1
|
Guo C, Pan X, Dou M, Wu J, Chen X, Wang B, Zhu R, Xu S, Peng W, Wu C, He S, Zhang S, Zhang Y, Jin S. The activated caveolin-3/μ-opioid receptor complex drives morphine-induced rescue therapy in failing hearts. Br J Pharmacol 2024. [PMID: 39427683 DOI: 10.1111/bph.17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/19/2024] [Accepted: 07/13/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Opioid analgesics can alleviate ischaemia/reperfusion (I/R) injury in chronic heart failure. However, the underlying mechanisms and targets remain unknown. Here, we investigate if caveolin-3 (Cav3) interacts with μ opioid receptors and if Cav3-μ receptor interactions play a role in morphine-induced cardioprotection in failing hearts. EXPERIMENTAL APPROACH Cav3 and μ receptor proteins in human and rat heart tissue were determined by western blot, immunofluorescence and co-immunoprecipitation. Methyl-β-cyclodextrin (MβCD), a destroyer of caveolae, and AAV-Cav3 shRNA were used to reduce Cav3 expression in failing rat hearts. CTOP, a specific μ antagonist, was administrated before morphine preconditioning in perfused failing heart models of myocardial I/R injury. KEY RESULTS Levels of Cav3 and μ receptor proteins were significantly higher in human and rat myocardial tissues with heart failure than in control tissues. Cav3 and μ receptor expression levels were positively correlated with disease severity. The signal of the cardiac Cav3 protein was colocalized with μ receptor in both the human and rat heart sections. Disruption of caveolae in the failing heart by either MβCD or AAV-Cav3 shRNA significantly inhibits morphine-induced phosphorylation of ERK1/2 and cardioprotection. Administration of CTOP substantially reduced Cav3 expression and morphine-induced cardioprotective effect in heart failure. CONCLUSION AND IMPLICATIONS Our data suggest that up-regulation of the Cav3/μ receptor complex is critical for morphine protection of the failing heart against I/R injury by regulating the ERK1/2 pathway. The activated Cav3/μ receptor complex is an understudied therapeutic target for opioid treatment of heart failure and ischaemic insult.
Collapse
Affiliation(s)
- Chengxiao Guo
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Xinxin Pan
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Mengyun Dou
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Juan Wu
- Department of Clinical Pharmacology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinyu Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Baoli Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Rui Zhu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shijin Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Wenyi Peng
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Chao Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shufang He
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Ye Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shiyun Jin
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Cissom C, J Paris J, Shariat-Madar Z. Dynorphins in Development and Disease: Implications for Cardiovascular Disease. Curr Mol Med 2021; 20:259-274. [PMID: 31746302 DOI: 10.2174/1566524019666191028122559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
It is well-established that cardiovascular disease continues to represent a growing health problem and significant effort has been made to elucidate the underlying mechanisms. In this review, we report on past and recent high impact publications in the field of intracrine network signaling, focusing specifically on opioids and their interrelation with key modulators of the cardiovascular system and the onset of related disease. We present an overview of studies outlining the scope of cardiovascular and cerebrovascular processes that are affected by opioids, including heart function, ischemia, reperfusion, and blood flow. Specific emphasis is placed on the importance of dynorphin molecules in cerebrovascular and cardiovascular regulation. Evidence suggests that excessive or insufficient dynorphin could make an important contribution to cardiovascular physiology, yet numerous paradoxical observations frequently impede a clear understanding of the role of dynorphin. Thus, we argue that dynorphin-mediated signaling events for which an immediate regulatory effect is disputed should not be dismissed as unimportant, as they may play a role in cross-talk with other signaling networks. Finally, we consider the most recent evidence on the role of dynorphin during cardiovascular-related inflammation and on the potential value of endogenous and exogenous inhibitors of kappa-opioid receptor, a major dynorphin A receptor, to limit or prevent cardiovascular disease and its related sequelae.
Collapse
Affiliation(s)
- Cody Cissom
- William Carey College of Osteopathic Mississippi University, Medical School, Hattiesburg, Mississippi, United States
| | - Jason J Paris
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, United States.,The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, United States
| | - Zia Shariat-Madar
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, United States.,The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, United States.,Light Microscopy Core, University of Mississippi, University, Mississippi, United States
| |
Collapse
|
3
|
Abstract
The opioid receptor family, with associated endogenous ligands, has numerous roles throughout the body. Moreover, the delta opioid receptor (DORs) has various integrated roles within the physiological systems, including the cardiovascular system. While DORs are important modulators of cardiovascular autonomic balance, they are well-established contributors to cardioprotective mechanisms. Both endogenous and exogenous opioids acting upon DORs have roles in myocardial hibernation and protection against ischaemia-reperfusion (I-R) injury. Downstream signalling mechanisms governing protective responses alternate, depending on the timing and duration of DOR activation. The following review describes models and mechanisms of DOR-mediated cardioprotection, the impact of co-morbidities and challenges for clinical translation.
Collapse
Affiliation(s)
- Louise See Hoe
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia.
| |
Collapse
|
4
|
FOXF1 transcription factor promotes lung regeneration after partial pneumonectomy. Sci Rep 2017; 7:10690. [PMID: 28878348 PMCID: PMC5587533 DOI: 10.1038/s41598-017-11175-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/09/2017] [Indexed: 12/28/2022] Open
Abstract
FOXF1, a member of the forkhead box family of transcription factors, has been previously shown to be critical for lung development, homeostasis, and injury responses. However, the role of FOXF1 in lung regeneration is unknown. Herein, we performed partial pneumonectomy, a model of lung regeneration, in mice lacking one Foxf1 allele in endothelial cells (PDGFb-iCre/Foxf1 fl/+ mice). Endothelial cell proliferation was significantly reduced in regenerating lungs from mice deficient for endothelial Foxf1. Decreased endothelial proliferation was associated with delayed lung regeneration as shown by reduced respiratory volume in Foxf1-deficient lungs. FACS-sorted endothelial cells isolated from regenerating PDGFb-iCre/Foxf1 fl/+ and control lungs were used for RNAseq analysis to identify FOXF1 target genes. Foxf1 deficiency altered expression of numerous genes including those regulating extracellular matrix remodeling (Timp3, Adamts9) and cell cycle progression (Cdkn1a, Cdkn2b, Cenpj, Tubb4a), which are critical for lung regeneration. Deletion of Foxf1 increased Timp3 mRNA and protein, decreasing MMP14 activity in regenerating lungs. ChIPseq analysis for FOXF1 and histone methylation marks identified DNA regulatory regions within the Cd44, Cdkn1a, and Cdkn2b genes, indicating they are direct FOXF1 targets. Thus FOXF1 stimulates lung regeneration following partial pneumonectomy via direct transcriptional regulation of genes critical for extracellular matrix remodeling and cell cycle progression.
Collapse
|
5
|
Najafipour H, Beik A. The Impact of Opium Consumption on Blood Glucose, Serum Lipids and Blood Pressure, and Related Mechanisms. Front Physiol 2016; 7:436. [PMID: 27790151 PMCID: PMC5061814 DOI: 10.3389/fphys.2016.00436] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/13/2016] [Indexed: 11/23/2022] Open
Abstract
Aim: Substance abuse has become a universal crisis in our modern age. Among illegal substances, opium and its derivatives have been ranked second in terms of usage after cannabis in the world. In many Asian regions, the use of opium enjoys a high social acceptance; hence, some common people and even medical practitioners believe that opium lowers blood glucose and pressure and treat dyslipidemia. How much this belief is scientifically justified? Method: The results of available studies on both humans and animals searched in different search engines up to mid-2016 were integrated (78 articles). Upon the findings we try to offer a more transparent picture of the effects of opium on the mentioned factors along with the probable underlying mechanisms of its action. Results: Taken together, a variety of evidences suggest that the consumption of opium has no scientific justification for amendment of these biochemical variables. The mechanisms proposed so far for the action of opium in the three above disorders are summarized at the end of the article. Short term effects seems to be mostly mediated through central nervous system (neural and hormonal mechanisms), but long term effects are often due to the structural and functional alterations in some body organs. Conclusion: Although opium may temporarily reduce blood pressure, but it increases blood glucose and most of blood lipids. Moreover its long term use has negative impacts and thus it aggravates diabetes, dyslipidemia and hypertension. Accordingly, it is necessary to inform societies about the potential disadvantages of unauthorized opium consumption.
Collapse
Affiliation(s)
- Hamid Najafipour
- Cardiovascular Research Center and Department of Physiology, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences Kerman, Iran
| | - Ahmad Beik
- Physiology Research Center, Kerman University of Medical Sciences Kerman, Iran
| |
Collapse
|
6
|
Maslov LN, Khaliulin I, Oeltgen PR, Naryzhnaya NV, Pei J, Brown SA, Lishmanov YB, Downey JM. Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists. Med Res Rev 2016; 36:871-923. [PMID: 27197922 PMCID: PMC5082499 DOI: 10.1002/med.21395] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/19/2022]
Abstract
It has now been demonstrated that the μ, δ1 , δ2 , and κ1 opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct-reducing effect with prophylactic administration and prevent reperfusion-induced cardiomyocyte death when ischemic injury of heart has already occurred; that is, opioids can mimic preconditioning and postconditioning phenomena. Furthermore, opioids are also effective in preventing ischemia-induced arrhythmias.
Collapse
Affiliation(s)
| | - Igor Khaliulin
- School of Clinical SciencesUniversity of BristolBristolUK
| | | | | | - Jian‐Ming Pei
- Department of PhysiologyFourth Military Medical UniversityXi'anP. R. China
| | | | - Yury B. Lishmanov
- Research Institute for CardiologyTomskRussia
- National Research Tomsk Polytechnic University634050TomskRussia
| | | |
Collapse
|
7
|
Bolte C, Ren X, Tomley T, Ustiyan V, Pradhan A, Hoggatt A, Kalin TV, Herring BP, Kalinichenko VV. Forkhead box F2 regulation of platelet-derived growth factor and myocardin/serum response factor signaling is essential for intestinal development. J Biol Chem 2015; 290:7563-75. [PMID: 25631042 DOI: 10.1074/jbc.m114.609487] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alterations in the forkhead box F2 gene expression have been reported in numerous pathologies, and Foxf2(-/-) mice are perinatal lethal with multiple malformations; however, molecular mechanisms pertaining to Foxf2 signaling are severely lacking. In this study, Foxf2 requirements in murine smooth muscle cells were examined using a conditional knock-out approach. We generated novel Foxf2-floxed mice, which we bred to smMHC-Cre-eGFP mice to generate a mouse line with Foxf2 deleted specifically from smooth muscle. These mice exhibited growth retardation due to reduced intestinal length as well as inflammation and remodeling of the small intestine. Colons of Tg(smMHC-Cre-eGFP(+/-));Foxf2(-/-) mice had expansion of the myenteric nerve plexus and increased proliferation of smooth muscle cells leading to thickening of the longitudinal smooth muscle layer. Foxf2 deficiency in colonic smooth muscle was associated with increased expression of Foxf1, PDGFa, PDGFb, PDGF receptor α, and myocardin. FOXF2 bound to promoter regions of these genes indicating direct transcriptional regulation. Foxf2 repressed Foxf1 promoter activity in co-transfection experiments. We also show that knockdown of Foxf2 in colonic smooth muscle cells in vitro and in transgenic mice increased myocardin/serum response factor signaling and increased expression of contractile proteins. Foxf2 attenuated myocardin/serum response factor signaling in smooth muscle cells through direct binding to the N-terminal region of myocardin. Our results indicate that Foxf2 signaling in smooth muscle cells is essential for intestinal development and serum response factor signaling.
Collapse
Affiliation(s)
- Craig Bolte
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Xiaomeng Ren
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Tatiana Tomley
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Vladimir Ustiyan
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Arun Pradhan
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - April Hoggatt
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tanya V Kalin
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - B Paul Herring
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Vladimir V Kalinichenko
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| |
Collapse
|
8
|
Theisen MM, Schlottmann S, August C, Herzog C, Theilmeier G, Maas M, Blumenstiel JM, Weber TP, Van Aken HK, Kaerlein KT. Detection and distribution of opioid peptide receptors in porcine myocardial tissue. Pharmacol Res 2014; 84:45-9. [PMID: 24788078 DOI: 10.1016/j.phrs.2014.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/12/2014] [Accepted: 04/20/2014] [Indexed: 12/16/2022]
Abstract
There is growing evidence that opioid peptide receptors (OPRs) play an important role in cardiovascular function. Many studies have been conducted in swine, in view of their anatomic and physiologic similarities to humans. Until now, the presence and particularly distribution of OPRs has been unclear. Porcine myocardial tissue was obtained from both the left and right atria and ventricles. Expression of mRNA for μ-, δ- and κ-OPR was determined by reverse transcription PCR. OPR proteins were detected by Western blot, distribution and cellular location were identified using immunohistochemistry. Homogenous expression of mRNA and protein for δ- and κ-OPRs were demonstrated in all porcine myocardial tissue tested, whereas expression of μ-OPR mRNA was not demonstrated in any of the tissues tested. This study demonstrates the expression of δ- and κ-OPRs in porcine myocardial tissue. No differences in distribution of δ- and κ-OPRs were found between the four heart cavities. Modulation of cardiac function by δ- and κ-OPR agonists or antagonists is therefore possible, while μ-OPR-mediated direct cardiac effects appear unlikely, due to nonexpression of the receptor. This study demonstrates that porcine studies can further elucidate the role of OPRs in cardiac (patho-)physiology.
Collapse
Affiliation(s)
- Marc Michael Theisen
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, D-48149 Muenster, Germany; Department of Anesthesiology, Intensive Care and Pain Medicine, Raphaelsklinik Muenster, Loerstraße 23, D-48143 Muenster, Germany.
| | - Silke Schlottmann
- Department of Anesthesiology and Intensive Care, University of Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Christian August
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Albert-Schweitzer-Campus 1, D-48149 Muenster, Germany
| | - Christine Herzog
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, D-48149 Muenster, Germany
| | - Gregor Theilmeier
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, D-48149 Muenster, Germany
| | - Matthias Maas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, D-48149 Muenster, Germany
| | - Jonas Martin Blumenstiel
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, D-48149 Muenster, Germany
| | - Thomas Peter Weber
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, D-48149 Muenster, Germany
| | - Hugo Karel Van Aken
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, D-48149 Muenster, Germany
| | - Kristoffer Tim Kaerlein
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, D-48149 Muenster, Germany
| |
Collapse
|
9
|
The presence of mu-, delta-, and kappa-opioid receptors in human heart tissue. Heart Vessels 2014; 29:855-63. [DOI: 10.1007/s00380-013-0456-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
|
10
|
Maslov LN, Naryzhnaia NV, Tsibulnikov SY, Kolar F, Zhang Y, Wang H, Gusakova AM, Lishmanov YB. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia. Life Sci 2013; 93:373-9. [PMID: 23891777 DOI: 10.1016/j.lfs.2013.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 11/16/2022]
Abstract
AIMS The objective of this study was to examine the involvement of endogenous opioid peptides and opioid receptor (OR) subtypes in the cardioprotective effect of adaptation to chronic hypoxia in rats. MAIN METHODS Rats were exposed to continuous normobaric hypoxia (CNH; 12% oxygen) for 3 weeks. Myocardial ischemia was induced by 20-min coronary artery occlusion followed by 3-h reperfusion in anesthetized open-chest animals. Various OR antagonists were administered to rats prior to ischemia. The size of myocardial infarction and the incidence of ischemic ventricular arrhythmias were assessed. Myocardial and plasma concentrations of opioid peptides (met-enkephalin, β-endorphin, and endomorphins) were determined. KEY FINDINGS Adaptation to CNH significantly increased myocardial and plasma concentrations of opioids, potentiated their further elevation by ischemia/reperfusion, and reduced myocardial infarct size, but it did not affect the incidence of ischemic arrhythmias. The infarct size-limiting effect of CNH was abolished by OR antagonists naltrexone (non-selective), naloxone methiodide (non-selective peripherally acting), TIPP[ψ] (δ-OR), naltriben (δ2-OR), or CTAP (μ-OR), while BNTX (δ1-OR) and nor-binaltorphimine (κ-OR) had no effect. SIGNIFICANCE The results suggest that the infarct size-limiting effect afforded by adaptation to CNH is mediated by activation of peripheral δ2- and μ-ORs by elevated levels of endogenous opioid peptides.
Collapse
Affiliation(s)
- Leonid N Maslov
- Laboratory Experimental Cardiology, Research Institute for Cardiology, Siberian Branch of the Russian Academy of Medical Sciences, Tomsk 634012, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nekrasova YN, Zolotarev YA, Navolotskaya EV. Interaction of synthetic peptide octarphin with rat myocardium membranes. BIOCHEMISTRY (MOSCOW) 2011; 76:1337-41. [DOI: 10.1134/s0006297911120066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Mousa SA, Shaqura M, Schäper J, Treskatsch S, Habazettl H, Schäfer M, Abdul-Khaliq H. Developmental expression of δ-opioid receptors during maturation of the parasympathetic, sympathetic, and sensory innervations of the neonatal heart: early targets for opioid regulation of autonomic control. J Comp Neurol 2011; 519:957-71. [PMID: 21280046 DOI: 10.1002/cne.22560] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Evidence is accumulating regarding the local opioid regulation of heart function. However, the exact anatomical location of δ-opioid receptors (DORs) and expression during maturation of the autonomic and sensory innervations of the neonatal heart is unknown. Therefore, we aimed to characterize target sites for opioids in neonatal rat heart intracardiac ganglia at postnatal day (P)1, P7 and adulthood (P56-P84). Rat heart atria were subjected to reverse-transcriptase polymerase chain reaction, Western blot, radioligand binding, and immunofluorescence confocal analysis of DORs with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), and substance P (SP). Our results demonstrated DOR mRNA, protein, and binding sites that gradually increased from P1 toward adulthood. Immunofluorescence confocal microscopy showed DOR co-localized with VAChT in large-diameter principal neurons, TH-immunoreactive (IR) small intensely fluorescent (SIF) catecholaminergic cells, and CGRP- or SP-IR afferent nerve terminals arborizing within intracardiac ganglia and atrial myocardium. Co-expression of DOR with VAChT-IR neurons was observed from the first day of birth (P1). In contrast, DORs on TH-IR SIF cells or CGRP-IR fibers were not observed in intracardiac ganglia of P1, but rather in P7 rats. The density of nerve fibers in atrial myocardium co-expressing DORs with different neuronal markers increased from neonatal age toward adulthood. In summary, the enhanced DOR expression parallel to the maturation of cardiac parasympathetic, sympathetic, and sensory innervation of the heart suggests that the cardiac opioid system is an important regulator of neonatal and adult heart function through the autonomic nervous system.
Collapse
Affiliation(s)
- Shaaban A Mousa
- Department of Anesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Bolliger D, Seeberger M, Kasper J, Skarvan K, Seeberger E, Lurati Buse G, Buser P, Filipovic M. Remifentanil does not impair left ventricular systolic and diastolic function in young healthy patients. Br J Anaesth 2011; 106:573-9. [DOI: 10.1093/bja/aeq414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
15
|
Mousa SA, Shaqura M, Schäper J, Huang W, Treskatsch S, Habazettl H, Abdul-Khaliq H, Schäfer M. Identification of mu- and kappa-opioid receptors as potential targets to regulate parasympathetic, sympathetic, and sensory neurons within rat intracardiac ganglia. J Comp Neurol 2010; 518:3836-47. [PMID: 20653037 DOI: 10.1002/cne.22427] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent interest has been focused on the opioid regulation of heart performance; however, specific allocation of opioid receptors to the parasympathetic, sympathetic, and sensory innervations of the heart is scarce. Therefore, the present study aimed to characterize such specific target sites for opioids in intracardiac ganglia, which act as a complex network for the integration of the heart's neuronal in- and output. Tissue samples from rat heart atria were subjected to RT-PCR, Western blot, radioligand-binding, and double immunofluorescence confocal analysis of mu (M)- and kappa (K)-opioid receptors (ORs) with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), and substance P (SP). Our results demonstrated MOR- and KOR-specific mRNA, receptor protein, and selective membrane ligand binding. By using immunofluorescence confocal microscopy, MOR and KOR immunoreactivity were colocalized with VAChT in large-diameter parasympathetic principal neurons, with TH-immunoreactive small intensely fluorescent (SIF) cells, and on nearby TH-IR varicose terminals. In addition, MOR and KOR immunoreactivity were identified on CGRP- and SP-IR sensory neurons throughout intracardiac ganglia and atrial myocardium. Our findings show that MOR and KOR are expressed as mRNA and translated into specific receptor proteins on cardiac parasympathetic, sympathetic, and sensory neurons as potential binding sites for opioids. Thus, they may well play a role within the complex network for the integration of the heart's neuronal in- and output.
Collapse
Affiliation(s)
- Shaaban A Mousa
- Department of Anesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charite Mitte, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bolte C, Newman G, Schultz JEJ. Kappa and delta opioid receptor signaling is augmented in the failing heart. J Mol Cell Cardiol 2009; 47:493-503. [PMID: 19573531 DOI: 10.1016/j.yjmcc.2009.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/08/2009] [Accepted: 06/22/2009] [Indexed: 12/31/2022]
Abstract
The opioidergic system, an endogenous stress pathway, modulates cardiac function. Furthermore, opioid peptide and receptor expression is altered in a number of cardiac pathologies. However, whether the response of myocardial opioid receptor signaling is altered in heart failure progression is currently unknown. Elucidating possible alterations in and effects of opioidergic signaling in the failing myocardium is of critical importance as opioids are commonly used for pain management, including in patients at risk for cardiovascular disease. A hamster model of cardiomyopathy and heart failure (Bio14.6) was used to investigate cardiac opioidergic signaling in heart failure development. This study found an augmented negative inotropic and lusitropic response to administration of agonists selective for the kappa opioid receptor and delta opioid receptor in the failing heart that was mediated by a pertussis toxin-sensitive G-protein. The augmented decrease in cardiac function was manifested by increased inhibition of cAMP accumulation and the amplitude of the systolic Ca(2+) transient. Furthermore, increased depression of cardiac function and of two important second messengers, cAMP and intracellular Ca(2+), were independent of changes in cardiac opioid peptide or receptor expression. Thus, the cardiomyopathy-induced failing heart experiences increased cardiac depressant effects following opioid receptor stimulation which could exacerbate diminished cardiac function in end-stage heart failure. As cardiac function is already depressed in heart failure patients, administration of opioids could exacerbate the degree of cardiac dysfunction and worsen disease progression.
Collapse
Affiliation(s)
- Craig Bolte
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML0575, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|