1
|
Nagandla H, Thomas C. Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor. RECEPTORS (BASEL, SWITZERLAND) 2024; 3:182-200. [PMID: 39175529 PMCID: PMC11340209 DOI: 10.3390/receptors3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article.
Collapse
Affiliation(s)
- Harika Nagandla
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Christoforos Thomas
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
2
|
Moreau KL, Clayton ZS, DuBose LE, Rosenberry R, Seals DR. Effects of regular exercise on vascular function with aging: Does sex matter? Am J Physiol Heart Circ Physiol 2024; 326:H123-H137. [PMID: 37921669 PMCID: PMC11208002 DOI: 10.1152/ajpheart.00392.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Vascular aging, featuring endothelial dysfunction and large elastic artery stiffening, is a major risk factor for the development of age-associated cardiovascular diseases (CVDs). Vascular aging is largely mediated by an excessive production of reactive oxygen species (ROS) and increased inflammation leading to reduced bioavailability of the vasodilatory molecule nitric oxide and remodeling of the arterial wall. Other cellular mechanisms (i.e., mitochondrial dysfunction, impaired stress response, deregulated nutrient sensing, cellular senescence), termed "hallmarks" or "pillars" of aging, may also contribute to vascular aging. Gonadal aging, which largely impacts women but also impacts some men, modulates the vascular aging process. Regular physical activity, including both aerobic and resistance exercise, is a first-line strategy for reducing CVD risk with aging. Although exercise is an effective intervention to counter vascular aging, there is considerable variation in the vascular response to exercise training with aging. Aerobic exercise improves large elastic artery stiffening in both middle-aged/older men and women and enhances endothelial function in middle-aged/older men by reducing oxidative stress and inflammation and preserving nitric oxide bioavailability; however, similar aerobic exercise training improvements are not consistently observed in estrogen-deficient postmenopausal women. Sex differences in adaptations to exercise may be related to gonadal aging and declines in estrogen in women that influence cellular-molecular mechanisms, disconnecting favorable signaling in the vasculature induced by exercise training. The present review will summarize the current state of knowledge on vascular adaptations to regular aerobic and resistance exercise with aging, the underlying mechanisms involved, and the moderating role of biological sex.
Collapse
Affiliation(s)
- Kerrie L Moreau
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, Colorado, United States
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Lyndsey E DuBose
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ryan Rosenberry
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
3
|
Harvey BJ, Harvey HM. Sex Differences in Colon Cancer: Genomic and Nongenomic Signalling of Oestrogen. Genes (Basel) 2023; 14:2225. [PMID: 38137047 PMCID: PMC10742859 DOI: 10.3390/genes14122225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Colon cancer (CRC) is a prevalent malignancy that exhibits distinct differences in incidence, prognosis, and treatment responses between males and females. These disparities have long been attributed to hormonal differences, particularly the influence of oestrogen signalling. This review aims to provide a comprehensive analysis of recent advances in our understanding of the molecular mechanisms underlying sex differences in colon cancer and the protective role of membrane and nuclear oestrogen signalling in CRC development, progression, and therapeutic interventions. We discuss the epidemiological and molecular evidence supporting sex differences in colon cancer, followed by an exploration of the impact of oestrogen in CRC through various genomic and nongenomic signalling pathways involving membrane and nuclear oestrogen receptors. Furthermore, we examine the interplay between oestrogen receptors and other signalling pathways, in particular the Wnt/β-catenin proliferative pathway and hypoxia in shaping biological sex differences and oestrogen protective actions in colon cancer. Lastly, we highlight the potential therapeutic implications of targeting oestrogen signalling in the management of colon cancer and propose future research directions to address the current gaps in our understanding of this complex phenomenon.
Collapse
Affiliation(s)
- Brian J. Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Harry M. Harvey
- Princess Margaret Cancer Centre, Toronto, ON M5G 1Z5, Canada;
| |
Collapse
|
4
|
Feng W, Guan Z, Ying WZ, Xing D, Ying KE, Sanders PW. Matrix metalloproteinase-9 regulates afferent arteriolar remodeling and function in hypertension-induced kidney disease. Kidney Int 2023; 104:740-753. [PMID: 37423509 PMCID: PMC10854403 DOI: 10.1016/j.kint.2023.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
This study tested if matrix metalloproteinase (MMP)-9 promoted microvascular pathology that initiates hypertensive (HT) kidney disease in salt-sensitive (SS) Dahl rats. SS rats lacking Mmp9 (Mmp9-/-) and littermate control SS rats were studied after one week on a normotensive 0.3% sodium chloride (Pre-HT SS and Pre-HT Mmp9-/-) or a hypertension-inducing diet containing 4.0% sodium chloride (HT SS and HT Mmp9-/-). Telemetry-monitored blood pressure of both the HT SS and HT Mmp9-/- rats increased and did not differ. Kidney microvessel transforming growth factor-beta 1 (Tgfb1) mRNA did not differ between Pre-HT SS and Pre-HT Mmp9-/- rats, but with hypertension and expression of Mmp9 and Tgfb1 increased in HT SS rats, along with phospho-Smad2 labeling of nuclei of vascular smooth muscle cells, and with peri-arteriolar fibronectin deposition. Loss of MMP-9 prevented hypertension-induced phenotypic transformation of microvascular smooth muscle cells and the expected increased microvascular expression of pro-inflammatory molecules. Loss of MMP-9 in vascular smooth muscle cells in vitro prevented cyclic strain-induced production of active TGF-β1 and phospho-Smad2/3 stimulation. Afferent arteriolar autoregulation was impaired in HT SS rats but not in HT Mmp9-/- rats or the HT SS rats treated with doxycycline, an MMP inhibitor. HT SS but not HT Mmp9-/- rats showed decreased glomerular Wilms Tumor 1 protein-positive cells (a marker of podocytes) along with increased urinary podocin and nephrin mRNA excretion, all indicative of glomerular damage. Thus, our findings support an active role for MMP-9 in a hypertension-induced kidney microvascular remodeling process that promotes glomerular epithelial cell injury in SS rats.
Collapse
Affiliation(s)
- Wenguang Feng
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhengrong Guan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wei-Zhong Ying
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dongqi Xing
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kai Er Ying
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul W Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, USA.
| |
Collapse
|
5
|
Saddic L, Escopete S, Zilberberg L, Kalsow S, Gupta D, Eghbali M, Parker S. 17 β-Estradiol Impedes Aortic Root Dilation and Rupture in Male Marfan Mice. Int J Mol Sci 2023; 24:13571. [PMID: 37686377 PMCID: PMC10487461 DOI: 10.3390/ijms241713571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Marfan syndrome causes a hereditary form of thoracic aortic aneurysms with worse outcomes in male compared to female patients. In this study, we examine the effects of 17 β-estradiol on aortic dilation and rupture in a Marfan mouse model. Marfan male mice were administered 17 β-estradiol, and the growth in the aortic root, along with the risk of aortic rupture, was measured. Transcriptomic profiling was used to identify enriched pathways from 17 β-estradiol treatments. Aortic smooth muscle cells were then treated with cytokines to validate functional mechanisms. We show that 17 β-estradiol decreased the size and rate of aortic root dilation and improved survival from rupture. The Marfan transcriptome was enriched in inflammatory genes, and the addition of 17 β-estradiol modulated a set of genes that function through TNFα mediated NF-κB signaling. In addition, 17 β-estradiol suppressed the induction of these TNFα induced genes in aortic smooth muscle cells in vitro in an NF-κB dependent manner, and 17 β-estradiol decreased the formation of adventitial inflammatory foci in aortic roots in vivo. In conclusion, 17 β-estradiol protects against the dilation and rupture of aortic roots in Marfan male mice through the inhibition of TNFα-NF-κB signaling.
Collapse
Affiliation(s)
- Louis Saddic
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (M.E.)
| | - Sean Escopete
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (L.Z.); (S.K.); (D.G.)
| | - Lior Zilberberg
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (L.Z.); (S.K.); (D.G.)
| | - Shannon Kalsow
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (L.Z.); (S.K.); (D.G.)
| | - Divya Gupta
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (L.Z.); (S.K.); (D.G.)
| | - Mansoureh Eghbali
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (M.E.)
| | - Sarah Parker
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (L.Z.); (S.K.); (D.G.)
| |
Collapse
|
6
|
Szukiewicz D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:12195. [PMID: 37569571 PMCID: PMC10418522 DOI: 10.3390/ijms241512195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17β-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERβ receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
7
|
Collins HE. Female cardiovascular biology and resilience in the setting of physiological and pathological stress. Redox Biol 2023; 63:102747. [PMID: 37216702 PMCID: PMC10209889 DOI: 10.1016/j.redox.2023.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/29/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
For years, females were thought of as smaller men with complex hormonal cycles; as a result, females have been largely excluded from preclinical and clinical research. However, in the last ten years, with the increased focus on sex as a biological variable, it has become clear that this is not the case, and in fact, male and female cardiovascular biology and cardiac stress responses differ substantially. Premenopausal women are protected from cardiovascular diseases, such as myocardial infarction and resultant heart failure, having preserved cardiac function, reduced adverse remodeling, and increased survival. Many underlying biological processes that contribute to ventricular remodeling differ between the sexes, such as cellular metabolism; immune cell responses; cardiac fibrosis and extracellular matrix remodeling; cardiomyocyte dysfunction; and endothelial biology; however, it is unclear how these changes afford protection to the female heart. Although many of these changes are dependent on protection provided by female sex hormones, several of these changes occur independent of sex hormones, suggesting that the nature of these changes is more complex than initially thought. This may be why studies focused on the cardiovascular benefits of hormone replacement therapy in post-menopausal women have provided mixed results. Some of the complexity likely stems from the fact that the cellular composition of the heart is sexually dimorphic and that in the setting of MI, different subpopulations of these cell types are apparent. Despite the documented sex-differences in cardiovascular (patho)physiology, the underlying mechanisms that contribute are largely unknown due to inconsistent findings amongst investigators and, in some cases, lack of rigor in reporting and consideration of sex-dependent variables. Therefore, this review aims to describe current understanding of the sex-dependent differences in the myocardium in response to physiological and pathological stressors, with a focus on the sex-dependent differences that contribute to post-infarction remodeling and resultant functional decline.
Collapse
Affiliation(s)
- Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, Delia B. Baxter Research Building, University of Louisville, 580 S. Preston S, Louisville, KY 40202, USA.
| |
Collapse
|
8
|
Saddic L, Escopete S, Zilberberg L, Kalsow S, Gupta D, Egbhali M, Parker S. 17 β-estradiol impedes aortic root dilation and rupture in male Marfan mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540071. [PMID: 37215011 PMCID: PMC10197695 DOI: 10.1101/2023.05.09.540071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Marfan syndrome causes a hereditary form of thoracic aortic aneurysms with dilation of the aortic root. Human and animal models suggest a worse phenotype for males compared to females with respect to aneurysm size and risk of dissection. In this study we examine the effects of 17 β-estradiol on aortic dilation and rupture in a Marfan mouse model. Marfan male mice were administered 17 β-estradiol and the growth in aortic root size along with the risk of aortic rupture or dissection with the addition of angiotensin II was measured. Transcriptomic profiling was used to identify enriched pathways from 17 β-estradiol treatment. Aortic smooth muscle cells were then treated with cytokines in order to validate the mechanism of 17 β-estradiol protection. We show that 17 β-estradiol decreased the size and rate of aortic root dilation and improved survival from rupture and dissection after treatment with angiotensin II. The Marfan transcriptome was enriched in inflammatory genes and the addition of 17 β-estradiol modulated a set of genes that function through TNFα mediated NF-κB signaling. These included many proteins known to play a role in the phenotypic shift of aortic smooth muscle cells from a contractile to a more inflammatory-like state such as Vcam-1, Mcp-1, Lgals3, Il-6, Il-1b, and C3. In addition, 17 β-estradiol suppressed the induction of these TNFα induced genes in aortic smooth muscle cells in vitro and this effect appears to be NF-κB dependent. In conclusion, 17 β-estradiol protects against the dilation and rupture of aortic roots in Marfan male mice through the inhibition of TNFα -NF-κB signaling and thus prevents the phenotypic switch of aortic smooth muscle cells from a contractile to an inflammatory state.
Collapse
Affiliation(s)
- Louis Saddic
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Sean Escopete
- Cedars-Sinai Medical Center, Smidt Heart Institute, Department of Cardiology, Los Angeles, California
| | - Lior Zilberberg
- Cedars-Sinai Medical Center, Smidt Heart Institute, Department of Cardiology, Los Angeles, California
| | - Shannon Kalsow
- Cedars-Sinai Medical Center, Smidt Heart Institute, Department of Cardiology, Los Angeles, California
| | - Divya Gupta
- Cedars-Sinai Medical Center, Smidt Heart Institute, Department of Cardiology, Los Angeles, California
| | - Mansoureh Egbhali
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Sarah Parker
- Cedars-Sinai Medical Center, Smidt Heart Institute, Department of Cardiology, Los Angeles, California
| |
Collapse
|
9
|
Huang J, Qin F, Lai X, Yang T, Yu J, Wei C, Wei L, Li J. Exploring heterogeneity of tumor immune cells and adrenal cells in aldosterone-producing adenomas using single-cell RNA-seq and investigating differences by sex. Heliyon 2023; 9:e14357. [PMID: 36942259 PMCID: PMC10024085 DOI: 10.1016/j.heliyon.2023.e14357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The mechanism behind the higher incidence of aldosterone-producing adenoma (APA) in women compared to men is not yet understood. In this study, we utilized single-cell RNA sequencing (scRNA-seq) to investigate the immune cell infiltration and adrenal cell characteristics in APA. Our findings revealed a high presence of immune cells in the tumor microenvironment, with macrophages and T lymphocytes being the most prevalent. Comparison of infiltrating cells between males and females showed that female CD8+T cells had stronger cytotoxic and inflammation-related functions, while female myeloid cells had more enrichment in inflammatory pathways. Additionally, we found that female adrenal cells had greater upregulation of immune-related and antigen presentation pathways. Furthermore, our analysis revealed that zona glomerulosa (ZG) cells had a higher capability for aldosterone synthesis. These results provide a deeper understanding of the APA microenvironment in patients of different sexes and offer new insights into the onset of APA.
Collapse
Affiliation(s)
- Jing Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fei Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomei Lai
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Tingting Yang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jie Yu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chaoping Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lixia Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jianling Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Mobile Post-doctoral Stations of Guangxi Medical University, Nanning, Guangxi 530021, China
- Corresponding author. Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
10
|
Comeau KD, Shokoples BG, Schiffrin EL. Sex Differences in the Immune System in Relation to Hypertension and Vascular Disease. Can J Cardiol 2022; 38:1828-1843. [PMID: 35597532 DOI: 10.1016/j.cjca.2022.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the leading risk factor for cardiovascular disease and mortality worldwide. Despite intensive research into the mechanisms underlying the development of hypertension, it remains difficult to control blood pressure in a large proportion of patients. Young men have a higher prevalence of hypertension compared with age-matched women, and this holds true until approximately the fifth decade of life. Following the onset of menopause, the incidence of hypertension among women begins to surpass that of men. The immune system has been demonstrated to play a role in the pathophysiology of hypertension, and biological sex and sex hormones can affect the function of innate and adaptive immune cell populations. Recent studies in male and female animal models of hypertension have begun to unravel the relationship among sex, immunity, and hypertension. Hypertensive male animals show a bias toward proinflammatory T-cell subsets, including interleukin (IL) 17-producing TH17 cells, and increased renal infiltration of T cells and inflammatory macrophages. Conversely, premenopausal female animals are largely protected from hypertension, and have a predilection for anti-inflammatory T regulatory cells and production of anti-inflammatory cytokines, such as IL-10. Menopause abrogates female protection from hypertension, which may be due to changes among anti-inflammatory T regulatory cell populations. Since development of novel treatments for hypertension has plateaued, determining the role of sex in the pathophysiology of hypertension may open new therapeutic avenues for both men and women.
Collapse
Affiliation(s)
- Kevin D Comeau
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Brandon G Shokoples
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada; Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
11
|
Nasiri-Ansari N, Spilioti E, Kyrou I, Kalotychou V, Chatzigeorgiou A, Sanoudou D, Dahlman-Wright K, Randeva HS, Papavassiliou AG, Moutsatsou P, Kassi E. Estrogen Receptor Subtypes Elicit a Distinct Gene Expression Profile of Endothelial-Derived Factors Implicated in Atherosclerotic Plaque Vulnerability. Int J Mol Sci 2022; 23:ijms231810960. [PMID: 36142876 PMCID: PMC9506323 DOI: 10.3390/ijms231810960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
In the presence of established atherosclerosis, estrogens are potentially harmful. MMP-2 and MMP-9, their inhibitors (TIMP-2 and TIMP-1), RANK, RANKL, OPG, MCP-1, lysyl oxidase (LOX), PDGF-β, and ADAMTS-4 play critical roles in plaque instability/rupture. We aimed to investigate (i) the effect of estradiol on the expression of the abovementioned molecules in endothelial cells, (ii) which type(s) of estrogen receptors mediate these effects, and (iii) the role of p21 in the estrogen-mediated regulation of the aforementioned factors. Human aortic endothelial cells (HAECs) were cultured with estradiol in the presence or absence of TNF-α. The expression of the aforementioned molecules was assessed by qRT-PCR and ELISA. Zymography was also performed. The experiments were repeated in either ERα- or ERβ-transfected HAECs and after silencing p21. HAECs expressed only the GPR-30 estrogen receptor. Estradiol, at low concentrations, decreased MMP-2 activity by 15-fold, increased LOX expression by 2-fold via GPR-30, and reduced MCP-1 expression by 3.5-fold via ERβ. The overexpression of ERα increased MCP-1 mRNA expression by 2.5-fold. In a low-grade inflammation state, lower concentrations of estradiol induced the mRNA expression of MCP-1 (3.4-fold) and MMP-9 (7.5-fold) and increased the activity of MMP-2 (1.7-fold) via GPR-30. Moreover, p21 silencing resulted in equivocal effects on the expression of the abovementioned molecules. Estradiol induced different effects regarding atherogenic plaque instability through different ERs. The balance of the expression of the various ER subtypes may play an important role in the paradoxical characterization of estrogens as both beneficial and harmful.
Collapse
Affiliation(s)
- Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eliana Spilioti
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute, 14561 Athens, Greece
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| | - Vassiliki Kalotychou
- Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Novum, Karolinska Institute, SE-14183 Huddinge, Sweden
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Paraskevi Moutsatsou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-21-0746-2699; Fax: +30-21-0746-2703
| |
Collapse
|
12
|
Rodriguez-Arias JJ, García-Álvarez A. Sex Differences in Pulmonary Hypertension. FRONTIERS IN AGING 2022; 2:727558. [PMID: 35822006 PMCID: PMC9261364 DOI: 10.3389/fragi.2021.727558] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022]
Abstract
Pulmonary hypertension (PH) includes multiple diseases that share as common characteristic an elevated pulmonary artery pressure and right ventricular involvement. Sex differences are observed in practically all causes of PH. The most studied type is pulmonary arterial hypertension (PAH) which presents a gender bias regarding its prevalence, prognosis, and response to treatment. Although this disease is more frequent in women, once affected they present a better prognosis compared to men. Even if estrogens seem to be the key to understand these differences, animal models have shown contradictory results leading to the birth of the estrogen paradox. In this review we will summarize the evidence regarding sex differences in experimental animal models and, very specially, in patients suffering from PAH or PH from other etiologies.
Collapse
Affiliation(s)
| | - Ana García-Álvarez
- Cardiology Department, Institut Clínic Cardiovascular, Hospital Clínic, IDIBAPS, Madrid, Spain.,Universidad de Barcelona, Barcelona, Spain.,Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| |
Collapse
|
13
|
Role of Estrogens in Menstrual Migraine. Cells 2022; 11:cells11081355. [PMID: 35456034 PMCID: PMC9025552 DOI: 10.3390/cells11081355] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine is a major neurological disorder affecting one in nine adults worldwide with a significant impact on health care and socioeconomic systems. Migraine is more prevalent in women than in men, with 17% of all women meeting the diagnostic criteria for migraine. In women, the frequency of migraine attacks shows variations over the menstrual cycle and pregnancy, and the use of combined hormonal contraception (CHC) or hormone replacement therapy (HRT) can unveil or modify migraine disease. In the general population, 18–25% of female migraineurs display a menstrual association of their headache. Here we present an overview on the evidence supporting the role of reproductive hormones, in particular estrogens, in the pathophysiology of migraine. We also analyze the efficacy and safety of prescribing exogenous estrogens as a potential treatment for menstrual-related migraine. Finally, we point to controversial issues and future research areas in the field of reproductive hormones and migraine.
Collapse
|
14
|
Hajializadeh Z, Khaksari M. The protective effects of 17-β estradiol and SIRT1 against cardiac hypertrophy: a review. Heart Fail Rev 2021; 27:725-738. [PMID: 34537933 DOI: 10.1007/s10741-021-10171-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/27/2022]
Abstract
One of the major causes of morbidity and mortality worldwide is cardiac hypertrophy (CH), which leads to heart failure. Sex differences in CH can be caused by sex hormones or their receptors. The incidence of CH increases in postmenopausal women due to the decrease in female sex hormone 17-β estradiol (E2) during menopause. E2 and its receptors inhibit CH in humans and animal models. Silent information regulator 1 (SIRT1) is a NAD+-dependent HDAC (histone deacetylase) and plays a major role in biological processes, such as inflammation, apoptosis, and oxidative stress responses. Probably SIRT1 because of these effects, is one of the main suppressors of CH and has a cardioprotective effect. On the other hand, estrogen and its agonists are highly efficient in modulating SIRT1 expression. In the present study, we review the protective effects of E2 and SIRT1 against CH.
Collapse
Affiliation(s)
- Zahra Hajializadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
15
|
Kurmann L, Okoniewski M, Dubey RK. Estradiol Inhibits Human Brain Vascular Pericyte Migration Activity: A Functional and Transcriptomic Analysis. Cells 2021; 10:cells10092314. [PMID: 34571963 PMCID: PMC8472363 DOI: 10.3390/cells10092314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Stroke is the third leading cause of mortality in women and it kills twice as many women as breast cancer. A key role in the pathophysiology of stroke plays the disruption of the blood–brain barrier (BBB) within the neurovascular unit. While estrogen induces vascular protective actions, its influence on stroke remains unclear. Moreover, experiments assessing its impact on endothelial cells to induce barrier integrity are non-conclusive. Since pericytes play an active role in regulating BBB integrity and function, we hypothesize that estradiol may influence BBB by regulating their activity. In this study using human brain vascular pericytes (HBVPs) we investigated the impact of estradiol on key pericyte functions known to influence BBB integrity. HBVPs expressed estrogen receptors (ER-α, ER-β and GPER) and treatment with estradiol (10 nM) inhibited basal cell migration but not proliferation. Since pericyte migration is a hallmark for BBB disruption following injury, infection and inflammation, we investigated the effects of estradiol on TNFα-induced PC migration. Importantly, estradiol prevented TNFα-induced pericyte migration and this effect was mimicked by PPT (ER-α agonist) and DPN (ER-β agonist), but not by G1 (GPR30 agonist). The modulatory effects of estradiol were abrogated by MPP and PHTPP, selective ER-α and ER-β antagonists, respectively, confirming the role of ER-α and ER-β in mediating the anti-migratory actions of estrogen. To delineate the intracellular mechanisms mediating the inhibitory actions of estradiol on PC migration, we investigated the role of AKT and MAPK activation. While estradiol consistently reduced the TNFα-induced MAPK and Akt phosphorylation, only the inhibition of MAPK, but not Akt, significantly abrogated the migratory actions of TNFα. In transendothelial electrical resistance measurements, estradiol induced barrier function (TEER) in human brain microvascular endothelial cells co-cultured with pericytes, but not in HBMECs cultured alone. Importantly, transcriptomics analysis of genes modulated by estradiol in pericytes showed downregulation of genes known to increase cell migration and upregulation of genes known to inhibit cell migration. Taken together, our findings provide the first evidence that estradiol modulates pericyte activity and thereby improves endothelial integrity.
Collapse
Affiliation(s)
- Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
| | | | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
16
|
Wang Q, Huang F, Duan X, Cheng H, Zhang C, Li L, Ruan X, He Q, Niu W, Yang H, Lu D, Zheng L, Zhao H. The ERβ-CXCL19/CXCR4-NFκB pathway is critical in mediating the E2-induced inflammation response in the orange-spotted grouper (Epinephelus coioides). J Steroid Biochem Mol Biol 2021; 212:105926. [PMID: 34091027 DOI: 10.1016/j.jsbmb.2021.105926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 01/19/2023]
Abstract
The main physiological function of 17β-estradiol (E2) in vertebrates is to regulate sexual development and reproduction. In fish, especially hermaphroditic fish, estrogen is often used to aid reproduction, but it also can trigger an inflammatory response. However, the molecular mechanism for this E2-induced inflammatory reaction is not clear. In this study, we found that the ERβ-CXCL19/CXCR4-NFκB cascade regulated the E2-induced inflammatory response in the orange-spotted grouper (Epinephelus coioides). Strikingly, E2 treatment resulted in significantly high expression of inflammatory cytokines and induced phosphorylation and degradation of IκBα and translocation of NFκB subunit p65 to the nucleus in grouper spleen cells. However, the E2-induced inflammatory response could be prevented by the broad estrogen receptor (ER) ligand ICI 182,780. Moreover, the luciferase assay showed that E2 induced the inflammatory response by activating the promotor of chemokine CXCL19 through ERβ1 and ERβ2. Knockdown of CXCL19 blocked the E2-induced inflammatory response and NFκB nucleus translocation. Additionally, knockdown of chemokines CXCR4a and CXCR4b together, but not alone, blocked the E2-induced inflammatory response. The immunofluorescence assay and co-immunoprecipitation analysis showed that CXCL19 mediated the E2-induced inflammatory response by activating CXCR4a or CXCR4b. Taken together, these results showed that the ERβ-CXCL19/CXCR4-NFκB pathway mediated the E2-induced inflammatory response in grouper. These findings are valuable for future comparative immunological studies and provide a theoretical basis for mitigating the adverse reactions that occur when using E2 to help fish reproduce.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, China
| | - Fengqi Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xuzhuo Duan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huitao Cheng
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chunli Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinhe Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenbiao Niu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Leyun Zheng
- Fisheries Research Institute of Fujian, Xiamen, 361000, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Nasser SA, Afify EA, Kobeissy F, Hamam B, Eid AH, El-Mas MM. Inflammatory Basis of Atherosclerosis: Modulation by Sex Hormones. Curr Pharm Des 2021; 27:2099-2111. [PMID: 33480335 DOI: 10.2174/1381612827666210122142811] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis-related cardiovascular diseases (CVDs) are the leading cause of death globally. Several lines of evidence are supportive of the contributory role of vascular inflammation in atherosclerosis. Diverse immune cell types, including monocytes/macrophages, T-cells and neutrophils, as well as specialized proresolving lipid mediators, have been successfully characterized as key players in vascular inflammation. The increased prevalence of atherosclerotic CVD in men in comparison to age-matched premenopausal women and the abolition of sex differences in prevalence during menopause strongly suggest a pivotal role of sex hormones in the development of CVD. Indeed, many animal and human studies conclusively implicate sex hormones as a crucial component in driving the immune response. This is further corroborated by the effective identification of sex hormone receptors in vascular endothelial cells, vascular smooth muscle cells and immune cells. Collectively, these findings suggest a cellular communication between sex hormones and vascular or immune cells underlying the vascular inflammation in atherosclerosis. The aim of this review is to provide an overview of vascular inflammation as a causal cue underlying atherosclerotic CVDs within the context of the modulatory effects of sex hormones. Moreover, the cellular and molecular signaling pathways underlying the sex hormones- immune system interactions as potential culprits for vascular inflammation are highlighted with detailed and critical discussion. Finally, the review concludes by speculations on the potential sex-related efficacy of currently available immunotherapies in mitigating vascular inflammation. Conceivably, a deeper understanding of the immunoregulatory influence of sex hormones on vascular inflammation-mediated atherosclerosis permits sex-based management of atherosclerosis-related CVDs.
Collapse
Affiliation(s)
- Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Bassam Hamam
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, P.O. Box 146404, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Chan SM, Weininger G, Langford J, Jane-Wit D, Dardik A. Sex Differences in Inflammation During Venous Remodeling of Arteriovenous Fistulae. Front Cardiovasc Med 2021; 8:715114. [PMID: 34368264 PMCID: PMC8335484 DOI: 10.3389/fcvm.2021.715114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular disorders frequently have differing clinical presentations among women and men. Sex differences exist in vascular access for hemodialysis; women have reduced rates of arteriovenous fistula (AVF) maturation as well as fistula utilization compared with men. Inflammation is increasingly implicated in both clinical studies and animal models as a potent mechanism driving AVF maturation, especially in vessel dilation and wall thickening, that allows venous remodeling to the fistula environment to support hemodialysis. Sex differences have long been recognized in arterial remodeling and diseases, with men having increased cardiovascular events compared with pre-menopausal women. Many of these arterial diseases are driven by inflammation that is similar to the inflammation during AVF maturation. Improved understanding of sex differences in inflammation during vascular remodeling may suggest sex-specific vascular therapies to improve AVF success.
Collapse
Affiliation(s)
- Shin Mei Chan
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States
| | - Gabe Weininger
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States
| | - John Langford
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States.,Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Daniel Jane-Wit
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, United States.,Department of Surgery, Yale School of Medicine, New Haven, CT, United States.,Department of Surgery, Veterans Affairs (VA) Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
19
|
Sallam MY, El-Gowilly SM, El-Mas MM. Cardiac and Brainstem Neuroinflammatory Pathways Account for Androgenic Incitement of Cardiovascular and Autonomic Manifestations in Endotoxic Male Rats. J Cardiovasc Pharmacol 2021; 77:632-641. [PMID: 33852527 DOI: 10.1097/fjc.0000000000000993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/22/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Inconsistent reports are available on the role of testosterone in end-organ damage caused by endotoxemia. Here, pharmacologic, surgical, and molecular studies were employed to assess the testosterone modulation of cardiovascular, autonomic, and peripheral and central inflammatory derangements caused by endotoxemia. Studies were performed in conscious male rats preinstrumented with femoral indwelling catheters for the measurement of blood pressure and subjected to castration or pharmacologic interventions that interrupt the biosynthetic cascade of testosterone. Compared with the effects of lipopolysaccharide (10 mg/kg intravenously) in sham operated rats, 2-week castration reduced the lipopolysaccharide-evoked (1) falls in blood pressure, (2) decreases in time- and frequency-domain indices of heart rate variability, (3) shifts in spectral measures of cardiac sympathovagal balance toward parasympathetic dominance, and (4) increases in protein expressions of toll-like receptor-4 and monocyte chemoattractant protein-1 in heart and medullary neurons of the nucleus tractus solitarius and rostral ventrolateral medulla. While the ameliorating actions of castration on endotoxic cardiovascular manifestations were maintained after testosterone replacement, the concomitant inflammatory signals were restored to near-sham levels. The favorable influences of castration on inflammatory and cardiovascular abnormalities of endotoxemia were replicated in intact rats pretreated with degarelix (gonadotropin-releasing hormone receptor blocker) or finasteride (5α-reductase inhibitor) but not formestane (aromatase inhibitor). The data signifies the importance of androgens and its biosynthetic enzymes in cardiovascular and autonomic insults induced by the endotoxic inflammatory response. Clinically, the interruption of testosterone biosynthesis could offer a potential strategy for endotoxemia management.
Collapse
Affiliation(s)
- Marwa Y Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt ; and
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt ; and
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt ; and
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
20
|
Bok R, Guerra DD, Lorca RA, Wennersten SA, Harris PS, Rauniyar AK, Stabler SP, MacLean KN, Roede JR, Brown LD, Hurt KJ. Cystathionine γ-lyase promotes estrogen-stimulated uterine artery blood flow via glutathione homeostasis. Redox Biol 2020; 40:101827. [PMID: 33485059 PMCID: PMC7823052 DOI: 10.1016/j.redox.2020.101827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
During pregnancy, estrogen (E2) stimulates uterine artery blood flow (UBF) by enhancing nitric oxide (NO)-dependent vasodilation. Cystathionine γ-lyase (CSE) promotes vascular NO signaling by producing hydrogen sulfide (H2S) and by maintaining the ratio of reduced-to-oxidized intracellular glutathione (GSH/GSSG) through l-cysteine production. Because redox homeostasis can influence NO signaling, we hypothesized that CSE mediates E2 stimulation of UBF by modulating local intracellular cysteine metabolism and GSH/GSSG levels to promote redox homeostasis. Using non-pregnant ovariectomized WT and CSE-null (CSE KO) mice, we performed micro-ultrasound of mouse uterine and renal arteries to assess changes in blood flow upon exogenous E2 stimulation. We quantified serum and uterine artery NO metabolites (NOx), serum amino acids, and uterine and renal artery GSH/GSSG. WT and CSE KO mice exhibited similar baseline uterine and renal blood flow. Unlike WT, CSE KO mice did not exhibit expected E2 stimulation of UBF. Renal blood flow was E2-insensitive for both genotypes. While serum and uterine artery NOx were similar between genotypes at baseline, E2 decreased NOx in CSE KO serum. Cysteine was also lower in CSE KO serum, while citrulline and homocysteine levels were elevated. E2 and CSE deletion additively decreased GSH/GSSG in uterine arteries. In contrast, renal artery GSH/GSSG was insensitive to E2 or CSE deletion. Together, these findings suggest that CSE maintenance of uterine artery GSH/GSSG facilitates nitrergic signaling in uterine arteries and is required for normal E2 stimulation of UBF. These data have implications for pregnancy pathophysiology and the selective hormone responses of specific vascular beds. CSE-null mice exhibit abnormal estrogen augmentation of uterine artery blood flow. Estrogen lowers uterine artery nitric oxide metabolites in CSE null mice. CSE loss and estrogen additively impair uterine artery glutathione homeostasis. Neither CSE loss nor estrogen influences renal artery blood flow or glutathione.
Collapse
Affiliation(s)
- Rachael Bok
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Damian D Guerra
- Department of Biology, University of Louisville, 2301 S. 3rd Street, Louisville, KY, 40292, USA
| | - Ramón A Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Sara A Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Peter S Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Abhishek K Rauniyar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Sally P Stabler
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - Kenneth N MacLean
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd, Aurora, CO, 80045, USA
| | - Laura D Brown
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Perinatal Research Center, 13243 E. 23rd Avenue, Aurora, CO, 80045, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
21
|
Kang SC, Jhee JH, Joo YS, Lee SM, Nam KH, Yun HR, Han SH, Yoo TH, Kang SW, Park JT. Association of Reproductive Lifespan Duration and Chronic Kidney Disease in Postmenopausal Women. Mayo Clin Proc 2020; 95:2621-2632. [PMID: 33168161 DOI: 10.1016/j.mayocp.2020.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/02/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the relationship between endogenous estrogen exposure and renal function, the association of female reproductive life span duration (RLD) and chronic kidney disease (CKD) was analyzed in postmenopausal women. PATIENTS AND METHODS Data were retrieved from the Korean Genome and Epidemiology Study, which was constructed from May 1, 2001, through December 25, 2017. A total of 50,338 and 3155 postmenopausal women were each included in the cross-sectional and longitudinal analyses. The RLD was determined by subtracting the age at menarche from the age at menopause. Participants were grouped into RLD quartiles. Participants with estimated glomerular filtration rates less than 60 mL/min/1.73 m2 were regarded to have CKD. RESULTS In the cross-sectional analysis, mean ± SD age and estimated glomerular filtration rate were 56.3±4.9 years and 93.1±13.6 mL/min/1.73 m2, respectively. Mean ± SD RLD was 34.2±4.0 years. A total of 765 of 50,338 (1.52%) women were found to have CKD. Logistic regression analysis revealed that the odds ratio for CKD was lower in groups with longer RLDs as compared with the shortest RLD group. In longitudinal analysis, postmenopausal women with normal kidney function were followed up for 9.7 years and incident CKD occurred in 221 of 3155 (7.00%) participants. Cox analysis revealed that the risk for CKD development was significantly lower in longer RLD groups. This finding was significant even after adjustments for confounding factors. CONCLUSION The risk for CKD was lower in women with longer RLDs. The amount of endogenous estrogen exposure could be a determining factor for renal function in postmenopausal women.
Collapse
Affiliation(s)
- Shin Chan Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease, Yonsei University, Seoul, Republic of Korea
| | - Jong Hyun Jhee
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Su Joo
- Division of Nephrology, Department of Internal Medicine, Myongji Hospital, Goyang, Gyeonggi-do, Republic of Korea
| | - Sang Mi Lee
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease, Yonsei University, Seoul, Republic of Korea
| | - Ki Heon Nam
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease, Yonsei University, Seoul, Republic of Korea
| | - Hae-Ryong Yun
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease, Yonsei University, Seoul, Republic of Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease, Yonsei University, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease, Yonsei University, Seoul, Republic of Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease, Yonsei University, Seoul, Republic of Korea; Severance Biomedical Science Institute, Brain Korea 21 PLUS, Yonsei University, Seoul, Republic of Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Sen A, Kaul A, Kaul R. Estrogen receptors in human bladder cells regulate innate cytokine responses to differentially modulate uropathogenic E. coli colonization. Immunobiology 2020; 226:152020. [PMID: 33246308 DOI: 10.1016/j.imbio.2020.152020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/19/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
The bladder epithelial cells elicit robust innate immune responses against urinary tract infections (UTIs) for preventing the bacterial colonization. Physiological fluctuations in circulating estrogen levels in women increase the susceptibility to UTI pathogenesis, often resulting in adverse health outcomes. Dr adhesin bearing Escherichia coli (Dr E. coli) cause recurrent UTIs in menopausal women and acute pyelonephritis in pregnant women. Dr E. coli bind to epithelial cells via host innate immune receptor CD55, under hormonal influence. The role of estrogens or estrogen receptors (ERs) in regulating the innate immune responses in the bladder are poorly understood. In the current study, we investigated the role of ERα, ERβ and GPR30 in modulating the innate immune responses against Dr E. coli induced UTI using human bladder epithelial carcinoma 5637 cells (HBEC). Both ERα and ERβ agonist treatment in bladder cells induced a protection against Dr E. coli invasion via upregulation of TNFα and downregulation of CD55 and IL10, and these effects were reversed by action of ERα and ERβ antagoinsts. In contrast, the agonist-mediated activation of GPR30 led to an increased bacterial colonization due to suppression of innate immune factors in the bladder cells, and these effects were reversed by the antagonist-mediated suppression of GPR30. Further, siRNA-mediated ERα knockdown in the bladder cells reversed the protection against bacterial invasion observed in the ERα positive bladder cells, by modulating the gene expression of TNFα, CD55 and IL10, thus confirming the protective role of ERα. We demonstrate for the first time a protective role of nuclear ERs, ERα and ERβ but not of membrane ER, GPR30 against Dr E. coli invasion in HBEC 5637 cells. These findings have many clinical implications and suggest that ERs may serve as potential drug targets towards developing novel therapeutics for regulating local innate immunity and treating UTIs.
Collapse
Affiliation(s)
- Ayantika Sen
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA; Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anil Kaul
- Health Care Administration, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA.
| |
Collapse
|
23
|
Shabbir A, Rathod KS, Khambata RS, Ahluwalia A. Sex Differences in the Inflammatory Response: Pharmacological Opportunities for Therapeutics for Coronary Artery Disease. Annu Rev Pharmacol Toxicol 2020; 61:333-359. [PMID: 33035428 DOI: 10.1146/annurev-pharmtox-010919-023229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coordinated molecular responses are key to effective initiation and resolution of both acute and chronic inflammation. Vascular inflammation plays an important role in initiating and perpetuating atherosclerotic disease, specifically at the site of plaque and subsequent fibrous cap rupture. Both men and women succumb to this disease process, and although management strategies have focused on revascularization and pharmacological therapies in the acute situation to reverse vessel closure and prevent thrombogenesis, data now suggest that regulation of host inflammation may improve both morbidity and mortality, thus supporting the notion that prevention is better than cure. There is a clear sex difference in the incidence of vascular disease, and data confirm biological differences in inflammatory initiation and resolution between men and women. This article reviews contemporary opinions describing the sex difference in the initiation and resolution of inflammatory responses, with a view to explore potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Asad Shabbir
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Krishnaraj Sinhji Rathod
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Rayomand Syrus Khambata
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Amrita Ahluwalia
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| |
Collapse
|
24
|
Korshunov VA, Smolock EM, Wines-Samuelson ME, Faiyaz A, Mickelsen DM, Quinn B, Pan C, Dugbartey GJ, Yan C, Doyley MM, Lusis AJ, Berk BC. Natriuretic Peptide Receptor 2 Locus Contributes to Carotid Remodeling. J Am Heart Assoc 2020; 9:e014257. [PMID: 32394795 PMCID: PMC7660849 DOI: 10.1161/jaha.119.014257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Carotid artery intima/media thickness (IMT) is a hallmark trait associated with future cardiovascular events. The goal of this study was to map new genes that regulate carotid IMT by genome-wide association. Methods and Results We induced IMT by ligation procedure of the left carotid artery in 30 inbred mouse strains. Histologic reconstruction revealed significant variation in left carotid artery intima, media, adventitia, external elastic lamina volumes, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio in inbred mice. The carotid remodeling trait was regulated by distinct genomic signatures with a dozen common single-nucleotide polymorphisms associated with left carotid artery intima volume, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio. Among genetic loci on mouse chromosomes 1, 4, and 12, there was natriuretic peptide receptor 2 (Npr2), a strong candidate gene. We observed that only male, not female, mice heterozygous for a targeted Npr2 deletion (Npr2+/-) exhibited defective carotid artery remodeling compared with Npr2 wild-type (Npr2+/+) littermates. Fibrosis in carotid IMT was significantly increased in Npr2+/- males compared with Npr2+/- females or Npr2+/+ mice. We also detected decreased Npr2 expression in human atherosclerotic plaques, similar to that seen in studies in Npr2+/- mice. Conclusions We found that components of carotid IMT were regulated by distinct genetic factors. We also showed a critical role for Npr2 in genetic regulation of vascular fibrosis associated with defective carotid remodeling.
Collapse
Affiliation(s)
| | - Elaine M Smolock
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | | | - Abrar Faiyaz
- Department of Electrical & Computer Engineering University of Rochester and Hajim School of Engineering & Applied Sciences Rochester NY
| | - Deanne M Mickelsen
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Breandan Quinn
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Calvin Pan
- Department of Medicine David Geffen School of Medicine University of California Los Angeles Los Angeles CA
| | - George J Dugbartey
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Chen Yan
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Marvin M Doyley
- Department of Electrical & Computer Engineering University of Rochester and Hajim School of Engineering & Applied Sciences Rochester NY
| | - Aldons J Lusis
- Department of Medicine David Geffen School of Medicine University of California Los Angeles Los Angeles CA
| | - Bradford C Berk
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY.,University of Rochester Neurorestoration Institute University of Rochester School of Medicine and Dentistry Rochester NY
| |
Collapse
|
25
|
El-Lakany MA, Fouda MA, El-Gowelli HM, El-Mas MM. Ovariectomy provokes inflammatory and cardiovascular effects of endotoxemia in rats: Dissimilar benefits of hormonal supplements. Toxicol Appl Pharmacol 2020; 393:114928. [PMID: 32092384 DOI: 10.1016/j.taap.2020.114928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
The female gender is protected against immunological complications of endotoxemia. Here we investigated whether gonadal hormone depletion by ovariectomy (OVX) uncovers inflammatory and cardiovascular effects of endotoxemia and whether these effects are reversed by hormone replacement therapies. Changes in inflammatory cytokines, blood pressure (BP), left ventricular (LV) function, and cardiac autonomic activity caused by lipopolysaccharide (LPS) in conscious female rats with different hormonal states were determined. In contrast to no effects in sham-operated females, treatment of OVX rats with LPS (i) decreased BP, (ii) increased spectral low-frequency/high-frequency ratio of HRV, denoting enhanced cardiac sympathetic dominance, (iii) attenuated reflex tachycardic responses to sodium nitroprusside, and (iv) increased systolic contractility (dP/dtmax). The developed hypotension was (i) fully eliminated in estrogen (E2)-pretreated OVX rats, (ii) partially counteracted after selective activation of estrogen receptor-α (PPT) or β (DPN). All estrogenic compounds abrogated LPS enhancement of cardiac sympathetic drive. However, PPT was more successful than E2 or DPN in compromising LPS depression in baroreflex activity and elevation in dP/dtmax. Molecular studies showed that PPT was most effective in attenuating the upregulated myocardial expressions of NF-κB and iNOS in endotoxic OVX rats. Myocardial expression of the defensive HSP70 was comparably increased by all estrogenic products. Except for improved cardiac spectral activity, none of these functional or molecular entities was affected by medroxyprogesterone acetate (MPA). Overall, our data suggest diverse therapeutic advantages for gonadal hormones in the worsened endotoxic complications in rats with surgical menopause, with probably more favorable role for ERα agonism within this context.
Collapse
Affiliation(s)
- Mohammed A El-Lakany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
26
|
Keyoumu Y, Huo Q, Cheng L, Ma H, Zhang M, Ma Y, Ma X. The detailed biological investigations about combined effects of novel polyphenolic and photo-plasmonic nanoparticles loaded graphene nanosheets on coronary endothelial cells and isolated rat aortic rings. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111666. [PMID: 31837585 DOI: 10.1016/j.jphotobiol.2019.111666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
In this study, the effect of Polyp-Au-GO nanocomposite on VSMC proliferation, cell cycle proteins, down-regulation of mRNA in the rat was tested. Briefly, Polyp-Au-GO composite material was synthesized and characterized by UV-Vis spectra, X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Polyp-Au-GO composite exhibited the absorbance peak at 530 nm. XRD analysis confirmed the crystalline particle with size ranging between 16.5 and 32.6 nm. The crystallinity differences of the nanocomposite were examined by Raman spectroscopy analysis. The presence of a strong band (1500 cm-1) and the absence of other lower frequency bands confirmed that the absence of crystallinity of Polyp-Au-GO nanocomposite. The thermal properties of Polyp-Au-GO nanocomposite were determined by TGA analysis. The results revealed that 15% of its weight loss has occurred at 300 °C. Further, the growth of VSMCs was inhibited by the treatment of Polyp-Au-GO composite at 72 h. The IC50 value was registered at 0.57 μg/mL. Additionally, the Polyp-Au-GO composite arrest G1 cell cycle and down-regulated cell cycle proteins. These Polyp-Au-GO composite also reduced the extracellular ERK1/2 phosphorylation. Furthermore, Polyp-Au-GO composite inhibited TNF-R-evoked inflammatory responses. Moreover, Polyp-Au-GO composite inhibited of CEC proliferation. These results suggest that Polyp-Au-GO composite inhibits VSMC proliferation and TNF-R-mediated inflammatory responses. This study suggested the therapeutic role of Polyp-Au-GO composite in cardiovascular disease.
Collapse
Affiliation(s)
- Yilihamujiang Keyoumu
- Department of cardiovascular surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qiang Huo
- Department of cardiovascular surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lufeng Cheng
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Hong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xin Jiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mingming Zhang
- Department of cardiovascular surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yitong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xin Jiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xin Jiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
27
|
Novella S, Pérez‐Cremades D, Mompeón A, Hermenegildo C. Mechanisms underlying the influence of oestrogen on cardiovascular physiology in women. J Physiol 2019; 597:4873-4886. [DOI: 10.1113/jp278063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Susana Novella
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| | - Daniel Pérez‐Cremades
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| | - Ana Mompeón
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| | - Carlos Hermenegildo
- Department of PhysiologyFaculty of Medicine and DentistryUniversity of Valenciaand INCLIVA Biomedical Research Institute Valencia Spain
| |
Collapse
|
28
|
Moreau KL. Intersection between gonadal function and vascular aging in women. J Appl Physiol (1985) 2018; 125:1881-1887. [PMID: 30212304 PMCID: PMC6442668 DOI: 10.1152/japplphysiol.00117.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/14/2018] [Accepted: 09/09/2018] [Indexed: 01/28/2023] Open
Abstract
Vascular aging, characterized by endothelial dysfunction and large elastic arterial stiffening, is a major risk factor for age-associated cardiovascular disease (CVD). Although women have a lower prevalence of CVD until midlife, prevalence rates increase rapidly coincident with the menopausal transition to match those observed in men. The menopausal transition, or perimenopause, is a chaotic period that is associated with increased symptoms (e.g., hot flashes, depressed mood, anxiety, sleep disturbances) and CVD risk factors due to changes in the hormonal environment. Because these quality of life factors and CVD risk factors also change with aging, the arteries of women appear to endure a double insult. Our laboratory has been investigating how changes in gonadal function and hormone levels with the menopause transition impacts the vascular aging process in healthy women. Our work has shown that vascular endothelial function progressively declines, and large elastic arterial stiffness is greater across the stages of the menopausal transition. This acceleration in vascular aging may be due to the loss of vasodilatory, antioxidant, anti-inflammatory, and antiproliferative effects of estradiol on the vascular wall. This minireview discusses the impact of changes in gonadal function and hormones with the menopausal transition on vascular aging in women and areas for investigations to further our understanding of the intersection between gonadal function and vascular aging.
Collapse
Affiliation(s)
- Kerrie L Moreau
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
- Denver Veterans Administration Medical Center, Geriatric Research Education and Clinical Center, Denver, Colorado
| |
Collapse
|
29
|
Titterington JS, Hung OY, Saraf AP, Wenger NK. Gender differences in acute coronary syndromes: focus on the women with ACS without an obstructing culprit lesion. Expert Rev Cardiovasc Ther 2018; 16:297-304. [PMID: 29471698 DOI: 10.1080/14779072.2018.1443808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The etiologies of acute coronary syndromes (ACS) in women expand beyond the traditional paradigm of obstructive epicardial atherosclerotic disease and plaque rupture. Fundamental differences in pathobiology and presentation can partially explain the gender disparity in ACS diagnosis and management, but there is also much we do not know about the spectrum of coronary artery disease in women. Areas covered: This review seeks to explain some key differences between men and women in terms of risk factors, pathophysiology, and clinical presentations, as well as identify areas where more data are needed, focusing on women presenting with ACS but without a culprit lesion to explain their presentation. Literature search was undertaken with PubMed and Google Scholar. Expert commentary: Women with acute coronary syndromes but without plaque rupture or obstructive epicardial atherosclerosis can be difficult to diagnose and manage. Improving care in this underdiagnosed and undertreated population will require early identification of at risk patients, development of better diagnostic strategies, and standardized implementation of guideline-based therapies.
Collapse
Affiliation(s)
- Jane S Titterington
- a Department of Medicine, Division of Cardiology , Emory University School of Medicine , Atlanta , GA , USA
| | - Olivia Y Hung
- a Department of Medicine, Division of Cardiology , Emory University School of Medicine , Atlanta , GA , USA
| | - Anita P Saraf
- a Department of Medicine, Division of Cardiology , Emory University School of Medicine , Atlanta , GA , USA
| | - Nanette K Wenger
- a Department of Medicine, Division of Cardiology , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
30
|
El-Lakany MA, Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM. Gonadal hormone receptors underlie the resistance of female rats to inflammatory and cardiovascular complications of endotoxemia. Eur J Pharmacol 2018; 823:41-48. [PMID: 29382531 DOI: 10.1016/j.ejphar.2018.01.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/08/2023]
Abstract
The male gender is more vulnerable to immunological complications of sepsis. Here, we tested the hypotheses that female rats are protected against endotoxemia-evoked hypotension and cardiac autonomic dysfunction, and that gonadal hormone receptors account for such protection. Changes in blood pressure, heart rate, and cardiac sympathovagal balance caused by i.v. lipopolysaccharide (LPS) were determined. In male rats, LPS elevated serum TNFα together with falls in blood pressure and rises in heart rate. The spectral index of cardiac sympathovagal balance (low-frequency/high-frequency ratio, LF/HF) was reduced by LPS, suggesting an enhanced parasympathetic dominance. Remarkably, none of these LPS effects was evident in female rats. We also report that pretreatment of female rats with fulvestrant (nonselective estrogen receptor blocker), PHTPP (estrogen receptor β blocker), or mifepristone (progesterone receptor blocker) uncovered clear inflammatory (increased serum TNFα), hypotensive and tachycardic responses to LPS. However, these female rats, contrary to their male counterparts, exhibited increases in LF/HF ratio. On the other hand, LPS failed to modify inflammatory or cardiovascular states in rats pretreated with MPP (estrogen receptor α blocker). In females treated with formestane (aromatase inhibitor), LPS increased LF/HF ratio but had no effect on blood pressure. In male rats, the hypotensive and cardiac autonomic effects of LPS were (i) eliminated after treatment with estrogen, and (ii) intensified and inhibited, respectively, in flutamide (androgen receptor blocker)-pretreated rats. These findings highlight important roles for female gonadal hormones and functional estrogen receptor β and progesterone receptors in offsetting inflammatory and cardiovascular derangements caused by endotoxemia in female rats.
Collapse
Affiliation(s)
- Mohammed A El-Lakany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fouda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
31
|
Boese AC, Chang L, Yin KJ, Chen YE, Lee JP, Hamblin MH. Sex differences in abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol 2018; 314:H1137-H1152. [PMID: 29350999 DOI: 10.1152/ajpheart.00519.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disorder with a high case fatality rate in the instance of rupture. AAA is a multifactorial disease, and the etiology is still not fully understood. AAA is more likely to occur in men, but women have a greater risk of rupture and worse prognosis. Women are reportedly protected against AAA possibly by premenopausal levels of estrogen and are, on average, diagnosed at older ages than men. Here, we review the present body of research on AAA pathophysiology in humans, animal models, and cultured cells, with an emphasis on sex differences and sex steroid hormone signaling.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Lin Chang
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine , New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| |
Collapse
|
32
|
Association of TNF-α-3959T/C Gene Polymorphisms in the Chinese Population with Intracranial Aneurysms. J Mol Neurosci 2017; 63:349-354. [PMID: 29027627 DOI: 10.1007/s12031-017-0985-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/04/2017] [Indexed: 11/26/2022]
Abstract
Recent studies have demonstrated that cytokines play an important role in the pathogenesis of intracranial aneurysm (IA). Tumor necrosis factor-α (TNF-α) is an important proinflammatory cytokine, which was shown to influence the development of IA, but there is no research data from China. Hence, the purpose of this study was to explore the relationship between TNF-α polymorphisms and IA in China. The association of genetic variants of TNF-α gene expression was investigated in a Chinese population with IA. The TNF-α-3959T>C(rs1799964), 4127C>A(rs1800630), 4133C>T(rs1799724), 4184C>T(rs4248158), and 4752G>A(rs361525) gene polymorphisms in 192 IA cases and 112 controls were analyzed using polymerase chain reaction (PCR). Differences in genotype and allele frequencies between patients and controls were tested. There were no significant differences in 4127C>A (p = 0.072), 4133C>T (p = 0.373), 4184C>T (p = 0.749), and 4752G>A (p = 0.184) genotype frequencies between the IA group and the control group. But this case-control association study revealed that TNF-α-3959T>C (p < 0.001) was significantly associated with increased risk of IA. These results suggested that a novel TNF-α locus was found to be closely correlated with the occurrence of IA in Chinese.
Collapse
|
33
|
Chen YF, Lee NH, Pai PY, Chung LC, Shen CY, Rajendran P, Chen YF, Chen RJ, Padma Viswanadha V, Kuo WW, Huang CY. Tanshinone-induced ERs suppresses IGFII activation to alleviate Ang II-mediated cardiac hypertrophy. J Recept Signal Transduct Res 2017; 37:493-499. [DOI: 10.1080/10799893.2017.1360349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ya-Fang Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Taichung Veteran’s General Hospital, Taichung, Taiwan
| | - Nien-Hung Lee
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan County, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Peramaiyan Rajendran
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yu-Feng Chen
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
34
|
Boese AC, Kim SC, Yin KJ, Lee JP, Hamblin MH. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626075 DOI: 10.1152/ajpheart.00217.2016] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences between women and men are often overlooked and underappreciated when studying the cardiovascular system. It has been long assumed that men and women are physiologically similar, and this notion has resulted in women being clinically evaluated and treated for cardiovascular pathophysiological complications as men. Currently, there is increased recognition of fundamental sex differences in cardiovascular function, anatomy, cell signaling, and pathophysiology. The National Institutes of Health have enacted guidelines expressly to gain knowledge about ways the sexes differ in both normal function and diseases at the various research levels (molecular, cellular, tissue, and organ system). Greater understanding of these sex differences will be used to steer future directions in the biomedical sciences and translational and clinical research. This review describes sex-based differences in the physiology and pathophysiology of the vasculature, with a special emphasis on sex steroid receptor (estrogen and androgen receptor) signaling and their potential impact on vascular function in health and diseases (e.g., atherosclerosis, hypertension, peripheral artery disease, abdominal aortic aneurysms, cerebral aneurysms, and stroke).
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Seong C Kim
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean-Pyo Lee
- Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
35
|
Wang L, Gao S, Yu M, Sheng Z, Tan W. Association of asthma with coronary heart disease: A meta analysis of 11 trials. PLoS One 2017; 12:e0179335. [PMID: 28609456 PMCID: PMC5469478 DOI: 10.1371/journal.pone.0179335] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE While the relationship of asthma and coronary heart disease (CHD) (a specific manifestation of cardiovascular disease) has not been described consistently, we tried to defined this relation and explore the influence of gender and asthma status (child- and adult-onset asthma) on this issue. METHODS We searched published reports that described the relationship of asthma and CHD. RESULTS Eleven trials were identified, covering 666,355 subjects. Asthma overall was significantly associated with CHD both for prospective trials (HR 1.34 [1.09,1.64], P = 0.005) and for retrospective trials(OR 1.29 [1.13,1.46], P = 0.001), when compared to individuals without asthma. Subgroup analysis split by gender indicated that females with asthma were significantly associated with CHD (HR 1.40 [1.20,1.62], P<0.001), but males with asthma were not significantly related with CHD (HR 1.19 [0.98,1.44], P = 0.07). For the four subgroups (Females with adult-onset asthma,males with adult-onset asthma,females with child-onset asthma,and males with child-onset asthma), pooled analysis of two trials indicated that only females with adult-onset asthma were significantly associated with CHD (HR 2.06 [1.32,3.19], P<0.001). CONCLUSIONS Our data indicated that asthma was associated with CHD, and the relationship between them seemed to derived mostly from females with adult-onset asthma. Considering the limits of our study, these findings should be taken with caution.
Collapse
Affiliation(s)
- Lida Wang
- Department of E.N.T, Weifang People’s Hospital, Weifang, China
| | - Shuyan Gao
- Department of Hematology, Weifang People’s Hospital, Weifang, China
| | - Mingdong Yu
- Department of Orthopaedics, Weifang People’s Hospital, Weifang, China
| | - Zhixin Sheng
- Department of Hematology, Weifang People’s Hospital, Weifang, China
| | - Wei Tan
- Department of Respiration, Weifang People’s Hospital, Weifang, China
| |
Collapse
|
36
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 417] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
37
|
Szabó A, Janovszky Á, Pócs L, Boros M. The periosteal microcirculation in health and disease: An update on clinical significance. Microvasc Res 2017; 110:5-13. [DOI: 10.1016/j.mvr.2016.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 11/28/2022]
|
38
|
Giordano S, Zhao X, Chen YF, Litovsky SH, Hage FG, Townes TM, Sun CW, Wu LC, Oparil S, Xing D. Induced Pluripotent Stem Cell-Derived Endothelial Cells Overexpressing Interleukin-8 Receptors A/B and/or C-C Chemokine Receptors 2/5 Inhibit Vascular Injury Response. Stem Cells Transl Med 2017; 6:1168-1177. [PMID: 28233474 PMCID: PMC5442847 DOI: 10.1002/sctm.16-0316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 10/31/2016] [Indexed: 12/24/2022] Open
Abstract
Recruitment of neutrophils and monocytes/macrophages to the site of vascular injury is mediated by binding of chemoattractants to interleukin (IL) 8 receptors RA and RB (IL8RA/B) C‐C chemokine receptors (CCR) 2 and 5 expressed on neutrophil and monocyte/macrophage membranes. Endothelial cells (ECs) derived from rat‐induced pluripotent stem cells (RiPS) were transduced with adenovirus containing cDNA of IL8RA/B and/or CCR2/5. We hypothesized that RiPS‐ECs overexpressing IL8RA/B (RiPS‐IL8RA/B‐ECs), CCR2/5 (RiPS‐CCR2/5‐ECs), or both receptors (RiPS‐IL8RA/B+CCR2/5‐ECs) will inhibit inflammatory responses and neointima formation in balloon‐injured rat carotid artery. Twelve‐week‐old male Sprague‐Dawley rats underwent balloon injury of the right carotid artery and intravenous infusion of (a) saline vehicle, (b) control RiPS‐Null‐ECs (ECs transduced with empty virus), (c) RiPS‐IL8RA/B‐ECs, (d) RiPS‐CCR2/5‐ECs, or (e) RiPS‐IL8RA/B+CCR2/5‐ECs. Inflammatory mediator expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 hours postinjury by enzyme‐linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. Neointima formation was assessed at 14 days postinjury. RiPS‐ECs expressing the IL8RA/B or CCR2/5 homing device targeted the injured arteries and decreased injury‐induced inflammatory cytokine expression, neutrophil/macrophage infiltration, and neointima formation. Transfused RiPS‐ECs overexpressing IL8RA/B and/or CCR2/5 prevented inflammatory responses and neointima formation after vascular injury. Targeted delivery of iPS‐ECs with a homing device to inflammatory mediators in injured arteries provides a novel strategy for the treatment of cardiovascular diseases. Stem Cells Translational Medicine2017;6:1168–1177
Collapse
Affiliation(s)
- Samantha Giordano
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiangmin Zhao
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yiu-Fai Chen
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Silvio H Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Fadi G Hage
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chiao-Wang Sun
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li-Chen Wu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dongqi Xing
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
39
|
Chen YF, Day CH, Lee NH, Chen YF, Yang JJ, Lin CH, Chen RJ, Rajendran P, Viswanadha VP, Huang CY. Tanshinone IIA Inhibits β-Catenin Nuclear Translocation and IGF-2R Activation via Estrogen Receptors to Suppress Angiotensin II-Induced H9c2 Cardiomyoblast Cell Apoptosis. Int J Med Sci 2017; 14:1284-1291. [PMID: 29104486 PMCID: PMC5666563 DOI: 10.7150/ijms.20396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023] Open
Abstract
Cardiomyopathy involves changes in the myocardial ultra-structure, hypertrophy, apoptosis, fibrosis and inflammation. Angiotensin II (AngII) stimulates the expression of insulin like-growth factors (IGF-2) and IGF-2 receptor (IGF-2R) in H9c2 cardiomyoblasts and subsequently leads to apoptosis. Estrogen receptors protect cardiomyocytes from apoptosis and fibrosis. Tanshinone IIA (TSN), a main active ingredient from Danshen, has been shown to protect cardiomyocytes from death caused by different stress signals. Estrogen receptor α (ER) is required for the rapid activation of the IGF-1R signaling cascade. This study aimed to investigate whether TSN protected H9c2 cardiomyocytes from AngII-induced activation of IGF-2R pathway and hypertrophy via ERs. We found that AngII caused the reduction in IGF-1R phosphorylation and the elevation of β-catenin and IGF-2R levels. This was reversed by increasing doses of TSN and of caspase-3 and ERK1/2 phosphorylation mediated by ERs. The phytoestrogen significantly attenuated AngII-induced apoptosis and suppressed the subsequent cardiac remodeling effect. Therefore, TSN reduced the AngII-induced activation of β-catenin and IGF-2R pathways, apoptosis and cardiac remodeling via ERs in H9c2 cardiomyoblasts.
Collapse
Affiliation(s)
- Ya-Fang Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.,Department of Obstetrics and Gynecology, Taichung Veteran's General Hospital, Taichung 40705,Taiwan
| | | | - Nien-Hung Lee
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
| | - Yu-Feng Chen
- Section of Cardiology, Yuan Rung Hospital, Yuanlin, Taiwan
| | - Jaw-Ji Yang
- 5Institute of Oral Sciences, College of Oral Medicine, Chung Shan Medical University, Taichung40201, Taiwan
| | - Chih-Hsueh Lin
- Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei11031, Taiwan
| | - Peramaiyan Rajendran
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.,School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
40
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
41
|
Maekawa H, Serrone JC, Tjahjadi M, Hernesniemi J. RETRACTED ARTICLE: The role of estrogen on the pathology of cerebral aneurysms. Expert Rev Neurother 2016; 16:927-35. [DOI: 10.1080/14737175.2016.1189827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Oestrogen exerts anti-inflammation via p38 MAPK/NF-κB cascade in adipocytes. Obes Res Clin Pract 2016; 10:633-641. [PMID: 27004692 DOI: 10.1016/j.orcp.2016.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Oestrogen has anti-inflammatory property in obesity. However, the mechanism is still not defined. OBJECTIVE To investigate the effect of oestrogen on LPS-induced monocyte chemoattractant protein-1 (MCP-1) production in adipocytes. METHODS Lipopolysaccharides (LPS) was used to imitate inflammatory responses and monocyte chemotactic protein-1 (MCP-1) was selected as an inflammatory marker to observe. 17β-Estradiol (E2), SB203580 (SB), pyrrolidine dithiocarbamate (PDTC), pertussis toxin (PTX), wortmannin (WM), p65 siRNA and p38 MAPK siRNA were pre-treated respectively or together in LPS-induced MCP-1. Then p38 MAPK and NF-κB cascade were silenced successively to observe the change of each other. Lastly, oestrogen receptor (ER) α agonist, ERβ agonist and ER antagonist were utilised. RESULTS LPS-induced MCP-1 largely impaired by pre-treatment with E2, SB, PDTC or silencing NF-κB subunit. E2 inhibited LPS-induced MCP-1 in a time- and dose-dependent manner, which was related to the suppression of p65 translocation to nucleus. Furthermore, LPS rapidly activated p38 MAPK, while E2 markedly inhibited this activation. It markedly attenuated LPS-stimulated p65 translocation to nucleus and MCP-1 production by transfecting with p38 MAPK siRNA or using p38 MAPK inhibitor. The oestrogen's inhibitory effect was mimicked by the ERα agonist, but not by the ERβ agonist. The inhibition of E2 on p38 MAPK phosphorylation was prevented by ER antagonist. CONCLUSIONS E2 inhibits LPS-stimulated MCP-1 in adipocytes. This effect is related to the inhibition of p38 MAPK/NF-κB cascade, and ERα appears to be the dominant ER subtype in these events.
Collapse
|
43
|
Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats. Adv Pharmacol Sci 2016; 2016:2428052. [PMID: 26941790 PMCID: PMC4752972 DOI: 10.1155/2016/2428052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/10/2016] [Indexed: 01/20/2023] Open
Abstract
The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (-); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats.
Collapse
|
44
|
Li P, Liu H, Sun P, Wang X, Wang C, Wang L, Wang T. Chronic vagus nerve stimulation attenuates vascular endothelial impairments and reduces the inflammatory profile via inhibition of the NF-κB signaling pathway in ovariectomized rats. Exp Gerontol 2016; 74:43-55. [DOI: 10.1016/j.exger.2015.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
|
45
|
Chan JK, Glass GE, Ersek A, Freidin A, Williams GA, Gowers K, Espirito Santo AI, Jeffery R, Otto WR, Poulsom R, Feldmann M, Rankin SM, Horwood NJ, Nanchahal J. Low-dose TNF augments fracture healing in normal and osteoporotic bone by up-regulating the innate immune response. EMBO Mol Med 2016; 7:547-61. [PMID: 25770819 PMCID: PMC4492816 DOI: 10.15252/emmm.201404487] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mechanism by which trauma initiates healing remains unclear. Precise understanding of these events may define interventions for accelerating healing that could be translated to the clinical arena. We previously reported that addition of low-dose recombinant human TNF (rhTNF) at the fracture site augmented fracture repair in a murine tibial fracture model. Here, we show that local rhTNF treatment is only effective when administered within 24 h of injury, when neutrophils are the major inflammatory cell infiltrate. Systemic administration of anti-TNF impaired fracture healing. Addition of rhTNF enhanced neutrophil recruitment and promoted recruitment of monocytes through CCL2 production. Conversely, depletion of neutrophils or inhibition of the chemokine receptor CCR2 resulted in significantly impaired fracture healing. Fragility, or osteoporotic, fractures represent a major medical problem as they are associated with permanent disability and premature death. Using a murine model of fragility fractures, we found that local rhTNF treatment improved fracture healing during the early phase of repair. If translated clinically, this promotion of fracture healing would reduce the morbidity and mortality associated with delayed patient mobilization.
Collapse
Affiliation(s)
- James K Chan
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Graeme E Glass
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Adel Ersek
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew Freidin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Garry A Williams
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Kate Gowers
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Rosemary Jeffery
- Histopathology Laboratory and In Situ Hybridisation Service, Cancer Research UK - London Research Institute, London, UK
| | - William R Otto
- Histopathology Laboratory and In Situ Hybridisation Service, Cancer Research UK - London Research Institute, London, UK
| | - Richard Poulsom
- Histopathology Laboratory and In Situ Hybridisation Service, Cancer Research UK - London Research Institute, London, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Sara M Rankin
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicole J Horwood
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
46
|
Muka T, Vargas KG, Jaspers L, Wen KX, Dhana K, Vitezova A, Nano J, Brahimaj A, Colpani V, Bano A, Kraja B, Zaciragic A, Bramer WM, van Dijk GM, Kavousi M, Franco OH. Estrogen receptor β actions in the female cardiovascular system: A systematic review of animal and human studies. Maturitas 2016; 86:28-43. [PMID: 26921926 DOI: 10.1016/j.maturitas.2016.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 12/27/2022]
Abstract
Five medical databases were searched for studies that assessed the role of ERβ in the female cardiovascular system and the influence of age and menopause on ERβ functioning. Of 9472 references, 88 studies met our inclusion criteria (71 animal model experimental studies, 15 human model experimental studies and 2 population based studies). ERβ signaling was shown to possess vasodilator and antiangiogenic properties by regulating the activity of nitric oxide, altering membrane ionic permeability in vascular smooth muscle cells, inhibiting vascular smooth muscle cell migration and proliferation and by regulating adrenergic control of the arteries. Also, a possible protective effect of ERβ signaling against left ventricular hypertrophy and ischemia/reperfusion injury via genomic and non-genomic pathways was suggested in 27 studies. Moreover, 5 studies reported that the vascular effects of ERβ may be vessel specific and may differ by age and menopause status. ERβ seems to possess multiple functions in the female cardiovascular system. Further studies are needed to evaluate whether isoform-selective ERβ-ligands might contribute to cardiovascular disease prevention.
Collapse
Affiliation(s)
- Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Kris G Vargas
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Loes Jaspers
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ke-xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Anna Vitezova
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Adela Brahimaj
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Veronica Colpani
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Arjola Bano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Bledar Kraja
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania; University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Gaby M van Dijk
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
47
|
Maggioli E, McArthur S, Mauro C, Kieswich J, Kusters DHM, Reutelingsperger CPM, Yaqoob M, Solito E. Estrogen protects the blood-brain barrier from inflammation-induced disruption and increased lymphocyte trafficking. Brain Behav Immun 2016; 51:212-222. [PMID: 26321046 DOI: 10.1016/j.bbi.2015.08.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Sex differences have been widely reported in neuroinflammatory disorders, focusing on the contributory role of estrogen. The microvascular endothelium of the brain is a critical component of the blood-brain barrier (BBB) and it is recognized as a major interface for communication between the periphery and the brain. As such, the cerebral capillary endothelium represents an important target for the peripheral estrogen neuroprotective functions, leading us to hypothesize that estrogen can limit BBB breakdown following the onset of peripheral inflammation. Comparison of male and female murine responses to peripheral LPS challenge revealed a short-term inflammation-induced deficit in BBB integrity in males that was not apparent in young females, but was notable in older, reproductively senescent females. Importantly, ovariectomy and hence estrogen loss recapitulated an aged phenotype in young females, which was reversible upon estradiol replacement. Using a well-established model of human cerebrovascular endothelial cells we investigated the effects of estradiol upon key barrier features, namely paracellular permeability, transendothelial electrical resistance, tight junction integrity and lymphocyte transmigration under basal and inflammatory conditions, modeled by treatment with TNFα and IFNγ. In all cases estradiol prevented inflammation-induced defects in barrier function, action mediated in large part through up-regulation of the central coordinator of tight junction integrity, annexin A1. The key role of this protein was then further confirmed in studies of human or murine annexin A1 genetic ablation models. Together, our data provide novel mechanisms for the protective effects of estrogen, and enhance our understanding of the beneficial role it plays in neurovascular/neuroimmune disease.
Collapse
Affiliation(s)
- E Maggioli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - S McArthur
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; Department of Biomedical Sciences, Faculty of Science & Technology, University of Westminster, New Cavendish Street, London W1W 6UW, UK
| | - C Mauro
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - J Kieswich
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - D H M Kusters
- Cardiovascular Research Institute, Department of Biochemistry, Maastricht University, 6200 Maastricht, The Netherlands; Department of Pathology, University of Michigan Health System, 109 Zina Pitcher Place, 4062 BSRB, Ann Arbor, MI 48109-2200, United States
| | - C P M Reutelingsperger
- Cardiovascular Research Institute, Department of Biochemistry, Maastricht University, 6200 Maastricht, The Netherlands
| | - M Yaqoob
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - E Solito
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
48
|
Izawa M, Taniguchi F, Harada T. Molecular Background of Estrogen Receptor Gene Expression in Endometriotic Cells. Reprod Sci 2015; 23:871-6. [PMID: 26704524 DOI: 10.1177/1933719115623642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular background of estrogen receptor (ER) expression is important to understand the pathophysiology of the high estrogen environment in endometriosis. However, the molecular details have not been fully understood. The objective of this study is to evaluate the molecular background of ERα and ERβ messenger RNA (mRNA) expression in endometriotic cells. The following summarizes our observations: (1) ERα mRNA expression in endometriotic cells was estimated to be approximately one-tenth of that in endometrial cells. (2) Three mRNAs, which include 3 different 5'-untranslated exons tagged to an open reading frame of wild-type ERα, were detected. (3) Expression of ERβ mRNA depends mostly on 0N promoter and includes 2 open reading frames: one for a wild-type ERβ1 and another for a splice variant ERβ2. (4) Expression of ERβ1 mRNA was approximately 40-fold higher than that in endometrial cells. (5) Expression of ERβ2 mRNA was almost at a comparable level of the ERβ1. 9 (6) ERα and ERβ mRNAs are equivalently expressed in endometriotic cells. These observations show the molecular background of ER mRNA expression in endometriotic cells and provide a clue to further understanding the estrogen-dependent pathophysiology leading to clinical application in endometriosis.
Collapse
Affiliation(s)
- Masao Izawa
- Department of Obstetrics and Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Fuminori Taniguchi
- Department of Obstetrics and Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Tasuku Harada
- Department of Obstetrics and Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
49
|
Du Y, Zhu Y, Teng X, Zhang K, Teng X, Li S. Toxicological Effect of Manganese on NF-κB/iNOS-COX-2 Signaling Pathway in Chicken Testes. Biol Trace Elem Res 2015; 168:227-34. [PMID: 25904117 DOI: 10.1007/s12011-015-0340-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/09/2015] [Indexed: 11/29/2022]
Abstract
Manganese (Mn) pollution can cause tissue and organ dysfunction and structural damage. The toxicity of Mn in poultry was reported, but inflammatory damage that Mn induced in the testicular tissue has not been reported. The aim of this study was to investigate the effect of Mn poisoning on NF-κB/iNOS-COX-2 signaling pathway in chicken testes. One hundred eighty Hyline male chickens at 7 days of age were fed either commercial diet or MnCl2-added commercial diet containing 600, 900, and 1800 mg/kg Mn for 30, 60, and 90 days, respectively. The messenger RNA (mRNA) expression of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), nitric oxide (NO) content, iNOS activity, and histopathology were examined in chicken testes. The results showed that excess Mn upregulated mRNA expression of NF-κB, COX-2, TNF-α, and iNOS, NO content, and iNOS activity at 60th and 90th day. Mn had a time-dependent effect on NF-κB and TNF-α mRNA expression. Mn had a dose- and time-dependent effect on NO content and iNOS activity. Mn exposure induced chicken testis histological changes in dose- and time-dependent manner. It indicated that Mn exposure resulted in inflammatory injury of chicken testis tissue through NF-κB/iNOS-COX-2 signaling pathway.
Collapse
Affiliation(s)
- Ye Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yihao Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaojie Teng
- Heilongjiang Grassland and Forage Central Experimental Station, Harbin, 150069, People's Republic of China.
| | - Kun Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
50
|
Tegge AN, Sharp N, Murali TM. Xtalk: a path-based approach for identifying crosstalk between signaling pathways. Bioinformatics 2015; 32:242-51. [PMID: 26400040 DOI: 10.1093/bioinformatics/btv549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 09/04/2015] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. RESULTS We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. AVAILABILITY AND IMPLEMENTATION The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. CONTACT ategge@vt.edu, murali@cs.vt.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Allison N Tegge
- Department of Computer Science, Department of Statistics and
| | | | - T M Murali
- Department of Computer Science, ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|