flow-mediated dilatation (index of endothelial function) of the femoral artery were measured by high-frequency sonography in both groups. RESULTS We noted significant increases in the RI and PI of the uteroplacental and umbilical arteries and a decrease in the flow-mediated dilatation of the femoral artery in the l-NAME group compared with the control group. We also found that the RI and PI of the uteroplacental and umbilical arteries were negatively correlated with fetal weight and crown-rump length. The results of the multivariate analysis using a logistic regression model indicated that the flow-mediated dilatation at 120 seconds was an independent diagnostic criterion for the l-NAME-induced preeclampsia-like model. A receiver operating characteristic analysis showed that flow-mediated dilatation at 120 seconds had the greatest area under the curve of 0.934, with an optimal cutoff point of 11.1%, yielding sensitivity of 100% and specificity of 84.6%. CONCLUSIONS The PI and RI of the fetomaternal vasculature can identify fetuses in "high-risk" pregnancies, and flow-mediated dilatation is a reliable indicator for predicting preeclampsia. Assessment of vascular function by high-resolution sonography provides a useful platform for preeclampsia-related basic research with high reproducibility.
Collapse
Affiliation(s)
- Ying Zhao
- Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of the People's Armed Police Force, Tianjin, China
| | - Ning Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of the People's Armed Police Force, Tianjin, China
| | - Hanying Li
- Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of the People's Armed Police Force, Tianjin, China
| | - Wei Cai
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of the People's Armed Police Force, Tianjin, China
| | - Xin Zhang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of the People's Armed Police Force, Tianjin, China
| | - Yongqiang Ma
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of the People's Armed Police Force, Tianjin, China
| | - Xiulong Niu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of the People's Armed Police Force, Tianjin, China
| | - Guohong Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of the People's Armed Police Force, Tianjin, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of the People's Armed Police Force, Tianjin, China
| | - Yuming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of the People's Armed Police Force, Tianjin, China
| |
Collapse
|
12
|
Chronic kidney disease-associated cardiovascular disease: scope and limitations of animal models. Cardiovasc Endocrinol 2017; 6:120-127. [PMID: 31646129 DOI: 10.1097/xce.0000000000000132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
Chronic kidney disease (CKD) is a heterogeneous range of disorders affecting up to 11% of the world's population. The majority of patients with CKD die of cardiovascular disease (CVD) before progressing to end-stage renal disease. CKD patients have an increased risk of atherosclerotic disease as well as a unique cardiovascular phenotype. There remains no clear aetiology for these issues and a better understanding of the pathophysiology of CKD-associated CVD is urgently needed. Although nonanimal studies can provide insights into the nature of disease, the whole-organism nature of CKD-associated CVD means that high-quality animal models, at least for the immediate future, are likely to remain a key tool in improving our understanding in this area. We will discuss the methods used to induce renal impairment in rodents and the methods available to assess cardiovascular phenotype and in each case describe the applicability to humans.
Collapse
|
13
|
Machin DR, Leary ME, He Y, Shiu YT, Tanaka H, Donato AJ. Ultrasound Assessment of Flow-Mediated Dilation of the Brachial and Superficial Femoral Arteries in Rats. J Vis Exp 2016. [PMID: 27842366 DOI: 10.3791/54762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Arterial vasodilation to increases in wall shear rate is indicative of vascular endothelial function. In humans, the non-invasive measurement of endothelial function can be achieved by employing the flow-mediated dilation technique, typically performed in the brachial or superficial femoral artery. Briefly, a blood pressure cuff placed distal to an ultrasound probe is inflated to a suprasystolic pressure, which results in limb ischemia. After 5 min of occlusion the cuff is deflated, resulting in reactive hyperemia and increases in wall shear rate that signal vasodilatory molecules to be released from the endothelium eliciting vasodilation. Despite the thousands of studies performing flow-mediated dilation in humans, surprisingly, no studies have performed this technique non-invasively in living rats. Considering the recent shift in focus to translational research, the establishment of guidelines for non-invasive measurement of flow-mediated dilation in rats and other rodents would be extremely valuable. In the following article, a protocol is presented for the non-invasive measurement of flow-mediated dilation in brachial and superficial femoral arteries of rats, as those sites are most commonly measured in humans.
Collapse
Affiliation(s)
| | - Miriam E Leary
- Department of Kinesiology and Health Education, University of Texas at Austin
| | - Yuxia He
- Department of Internal Medicine, University of Utah; Division of Nephrology and Hypertension, University of Utah
| | - Yan-Ting Shiu
- Department of Internal Medicine, University of Utah; Division of Nephrology and Hypertension, University of Utah
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, University of Texas at Austin
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah; Department of Biochemistry, University of Utah; Department of Exercise and Sport Science, University of Utah; Geriatric Research Education and Clinical Center, Department of Veterans Affairs
| |
Collapse
|
14
|
Wang X, Derakhshandeh R, Liu J, Narayan S, Nabavizadeh P, Le S, Danforth OM, Pinnamaneni K, Rodriguez HJ, Luu E, Sievers RE, Schick SF, Glantz SA, Springer ML. One Minute of Marijuana Secondhand Smoke Exposure Substantially Impairs Vascular Endothelial Function. J Am Heart Assoc 2016; 5:e003858. [PMID: 27464788 PMCID: PMC5015303 DOI: 10.1161/jaha.116.003858] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/02/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Despite public awareness that tobacco secondhand smoke (SHS) is harmful, many people still assume that marijuana SHS is benign. Debates about whether smoke-free laws should include marijuana are becoming increasingly widespread as marijuana is legalized and the cannabis industry grows. Lack of evidence for marijuana SHS causing acute cardiovascular harm is frequently mistaken for evidence that it is harmless, despite chemical and physical similarity between marijuana and tobacco smoke. We investigated whether brief exposure to marijuana SHS causes acute vascular endothelial dysfunction. METHODS AND RESULTS We measured endothelial function as femoral artery flow-mediated dilation (FMD) in rats before and after exposure to marijuana SHS at levels similar to real-world tobacco SHS conditions. One minute of exposure to marijuana SHS impaired FMD to a comparable extent as impairment from equal concentrations of tobacco SHS, but recovery was considerably slower for marijuana. Exposure to marijuana SHS directly caused cannabinoid-independent vasodilation that subsided within 25 minutes, whereas FMD remained impaired for at least 90 minutes. Impairment occurred even when marijuana lacked cannabinoids and rolling paper was omitted. Endothelium-independent vasodilation by nitroglycerin administration was not impaired. FMD was not impaired by exposure to chamber air. CONCLUSIONS One minute of exposure to marijuana SHS substantially impairs endothelial function in rats for at least 90 minutes, considerably longer than comparable impairment by tobacco SHS. Impairment of FMD does not require cannabinoids, nicotine, or rolling paper smoke. Our findings in rats suggest that SHS can exert similar adverse cardiovascular effects regardless of whether it is from tobacco or marijuana.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Cardiovascular Research Institute, University of California, San Francisco
| | | | - Jiangtao Liu
- Division of Cardiology, University of California, San Francisco Department of Cardiovascular Surgery & Electro-chemotherapy, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Shilpa Narayan
- Cardiovascular Research Institute, University of California, San Francisco Division of Cardiology, University of California, San Francisco
| | | | - Stephenie Le
- Division of Cardiology, University of California, San Francisco
| | - Olivia M Danforth
- Cardiovascular Research Institute, University of California, San Francisco
| | | | - Hilda J Rodriguez
- Division of Cardiology, University of California, San Francisco Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| | - Emmy Luu
- Division of Cardiology, University of California, San Francisco
| | | | - Suzaynn F Schick
- Division of Occupational and Environmental Medicine, University of California, San Francisco
| | - Stanton A Glantz
- Cardiovascular Research Institute, University of California, San Francisco Division of Cardiology, University of California, San Francisco
| | - Matthew L Springer
- Cardiovascular Research Institute, University of California, San Francisco Division of Cardiology, University of California, San Francisco Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| |
Collapse
|
15
|
Asymmetric pulsation of rat carotid artery bifurcation in three-dimension observed by ultrasound imaging. Int J Cardiovasc Imaging 2016; 32:1499-508. [PMID: 27378096 DOI: 10.1007/s10554-016-0934-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/01/2016] [Indexed: 02/01/2023]
Abstract
The arterial structure cyclically fluctuates in three-dimensions (3-D) caused by pulsatile blood flow. The evaluation of arterial wall motion and hemodynamics contributes to early diagnosis of carotid atherosclerosis. Ultrasound is one of the most appropriate imaging modalities to evaluate arterial wall motion in real time. Although many previous studies have discussed the mechanical properties of the carotid artery bifurcation (CAB) from the two-dimensional (2-D) view, the spatio-temporal variation of carotid artery geometry in 3-D has not yet been investigated in detail. In this study, the 3-D data set of CAB from rats was acquired using a high spatio-temporal resolution ultrasound imaging system with a 40 MHz probe using mechanical sector scanning. A total of 31 slices of cross-section images were stored and a spoke scan algorithm was implemented to radially scan the lumen area in polar coordinates based on a pre-tracked seed point. The boundary of the arterial lumen was segmented using intensity-threshold-based boundary detection and fitted by polynomial regression. Two operators, who were trained with the same protocol to minimize inter- and intra-operator variability, manually segmented the lumen boundary on systolic and diastolic phase from the gray-scale images. Finally, the 3-D lumen geometries of CAB during one cardiac cycle were constructed based on the segmented lumen boundaries. From this constructed 3-D geometry, we observed that the CAB geometry favorably expanded to the anterior/posterior direction, parallel to the sagittal plane; and the manually segmented geometry also confirmed the asymmetrical change in bifurcation geometry. This is the first study on visualization and quantification on the asymmetrical variation of the CAB geometry of a rat in 3-D during a whole cardiac cycle. This finding may be useful in understanding hemodynamic etiology of various cardiovascular diseases such as arterial stenosis and its complications, and also provides reference information for numerical simulation studies on arterial wall motion.
Collapse
|
16
|
Abstract
OBJECTIVES Little cigars and cigarillos are gaining in popularity as cigarette use wanes, mainly due to relaxed regulatory standards that make them cheaper, easier to buy individually, and available in a variety of flavors not allowed in cigarettes. To address whether they should be regulated as strictly as cigarettes, we investigated whether little cigar secondhand smoke (SHS) decreases vascular endothelial function like that of cigarettes. METHODS We exposed rats to SHS from little cigars, cigarettes, or chamber air, for 10 minutes and measured the resulting acute impairment of arterial flow-mediated dilation (FMD). RESULTS SHS from both little cigars and cigarettes impaired FMD. Impairment was greater after exposure to little cigar SHS than by cigarette SHS relative to pre-exposure values, although the post-exposure FMD values were not significantly different from each other. CONCLUSIONS Exposure to little cigar SHS leads to impairment of FMD that is at least equal to that resulting from similar levels of cigarette SHS. Our findings support the need to prevent even brief exposure to little cigar SHS, and support tobacco control policies that regulate little cigars as strictly as cigarettes.
Collapse
|
17
|
Kenwright DA, Anderson T, Moran CM, Hoskins PR. Assessment of Spectral Doppler for an Array-Based Preclinical Ultrasound Scanner Using a Rotating Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2232-2239. [PMID: 25957754 PMCID: PMC4510153 DOI: 10.1016/j.ultrasmedbio.2015.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 06/04/2023]
Abstract
Velocity measurement errors were investigated for an array-based preclinical ultrasound scanner (Vevo 2100, FUJIFILM VisualSonics, Toronto, ON, Canada). Using a small-size rotating phantom made from a tissue-mimicking material, errors in pulse-wave Doppler maximum velocity measurements were observed. The extent of these errors was dependent on the Doppler angle, gate length, gate depth, gate horizontal placement and phantom velocity. Errors were observed to be up to 172% at high beam-target angles. It was found that small gate lengths resulted in larger velocity errors than large gate lengths, a phenomenon that has not previously been reported (e.g., for a beam-target angle of 0°, the error was 27.8% with a 0.2-mm gate length and 5.4% with a 0.98-mm gate length). The error in the velocity measurement with sample volume depth changed depending on the operating frequency of the probe. Some edge effects were observed in the horizontal placement of the sample volume, indicating a change in the array aperture size. The error in the velocity measurements increased with increased phantom velocity, from 22% at 2.4 cm/s to 30% at 26.6 cm/s. To minimise the impact of these errors, an angle-dependent correction factor was derived based on a simple ray model of geometric spectral broadening. Use of this angle-dependent correction factor reduces the maximum velocity measurement errors to <25% in all instances, significantly improving the current estimation of maximum velocity from pulse-wave Doppler ultrasound.
Collapse
Affiliation(s)
- David A Kenwright
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| | - Tom Anderson
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Carmel M Moran
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter R Hoskins
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Heiss C, Rodriguez-Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal 2015; 22:1230-42. [PMID: 25330054 PMCID: PMC4410282 DOI: 10.1089/ars.2014.6158] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. RECENT ADVANCES Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. CRITICAL ISSUES Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. FUTURE DIRECTIONS Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance.
Collapse
Affiliation(s)
- Christian Heiss
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Duesseldorf , Duesseldorf, Germany
| | | | | |
Collapse
|
19
|
Mikaelian I, Cameron M, Dalmas DA, Enerson BE, Gonzalez RJ, Guionaud S, Hoffmann PK, King NMP, Lawton MP, Scicchitano MS, Smith HW, Thomas RA, Weaver JL, Zabka TS. Nonclinical Safety Biomarkers of Drug-induced Vascular Injury. Toxicol Pathol 2014; 42:635-57. [DOI: 10.1177/0192623314525686] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Better biomarkers are needed to identify, characterize, and/or monitor drug-induced vascular injury (DIVI) in nonclinical species and patients. The Predictive Safety Testing Consortium (PSTC), a precompetitive collaboration of pharmaceutical companies and the U.S. Food and Drug Administration (FDA), formed the Vascular Injury Working Group (VIWG) to develop and qualify translatable biomarkers of DIVI. The VIWG focused its research on acute DIVI because early detection for clinical and nonclinical safety monitoring is desirable. The VIWG developed a strategy based on the premise that biomarkers of DIVI in rat would be translatable to humans due to the morphologic similarity of vascular injury between species regardless of mechanism. The histomorphologic lexicon for DIVI in rat defines degenerative and adaptive findings of the vascular endothelium and smooth muscles, and characterizes inflammatory components. We describe the mechanisms of these changes and their associations with candidate biomarkers for which advanced analytical method validation was completed. Further development is recommended for circulating microRNAs, endothelial microparticles, and imaging techniques. Recommendations for sample collection and processing, analytical methods, and confirmation of target localization using immunohistochemistry and in situ hybridization are described. The methods described are anticipated to aid in the identification and qualification of translational biomarkers for DIVI.
Collapse
Affiliation(s)
- Igor Mikaelian
- Hoffmann-La Roche Inc, Nutley, New Jersey, USA
- Abbvie, Worcester, Massachusetts, USA
| | | | | | | | - Raymond J. Gonzalez
- Merck Research Laboratories, Merck and Co, Inc, West Point, Pennsylvania, USA
| | - Silvia Guionaud
- Shire, Hampshire International Business Park, Basingstoke, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Swanson TA, Conte T, Deeley B, Portugal S, Kreeger JM, Obert LA, Joseph EC, Wisialowski TA, Sokolowski SA, Rief C, Nugent P, Lawton MP, Enerson BE. Hemodynamic Correlates of Drug-induced Vascular Injury in the Rat Using High-frequency Ultrasound Imaging. Toxicol Pathol 2014; 42:784-91. [DOI: 10.1177/0192623314525687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several classes of drugs have been shown to cause drug-induced vascular injury (DIVI) in preclinical toxicity studies. Measurement of blood flow and vessel diameter in numerous vessels and across various tissues by ultrasound imaging has the potential to be a noninvasive translatable biomarker of DIVI. Our objective was to demonstrate the utility of high-frequency ultrasound imaging for measuring changes in vascular function by evaluating blood flow and vessel diameter in the superior mesenteric arteries (SMA) of rats treated with compounds that are known to cause DIVI and are known vasodilators in rat: fenoldopam, CI-1044, and SK&F 95654. Blood flow, vessel diameter, and other parameters were measured in the SMA at 4, 8, and 24 hr after dosing. Mild to moderate perivascular accumulations of mononuclear cells, neutrophils in tunica adventitia, and superficial tunica media as well as multifocal hemorrhage and necrosis in the tunica media were found in animals 24 hr after treatment with fenoldopam and SK&F 95654. Each compound caused marked increases in blood flow and shear stress as early as 4 hr after dosing. These results suggest that ultrasound imaging may constitute a functional correlate for the microscopic finding of DIVI in the rat.
Collapse
Affiliation(s)
- Terri A. Swanson
- Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Teri Conte
- FUJIFILM VisualSonics, Inc., Toronto, Ontario, Canada
| | - Ben Deeley
- FUJIFILM VisualSonics, Inc., Toronto, Ontario, Canada
| | - Susan Portugal
- Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - John M. Kreeger
- Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - Leslie A. Obert
- Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | - E. Clive Joseph
- Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | | | | | - Catherine Rief
- Pfizer Worldwide Research and Development, Andover, Massachusetts, USA
| | - Paul Nugent
- Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | | | | |
Collapse
|
21
|
Nam KH, Bok TH, Jin C, Paeng DG. Asymmetric radial expansion and contraction of rat carotid artery observed using a high-resolution ultrasound imaging system. ULTRASONICS 2014; 54:233-240. [PMID: 23664377 DOI: 10.1016/j.ultras.2013.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 03/17/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
The geometry of carotid artery bifurcation is of high clinical interest because it determines the characteristics of blood flow that is closely related to the formation and development of atherosclerotic plaque. However, information on the dynamic changes in the vessel wall of carotid artery bifurcation during a pulsatile cycle is limited. This pilot study investigated the cyclic changes in carotid artery geometry caused by blood flow pulsation in rats. A high-resolution ultrasound imaging system with a broadband scanhead centered at 40 MHz was used to obtain longitudinal images of the rat carotid artery. A high frame rate retrospective B-scan imaging technique based on the use of electrocardiogram to trigger signal acquisition was used to examine precisely the fast arterial wall motion. Two-dimensional geometry data obtained from nine rats showed that the rat carotid artery asymmetrically contracts and dilates during each cardiac cycle. Systolic/diastolic vessel diameters near the upstream and downstream regions from the bifurcation were 0.976 ± 0.011/0.825 ± 0.015 mm and 0.766 ± 0.015/0.650 ± 0.016 mm, respectively. Their posterior/anterior wall displacement ratios in the radial direction were 41.0 ± 14.9% and 2.9 ± 1.6%, respectively. These results indicate that in the vicinity of bifurcation, the carotid artery favorably expands to the anterior side during the systolic phase. This phenomenon was observed to be more prominent in the downstream region near the bifurcation. The cyclic variation pattern in wall movement varies depending on the measurement site, which shows different patterns at far upstream and downstream of the bifurcation. The asymmetric radial expansion and contraction of the rat carotid artery observed in this study may be useful in studying the hemodynamic etiology of cardiovascular diseases because the pulsatile changes in vessel geometry may affect the local hemodynamics that determines the spatial distribution of wall shear stress, one of important cardiovascular risk factors. Further systematic study is needed to clarify the effects of wall elasticity, branch angle and vessel diameter ratio on the asymmetric wall motion of carotid artery bifurcation.
Collapse
Affiliation(s)
- Kweon-Ho Nam
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | | | | | | |
Collapse
|
22
|
Pinnamaneni K, Sievers RE, Sharma R, Selchau AM, Gutierrez G, Nordsieck EJ, Su R, An S, Chen Q, Wang X, Derakhshandeh R, Aschbacher K, Heiss C, Glantz SA, Schick SF, Springer ML. Brief exposure to secondhand smoke reversibly impairs endothelial vasodilatory function. Nicotine Tob Res 2013; 16:584-90. [PMID: 24302638 DOI: 10.1093/ntr/ntt189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION We sought to determine the effects of brief exposures to low concentrations of tobacco secondhand smoke (SHS) on arterial flow-mediated dilation (FMD, a nitric oxide-dependent measure of vascular endothelial function), in a controlled animal model never before exposed to smoke. In humans, SHS exposure for 30 min impairs FMD. It is important to gain a better understanding of the acute effects of exposure to SHS at low concentrations and for brief periods of time. METHODS We measured changes in FMD in rats exposed to a range of real-world levels of SHS for durations of 30 min, 10 min, 1 min, and 4 breaths (roughly 15 s). RESULTS We observed a dose-response relationship between SHS particle concentration over 30 min and post-exposure impairment of FMD, which was linear through the range typically encountered in smoky restaurants and then saturated at higher concentrations. One min of exposure to SHS at moderate concentrations was sufficient to impair FMD. CONCLUSIONS Brief SHS exposure at real-world levels reversibly impairs FMD. Even 1 min of SHS exposure can cause reduction of endothelial function.
Collapse
Affiliation(s)
- Kranthi Pinnamaneni
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen Q, Sievers RE, Varga M, Kharait S, Haddad DJ, Patton AK, Delany CS, Mutka SC, Blonder JP, Dubé GP, Rosenthal GJ, Springer ML. Pharmacological inhibition of S-nitrosoglutathione reductase improves endothelial vasodilatory function in rats in vivo. J Appl Physiol (1985) 2013; 114:752-60. [PMID: 23349456 DOI: 10.1152/japplphysiol.01302.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) exerts a wide range of cellular effects in the cardiovascular system. NO is short lived, but S-nitrosoglutathione (GSNO) functions as a stable intracellular bioavailable NO pool. Accordingly, increased levels can facilitate NO-mediated processes, and conversely, catabolism of GSNO by the regulatory enzyme GSNO reductase (GSNOR) can impair these processes. Because dysregulated GSNOR can interfere with processes relevant to cardiovascular health, it follows that inhibition of GSNOR may be beneficial. However, the effect of GSNOR inhibition on vascular activity is unknown. To study the effects of GSNOR inhibition on endothelial function, we treated rats with a small-molecule inhibitor of GSNOR (N6338) that has vasodilatory effects on isolated aortic rings and assessed effects on arterial flow-mediated dilation (FMD), an NO-dependent process. GSNOR inhibition with a single intravenous dose of N6338 preserved FMD (15.3 ± 5.4 vs. 14.2 ± 6.3%, P = nonsignificant) under partial NO synthase inhibition that normally reduces FMD by roughly 50% (14.1 ± 2.9 vs. 7.6 ± 4.4%, P < 0.05). In hypertensive rats, daily oral administration of N6338 for 14 days reduced blood pressure (170.0 ± 5.3/122.7 ± 6.4 vs. 203.8 ± 1.9/143.7 ± 7.5 mmHg for vehicle, P < 0.001) and vascular resistance index (1.5 ± 0.4 vs. 3.2 ± 1.0 mmHg · min · l(-1) for vehicle, P < 0.001), and restored FMD from an initially impaired state (7.4 ± 1.7%, day 0) to a level (13.0 ± 3.1%, day 14, P < 0.001) similar to that observed in normotensive rats. N6338 also reversed the pathological kidney changes exhibited by the hypertensive rats. GSNOR inhibition preserves FMD under conditions of impaired NO production and protects against both microvascular and conduit artery dysfunction in a model of hypertension.
Collapse
Affiliation(s)
- Qiumei Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143-0124, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Twynstra J, Medeiros PJ, Lacefield JC, Jackson DN, Shoemaker JK. Y1R control of sciatic nerve blood flow in the Wistar Kyoto rat. Microvasc Res 2012; 84:133-9. [DOI: 10.1016/j.mvr.2012.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/22/2012] [Accepted: 06/08/2012] [Indexed: 12/12/2022]
|
25
|
Patel VB, Bodiga S, Basu R, Das SK, Wang W, Wang Z, Lo J, Grant MB, Zhong J, Kassiri Z, Oudit GY. Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis. Circ Res 2012; 110:1322-35. [PMID: 22474255 DOI: 10.1161/circresaha.112.268029] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Diabetic cardiovascular complications are reaching epidemic proportions. Angiotensin-converting enzyme-2 (ACE2) is a negative regulator of the renin-angiotensin system. We hypothesize that loss of ACE2 exacerbates cardiovascular complications induced by diabetes. OBJECTIVE To define the role of ACE2 in diabetic cardiovascular complications. METHODS AND RESULTS We used the well-validated Akita mice, a model of human diabetes, and generated double-mutant mice using the ACE2 knockout (KO) mice (Akita/ACE2(-/y)). Diabetic state was associated with increased ACE2 in Akita mice, whereas additional loss of ACE2 in these mice leads to increased plasma and tissue angiotensin II levels, resulting in systolic dysfunction on a background of impaired diastolic function. Downregulation of SERCA2 and lipotoxicity were equivalent in Akita and Akita/ACE2KO hearts and are likely mediators of the diastolic dysfunction. However, greater activation of protein kinase C and loss of Akt and endothelial nitric oxide synthase phosphorylation occurred in the Akita/ACE2KO hearts. Systolic dysfunction in Akita/ACE2KO mice was linked to enhanced activation of NADPH oxidase and metalloproteinases, resulting in greater oxidative stress and degradation of the extracellular matrix. Impaired flow-mediated dilation in vivo correlated with increased vascular oxidative stress in Akita/ACE2KO mice. Treatment with the AT1 receptor blocker, irbesartan rescued the systolic dysfunction, normalized altered signaling pathways, flow-mediated dilation, and the increased oxidative stress in the cardiovascular system. CONCLUSIONS Loss of ACE2 disrupts the balance of the renin-angiotensin system in a diabetic state and leads to an angiotensin II/AT1 receptor-dependent systolic dysfunction and impaired vascular function. Our study demonstrates that ACE2 serves as a protective mechanism against diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Vaibhav B Patel
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Serizawa KI, Yogo K, Aizawa K, Tashiro Y, Takahari Y, Sekine K, Suzuki T, Ishizuka N, Ishida H. Paclitaxel-Induced Endothelial Dysfunction in Living Rats Is Prevented by Nicorandil via Reduction of Oxidative Stress. J Pharmacol Sci 2012; 119:349-58. [PMID: 22850598 DOI: 10.1254/jphs.12067fp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
27
|
Serizawa KI, Yogo K, Aizawa K, Tashiro Y, Ishizuka N. Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats. Cardiovasc Diabetol 2011; 10:105. [PMID: 22107602 PMCID: PMC3248842 DOI: 10.1186/1475-2840-10-105] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/23/2011] [Indexed: 01/22/2023] Open
Abstract
Background Nicorandil, an anti-angina agent, reportedly improves outcomes even in angina patients with diabetes. However, the precise mechanism underlying the beneficial effect of nicorandil on diabetic patients has not been examined. We investigated the protective effect of nicorandil on endothelial function in diabetic rats because endothelial dysfunction is a major risk factor for cardiovascular disease in diabetes. Methods Male Sprague-Dawley rats (6 weeks old) were intraperitoneally injected with streptozotocin (STZ, 40 mg/kg, once a day for 3 days) to induce diabetes. Nicorandil (15 mg/kg/day) and tempol (20 mg/kg/day, superoxide dismutase mimetic) were administered in drinking water for one week, starting 3 weeks after STZ injection. Endothelial function was evaluated by measuring flow-mediated dilation (FMD) in the femoral arteries of anaesthetised rats. Cultured human coronary artery endothelial cells (HCAECs) were treated with high glucose (35.6 mM, 24 h) and reactive oxygen species (ROS) production with or without L-NAME (300 μM), apocynin (100 μM) or nicorandil (100 μM) was measured using fluorescent probes. Results Endothelial function as evaluated by FMD was significantly reduced in diabetic as compared with normal rats (diabetes, 9.7 ± 1.4%; normal, 19.5 ± 1.7%; n = 6-7). There was a 2.4-fold increase in p47phox expression, a subunit of NADPH oxidase, and a 1.8-fold increase in total eNOS expression in diabetic rat femoral arteries. Nicorandil and tempol significantly improved FMD in diabetic rats (nicorandil, 17.7 ± 2.6%; tempol, 13.3 ± 1.4%; n = 6). Nicorandil significantly inhibited the increased expressions of p47phox and total eNOS in diabetic rat femoral arteries. Furthermore, nicorandil significantly inhibited the decreased expression of GTP cyclohydrolase I and the decreased dimer/monomer ratio of eNOS. ROS production in HCAECs was increased by high-glucose treatment, which was prevented by L-NAME and nicorandil suggesting that eNOS itself might serve as a superoxide source under high-glucose conditions and that nicorandil might prevent ROS production from eNOS. Conclusions These results suggest that nicorandil improved diabetes-induced endothelial dysfunction through antioxidative effects by inhibiting NADPH oxidase and eNOS uncoupling.
Collapse
Affiliation(s)
- Ken-ichi Serizawa
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka 412-8513 Japan
| | | | | | | | | |
Collapse
|
28
|
The Influence of Abdominal Pressure on Lower Extremity Venous Pressure and Hemodynamics: A Human In-vivo Model Simulating the Effect of Abdominal Obesity. Eur J Vasc Endovasc Surg 2011; 41:849-55. [PMID: 21414818 DOI: 10.1016/j.ejvs.2011.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/13/2011] [Indexed: 11/20/2022]
|
29
|
Willenberg T, Schumacher A, Amann-Vesti B, Jacomella V, Thalhammer C, Diehm N, Baumgartner I, Husmann M. Impact of obesity on venous hemodynamics of the lower limbs. J Vasc Surg 2010; 52:664-8. [PMID: 20576394 DOI: 10.1016/j.jvs.2010.04.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/01/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
|
30
|
Vascular Dysfunction of Brachial Artery After Transradial Access for Coronary Catheterization. JACC Cardiovasc Interv 2009; 2:1067-73. [DOI: 10.1016/j.jcin.2009.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 09/23/2009] [Indexed: 11/19/2022]
|
31
|
Hong H, Sun J, Cai W. Multimodality imaging of nitric oxide and nitric oxide synthases. Free Radic Biol Med 2009; 47:684-98. [PMID: 19524664 DOI: 10.1016/j.freeradbiomed.2009.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/28/2009] [Accepted: 06/10/2009] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO) and NO synthases (NOSs) are crucial factors in many pathophysiological processes such as inflammation, vascular/neurological function, and many types of cancer. Noninvasive imaging of NO or NOS can provide new insights in understanding these diseases and facilitate the development of novel therapeutic strategies. In this review, we will summarize the current state-of-the-art multimodality imaging in detecting NO and NOSs, including optical (fluorescence, chemiluminescence, and bioluminescence), electron paramagnetic resonance (EPR), magnetic resonance (MR), and positron emission tomography (PET). With continued effort over the last several years, these noninvasive imaging techniques can now reveal the biodistribution of NO or NOS in living subjects with high fidelity which will greatly facilitate scientists/clinicians in the development of new drugs and/or patient management. Lastly, we will also discuss future directions/applications of NO/NOS imaging. Successful development of novel NO/NOS imaging agents with optimal in vivo stability and desirable pharmacokinetics for clinical translation will enable the maximum benefit in patient management.
Collapse
Affiliation(s)
- Hao Hong
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705-2275, USA
| | | | | |
Collapse
|
32
|
Natarajan S, Heiss C, Yeghiazarians Y, Fineman JR, Teitel DF, Tacy TA. Peripheral arterial function in infants and young children with one-ventricle physiology and hypoxemia. Am J Cardiol 2009; 103:862-6. [PMID: 19268746 DOI: 10.1016/j.amjcard.2008.11.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/13/2008] [Accepted: 11/13/2008] [Indexed: 12/29/2022]
Abstract
Patients with 1-ventricle (1V) physiology may be at risk for peripheral arterial dysfunction at a young age. To determine whether infants and young children with 1V physiology and hypoxemia have peripheral arterial dysfunction before undergoing the Fontan operation, we measured (1) flow-mediated vasodilation (FMD) in the brachial artery, (2) serum levels of vasoactive mediators endothelin-1 (ET-1) and metabolites of nitric oxide, and (3) arterial stiffness with pulse-wave velocity (PWV) in the aorta. Eighteen patients with 1V physiology before the Fontan procedure and hypoxemia and 19 patients with normoxemia and 2-ventricle (2V) physiology were studied. Measurements were collected during cardiac catheterization. FMD in the brachial artery was the diameter gain after 4.5 minutes of forearm occlusion measured with high-resolution ultrasound and edge-detection software. Nitric oxide and ET-1 levels were measured in venous blood. PWV between the left carotid and femoral arteries was measured using pulse Doppler ultrasound. FMD was lower (2.4 +/- 3.7% vs 11.3 +/- 6%, p <0.0005) and ET-1 levels were higher (35.5 +/- 11.3% vs 24.1 +/- 9.7%, p = 0.003) in subjects with 1V physiology versus those with 2V physiology, respectively. There were no differences in nitric oxide levels or PWV. In conclusion, infants and young children with 1V physiology and hypoxemia have blunted FMD and higher ET-1 levels before undergoing the Fontan operation compared with normoxemic subjects with 2V physiology. A further understanding of pathophysiologic mechanisms underlying peripheral arterial dysfunction, including the roles of hypoxemia, low cardiac index, and ET-1, may lead to targeted therapies and improve the long-term survival of patients with 1V physiology.
Collapse
|
33
|
Langer S, Heiss C, Paulus N, Bektas N, Mommertz G, Rowinska Z, Westenfeld R, Jacobs MJ, Fries M, Koeppel TA. Functional and structural response of arterialized femoral veins in a rodent AV fistula model. Nephrol Dial Transplant 2009; 24:2201-6. [DOI: 10.1093/ndt/gfp033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
34
|
Su Y, Liu XM, Sun YM, Jin HB, Fu R, Wang YY, Wu Y, Luan Y. The relationship between endothelial dysfunction and oxidative stress in diabetes and prediabetes. Int J Clin Pract 2008; 62:877-82. [PMID: 18479281 DOI: 10.1111/j.1742-1241.2008.01776.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Diabetes mellitus is associated with endothelial dysfunction and oxidative stress (OS). The aim of the present study was to determine whether increased OS and impaired endothelial function, are present in early states of diabetes, such as impaired glucose tolerance (IGT) and impaired fasting glucose (IFG). METHODS Brachial artery flow-mediated dilatation (FMD) and nitrate-induced dilatation were measured in 133 subjects with carbohydrate abnormalities (45 IGT, 44 IFG and 44 Type 2 diabetes mellitus) and in 46 subjects with normal glucose tolerance (NGT). Waist circumference, body mass index, blood pressure and fasting lipid profiles were obtained, and glucose and insulin values in response to a 75-g oral glucose load were also measured. Plasma malondialdehyde (MDA) and superoxide dismutase (SOD) activity were determined. RESULTS Patients with diabetes and prediabetes had a higher plasma MDA concentration, but a lower plasma SOD activity than the NGT group (p = 0.006) and SOD activity was positively associated with FMD (p = 0.039). FMD were significantly reduced in the groups of subjects with abnormal carbohydrate metabolism compared with the NGT group (p = 0.035). Among the subjects with diabetes and prediabetes, FMD showed a negative correlation with fasting glucose and/or plasma glucose level at 120 min after oral glucose tolerance test (p = 0.028). CONCLUSIONS The results showed that endothelial dysfunction and increased OS were present in subjects with IGT and IFG, indicating endothelial damage in these stages.
Collapse
Affiliation(s)
- Y Su
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|