1
|
Bassiouni W, Mahmud Z, Simmen T, Seubert JM, Schulz R. MMP-2 inhibition attenuates ER stress-mediated cell death during myocardial ischemia-reperfusion injury by preserving IRE1α. J Mol Cell Cardiol 2025; 198:74-88. [PMID: 39622369 DOI: 10.1016/j.yjmcc.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Endoplasmic reticulum (ER) stress is one of the major events accompanying myocardial ischemia-reperfusion (IR) injury, as hypoxia and oxidative stress disrupt protein folding in the ER. As a result, the unfolded protein response (UPR) is activated through different sensors including inositol-requiring enzyme 1α (IRE1α) and protein kinase R-like ER kinase (PERK). Failure of the UPR to reduce ER stress induces cellular dysfunction. Matrix metalloproteinase-2 (MMP-2) is a ubiquitous protease that is activated intracellularly in response to oxidative stress and partially localizes near the ER. However, its role in ER homeostasis is unknown. We hypothesized that MMP-2 is involved in the regulation of the UPR and ER stress-mediated apoptosis during IR injury. Isolated mouse hearts subjected to IR injury showed impaired recovery of post-ischemic contractile function compared to aerobically perfused controls. Ventricular extracts from IR hearts had higher levels of glucose-regulated protein-78 and protein disulfide isomerase and lower levels of IRE1α and PERK compared to aerobic controls. MMP-2 inhibitors, ARP-100 or ONO-4817, given 10 min before ischemia, improved cardiac post-ischemic recovery and preserved IRE1α level in hearts subjected to 30 min ischemia/40 min reperfusion. IR also increased the levels of CHOP and mitochondrial Bax and caspase-3 and -9 activities, indicating induction of apoptosis, all of which were attenuated by MMP-2 inhibitors, regardless of the reperfusion time. Immunoprecipitation showed an association between MMP-2 and IRE1α in aerobic and IR hearts. During myocardial IR injury MMP-2 may impair the UPR and induce apoptosis by proteolysis of IRE1α. Inhibition of MMP-2 activity protects against cardiac contractile dysfunction in part by preserving IRE1α and preventing the progression to myocardial cell death.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Zabed Mahmud
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Tyagi SC. Epigenetics of Homocystinuria, Hydrogen Sulfide, and Circadian Clock Ablation in Cardiovascular-Renal Disease. Curr Issues Mol Biol 2024; 46:13783-13797. [PMID: 39727952 PMCID: PMC11726923 DOI: 10.3390/cimb46120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep. Interestingly, HHcy is generated during the epigenetic gene turning off and turning on (i.e., imprinting) by methylation of the DNA promoter. The mitochondrial sulfur metabolism by 3-mercaptopyruvate sulfur transferase (3MST), ATP citrate lyase (ACYL), and epigenetic rhythmic methylation are regulated by folate 1-carbon metabolism (FOCM), i.e., the methionine (M)-SAM-SAH-Hcy, adenosine, and uric acid cycle. Epigenetic gene writer (DNMT), gene eraser (TET/FTO), and editor de-aminase (ADAR) regulate the rhythmic, i.e., reversible methylation/demethylation of H3K4, H3K9, H4K20, m6A, and m5C. The mitochondrial ATP citrate cycle and creatine kinase (CK) regulate chromatin transcription, maturation, and accessibility as well as muscle function. The transcription is regulated by methylation. The maturation and accessibility are controlled by acetylation. However, it is unclear whether a high fat dysbiotic diet (HFD) causes dysrhythmic expression of the gene writer, eraser, and editor, creating hyperuricemia and cardiac and renal dysfunction. We hypothesized that an HFD increases the gene writer (DNMT1) and editor (ADAR), decreases the eraser (TET/FTO), and increases uric acid to cause chronic diseases. This increases the levels of H3K4, H3K9, H4K20, m6A, and m5C. Interestingly, the DNMT1KO mitigates. Further, the DNMT1KO and ADAR inhibition attenuate HFD-induced NGAL/FGF23/TMPRSS2/MMP2, 9, 13, and uric acid levels and improve cardiac and renal remodeling. Although the novel role of nerve endings by the Piezo channels (i.e., the combination of ENaC, VDAC, TRPV, K+, and Mg2+ channels) in the interoception is suggested, interestingly, we and others have shown mechanisms independent of the nerve, by interoception, such as the cargo of the exosome in denervation models of heart failure. If proper and appropriate levels of these enzymes are available to covert homocysteine to hydrogen sulfide (H2S) during homocystinuria, then the H2S can potentially serve as a newer form of treatment for morning heart attacks and renal sulfur transsulfuration transport diseases.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Blascke de Mello MM, Neves VGDO, Parente JM, Pernomian L, de Oliveira IS, Pedersoli CA, Awata WMC, Tirapelli CR, Arantes EC, Tostes RDCA, Schulz R, Castro MMD. Sarcoplasmic reticulum calcium ATPase (SERCA) proteolysis by matrix metalloproteinase-2 contributes to vascular dysfunction in early hypertension. Eur J Pharmacol 2024; 983:176981. [PMID: 39241943 DOI: 10.1016/j.ejphar.2024.176981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
AIMS Hypertension is associated with an increased activity of matrix metalloproteinase (MMP)-2 in the vasculature, which, in turn, proteolyzes extra- and intracellular proteins that lead to vascular dysfunction. The activity of sarcoplasmic reticulum calcium ATPase (SERCA) is decreased in the aortas of hypertensive rats. Increased activity of MMP-2 proteolyzed SERCA in rat heart during ischemia and reperfusion injury, thus impairing cardiac function. Therefore, we examined whether increased activity of MMP-2 in early hypertension contributes to proteolyze SERCA in the aortas, thus leading to maladaptive vascular remodeling and dysfunction. MAIN METHODS Male Sprague-Dawley rats were submitted to two kidney-one clip (2K-1C) or Sham surgery and treated with doxycycline. Systolic blood pressure (SBP) was assessed by tail-cuff plethysmography. After 7 days, aortas were collected for zymography assays, Western blot to SERCA, ATPase activity assay, vascular reactivity, Ki-67 immunofluorescence and hematoxylin/eosin stain. KEY FINDINGS SBP was increased in 2K-1C rats and doxycycline did not reduce it, but decreased MMP-2 activity and prevented SERCA proteolysis in aortas. Cross sectional area, media to lumen ratio and Ki-67 were all increased in the aortas of hypertensive rats and doxycycline decreased Ki-67. In 2K-1C rats, arterial relaxation to acetylcholine was impaired and doxycycline ameliorated it. SIGNIFICANCE doxycycline reduced MMP-2 activity in aortas of 2K-1C rats and prevented proteolysis of SERCA and its dysfunction, thus ameliorating hypertension-induced vascular dysfunction.
Collapse
Affiliation(s)
| | | | | | - Laena Pernomian
- Department of Pharmacology, Ribeirao Preto Medical School, Brazil
| | | | | | - Wanessa Mayumi Carvalho Awata
- Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Carlos Renato Tirapelli
- Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, Brazil
| | | | - Richard Schulz
- Departments of Pediatrics and Pharmacology, University of Alberta, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Center, T6G 2S2, Edmonton, Canada
| | | |
Collapse
|
4
|
Liu Y, Huo JL, Ren K, Pan S, Liu H, Zheng Y, Chen J, Qiao Y, Yang Y, Feng Q. Mitochondria-associated endoplasmic reticulum membrane (MAM): a dark horse for diabetic cardiomyopathy treatment. Cell Death Discov 2024; 10:148. [PMID: 38509100 PMCID: PMC10954771 DOI: 10.1038/s41420-024-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), an important complication of diabetes mellitus (DM), is one of the most serious chronic heart diseases and has become a major cause of heart failure worldwide. At present, the pathogenesis of DCM is unclear, and there is still a lack of effective therapeutics. Previous studies have shown that the homeostasis of mitochondria and the endoplasmic reticulum (ER) play a core role in maintaining cardiovascular function, and structural and functional abnormalities in these organelles seriously impact the occurrence and development of various cardiovascular diseases, including DCM. The interplay between mitochondria and the ER is mediated by the mitochondria-associated ER membrane (MAM), which participates in regulating energy metabolism, calcium homeostasis, mitochondrial dynamics, autophagy, ER stress, inflammation, and other cellular processes. Recent studies have proven that MAM is closely related to the initiation and progression of DCM. In this study, we aim to summarize the recent research progress on MAM, elaborate on the key role of MAM in DCM, and discuss the potential of MAM as an important therapeutic target for DCM, thereby providing a theoretical reference for basic and clinical studies of DCM treatment.
Collapse
Affiliation(s)
- Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Jin-Ling Huo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Yifeng Zheng
- Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598, Japan
| | - Jingfang Chen
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
- Henan Province Research Center for Kidney Disease, 450052, Zhengzhou, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
5
|
Liu Y, Sun Z, Sun Q, Wang L, Wang C, Li Y, Ma C, Shi W, Zhang G, Dong Y, Zhang X, Cong B. The effects of restraint stress on ceramide metabolism disorders in the rat liver: the role of CerS6 in hepatocyte injury. Lipids Health Dis 2024; 23:68. [PMID: 38431645 PMCID: PMC10908211 DOI: 10.1186/s12944-024-02019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Stress is implicated in various pathological conditions leading to liver injury. Existing evidence suggests that excessive stress can induce mitochondrial damage in hepatocytes, yet the underlying mechanism remains unclear. Ceramide synthase 6 (CerS6)-derived C16:0 ceramide is recognised as a lipotoxic substance capable of causing mitochondrial damage. However, the role of CerS6 in stress has received insufficient attention. This study aimed to explore the involvement of CerS6 in stress-induced hepatic damage and its associated mechanisms. METHODS The rat restraint stress model and a corticosterone (CORT)-induced hepatocyte stress model were employed for in vivo and in vitro experimental analyses, respectively. Changes in mitochondrial damage and ceramide metabolism in hepatocytes induced by stress were evaluated. The impact of CORT on mitochondrial damage and ceramide metabolism in hepatocytes was assessed following CerS6 knockdown. Mitochondria were isolated using a commercial kit, and ceramides in liver tissue and hepatocytes were detected by LC-MS/MS. RESULTS In comparison to the control group, rats subjected to one week of restraint exhibited elevated serum CORT levels. The liver displayed significant signs of mitochondrial damage, accompanied by increased CerS6 and mitochondrial C16:0 ceramide, along with activation of the AMPK/p38 MAPK pathway. In vitro studies demonstrated that CORT treatment of hepatocytes resulted in mitochondrial damage, concomitant with elevated CerS6 and mitochondrial C16:0 ceramide. Furthermore, CORT induced sequential phosphorylation of AMPK and p38 MAPK proteins, and inhibition of the p38 MAPK pathway using SB203580 mitigated the CORT-induced elevation in CerS6 protein. Knocking down CerS6 in hepatocytes inhibited both the increase in C16:0 ceramide and the release of mitochondrial cytochrome c induced by CORT. CONCLUSIONS CerS6-associated C16:0 ceramide plays a mediating role in stress-induced mitochondrial damage in hepatocytes. The molecular mechanism is linked to CORT-induced activation of the AMPK/p38 MAPK pathway, leading to upregulated CerS6.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
- Department of Forensic Medicine, College of Medicine, Nantong University, Nantong, 226000, China
| | - Zhaoling Sun
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Qiuli Sun
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Li Wang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Chuan Wang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Yingmin Li
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Chunling Ma
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Weibo Shi
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Guozhong Zhang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
- Hebei Province Laboratory of Experimental Animal, Shijiazhuang, 050017, China
| | - Yiming Dong
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China
| | - Xiaojing Zhang
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China.
| | - Bin Cong
- Department of Forensic Medicine, Hebei Medical University, No. 361 Zhong Shan Rd, Shijiazhuang, 050017, Hebei, China.
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, 571199, China.
| |
Collapse
|
6
|
Bassiouni W, Valencia R, Mahmud Z, Seubert JM, Schulz R. Matrix metalloproteinase-2 proteolyzes mitofusin-2 and impairs mitochondrial function during myocardial ischemia-reperfusion injury. Basic Res Cardiol 2023; 118:29. [PMID: 37495895 DOI: 10.1007/s00395-023-00999-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
During myocardial ischemia and reperfusion (IR) injury matrix metalloproteinase-2 (MMP-2) is rapidly activated in response to oxidative stress. MMP-2 is a multifunctional protease that cleaves both extracellular and intracellular proteins. Oxidative stress also impairs mitochondrial function which is regulated by different proteins, including mitofusin-2 (Mfn-2), which is lost in IR injury. Oxidative stress and mitochondrial dysfunction trigger the NLRP3 inflammasome and the innate immune response which invokes the de novo expression of an N-terminal truncated isoform of MMP-2 (NTT-MMP-2) at or near mitochondria. We hypothesized that MMP-2 proteolyzes Mfn-2 during myocardial IR injury, impairing mitochondrial function and enhancing the inflammasome response. Isolated hearts from mice subjected to IR injury (30 min ischemia/40 min reperfusion) showed a significant reduction in left ventricular developed pressure (LVDP) compared to aerobically perfused hearts. IR injury increased MMP-2 activity as observed by gelatin zymography and increased degradation of troponin I, an intracellular MMP-2 target. MMP-2 preferring inhibitors, ARP-100 or ONO-4817, improved post-ischemic recovery of LVDP compared to vehicle perfused IR hearts. In muscle fibers isolated from IR hearts the rates of mitochondrial oxygen consumption and ATP production were impaired compared to those from aerobic hearts, whereas ARP-100 or ONO-4817 attenuated these reductions. IR hearts showed higher levels of NLRP3, cleaved caspase-1 and interleukin-1β in the cytosolic fraction, while the mitochondria-enriched fraction showed reduced levels of Mfn-2, compared to aerobic hearts. ARP-100 or ONO-4817 attenuated these changes. Co-immunoprecipitation showed that MMP-2 is associated with Mfn-2 in aerobic and IR hearts. ARP-100 or ONO-4817 also reduced infarct size and cell death in hearts subjected to 45 min ischemia/120 min reperfusion. Following myocardial IR injury, impaired contractile function and mitochondrial respiration and elevated inflammasome response could be attributed, at least in part, to MMP-2 activation, which targets and cleaves mitochondrial Mfn-2. Inhibition of MMP-2 activity protects against cardiac contractile dysfunction in IR injury in part by preserving Mfn-2 and suppressing inflammation.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zabed Mahmud
- Department of Pediatrics, Faculty of Medicine and Dentistry, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, Faculty of Medicine and Dentistry, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
7
|
Ponnalagu D, Hamilton S, Sanghvi S, Antelo D, Schwieterman N, Hansra I, Xu X, Gao E, Edwards JC, Bansal SS, Wold LE, Terentyev D, Janssen PML, Hund TJ, Khan M, Kohut AR, Koch WJ, Singh H. CLIC4 localizes to mitochondrial-associated membranes and mediates cardioprotection. SCIENCE ADVANCES 2022; 8:eabo1244. [PMID: 36269835 PMCID: PMC9586484 DOI: 10.1126/sciadv.abo1244] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/25/2022] [Indexed: 06/12/2023]
Abstract
Mitochondrial-associated membranes (MAMs) are known to modulate organellar and cellular functions and can subsequently affect pathophysiology including myocardial ischemia-reperfusion (IR) injury. Thus, identifying molecular targets in MAMs that regulate the outcome of IR injury will hold a key to efficient therapeutics. Here, we found chloride intracellular channel protein (CLIC4) presence in MAMs of cardiomyocytes and demonstrate its role in modulating ER and mitochondrial calcium homeostasis under physiological and pathological conditions. In a murine model, loss of CLIC4 increased myocardial infarction and substantially reduced cardiac function after IR injury. CLIC4 null cardiomyocytes showed increased apoptosis and mitochondrial dysfunction upon hypoxia-reoxygenation injury in comparison to wild-type cardiomyocytes. Overall, our results indicate that MAM-CLIC4 is a key mediator of cellular response to IR injury and therefore may have a potential implication on other pathophysiological processes.
Collapse
Affiliation(s)
- Devasena Ponnalagu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Shridhar Sanghvi
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Diego Antelo
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Neill Schwieterman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Inderjot Hansra
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Xianyao Xu
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Departments of Biomedical Engineering and Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Erhe Gao
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - John C. Edwards
- Nephrology Division, Department of Internal Medicine, St. Louis University, St. Louis, MO, USA
| | - Shyam S. Bansal
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Loren E. Wold
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Thomas J. Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Departments of Biomedical Engineering and Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mahmood Khan
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Department of Emergency Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Andrew R. Kohut
- Penn Heart and Vascular Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Novel Roles of MT1-MMP and MMP-2: Beyond the Extracellular Milieu. Int J Mol Sci 2022; 23:ijms23179513. [PMID: 36076910 PMCID: PMC9455801 DOI: 10.3390/ijms23179513] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are critical enzymes involved in a variety of cellular processes. MMPs are well known for their ability to degrade the extracellular matrix (ECM) and their extracellular role in cell migration. Recently, more research has been conducted on investigating novel subcellular localizations of MMPs and their intracellular roles at their respective locations. In this review article, we focus on the subcellular localization and novel intracellular roles of two closely related MMPs: membrane-type-1 matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase-2 (MMP-2). Although MT1-MMP is commonly known to localize on the cell surface, the protease also localizes to the cytoplasm, caveolae, Golgi, cytoskeleton, centrosome, and nucleus. At these subcellular locations, MT1-MMP functions in cell migration, macrophage metabolism, invadopodia development, spindle formation and gene expression, respectively. Similar to MT1-MMP, MMP-2 localizes to the caveolae, mitochondria, cytoskeleton, nucleus and nucleolus and functions in calcium regulation, contractile dysfunction, gene expression and ribosomal RNA transcription. Our particular interest lies in the roles MMP-2 and MT1-MMP serve within the nucleus, as they may provide critical insights into cancer epigenetics and tumor migration and invasion. We suggest that targeting nuclear MT1-MMP or MMP-2 to reduce or halt cell proliferation and migration may lead to the development of new therapies for cancer and other diseases.
Collapse
|
9
|
Bassiouni W, Seubert JM, Schulz R. Staurosporine-induced cleavage of apoptosis-inducing factor in human fibrosarcoma cells is independent of matrix metalloproteinase-2. Can J Physiol Pharmacol 2021; 100:184-191. [PMID: 34597523 DOI: 10.1139/cjpp-2021-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein which mediates staurosporine (STS)-induced cell death. AIF cleavage and translocation to the cytosol is thought to be calpain-1-dependent as calpain inhibitors reduced AIF proteolysis. However, many calpain inhibitors also inhibit matrix metalloproteinase-2 (MMP-2) activity, an intracellular and extracellular protease implicated in apoptosis. Here we investigated whether MMP-2 activity is affected in response to STS and if contributes to AIF cleavage. Human fibrosarcoma HT1080 cells were treated with STS (0.1 µM, 0.25-24 hr). A significant increase in cellular MMP-2 activity was seen by gelatin zymography after 6 hr STS treatment, prior to induction of cell necrosis. Western blot showed the time-dependent appearance of two forms of AIF (~60 and 45 kDa) in the cytosol which were significantly increased at 6 hr. Surprisingly, knocking down MMP-2 or inhibiting its activity with MMP-2 preferring inhibitors ARP-100 or ONO-4817, or inhibiting calpain activity with ALLM or PD150606, did not prevent the STS-induced increase in cytosolic AIF. These results show that although STS rapidly increases MMP-2 activity, the cytosolic release of AIF may be independent of the proteolytic activities of MMP-2 or calpain.
Collapse
Affiliation(s)
- Wesam Bassiouni
- University of Alberta Faculty of Medicine & Dentistry, 12357, Department of Pharmacology, Edmonton, Alberta, Canada;
| | - John M Seubert
- University of Alberta, Faculty of Pharmacy/Pharmaceutical Sciences, 3-142D Katz Group Centre for Pharmacy & Health Research, 11361 - 87 Ave., 2020M Katz Group Centre for Pharmacy and Health Research, Edmonton, Alberta, Canada, T6G 2E1;
| | - Richard Schulz
- University of Alberta, Pediatrics & Pharmacology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, 462 HMRC, Edmonton, Alberta, Canada, T6G 2S2;
| |
Collapse
|
10
|
Ali MAM, Garcia-Vilas JA, Cromwell CR, Hubbard BP, Hendzel MJ, Schulz R. Matrix metalloproteinase-2 mediates ribosomal RNA transcription by cleaving nucleolar histones. FEBS J 2021; 288:6736-6751. [PMID: 34101354 DOI: 10.1111/febs.16061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/09/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Cell proliferation and survival require continuous ribosome biogenesis and protein synthesis. Genes encoding ribosomal RNA are physically located in a specialized substructure within the nucleus known as the nucleolus, which has a central role in the biogenesis of ribosomes. Matrix metalloproteinase-2 was previously detected in the nucleus, however, its role there is elusive. Herein we report that matrix metalloproteinase-2 resides within the nucleolus to regulate ribosomal RNA transcription. Matrix metalloproteinase-2 is enriched at the promoter region of ribosomal RNA gene repeats, and its inhibition downregulates preribosomal RNA transcription. The N-terminal tail of histone H3 is clipped by matrix metalloproteinase-2 in the nucleolus, which is associated with increased ribosomal RNA transcription. Knocking down/out matrix metalloproteinase-2, or inhibiting its activity, prevents histone H3 cleavage and reduces both ribosomal RNA transcription and cell proliferation. In addition to the known extracellular roles of matrix metalloproteinase-2 in tumor growth, our data reveal an epigenetic mechanism whereby intranucleolar matrix metalloproteinase-2 regulates cell proliferation through histone clipping and facilitation of ribosomal RNA transcription.
Collapse
Affiliation(s)
- Mohammad A M Ali
- Department of Pediatrics, Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, Binghamton, NY, USA
| | - Javier A Garcia-Vilas
- Department of Pediatrics, Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Christopher R Cromwell
- Department of Pharmacology, Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Basil P Hubbard
- Department of Pharmacology, Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Michael J Hendzel
- Department of Oncology, Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pediatrics, Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada.,Department of Pharmacology, Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Gliozzi M, Scarano F, Musolino V, Carresi C, Scarcella A, Nucera S, Scicchitano M, Ruga S, Bosco F, Maiuolo J, Macrì R, Zito MC, Oppedisano F, Guarnieri L, Mollace R, Palma E, Muscoli C, Mollace V. Paradoxical effect of fat diet in matrix metalloproteinases induced mitochondrial dysfunction in diabetic cardiomyopathy. J Cardiovasc Med (Hagerstown) 2021; 22:268-278. [PMID: 33633042 DOI: 10.2459/jcm.0000000000001046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Diabetic cardiomyopathy represents the main cause of death among diabetic people. Despite this evidence, the molecular mechanisms triggered by impaired glucose and lipid metabolism inducing heart damage remain unclear. The aim of our study was to investigate the effect of altered metabolism on the early stages of cardiac injury in experimental diabetes. METHODS For this purpose, rats were fed a normocaloric diet (NPD) or a high fat diet (HFD) for up to 12 weeks. After the fourth week, streptozocin (35 mg/kg) was administered in a subgroup of both NPD and HFD rats to induce diabetes. Cardiac function was analysed by echocardiography. Matrix metalloproteinases (MMPs) activity and intracellular localization were assessed through zymography and immunofluorescence, whereas apoptotic and oxidative markers by immunohistochemistry and western blot. RESULTS Hyperglycaemia or hyperlipidaemia reduced ejection fraction and fractional shortening as compared with control. Unexpectedly, cardiac dysfunction was less marked in diabetic rats fed a hyperlipidaemic diet, suggesting an adaptive response of the myocardium to hyperglycaemia-induced injury. This response was characterized by the inhibition of N-terminal truncated-MMP-2 translocation from endoplasmic reticulum into mitochondria and by superoxide anion overproduction observed in cardiomyocytes under hyperglycaemia. CONCLUSION Overall, these findings suggest novel therapeutic targets aimed to counteract mitochondrial dysfunction in the onset of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Antonino Scarcella
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| |
Collapse
|
12
|
Hadzic S, Wu CY, Gredic M, Kojonazarov B, Pak O, Kraut S, Sommer N, Kosanovic D, Grimminger F, Schermuly RT, Seeger W, Bellusci S, Weissmann N. The effect of long-term doxycycline treatment in a mouse model of cigarette smoke-induced emphysema and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2021; 320:L903-L915. [PMID: 33760647 DOI: 10.1152/ajplung.00048.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of death and a still incurable disease, comprising emphysema and chronic bronchitis. In addition to airflow limitation, patients with COPD can suffer from pulmonary hypertension (PH). Doxycycline, an antibiotic from the tetracycline family, in addition to its pronounced antimicrobial activity, acts as a matrix metalloproteinase (MMP) inhibitor and has anti-inflammatory properties. Furthermore, doxycycline treatment exhibited a beneficial effect in several preclinical cardiovascular disease models. In preclinical research, doxycycline is frequently employed for gene expression modulation in Tet-On/Tet-Off transgenic animal models. Therefore, it is crucial to know whether doxycycline treatment in Tet-On/Tet-Off systems has effects independent of gene expression modulation by such systems. Against this background, we assessed the possible curative effects of long-term doxycycline administration in a mouse model of chronic CS exposure. Animals were exposed to cigarette smoke (CS) for 8 mo and then subsequently treated with doxycycline for additional 3 mo in room air conditions. Doxycycline decreased the expression of MMPs and general pro-inflammatory markers in the lungs from CS-exposed mice. This downregulation was, however, insufficient to ameliorate CS-induced emphysema or PH. Tet-On/Tet-Off induction by doxycycline in such models is a feasible genetic approach to study curative effects at least in established CS-induced emphysema and PH. However, we report several parameters that are influenced by doxycycline and use of a Tet-On/Tet-Off system when evaluating those parameters should be interpreted with caution.
Collapse
Affiliation(s)
- Stefan Hadzic
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Cheng-Yu Wu
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Marija Gredic
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Baktybek Kojonazarov
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.,Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Simone Kraut
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Natascha Sommer
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Djuro Kosanovic
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Friedrich Grimminger
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Ralph T Schermuly
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Werner Seeger
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany.,Institute for Lung Health (ILH), Justus-Liebig-University, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Saverio Bellusci
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Cardiopulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
13
|
Hua D, Tang L, Wang W, Tang S, Yu L, Zhou X, Wang Q, Sun C, Shi C, Luo W, Jiang Z, Li H, Yu S. Improved Antiglioblastoma Activity and BBB Permeability by Conjugation of Paclitaxel to a Cell-Penetrative MMP-2-Cleavable Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001960. [PMID: 33552853 PMCID: PMC7856885 DOI: 10.1002/advs.202001960] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Indexed: 05/25/2023]
Abstract
In order to solve the problems of receptor promiscuity and poor blood-brain barrier (BBB) penetration in the treatment of glioblastomas (GBM), a novel dual-functional nanocomplex drug delivery system is developed based on the strategy of peptide-drug conjugates. In this study, SynB3-PVGLIG-PTX is designed and screened out by matrix metalloproteinase-2 (MMP-2), to which it exhibits the best affinity. The MMP-2-sensitive peptide (PVGLIG) and a cell-penetration peptide (SynB3) are combined to form a dual-functional peptide. Moreover, as a drug-peptide nanocomplex, SynB3-PVGLIG-PTX exhibited a high potential to form an aggregation with good solubility that can release paclitaxel (PTX) through the cleavage of MMP-2. From a functional perspective, it is found that SynB3-PVGLIG-PTX can specifically inhibit the proliferation, migration, and invasion of GBM cells in vitro in the presence of MMP-2, in contrast to that observed in MMP-2 siRNA transfected cells. Further investigation in vivo shows that SynB3-PVGLIG-PTX easily enters the brain of U87MG xenograft nude mice and can generate a better suppressive effect on GBM through a controlled release of PTX from SynB3-PVGLIG-PTX compared with PTX and temozolomide. Thus, it is proposed that SynB3-PVGLIG-PTX can be used as a novel drug-loading delivery system to treat GBM due to its specificity and BBB permeability.
Collapse
Affiliation(s)
- Dan Hua
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Lida Tang
- Tianjin Institute of Pharmaceutical ResearchTianjin300301China
| | - Weiting Wang
- Tianjin Institute of Pharmaceutical ResearchTianjin300301China
| | - Shengan Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)School of PharmacyTianjin Medical UniversityTianjin300070China
| | - Lin Yu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences of Tianjin Medical UniversityTianjin300070China
| | - Xuexia Zhou
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Qian Wang
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Cuiyun Sun
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Cuijuan Shi
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Wenjun Luo
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Zhendong Jiang
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Huining Li
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Shizhu Yu
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| |
Collapse
|
14
|
Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J 2021; 288:7162-7182. [PMID: 33405316 DOI: 10.1111/febs.15701] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that were first discovered as proteases, which target and cleave extracellular proteins. During the past 20 years, however, intracellular roles of MMPs were uncovered and research on this new aspect of their biology expanded. MMP-2 is the first of this protease family to be reported to play a crucial intracellular role where it cleaves several sarcomeric proteins inside cardiac myocytes during oxidative stress-induced injury. Beyond MMP-2, currently at least eleven other MMPs are known to function intracellularly including MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-23 and MMP-26. These intracellular MMPs are localized to different compartments inside the cell including the cytosol, sarcomere, mitochondria, and the nucleus. Intracellular MMPs contribute to the pathogenesis of various diseases. Cardiovascular renal disorders, inflammation, and malignancy are some examples. They also exert antiviral and bactericidal effects. Interestingly, MMPs can act intracellularly through both protease-dependent and protease-independent mechanisms. In this review, we will highlight the intracellular mechanisms of MMPs activation, their numerous subcellular locales, substrates, and roles in different pathological conditions. We will also discuss the future direction of MMP research and the necessity to exploit the knowledge of their intracellular targets and actions for the design of targeted inhibitors.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mohammad A M Ali
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, State University of New York-Binghamton, NY, USA
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Chan BYH, Roczkowsky A, Cho WJ, Poirier M, Sergi C, Keschrumrus V, Churko JM, Granzier H, Schulz R. MMP inhibitors attenuate doxorubicin cardiotoxicity by preventing intracellular and extracellular matrix remodelling. Cardiovasc Res 2021; 117:188-200. [PMID: 31995179 PMCID: PMC7797218 DOI: 10.1093/cvr/cvaa017] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS Heart failure is a major complication in cancer treatment due to the cardiotoxic effects of anticancer drugs, especially from the anthracyclines such as doxorubicin (DXR). DXR enhances oxidative stress and stimulates matrix metalloproteinase-2 (MMP-2) in cardiomyocytes. We investigated whether MMP inhibitors protect against DXR cardiotoxicity given the role of MMP-2 in proteolyzing sarcomeric proteins in the heart and remodelling the extracellular matrix. METHODS AND RESULTS Eight-week-old male C57BL/6J mice were treated with DXR weekly with or without MMP inhibitors doxycycline or ONO-4817 by daily oral gavage for 4 weeks. Echocardiography was used to determine cardiac function and left ventricular remodelling before and after treatment. MMP inhibitors ameliorated DXR-induced systolic and diastolic dysfunction by reducing the loss in left ventricular ejection fraction, fractional shortening, and E'/A'. MMP inhibitors attenuated adverse left ventricular remodelling, reduced cardiomyocyte dropout, and prevented myocardial fibrosis. DXR increased myocardial MMP-2 activity in part also by upregulating N-terminal truncated MMP-2. Immunogold transmission electron microscopy showed that DXR elevated MMP-2 levels within the sarcomere and mitochondria which were associated with myofilament lysis, mitochondrial degeneration, and T-tubule distention. DXR-induced myofilament lysis was associated with increased titin proteolysis in the heart which was prevented by ONO-4817. DXR also increased the level and activity of MMP-2 in human embryonic stem cell-derived cardiomyocytes, which was reduced by ONO-4817. CONCLUSIONS MMP-2 activation is an early event in DXR cardiotoxicity and contributes to myofilament lysis by proteolyzing cardiac titin. Two orally available MMP inhibitors ameliorated DXR cardiotoxicity by attenuating intracellular and extracellular matrix remodelling, suggesting their use may be a potential prophylactic strategy to prevent heart injury during chemotherapy.
Collapse
Affiliation(s)
- Brandon Y H Chan
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Andrej Roczkowsky
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Woo Jung Cho
- Faculty of Medicine and Dentistry Cell Imaging Centre, University of Alberta, Edmonton, AB, Canada
| | - Mathieu Poirier
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Vic Keschrumrus
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jared M Churko
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Richard Schulz
- Department of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
16
|
Moser M, Schmid S, Sawicka K, Banerjee T, McNair E, Sawicka J, Bil-Lula I, Sawicki G. Pre-arrest doxycycline protects donation after circulatory death kidneys. Sci Rep 2020; 10:22272. [PMID: 33335249 PMCID: PMC7746739 DOI: 10.1038/s41598-020-79440-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Kidney injury during donation after circulatory determination of death (DCDD) includes warm ischemic (WI) injury from around the time of asystole, and cold ischemic (CI) injury during cold preservation. We have previously shown that Matrix Metalloproteinases (MMPs) are involved in CI injury and that Doxycycline (Doxy), an antibiotic and known MMP inhibitor, protects the transplant kidney during CI. The purpose of our study was to determine if Doxy given before asystole can also prevent injury during WI. A rat model of DCDD was used, including Control, Preemptive Doxy (45 mg/kg iv), and Preemptive and Perfusion (100 microM) Doxy groups. Thirty minutes after asystole, both kidneys were removed. The left kidney was perfused at 4 °C for 22 h, whereas the right was used to establish the degree of warm ischemic injury prior to cold preservation. MMP-2 in the perfusate was significantly reduced in both treatment groups [Control 43.7 ± 7.2 arbitrary units, versus Preemptive Doxy group 23.2 ± 5.5 (p = 0.03), and 'Preemptive and Perfusion' group 18.0 ± 5.6 (p = 0.02)]. Reductions in NGAL, LDH, and MMP-9 were also seen. Electron microscopy showed a marked reduction in mitochondrial injury scores in the treatment groups. Pre-arrest Doxy was associated with a reduction in injury markers and morphologic changes. Doxy may be a simple and safe means of protecting transplant kidneys from both WI and CI.
Collapse
Affiliation(s)
- Michael Moser
- Department of Surgery, University of Saskatchewan, St. Paul's Hospital, 1702 - 20th Street West, Saskatoon, SK, S7M 0Z9, Canada. .,Saskatchewan Renal Transplant Program, Saskatoon, SK, Canada.
| | - Sarah Schmid
- Department of Surgery, University of Saskatchewan, St. Paul's Hospital, 1702 - 20th Street West, Saskatoon, SK, S7M 0Z9, Canada
| | | | - Tamalina Banerjee
- Department of Pathology and Lab Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Erick McNair
- Department of Pathology and Lab Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jolanta Sawicka
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Iwona Bil-Lula
- Department of Clinical Chemistry, Medical University of Wroclaw, Wrocław, Poland
| | - Grzegorz Sawicki
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada. .,Department of Clinical Chemistry, Medical University of Wroclaw, Wrocław, Poland.
| |
Collapse
|
17
|
Roczkowsky A, Chan BYH, Lee TYT, Mahmud Z, Hartley B, Julien O, Armanious G, Young HS, Schulz R. Myocardial MMP-2 contributes to SERCA2a proteolysis during cardiac ischaemia-reperfusion injury. Cardiovasc Res 2020; 116:1021-1031. [PMID: 31373602 DOI: 10.1093/cvr/cvz207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/05/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023] Open
Abstract
AIMS Matrix metalloproteinase-2 (MMP-2) is a zinc-dependent protease which contributes to cardiac contractile dysfunction when activated during myocardial ischaemia-reperfusion (IR) injury. MMP-2 is localized to several subcellular sites inside cardiac myocytes; however, its role in the sarcoplasmic reticulum (SR) is unknown. The Ca2+ ATPase SERCA2a, which pumps cytosolic Ca2+ into the SR to facilitate muscle relaxation, is degraded in cardiac IR injury; however, the protease responsible for this is unclear. We hypothesized that MMP-2 contributes to cardiac contractile dysfunction by proteolyzing SERCA2a, thereby impairing its activity in IR injury. METHODS AND RESULTS Isolated rat hearts were subjected to IR injury in the presence or absence of the selective MMP inhibitor ARP-100, or perfused aerobically as a control. Inhibition of MMP activity with ARP-100 significantly improved the recovery of cardiac mechanical function and prevented the increase of a 70 kDa SERCA2a degradation fragment following IR injury, although 110 kDa SERCA2a and phospholamban levels appeared unchanged. Electrophoresis of IR heart samples followed by LC-MS/MS confirmed the presence of a SERCA2a fragment of ∼70 kDa. MMP-2 activity co-purified with SR-enriched microsomes prepared from the isolated rat hearts. Endogenous SERCA2a in SR-enriched microsomes was proteolyzed to ∼70 kDa products when incubated in vitro with exogenous MMP-2. MMP-2 also cleaved purified porcine SERCA2a in vitro. SERCA activity in SR-enriched microsomes was decreased by IR injury; however, this was not prevented with ARP-100. CONCLUSION This study shows that MMP-2 activity is found in SR-enriched microsomes from heart muscle and that SERCA2a is proteolyzed by MMP-2. The cardioprotective actions of MMP inhibition in myocardial IR injury may include the prevention of SERCA2a degradation.
Collapse
Affiliation(s)
- Andrej Roczkowsky
- Department of Pediatrics, University of Alberta, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, Edmonton, AB T6G 2S2, Canada.,Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Brandon Y H Chan
- Department of Pediatrics, University of Alberta, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, Edmonton, AB T6G 2S2, Canada.,Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Tim Y T Lee
- Department of Pediatrics, University of Alberta, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, Edmonton, AB T6G 2S2, Canada.,Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Bridgette Hartley
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Gareth Armanious
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pediatrics, University of Alberta, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, Edmonton, AB T6G 2S2, Canada.,Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Moser MAJ, Sawicka K, Sawicka J, Franczak A, Cohen A, Bil-Lula I, Sawicki G. Protection of the transplant kidney during cold perfusion with doxycycline: proteomic analysis in a rat model. Proteome Sci 2020; 18:3. [PMID: 32336955 PMCID: PMC7171734 DOI: 10.1186/s12953-020-00159-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/31/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND It has been previously shown that doxycycline (Doxy) protects the kidney from preservation injury by inhibition of matrix metalloproteinase. However, the precise molecular mechanism involved in this protection from injury is not known. We used a pharmaco-proteomics approach to identify potential molecular targets associated with kidney preservation injury. METHODS Rat kidneys were cold perfused with or without doxycycline (Doxy) for 22 h. Kidneys perfusates were analyzed for the presence of injury markers such as lactate dehydrogenase (LDH), and neutrophil-gelatinase associated lipocalin (NGAL). Proteins extracted from kidney tissue were analyzed by 2-dimensional gel electrophoresis. Proteins of interest were identified by mass spectrometry. RESULTS Triosephosphate isomerase, PGM, dihydropteridine reductase-2, pyridine nucleotide-disulfide oxidoreductase, phosphotriesterase-related protein, and aminoacylase-1A were not affected by cold perfusion. Perfusion with Doxy increased their levels. N(G),N(G)-dimethylarginine dimethylaminohydrolase and phosphoglycerate kinase 1 were decreased after cold perfusion. Perfusion with Doxy led to an increase in their levels. CONCLUSIONS This study revealed specific metabolic enzymes involved in preservation injury and in the mechanism whereby Doxy protects the kidney against injury during cold perfusion.
Collapse
Affiliation(s)
- Michael A. J. Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan Canada
| | - Katherine Sawicka
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan Canada
| | - Jolanta Sawicka
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5 Canada
| | - Aleksandra Franczak
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5 Canada
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Alejandro Cohen
- Proteomics and Mass Spectrometry Core Facility. Life Sciences Research Institute, Dalhousie University, Halifax, Nova Scotia Canada
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Sawicki
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5 Canada
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
19
|
Landry N, Kavosh MS, Filomeno KL, Rattan SG, Czubryt MP, Dixon IMC. Ski drives an acute increase in MMP-9 gene expression and release in primary cardiac myofibroblasts. Physiol Rep 2019; 6:e13897. [PMID: 30488595 PMCID: PMC6429976 DOI: 10.14814/phy2.13897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Many etiologies of heart disease are characterized by expansion and remodeling of the cardiac extracellular matrix (ECM or matrix) which results in cardiac fibrosis. Cardiac fibrosis is mediated in cardiac fibroblasts by TGF‐β1/R‐Smad2/3 signaling. Matrix component proteins are synthesized by activated resident cardiac fibroblasts known as myofibroblasts (MFB). These events are causal to heart failure with diastolic dysfunction and reduced cardiac filling. We have shown that exogenous Ski, a TGF‐β1/Smad repressor, localizes in the cellular nucleus and deactivates cardiac myofibroblasts. This deactivation is associated with reduction of myofibroblast marker protein expression in vitro, including alpha smooth muscle actin (α‐SMA) and extracellular domain‐A (ED‐A) fibronectin. We hypothesize that Ski also acutely regulates MMP expression in cardiac MFB. While acute Ski overexpression in cardiac MFB in vitro was not associated with any change in intracellular MMP‐9 protein expression versus LacZ‐treated controls,exogenous Ski caused elevated MMP‐9 mRNA expression and increased MMP‐9 protein secretion versus controls. Zymographic analysis revealed increased MMP‐9‐specific gelatinase activity in myofibroblasts overexpressing Ski versus controls. Moreover, Ski expression was attended by reduced paxillin and focal adhesion kinase phosphorylation (FAK ‐ Tyr 397) versus controls. As myofibroblasts are hypersecretory and less motile relative to fibroblasts, Ski's reduction of paxillin and FAK expression may reflect the relative deactivation of myofibroblasts. Thus, in addition to its known antifibrotic effects, Ski overexpression elevates expression and extracellular secretion/release of MMP‐9 and thus may facilitate internal cytoskeletal remodeling as well as extracellular ECM components. Further, as acute TGF‐β1 treatment of primary cardiac MFB is known to cause rapid translocation of Ski to the nucleus, our data support an autoregulatory role for Ski in mediating cardiac ECM accumulation.
Collapse
Affiliation(s)
- Natalie Landry
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Morvarid S Kavosh
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Krista L Filomeno
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sunil G Rattan
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Ren X, Lamb GD, Murphy RM. Distribution and activation of matrix metalloproteinase-2 in skeletal muscle fibers. Am J Physiol Cell Physiol 2019; 317:C613-C625. [PMID: 31241984 DOI: 10.1152/ajpcell.00113.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A substantial intracellular localization of matrix metalloproteinase 2 (MMP2) has been reported in cardiomyocytes, where it plays a role in the degradation of the contractile apparatus following ischemia-reperfusion injury. Whether MMP2 may have a similar function in skeletal muscle is unknown. This study determined that the absolute amount of MMP2 is similar in rat skeletal and cardiac muscle and human muscle (~10-18 nmol/kg muscle wet wt) but is ~50- to 100-fold less than the amount of calpain-1. We compared mechanically skinned muscle fibers, where the extracellular matrix (ECM) is completely removed, with intact fiber segments and found that ~30% of total MMP2 was associated with the ECM, whereas ~70% was inside the muscle fibers. Concordant with whole muscle fractionation, further separation of skinned fiber segments into cytosolic, membranous, and cytoskeletal and nuclear compartments indicated that ~57% of the intracellular MMP2 was freely diffusible, ~6% was associated with the membrane, and ~37% was bound within the fiber. Under native zymography conditions, only 10% of MMP2 became active upon prolonged (17 h) exposure to 20 μM Ca2+, a concentration that would fully activate calpain-1 in seconds to minutes; full activation of MMP2 would require ~1 mM Ca2+. Given the prevalence of intracellular MMP2 in skeletal muscle, it is necessary to investigate its function using physiological conditions, including isolation of any potential functional relevance of MMP2 from that of the abundant protease calpain-1.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Chan BYH, Roczkowsky A, Moser N, Poirier M, Hughes BG, Ilarraza R, Schulz R. Doxorubicin induces de novo expression of N-terminal-truncated matrix metalloproteinase-2 in cardiac myocytes. Can J Physiol Pharmacol 2018; 96:1238-1245. [PMID: 30308129 DOI: 10.1139/cjpp-2018-0275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Anthracyclines, such as doxorubicin, are commonly prescribed antineoplastic agents that cause irreversible cardiac injury. Doxorubicin cardiotoxicity is initiated by increased oxidative stress in cardiomyocytes. Oxidative stress enhances intracellular matrix metalloproteinase-2 (MMP-2) by direct activation of its full-length isoform and (or) de novo expression of an N-terminal-truncated isoform (NTT-MMP-2). As MMP-2 is localized to the sarcomere, we tested whether doxorubicin activates intracellular MMP-2 in neonatal rat ventricular myocytes (NRVM) and whether it thereby proteolyzes two of its identified sarcomeric targets, α-actinin and troponin I. Doxorubicin increased oxidative stress within 12 h as indicated by reduced aconitase activity. This was associated with a twofold increase in MMP-2 protein levels and threefold higher gelatinolytic activity. MMP inhibitors ARP-100 or ONO-4817 (1 μM) prevented doxorubicin-induced MMP-2 activation. Doxorubicin also increased the levels and activity of MMP-2 secreted into the conditioned media. Doxorubicin upregulated the mRNA expression of both full-length MMP-2 and NTT-MMP-2. α-Actinin levels remained unchanged, whereas doxorubicin downregulated troponin I in an MMP-independent manner. Doxorubicin induces oxidative stress and stimulates a robust increase in MMP-2 expression and activity in NRVM, including NTT-MMP-2. The sarcomeric proteins α-actinin and troponin I are, however, not targeted by MMP-2 under these conditions.
Collapse
Affiliation(s)
- Brandon Y H Chan
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Andrej Roczkowsky
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Nils Moser
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Mathieu Poirier
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Bryan G Hughes
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Ramses Ilarraza
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Departments of Pediatrics and Pharmacology, 462 HMRC, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
22
|
Koldysheva EV, Klinnikova MG, Nikityuk DB, Ivleva EK, Listvyagova NA, Lushnikova EL. Role of Matrix Metalloproteinase-2 in the Development of Cyclophosphamide-Induced Cardiomyopathy. Bull Exp Biol Med 2018; 164:483-487. [PMID: 29504102 DOI: 10.1007/s10517-018-4017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 11/26/2022]
Abstract
Immunohistochemical assay was employed to determine localization of MMP-2 in cardiomyocytes of WAG rats and changes in MMP-2 expression during modeled cardiomyopathy induced by single intraperitoneal injection of cyclophosphamide (125 mg/kg) alone or in combination with preventive intraperitoneal administration of an equal dose of asparcam-L (potassium-magnesium asparaginate) 30 min prior to the cytostatic. In the myocardium of control and experimental rats, MMP-2 was mostly located in cardiomyocyte nuclei. During the development of cyclophosphamide-induced cardiomyopathy (in 3 days after injection), the index of MMP-2-positive cardiomyocyte nuclei increased by 76%. In contrast to control hearts, MMP-2 was also expressed in the cardiomyocyte sarcoplasm. Preventive injection of asparcam-L moderated the cardiotoxic effect of cyclophosphamide, which manifested in less pronounced increase in the volume density of cardiomyocytes with lytic changes (by 42%) and index of MMP-2+ cardiomyocyte nuclei (by 23%) in comparison with the rats exposed to cyclophosphamide alone.
Collapse
Affiliation(s)
- E V Koldysheva
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia.
| | - M G Klinnikova
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia
| | - D B Nikityuk
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia
| | - E K Ivleva
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia
| | - N A Listvyagova
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia
| | - E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Novosibirsk, Russia
| |
Collapse
|
23
|
Meng L, Uzui H, Guo H, Tada H. Role of SGLT1 in high glucose level-induced MMP-2 expression in human cardiac fibroblasts. Mol Med Rep 2018; 17:6887-6892. [PMID: 29512713 DOI: 10.3892/mmr.2018.8688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/28/2018] [Indexed: 11/06/2022] Open
Abstract
Cardiac fibrosis is a major pathological manifestation of diabetic cardiomyopathy (DCM), which leads to cardiac remodeling, dilated cardiomyopathy and congestive heart failure. Human cardiac fibroblasts (HCF) constitute the predominant cell type in the heart and matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are also involved in cardiac fibrosis. However, it is unclear whether high glucose levels affect the expression of MMPs and TIMPs in HCF. Sodium‑glucose cotransporter (SGLT) inhibitors have been developed as therapeutic agents and the anti‑DCM effect of SGLT inhibitors has been demonstrated by previous studies. However, whether SLGT inhibitors protect the diabetic heart by directly inhibiting the SGLTs in HCF in addition to lowering the blood glucose levels, has not yet been determined. In the present study, increased MMP‑2 expression was noted in HCFs in response to high glucose levels, which may be reversed by phlorizin (inhibits both SGLT1 and SGLT2), but not dapagliflozin (inhibits SGLT2). In addition, SGLT1 was revealed to be present in the HCFs and high glucose level was demonstrated to increase SGLT1 expression, which may be attenuated by phlorizin. Therefore it was concluded that high glucose levels induced MMP‑2 expression in the HCFs, potentially by upregulating SGLT1. SGLT1 inhibition may be a novel strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Liping Meng
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910‑1193, Japan
| | - Hiroyasu Uzui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910‑1193, Japan
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Hiroshi Tada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910‑1193, Japan
| |
Collapse
|
24
|
Gutiérrez T, Simmen T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium 2017; 70:64-75. [PMID: 28619231 DOI: 10.1016/j.ceca.2017.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022]
Abstract
The folding of secretory proteins is a well-understood mechanism, based on decades of research on endoplasmic reticulum (ER) chaperones. These chaperones interact with newly imported polypeptides close to the ER translocon. Classic examples for these proteins include the immunoglobulin binding protein (BiP/GRP78), and the lectins calnexin and calreticulin. Although not considered chaperones per se, the ER oxidoreductases of the protein disulfide isomerase (PDI) family complete the folding job by catalyzing the formation of disulfide bonds through cysteine oxidation. Research from the past decade has demonstrated that ER chaperones are multifunctional proteins. The regulation of ER-mitochondria Ca2+ crosstalk is one of their additional functions, as shown for calnexin, BiP/GRP78 or the oxidoreductases Ero1α and TMX1. This function depends on interactions of this group of proteins with the ER Ca2+ handling machinery. This novel function makes perfect sense for two reasons: i. It allows ER chaperones to control mitochondrial apoptosis instantly without a lengthy bypass involving the upregulation of pro-apoptotic transcription factors via the unfolded protein response (UPR); and ii. It allows the ER protein folding machinery to fine-tune ATP import via controlling the speed of mitochondrial oxidative phosphorylation. Therefore, the role of ER chaperones in regulating ER-mitochondria Ca2+ flux identifies the progression of secretory protein folding as a central regulator of cell survival and death, at least in cell types that secrete large amount of proteins. In other cell types, ER protein folding might serve as a sentinel mechanism that monitors cellular well-being to control cell metabolism and apoptosis. The selenoprotein SEPN1 is a classic example for such a role. Through the control of ER-mitochondria Ca2+-flux, ER chaperones and folding assistants guide cellular apoptosis and mitochondrial metabolism.
Collapse
Affiliation(s)
- Tomas Gutiérrez
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, T6G2H7, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, T6G2H7, Canada,.
| |
Collapse
|
25
|
Jobin PG, Butler GS, Overall CM. New intracellular activities of matrix metalloproteinases shine in the moonlight. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2043-2055. [PMID: 28526562 DOI: 10.1016/j.bbamcr.2017.05.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/04/2023]
Abstract
Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgina S Butler
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M Overall
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
26
|
Ceron CS, Baligand C, Joshi S, Wanga S, Cowley PM, Walker JP, Song SH, Mahimkar R, Baker AJ, Raffai RL, Wang ZJ, Lovett DH. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury. Am J Physiol Renal Physiol 2017; 312:F1166-F1183. [PMID: 28331061 PMCID: PMC5495883 DOI: 10.1152/ajprenal.00461.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH2-terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.
Collapse
Affiliation(s)
- Carla S Ceron
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Celine Baligand
- Department of Radiology, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California; and
| | - Sunil Joshi
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Shaynah Wanga
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Patrick M Cowley
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Joy P Walker
- Department of Surgery, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Sang Heon Song
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Rajeev Mahimkar
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Anthony J Baker
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Robert L Raffai
- Department of Surgery, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Zhen J Wang
- Department of Radiology, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California; and
| | - David H Lovett
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California;
| |
Collapse
|
27
|
Ohsumi A, Marseu K, Slinger P, McRae K, Kim H, Guan Z, Hwang DM, Liu M, Keshavjee S, Cypel M. Sevoflurane Attenuates Ischemia-Reperfusion Injury in a Rat Lung Transplantation Model. Ann Thorac Surg 2017; 103:1578-1586. [PMID: 28190546 DOI: 10.1016/j.athoracsur.2016.10.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/25/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sevoflurane is one of the most commonly used volatile anesthetic agents with the fastest onset and offset, replacing isoflurane in modern anesthesiology. Preconditioning and postconditioning using volatile anesthetics can attenuate ischemia-reperfusion injury (IRI). However, no previous studies have evaluated the effect of sevoflurane in lung transplantation after cold ischemic injury. We aimed to study the effects of donor and recipient treatment with sevoflurane in a rat lung transplantation model. METHODS Lewis rats were allocated to four groups: control, PreC (preconditioning), PostC (postconditioning), and PreC + PostC. Donor rats in the PreC and PreC + PostC groups were exposed to 1.5% sevoflurane for 30 minutes before donor operation. Donor lungs were flushed with Perfadex and stored for 12 hours at 4°C before transplantation. Recipients received orthotopic left lung transplantation. In the PostC and PreC + PostC groups, sevoflurane was initiated 2 minutes before reperfusion and maintained for 30 minutes. Two hours after reperfusion, lung function was evaluated, and samples were collected for histologic, inflammatory, and cell death assessment. RESULTS Preconditioning and postconditioning using sevoflurane significantly improved the oxygenation of lung grafts (partial arterial gas pressure of oxygen: 198 mm Hg in control, 406.5 mm Hg in PreC, 472.4 mm Hg in PostC, and 409.7 mm Hg in PreC + PostC, p < 0.0001) and reduced pulmonary edema. Sevoflurane treatment reduced levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α. Moreover, sevoflurane significantly inhibited apoptotic cells by a decrease in cytochrome c release into cytosol and caspase-3 cleavage. CONCLUSIONS Preconditioning or postconditioning of lungs using sevoflurane exhibits a significant protective effect against early phase of ischemia-reperfusion injury in a rat lung transplantation model.
Collapse
Affiliation(s)
- Akihiro Ohsumi
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Marseu
- Department of Anesthesiology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Peter Slinger
- Department of Anesthesiology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Karen McRae
- Department of Anesthesiology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Hyunhee Kim
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Zehong Guan
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David M Hwang
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Lim JS, Park S, Park SI, Oh YT, Choi E, Kim JY, Rhee Y. Cardiac Dysfunction in Association with Increased Inflammatory Markers in Primary Aldosteronism. Endocrinol Metab (Seoul) 2016; 31:567-576. [PMID: 27834080 PMCID: PMC5195834 DOI: 10.3803/enm.2016.31.4.567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 08/29/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oxidative stress in primary aldosteronism (PA) is thought to worsen aldosterone-induced damage by activating proinflammatory processes. Therefore, we investigated whether inflammatory markers associated with oxidative stress is increased with negative impacts on heart function as evaluated by echocardiography in patients with PA. METHODS Thirty-two subjects (mean age, 50.3±11.0 years; 14 males, 18 females) whose aldosterone-renin ratio was more than 30 among patients who visited Severance Hospital since 2010 were enrolled. Interleukin-1β (IL-1β), IL-6, IL-8, monocyte chemoattractant protein 1, tumor necrosis factor α (TNF-α), and matrix metalloproteinase 2 (MMP-2), and MMP-9 were measured. All patients underwent adrenal venous sampling with complete access to both adrenal veins. RESULTS Only MMP-2 level was significantly higher in the aldosterone-producing adenoma (APA) group than in the bilateral adrenal hyperplasia (BAH). Patients with APA had significantly higher left ventricular (LV) mass and A velocity, compared to those with BAH. IL-1β was positively correlated with left atrial volume index. Both TNF-α and MMP-2 also had positive linear correlation with A velocity. Furthermore, MMP-9 showed a positive correlation with LV mass, whereas it was negatively correlated with LV end-systolic diameter. CONCLUSION These results suggest the possibility that some of inflammatory markers related to oxidative stress may be involved in developing diastolic dysfunction accompanied by LV hypertrophy in PA. Further investigations are needed to clarify the role of oxidative stress in the course of cardiac remodeling.
Collapse
Affiliation(s)
- Jung Soo Lim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Institute of Evidence Based Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sungha Park
- Division of Cardiology, Severance Cardiovascular Hospital and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Il Park
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Taik Oh
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Eunhee Choi
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jang Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yumie Rhee
- Department of Internal Medicine, Severance Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Polyphenols and Polypeptides in Chinese Rice Wine Inhibit Homocysteine-induced Proliferation and Migration of Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2016; 67:482-90. [DOI: 10.1097/fjc.0000000000000370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Baghirova S, Hughes BG, Poirier M, Kondo MY, Schulz R. Nuclear matrix metalloproteinase-2 in the cardiomyocyte and the ischemic-reperfused heart. J Mol Cell Cardiol 2016; 94:153-161. [PMID: 27079252 DOI: 10.1016/j.yjmcc.2016.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteases involved in intra- and extra-cellular matrix remodeling resulting from oxidative stress injury to the heart. MMP-2 was the first MMP to be localized to the nucleus; however, its biological functions there are unclear. We hypothesized that MMP-2 is present in the nucleus under normal physiological conditions but increases during myocardial ischemia-reperfusion (I/R) injury-induced oxidative stress, proteolyzing nuclear structural proteins. Lamins are intermediate filament proteins that provide structural support to the nucleus and are putative targets of MMP-2. To identify lamin susceptibility to MMP-2 proteolysis, purified lamin A or B was incubated with MMP-2 in vitro. Lamin A, but not lamin B, was proteolysed by MMP-2 into an approximately 50kDa fragment, which was also predicted by in silico cleavage site analysis. Immunofluorescent confocal microscopy and subcellular fractionation showed MMP-2 both in the cytosol and nuclei of neonatal rat ventricular myocytes. Rat hearts were isolated and perfused by the Langendorff method aerobically, or subjected to I/R injury in the presence or absence of o-phenanthroline, an MMP inhibitor. Nuclear fractions extracted from I/R hearts showed increased MMP-2 activity, but not protein level. The level of troponin I, a known sarcomeric target of MMP-2, was rescued in I/R hearts treated with o-phenanthroline, demonstrating the efficacy of MMP inhibition. However, lamin A or B levels remained unchanged in I/R hearts. MMP-2 has a widespread subcellular distribution in cardiomyocytes, including a significant presence in the nucleus. The increase in nuclear MMP-2 activity seen during stunning injury here, indicates yet unknown biological actions, other than lamin proteolysis, which may require more severe ischemia to effect.
Collapse
Affiliation(s)
- Sabina Baghirova
- Department of Pharmacology, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Bryan G Hughes
- Department of Pharmacology, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Mathieu Poirier
- Department of Pharmacology, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Marcia Y Kondo
- Department of Pharmacology, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Richard Schulz
- Department of Pharmacology, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Cardiovascular Research Institute, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
31
|
Bartmann J, Frankenberger M, Neurohr C, Eickelberg O, Noessner E, von Wulffen W. A novel role of MMP-13 for murine DC function: its inhibition dampens T-cell activation. Int Immunol 2016; 28:473-487. [PMID: 26921214 DOI: 10.1093/intimm/dxw008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/19/2016] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) have been shown to express matrix metalloproteinase 13 (MMP-13), but little is known about its specific function in DCs and its role in inflammatory conditions. In the present study, we describe a novel role of MMP-13 in regulating the immunostimulatory function of murine DCs through moderating MHC-I surface presentation, endocytosis and cytokine/chemokine secretion. MMP-13 expression was confirmed in bone marrow-derived DCs at both the mRNA and the protein level and, furthermore, at the activity level. Remarkably, LPS treatment strongly enhanced MMP-13 mRNA expression as well as MMP-13 activity, indicating an important role of MMP-13 in inflammatory processes. Functionally, MMP-13 inhibition did not influence the DC migratory capacity, while endocytosis of ovalbumin was significantly decreased. Inhibition of MMP-13 lowered the capability of murine DCs to activate CD8+ T cells, apparently through reducing MHC-I surface presentation. Decreased surface expression of CD11c on DCs, as well as changes in the DC cytokine/chemokine profile after MMP-13 inhibition, emphasizes the influence of MMP-13 on DC function. Moreover, T-cell-targeting cytokines such as IL-12, IL-23 and IL-6 were significantly reduced. Collectively, our data reveal a novel involvement of MMP-13 in regulating DC immunobiology through moderating MHC-I surface presentation, endocytosis and cytokine/chemokine secretion. Furthermore, the reduced MHC-I surface presentation by DCs resulted in a poor CD8+ T-cell response in vitro This novel finding indicates that MMP-13 might be a promising target for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Juliane Bartmann
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich, Asklepios Kliniken Gauting and Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany
| | - Marion Frankenberger
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich, Asklepios Kliniken Gauting and Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany
| | - Claus Neurohr
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich, Asklepios Kliniken Gauting and Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany Department of Pneumology, Klinikum der Universität München-Großhadern, 81377 Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich, Asklepios Kliniken Gauting and Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Werner von Wulffen
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich, Asklepios Kliniken Gauting and Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany Department of Respiratory Diseases, Klinik Augustinum München, 81375 Munich, Germany
| |
Collapse
|
32
|
Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J Mol Cell Cardiol 2015; 91:134-40. [PMID: 26721597 DOI: 10.1016/j.yjmcc.2015.12.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/16/2015] [Accepted: 12/20/2015] [Indexed: 12/11/2022]
Abstract
Despite current optimal therapeutic regimens, approximately one in four patients diagnosed with myocardial infarction (MI) will go on to develop congestive heart failure, and heart failure has a high five-year mortality rate of 50%. Elucidating mechanisms whereby heart failure develops post-MI, therefore, is highly needed. Matrix metalloproteinases (MMPs) are key enzymes involved in post-MI remodeling of the left ventricle (LV). While MMPs process cytokine and extracellular matrix (ECM) substrates to regulate the inflammatory and fibrotic components of the wound healing response to MI, MMPs also serve as upstream signaling initiators with direct actions on cell signaling cascades. In this review, we summarize the current literature regarding MMP roles in post-MI LV remodeling. We also identify the current knowledge gaps and provide templates for experiments to fill these gaps. A more complete understanding of MMP roles, particularly with regards to upstream signaling roles, may provide new strategies to limit adverse LV remodeling.
Collapse
|
33
|
Abstract
![]()
Exploration of protein function and
interaction is critical for
discovering links among genomics, proteomics, and disease state; yet,
the immense complexity of proteomics found in biological systems currently
limits our investigational capacity. Although affinity and autofluorescent
tags are widely employed for protein analysis, these methods have
been met with limited success because they lack specificity and require
multiple fusion tags and genetic constructs. As an alternative approach,
the innovative HaloTag protein fusion platform allows protein function
and interaction to be comprehensively analyzed using a single genetic
construct with multiple capabilities. This is accomplished using a
simplified process, in which a variable HaloTag ligand binds rapidly
to the HaloTag protein (usually linked to the protein of interest)
with high affinity and specificity. In this review, we examine all
current applications of the HaloTag technology platform for biomedical
applications, such as the study of protein isolation and purification,
protein function, protein–protein and protein–DNA interactions,
biological assays, in vitro cellular imaging, and in vivo molecular imaging. In addition, novel uses of the
HaloTag platform are briefly discussed along with potential future
applications.
Collapse
Affiliation(s)
- Christopher G England
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Haiming Luo
- ‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,§University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
34
|
Ahn MY, Kim SJ, Kim N, Hwang JS, Yun EY. Immune modulation of glycosaminoglycan derived from P. lewisi in TNF-α stimulated cells. Arch Pharm Res 2015; 38:1983-91. [DOI: 10.1007/s12272-015-0616-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 05/05/2015] [Indexed: 01/07/2023]
|
35
|
Lu L, Sun Y, Li Y, Wan P. The polymorphism MMP1 -1607 (1G>2G) is associated with a significantly increased risk of cancers from a meta-analysis. Tumour Biol 2014; 36:1685-93. [PMID: 25391421 DOI: 10.1007/s13277-014-2769-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022] Open
Abstract
Growing evidences show that matrix metalloproteinase 1 (MMP1) plays important roles in tumorigenesis and cancer metastasis. MMP1 -1607 1G>2G is a single nucleotide polymorphism in the promoter region of MMP1 and affects MMP1 production. Analysis of previous studies on the association of -1607 1G>2G polymorphism with different cancer types remained to be illustrated. To further assess the effect of -1607 1G>2G polymorphism on cancer risk, we performed this meta-analyses, up to September 8, 2014, of 10,640 cases and 10,915 controls from 42 published case-control designed studies. Statistical analyses were performed using STATA 11.0 software. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. ORs with 95% CIs for the polymorphism MMP1 -1607 1G>2G and cancer were estimated using fixed and random effects models when appropriate. Significantly increased risks were found in overall under the models of 2G vs.1G, 2G2G vs. 1G1G, 2G2G/1G2G vs. 1G1G, and 2G2G vs. 2G1G/1G1G. Significantly elevated risks were observed in colorectal adenoma under the models of 2G vs. 1G, 2G2G vs. 1G1G, 2G2G/1G2G vs. 1G1G, and 2G2G vs. 2G1G/1G1G and lung cancer and head and neck cancer under the models of 2G vs. 1G. We found that significantly elevated risks were observed in Asian population and hospital-based studies in most comparison models tested. Thus, this meta-analysis indicates that the polymorphism MMP1 -1607 1G>2G is significantly associated with a significantly increased risk of cancers and may provide evidence-based medical certificate to study the cancer susceptibility.
Collapse
Affiliation(s)
- Lili Lu
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, 200234, Shanghai, China
| | | | | | | |
Collapse
|
36
|
Gao L, Zheng YJ, Gu SS, Tan JL, Paul C, Wang YG, Yang HT. Degradation of cardiac myosin light chain kinase by matrix metalloproteinase-2 contributes to myocardial contractile dysfunction during ischemia/reperfusion. J Mol Cell Cardiol 2014; 77:102-12. [PMID: 25451385 DOI: 10.1016/j.yjmcc.2014.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/25/2022]
Abstract
Although ischemia/reperfusion (I/R)-induced myocardial contractile dysfunction is associated with a prominent decrease in myofilament Ca(2+) sensitivity, the underlying mechanisms have not yet been fully clarified. Phosphorylation of ventricular myosin light chain 2 (MLC-2v) facilitates actin-myosin interactions and enhances contractility, however, its level and regulation by cardiac MLC kinase (cMLCK) and cMLC phosphatase (cMLCP) in I/R hearts are debatable. In this study, the levels and/or effects of MLC-2v phosphorylation, cMLCK, cMLCP, and proteases during I/R were determined. Global myocardial I/R-suppressed cardiac performance in isolated rat hearts was concomitant with decreases of MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, and cMLCK content, but not cMLCP proteins. Consistently, simulated I/R in isolated cardiomyocytes inhibited cell shortening, Ca(2+) transients, MLC-2v phosphorylation, and myofilament sensitivity to Ca(2+). These observations were reversed by cMLCK overexpression, while the specific cMLCK knockdown by short hairpin RNA (shRNA) had the opposite effect. Moreover, the inhibition of matrix metalloproteinase-2 (MMP-2, a zinc-dependent endopeptidase) reversed IR-decreased cMLCK, MLC-2v phosphorylation, myofibrillar Ca(2+)-stimulated ATPase activity, myocardial contractile function, and myofilament sensitivity to Ca(2+), while the inhibition or knockdown of cMLCK by ML-9 or specific shRNA abolished MMP-2 inhibition-induced cardioprotection. Finally, the co-localization in cardiomyocytes and interaction in vivo of MMP-2 and cMLCK were observed. Purified recombinant rat cMLCK was concentration- and time-dependently degraded by rat MMP-2 in vitro, and this was prevented by the inhibition of MMP-2. These findings reveal that the I/R-activated MMP-2 leads to the degradation of cMLCK, resulting in a reduction of MLC-2v phosphorylation, and myofibrillar Ca(2+)-stimulated ATPase activity, which subsequently suppresses myocardial contractile function through a decrease of myofilament Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Ling Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Yan-Jun Zheng
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shan-Shan Gu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Ji-Liang Tan
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Yi-Gang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| |
Collapse
|
37
|
Myocardial matrix metalloproteinase-2: inside out and upside down. J Mol Cell Cardiol 2014; 77:64-72. [PMID: 25261607 DOI: 10.1016/j.yjmcc.2014.09.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/19/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022]
Abstract
Since their inaugural discovery in the early 1960s, matrix metalloproteinases (MMPs) have been shown to mediate multiple physiological and pathological processes. In addition to their canonical function in extracellular matrix (ECM) remodeling, research in the last decade has highlighted new MMP functions, including proteolysis of novel substrates beyond ECM proteins, MMP localization to subcellular organelles, and proteolysis of susceptible intracellular proteins in those subcellular compartments. This review will provide a comparison of the extracellular and intracellular roles of MMPs, illustrating that MMPs are far more interesting than the one-dimensional view originally taken. We focus on the roles of MMP-2 in cardiac injury and repair, as this is one of the most studied MMPs in the cardiovascular field. We will highlight how understanding all dimensions, such as localization of activity and timing of interventions, will increase the translational potential of research findings. Building upon old ideas and turning them inside out and upside down will help us to better understand how to move the MMP field forward.
Collapse
|
38
|
Inhibition of MMP-2 expression with siRNA increases baseline cardiomyocyte contractility and protects against simulated ischemic reperfusion injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:810371. [PMID: 25147815 PMCID: PMC4131446 DOI: 10.1155/2014/810371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/25/2014] [Indexed: 11/17/2022]
Abstract
Matrix metalloproteinases (MMPs) significantly contribute to ischemia reperfusion (I/R) injury, namely, by the degradation of contractile proteins. However, due to the experimental models adopted and lack of isoform specificity of MMP inhibitors, the cellular source and identity of the MMP(s) involved in I/R injury remain to be elucidated. Using isolated adult rat cardiomyocytes, subjected to chemically induced I/R-like injury, we show that specific inhibition of MMP-2 expression and activity using MMP-2 siRNA significantly protected cardiomyocyte contractility from I/R-like injury. This was also associated with increased expression of myosin light chains 1 and 2 (MLC1/2) in comparison to scramble siRNA transfection. Moreover, the positive effect of MMP-2 siRNA transfection on cardiomyocyte contractility and MLC1/2 expression levels was also observed under control conditions, suggesting an important additional role for MMP-2 in physiological sarcomeric protein turnover. This study clearly demonstrates that intracellular expression of MMP-2 plays a significant role in sarcomeric protein turnover, such as MLC1 and MLC2, under aerobic (physiological) conditions. In addition, this study identifies intracellular/autocrine, cardiomyocyte-produced MMP-2, rather than paracrine/extracellular, as responsible for the degradation of MLC1/2 and consequent contractile dysfunction in cardiomyocytes subjected to I/R injury.
Collapse
|
39
|
Hughes BG, Schulz R. Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol 2014; 109:424. [PMID: 24986221 DOI: 10.1007/s00395-014-0424-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 10/24/2022]
Abstract
Matrix metalloproteinase (MMPs) are long understood to be involved in remodeling of the extracellular matrix. However, over the past decade, it has become clear that one of the most ubiquitous MMPs, MMP-2, has numerous intracellular targets in cardiac myocytes. Notably, MMP-2 proteolyzes components of the sarcomere, and its intracellular activity contributes to ischemia-reperfusion injury of the heart. Together with the well documented role played by MMPs in the myocardial remodeling that occurs following myocardial infarction, this has led to great interest in targeting MMPs to treat cardiac ischemic injury. In this review we will describe the expanding understanding of intracellular MMP-2 biology, and how this knowledge may lead to improved treatments for ischemic heart injury. We also critically review the numerous preclinical studies investigating the effects of MMP inhibition in animal models of myocardial infarction and ischemia-reperfusion injury, as well as the recent clinical trials that are part of the effort to translate these results into clinical practice. Acknowledging the disappointing results of past clinical trials of MMP inhibitors for other diseases, we discuss the need for carefully designed preclinical and clinical studies to avoid mistakes that have been previously made. We conclude that inhibition of MMPs, and in particular MMP-2, shows promise as a therapy to prevent the progression from ischemic injury to heart failure. However, it is critical that the full breadth of MMP-2 biology be taken into account as such therapies are developed.
Collapse
Affiliation(s)
- Bryan G Hughes
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute/Cardiovascular Research Centre, University of Alberta, 4-62 HMRC, Edmonton, AB, T6G 2S2, Canada
| | | |
Collapse
|
40
|
Gao L, Chen L, Lu ZZ, Gao H, Wu L, Chen YX, Zhang CM, Jiang YK, Jing Q, Zhang YY, Yang HT. Activation of α1B-adrenoceptors contributes to intermittent hypobaric hypoxia-improved postischemic myocardial performance via inhibiting MMP-2 activation. Am J Physiol Heart Circ Physiol 2014; 306:H1569-81. [PMID: 24705558 DOI: 10.1152/ajpheart.00772.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of matrix metalloproteinases-2 (MMP-2) activation renders cardioprotection from ischemia/reperfusion (I/R) injury; however, the signaling pathways involved have not been fully understood. Intermittent hypobaric hypoxia (IHH) has been shown to enhance myocardial tolerance to I/R injury via triggering intrinsic adaptive responses. Here we investigated whether IHH protects the heart against I/R injury via the regulation of MMP-2 and how the MMP-2 is regulated. IHH (Po2 = 84 mmHg, 4-h/day, 4 wk) improved postischemic myocardial contractile performance, lactate dehydrogenase (LDH) release, and infarct size in isolated perfused rat hearts. Moreover, IHH reversed I/R-induced MMP-2 activation and release, disorders in the levels of MMP-2 regulators, peroxynitrite (ONOO(-)) and tissue inhibitor of metalloproteinase-4 (TIMP-4), and loss of the MMP-2 targets α-actinin and troponin I. This protection was mimicked, but not augmented, by a MMP inhibitor doxycycline and lost by the α1-adrenoceptor (AR) antagonist prazosin. Furthermore, IHH increased myocardial α1A-AR and α1B-AR density but not α1D-AR after I/R. Concomitantly, IHH further enhanced the translocation of PKC epsilon (PKCε) and decreased the release of mitochondrial cytochrome c due to I/R via the activation of α1B-AR but not α1A-AR or α1D-AR. IHH-conferred cardioprotection in the postischemic contractile function, LDH release, MMP-2 activation, and nitrotyrosine as well as TIMP-4 contents were mimicked but not additive by α1-AR stimulation with phenylephrine and were abolished by an α1B-AR antagonist chloroethylclonidine and a PKCε inhibitor PKCε V1-2. These findings demonstrate that IHH exerts cardioprotection through attenuating excess ONOO(-) biosynthesis and TIMP-4 loss and sequential MMP-2 activation via the activation of α1B-AR/PKCε pathway.
Collapse
Affiliation(s)
- Ling Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Le Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Zhi-Zhen Lu
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences Ministry of Education, Beijing, China
| | - Hong Gao
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Lan Wu
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Yi-Xiong Chen
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Cai-Mei Zhang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Yu-Kun Jiang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - Qing Jing
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| | - You-Yi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences Ministry of Education, Beijing, China
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cardiology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine Shanghai, China; and
| |
Collapse
|