1
|
Chalise U, Hale TM. Fibroblasts under pressure: cardiac fibroblast responses to hypertension and antihypertensive therapies. Am J Physiol Heart Circ Physiol 2024; 326:H223-H237. [PMID: 37999643 PMCID: PMC11219059 DOI: 10.1152/ajpheart.00401.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Approximately 50% of Americans have hypertension, which significantly increases the risk of heart failure. In response to increased peripheral resistance in hypertension, intensified mechanical stretch in the myocardium induces cardiomyocyte hypertrophy and fibroblast activation to withstand increased pressure overload. This changes the structure and function of the heart, leading to pathological cardiac remodeling and eventual progression to heart failure. In the presence of hypertensive stimuli, cardiac fibroblasts activate and differentiate to myofibroblast phenotype capable of enhanced extracellular matrix secretion in coordination with other cell types, mainly cardiomyocytes. Both systemic and local renin-angiotensin-aldosterone system activation lead to increased angiotensin II stimulation of fibroblasts. Angiotensin II directly activates fibrotic signaling such as transforming growth factor β/SMAD and mitogen-activated protein kinase (MAPK) signaling to produce extracellular matrix comprised of collagens and matricellular proteins. With the advent of single-cell RNA sequencing techniques, heterogeneity in fibroblast populations has been identified in the left ventricle in models of hypertension and pressure overload. The various clusters of fibroblasts reveal a range of phenotypes and activation states. Select antihypertensive therapies have been shown to be effective in limiting fibrosis, with some having direct actions on cardiac fibroblasts. The present review focuses on the fibroblast-specific changes that occur in response to hypertension and pressure overload, the knowledge gained from single-cell analyses, and the effect of antihypertensive therapies. Understanding the dynamics of hypertensive fibroblast populations and their similarities and differences by sex is crucial for the advent of new targets and personalized medicine.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona, United States
| |
Collapse
|
2
|
Yao Y, Lin L, Tang W, Shen Y, Chen F, Li N. Geniposide alleviates pressure overload in cardiac fibrosis with suppressed TGF-β1 pathway. Acta Histochem 2023; 125:152044. [PMID: 37196380 DOI: 10.1016/j.acthis.2023.152044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cardiac fibrosis is one of the main contributors to the pathogenesis of heart failure. Geniposide (GE), a major iridoid in gardenia fruit extract, has recently been reported to improve skeletal muscle fibrosis through the modulation of inflammation response. This investigation aimed to illuminate the cardio-protective effect and the potential mechanism of GE in cardiac fibrosis. MATERIAL AND METHODS A transverse aortic contraction (TAC) induction mice model was established and GE (0 mg/kg; 10 mg/kg; 20 mg/kg; 40 mg/kg) was administered by oral gavage daily for 4 weeks. Hemodynamic parameters, Masson's trichrome stain, and hematoxylin-eosin (HE) staining were estimated and cardiomyocyte fibrosis, interstitial collagen levels, and hypertrophic markers were analyzed using qPCR and western blot. In vitro, H9C2 cells were exposed to the Ang II (1 μM) pretreated with GE (0.1 μM, 1 μM, and 10 μM). Cardiomyocyte apoptosis was detected. Moreover, the transforming growth factor β1 (TGF-β1)/Smad2 pathway was assessed in vivo and in vitro. RESULTS GE significantly ameliorated TAC-induced cardiac hypertrophy, ventricular remodeling, myocardial fibrosis, and improved cardiac function in vivo, and it inhibited Ang II-induced cardiomyocyte apoptosis in vitro. We further observed that the inflammatory channel TGF-β1/Smad2 pathway was suppressed by GE both in vivo and in vitro. CONCLUSION These results indicate that GE inhibited myocardial fibrosis and improved hypertrophic cardiomyocytes with attenuated the TGF-β1/Smad2 pathway and proposed to be an important therapeutic of cardiac fibrosis reduced by TAC.
Collapse
Affiliation(s)
- Yanmei Yao
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Leqing Lin
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Wenxue Tang
- Department of Critical Care Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Yueliang Shen
- Department of Pathophysiology, Zhejiang University Medical College, Hangzhou, Zhejiang 310000, People's Republic of China
| | - Fayu Chen
- Department of General Medicine, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China
| | - Ning Li
- Department of Hematology and Oncology, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, People's Republic of China.
| |
Collapse
|
3
|
Barrera-Chimal J, Bonnard B, Jaisser F. Roles of Mineralocorticoid Receptors in Cardiovascular and Cardiorenal Diseases. Annu Rev Physiol 2022; 84:585-610. [PMID: 35143332 DOI: 10.1146/annurev-physiol-060821-013950] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mineralocorticoid receptor (MR) activation in the heart and vessels leads to pathological effects, such as excessive extracellular matrix accumulation, oxidative stress, and sustained inflammation. In these organs, the MR is expressed in cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, and inflammatory cells. We review the accumulating experimental and clinical evidence that pharmacological MR antagonism has a positive impact on a battery of cardiac and vascular pathological states, including heart failure, myocardial infarction, arrhythmic diseases, atherosclerosis, vascular stiffness, and cardiac and vascular injury linked to metabolic comorbidities and chronic kidney disease. Moreover, we present perspectives on optimization of the use of MR antagonists in patients more likely to respond to such therapy and review the evidence suggesting that novel nonsteroidal MR antagonists offer an improved safety profile while retaining their cardiovascular protective effects. Finally, we highlight future therapeutic applications of MR antagonists in cardiovascular injury.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France;
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; .,INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN INI-CRCT), Université de Lorraine, Nancy, France
| |
Collapse
|
4
|
Gasperetti A, James CA, Cerrone M, Delmar M, Calkins H, Duru F. Arrhythmogenic right ventricular cardiomyopathy and sports activity: from molecular pathways in diseased hearts to new insights into the athletic heart mimicry. Eur Heart J 2021; 42:1231-1243. [PMID: 33200174 DOI: 10.1093/eurheartj/ehaa821] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/12/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited disease associated with a high risk of sudden cardiac death. Among other factors, physical exercise has been clearly identified as a strong determinant of phenotypic expression of the disease, arrhythmia risk, and disease progression. Because of this, current guidelines advise that individuals with ARVC should not participate in competitive or frequent high-intensity endurance exercise. Exercise-induced electrical and morphological para-physiological remodelling (the so-called 'athlete's heart') may mimic several of the classic features of ARVC. Therefore, the current International Task Force Criteria for disease diagnosis may not perform as well in athletes. Clear adjudication between the two conditions is often a real challenge, with false positives, that may lead to unnecessary treatments, and false negatives, which may leave patients unprotected, both of which are equally inacceptable. This review aims to summarize the molecular interactions caused by physical activity in inducing cardiac structural alterations, and the impact of sports on arrhythmia occurrence and other clinical consequences in patients with ARVC, and help the physicians in setting the two conditions apart.
Collapse
Affiliation(s)
- Alessio Gasperetti
- Division of Cardiology, University Heart Center Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland
| | - Cynthia A James
- Division of Cardiology, Johns Hopkins Hospital, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Marina Cerrone
- Leon H Charney Division of Cardiology, New York University School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Mario Delmar
- Leon H Charney Division of Cardiology, New York University School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Hugh Calkins
- Division of Cardiology, Johns Hopkins Hospital, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Firat Duru
- Division of Cardiology, University Heart Center Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Rämistrasse 71, Zurich 8006, Switzerland
| |
Collapse
|
5
|
Garvin AM, Khokhar BS, Czubryt MP, Hale TM. RAS inhibition in resident fibroblast biology. Cell Signal 2020; 80:109903. [PMID: 33370581 DOI: 10.1016/j.cellsig.2020.109903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) is a primary mediator of profibrotic signaling in the heart and more specifically, the cardiac fibroblast. Ang II-mediated cardiomyocyte hypertrophy in combination with cardiac fibroblast proliferation, activation, and extracellular matrix production compromise cardiac function and increase mortality in humans. Profibrotic actions of Ang II are mediated by increasing production of fibrogenic mediators (e.g. transforming growth factor beta, scleraxis, osteopontin, and periostin), recruitment of immune cells, and via increased reactive oxygen species generation. Drugs that inhibit Ang II production or action, collectively referred to as renin angiotensin system (RAS) inhibitors, are first line therapeutics for heart failure. Moreover, transient RAS inhibition has been found to persistently alter hypertensive cardiac fibroblast responses to injury providing a useful tool to identify novel therapeutic targets. This review summarizes the profibrotic actions of Ang II and the known impact of RAS inhibition on cardiac fibroblast phenotype and cardiac remodeling.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Bilal S Khokhar
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
6
|
Driessen HE, Fontes MS, van Stuijvenberg L, Brans MA, Goumans MJ, Vos MA, van Veen TA. A combined CaMKII inhibition and mineralocorticoid receptor antagonism via eplerenone inhibits functional deterioration in chronic pressure overloaded mice. J Cell Mol Med 2020; 24:8417-8429. [PMID: 32573944 PMCID: PMC7412412 DOI: 10.1111/jcmm.15355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
In the diseased and remodelled heart, increased activity and expression of Ca2+/ calmodulin-dependent protein kinase II (CaMKII), an excess of fibrosis, and a decreased electrical coupling and cellular excitability leads to disturbed calcium homeostasis and tissue integrity. This subsequently leads to increased arrhythmia vulnerability and contractile dysfunction. Here, we investigated the combination of CaMKII inhibition (using genetically modified mice expressing the autocamtide-3-related-peptide (AC3I)) together with eplerenone treatment (AC3I-Epler) to prevent electrophysiological remodelling, fibrosis and subsequent functional deterioration in a mouse model of chronic pressure overload. We compared AC3I-Epler mice with mice only subjected to mineralocorticoid receptor (MR) antagonism (WT-Epler) and mice with only CaMKII inhibition (AC3I-No). Our data show that a combined CaMKII inhibition together with MR antagonism mitigates contractile deterioration as was manifested by a preservation of ejection fraction, fractional shortening, global longitudinal strain, peak strain and contractile synchronicity. Furthermore, patchy fibrosis formation was reduced, potentially via inhibition of pro-fibrotic TGF-β/SMAD3 signalling, which related to a better global contractile performance and a slightly depressed incidence of arrhythmias. Furthermore, the level of patchy fibrosis appeared significantly correlated to eplerenone dose. The addition of eplerenone to CaMKII inhibition potentiates the effects of CaMKII inhibition on pro-fibrotic pathways. As a result of the applied strategy, limiting patchy fibrosis adheres to a higher synchronicity of contraction and an overall better contractile performance which fits with a tempered arrhythmogenesis.
Collapse
Affiliation(s)
- Helen E Driessen
- Division of Heart & Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Magda S Fontes
- Division of Heart & Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Leonie van Stuijvenberg
- Division of Heart & Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Maike A Brans
- Division of Heart & Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Marc A Vos
- Division of Heart & Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Toon A van Veen
- Division of Heart & Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Gap-134, a Connexin43 activator, prevents age-related development of ventricular fibrosis in Scn5a +/- mice. Pharmacol Res 2020; 159:104922. [PMID: 32464326 DOI: 10.1016/j.phrs.2020.104922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 01/05/2023]
Abstract
Down-regulation of Connexin43 (Cx43) has often been associated with the development of cardiac fibrosis. We showed previously that Scn5a heterozygous knockout mice (Scn5a+/-), which mimic familial progressive cardiac conduction defect, exhibit an age-dependent decrease of Cx43 expression and phosphorylation concomitantly with activation of TGF-β pathway and fibrosis development in the myocardium between 45 and 60 weeks of age. The aim of this study was to investigate whether Gap-134 prevents Cx43 down-regulation with age and fibrosis development in Scn5a+/- mice. We observed in 60-week-old Scn5a+/- mouse heart a Cx43 expression and localization remodeling correlated with fibrosis. Chronic administration of a potent and selective gap junction modifier, Gap-134 (danegaptide), between 45 and 60 weeks, increased Cx43 expression and phosphorylation on serine 368 and prevented Cx43 delocalization. Furthermore, we found that Gap-134 prevented fibrosis despite the persistence of the conduction defects and the TGF-β canonical pathway activation. In conclusion, the present study demonstrates that the age-dependent decrease of Cx43 expression is involved in the ventricular fibrotic process occurring in Scn5a+/- mice. Finally, our study suggests that gap junction modifier, such as Gap-134, could be an effective anti-fibrotic agent in the context of age-dependent fibrosis in progressive cardiac conduction disease.
Collapse
|
8
|
Tracy E, Rowe G, LeBlanc AJ. Cardiac tissue remodeling in healthy aging: the road to pathology. Am J Physiol Cell Physiol 2020; 319:C166-C182. [PMID: 32432929 DOI: 10.1152/ajpcell.00021.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review aims to highlight the normal physiological remodeling that occurs in healthy aging hearts, including changes that occur in contractility, conduction, valve function, large and small coronary vessels, and the extracellular matrix. These "normal" age-related changes serve as the foundation that supports decreased plasticity and limited ability for tissue remodeling during pathophysiological states such as myocardial ischemia and heart failure. This review will identify populations at greater risk for poor tissue remodeling in advanced age along with present and future therapeutic strategies that may ameliorate dysfunctional tissue remodeling in aging hearts.
Collapse
Affiliation(s)
- Evan Tracy
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Amanda J LeBlanc
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
9
|
van Opbergen CJM, Noorman M, Pfenniger A, Copier JS, Vermij SH, Li Z, van der Nagel R, Zhang M, de Bakker JMT, Glass AM, Mohler PJ, Taffet SM, Vos MA, van Rijen HVM, Delmar M, van Veen TAB. Plakophilin-2 Haploinsufficiency Causes Calcium Handling Deficits and Modulates the Cardiac Response Towards Stress. Int J Mol Sci 2019; 20:E4076. [PMID: 31438494 PMCID: PMC6747156 DOI: 10.3390/ijms20174076] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 01/06/2023] Open
Abstract
Human variants in plakophilin-2 (PKP2) associate with most cases of familial arrhythmogenic cardiomyopathy (ACM). Recent studies show that PKP2 not only maintains intercellular coupling, but also regulates transcription of genes involved in Ca2+ cycling and cardiac rhythm. ACM penetrance is low and it remains uncertain, which genetic and environmental modifiers are crucial for developing the cardiomyopathy. In this study, heterozygous PKP2 knock-out mice (PKP2-Hz) were used to investigate the influence of exercise, pressure overload, and inflammation on a PKP2-related disease progression. In PKP2-Hz mice, protein levels of Ca2+-handling proteins were reduced compared to wildtype (WT). PKP2-Hz hearts exposed to voluntary exercise training showed right ventricular lateral connexin43 expression, right ventricular conduction slowing, and a higher susceptibility towards arrhythmias. Pressure overload increased levels of fibrosis in PKP2-Hz hearts, without affecting the susceptibility towards arrhythmias. Experimental autoimmune myocarditis caused more severe subepicardial fibrosis, cell death, and inflammatory infiltrates in PKP2-Hz hearts than in WT. To conclude, PKP2 haploinsufficiency in the murine heart modulates the cardiac response to environmental modifiers via different mechanisms. Exercise upon PKP2 deficiency induces a pro-arrhythmic cardiac remodeling, likely based on impaired Ca2+ cycling and electrical conduction, versus structural remodeling. Pathophysiological stimuli mainly exaggerate the fibrotic and inflammatory response.
Collapse
Affiliation(s)
- Chantal J M van Opbergen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, Utrecht 3584CM, The Netherlands
| | - Maartje Noorman
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, Utrecht 3584CM, The Netherlands
| | - Anna Pfenniger
- Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA
| | - Jaël S Copier
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, Utrecht 3584CM, The Netherlands
| | - Sarah H Vermij
- Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Zhen Li
- Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA
| | - Roel van der Nagel
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, Utrecht 3584CM, The Netherlands
| | - Mingliang Zhang
- Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA
| | - Jacques M T de Bakker
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, Utrecht 3584CM, The Netherlands
- Department of Medical Biology, Academic Medical Center Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Aaron M Glass
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA
- Departments of Physiology & Cell Biology and Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine Wexner Medical Center, Columbus, OH 43210, USA
| | - Steven M Taffet
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, Utrecht 3584CM, The Netherlands
| | - Harold V M van Rijen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, Utrecht 3584CM, The Netherlands
| | - Mario Delmar
- Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, Utrecht 3584CM, The Netherlands.
| |
Collapse
|
10
|
Papademetriou V, Toumpourleka M, Imprialos KP, Alataki S, Manafis A, Stavropoulos K. The Role of Mineralocorticoid Receptor Antagonists in Heart Failure with Reduced Ejection Fraction. Curr Pharm Des 2019; 24:5517-5524. [DOI: 10.2174/1381612825666190219141326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Background:
Heart failure (HF) is a worldwide modern epidemic, associated with significant morbidity
and mortality. Several causes have been identified for the syndrome, most of which share common pathophysiologic
pathways, including neurohormonal activation. Central to the latter lies activation of the reninangiotensin-
aldosterone system, and its effects on cardiovascular disease progression.
Objectives:
The aim of this review is to summarize the pathophysiology of aldosterone and the effects of its
blockage in the failing heart, as well as to provide state-of-the-art evidence, and address future perspectives regarding
the use of mineralocorticoid receptor antagonists in heart failure with reduced ejection fraction.
Method:
Literature was reviewed for studies that assess the pathophysiology of aldosterone in HF with reduced
ejection fraction (HFrEF), and the effects of mineralocorticoid receptor antagonists (MRAs) in this condition.
Results:
Several major society guidelines have synthesized the available evidence on HFrEF management, and
drugs that block the renin-angiotensin-aldosterone system at different levels continue to form the key component
of standard of care for these patients. Mineralocorticoid receptor antagonists are an important part of HFrEF
pharmacologic treatment, and their use is supported by a high level of evidence studies. This class of drugs demonstrated
significant benefits for morbidity and mortality, across the spectrum oh HFrEF, including patients after
acute myocardial infarction.
Conclusion:
Current evidence supports the central role of aldosterone in HFrEF progression, and the significant
benefits on outcomes with the use of MRAs.
Collapse
Affiliation(s)
| | - Maria Toumpourleka
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos P. Imprialos
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Alataki
- Medical Clinic IV-Department of Cardiology, Manicipal Hospital Karlsruhe, Academic Teaching Hospital, University of Freiburg, Karlsruhe, Germany
| | - Alexandros Manafis
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Stavropoulos
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
11
|
Sykora M, Kamocsaiova L, Egan Benova T, Frimmel K, Ujhazy E, Mach M, Barancik M, Tribulova N, Szeiffova Bacova B. Alterations in myocardial connexin-43 and matrix metalloproteinase-2 signaling in response to pregnancy and oxygen deprivation of Wistar rats: a pilot study 1. Can J Physiol Pharmacol 2019; 97:829-836. [PMID: 30908945 DOI: 10.1139/cjpp-2018-0740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two important aspects of cardiac adaptive response to pregnancy have been studied in normal as well as hypoxic conditions: (1) intercellular signaling mediated by myocardial connexin-43 (Cx43) that is crucial to synchronize heart function; (2) extracellular signaling mediated by matrix metalloproteinase-2 (MMP-2) that is an early marker of extracellular matrix remodeling. Myocardial Cx43 distribution and functional capillary density were determined as well. Hypoxia was induced by exposure of rats to 10.5% O2 and 89.5% N2 in a hermetically sealed chamber. Findings showed that pregnancy resulted in a significant increase of Cx43 protein expression, its functional phosphorylated forms, and enhanced capillary density while did not affect either expression of total MMP-2 or its activity. Maternal hypoxia for 12 or 16 h did not affect elevated Cx43 but enhanced its distribution on lateral sides of the cardiomyocytes. In contrast, hypoxia of nonpregnant rats resulted in upregulation of Cx43, its lateral distribution, and enhanced capillary density. Hypoxia did not affect myocardial MMP-2 either in pregnant or nonpregnant rats. Cardiac adaptive response to pregnancy is accompanied by enhanced Cx43 without changes in MMP-2 signaling. Pregnant rat heart is tolerant to short-term hypoxemia, while nonpregnant rat heart reacts by upregulation of Cx43 and increased capillary density.
Collapse
Affiliation(s)
- Matus Sykora
- CEM SAS, Institute for Heart Research, Bratislava, Slovakia
| | - Lucia Kamocsaiova
- Faculty of Natural Sciences of Comenius University, Bratislava, Slovakia
| | | | - Karel Frimmel
- CEM SAS, Institute for Heart Research, Bratislava, Slovakia
| | - Eduard Ujhazy
- CEM SAS, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | - Mojmir Mach
- CEM SAS, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | | | | | | |
Collapse
|
12
|
Prognostic Impact of Angiotensin-Converting Enzyme Inhibitors and Receptor Blockers on Recurrent Ventricular Tachyarrhythmias and Implantable Cardioverter-Defibrillator Therapies. J Cardiovasc Pharmacol 2019; 73:272-281. [PMID: 30747784 DOI: 10.1097/fjc.0000000000000659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study sought to assess the prognostic impact of treatment with angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB) on recurrences of ventricular tachyarrhythmias in recipients of implantable cardioverter-defibrillators (ICD). Using a large retrospective registry including consecutive ICD recipients with documented episodes of ventricular tachycardia (VT) or fibrillation (VF) from 2002 to 2016, those patients treated with ACEi/ARB were compared with patients without. The primary prognostic endpoint was the first recurrence of ventricular tachyarrhythmias and related ICD therapies at 5 years. Multivariable Cox regression analyses were applied within the entire cohort, and thereafter, Kaplan-Meier analyses were performed in propensity-matched subgroups. A total of 592 consecutive ICD recipients were included (81% treated with ACEi/ARB and 19% without). Although ACEi/ARB was associated with no differences in overall recurrence of ventricular tachyarrhythmias, ACEi/ARB was associated with improved freedom from appropriate ICD therapy within multivariable Cox regressions (hazard ratio = 0.666; P = 0.043), especially in patients with index episodes of VF, left ventricular ejection fraction <35%, coronary artery disease, secondary preventive ICD, and glomerular filtration rate <45 mL/min/1.73 m. In the propensity-matched subgroup, ACEi/ARB still prolonged freedom from appropriate ICD therapies (hazard ratio = 0.380; 95% confidence interval 0.193-0.747; P = 0.005). In conclusion, ACEi/ARB therapy was associated with improved freedom from appropriate ICD therapies.
Collapse
|
13
|
Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid Receptor and Cardiovascular Disease. Am J Hypertens 2018; 31:1165-1174. [PMID: 30192914 DOI: 10.1093/ajh/hpy120] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Activation of the mineralocorticoid receptor (MR) in the distal nephron by its ligand, aldosterone, plays an important role in sodium reabsorption and blood pressure regulation. However, expression of the MR goes beyond the kidney. It is expressed in a variety of other tissues in which its activation could lead to tissue injury. Indeed, MR activation in the cardiovascular (CV) system has been shown to promote hypertension, fibrosis, and inflammation. Pharmacological blockade of the MR has protective effects in several animal models of CV disease. Furthermore, the use of MR antagonists is beneficial for heart failure patients, preventing mortality and morbidity. A better understanding of the implications of the MR in the setting of CV diseases is critical for refining treatments and improving patient care. The mechanisms involved in the deleterious effects of MR activation are complex and include oxidative stress, inflammation, and fibrosis. This review will discuss the pathological role of the MR in the CV system and the major mechanisms underlying it.
Collapse
Affiliation(s)
- Mathieu Buonafine
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
| | - Benjamin Bonnard
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
| | - Frédéric Jaisser
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
- INSERM, Clinical Investigation Centre, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, RHU Fight-HF, Nancy, France
| |
Collapse
|
14
|
Wei W, Rao F, Liu F, Xue Y, Deng C, Wang Z, Zhu J, Yang H, Li X, Zhang M, Fu Y, Zhu W, Shan Z, Wu S. Involvement of Smad3 pathway in atrial fibrosis induced by elevated hydrostatic pressure. J Cell Physiol 2018; 233:4981-4989. [PMID: 29215718 DOI: 10.1002/jcp.26337] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Wei
- Department of Cardiology, Guangdong Cardiovascular Institute; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Fang Rao
- Department of Cardiology, Guangdong Cardiovascular Institute; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Research Center of Medical Sciences, Guangdong General Hospital; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Fangzhou Liu
- Department of Cardiology, Guangdong Cardiovascular Institute; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Yumei Xue
- Department of Cardiology, Guangdong Cardiovascular Institute; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Chunyu Deng
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Research Center of Medical Sciences, Guangdong General Hospital; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Zhaoyu Wang
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Research Center of Medical Sciences, Guangdong General Hospital; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Jiening Zhu
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Research Center of Medical Sciences, Guangdong General Hospital; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Hui Yang
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Research Center of Medical Sciences, Guangdong General Hospital; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Xin Li
- Department of Cardiology, Guangdong Cardiovascular Institute; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Mengzhen Zhang
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Research Center of Medical Sciences, Guangdong General Hospital; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Yongheng Fu
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Research Center of Medical Sciences, Guangdong General Hospital; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Wensi Zhu
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Research Center of Medical Sciences, Guangdong General Hospital; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Zhixin Shan
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Research Center of Medical Sciences, Guangdong General Hospital; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| | - Shulin Wu
- Department of Cardiology, Guangdong Cardiovascular Institute; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
- Guangdong Key Laboratory of Clinical Pharmacology; Guangdong Academy of Medical Sciences; Guangzhou P. R. China
| |
Collapse
|
15
|
Zhou Y, Wang Y, Qiao S, Yin L. Effects of Apelin on Cardiovascular Aging. Front Physiol 2017; 8:1035. [PMID: 29302260 PMCID: PMC5732982 DOI: 10.3389/fphys.2017.01035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Apelin is the endogenous ligand of APJ, the orphan G protein-coupled receptor. The apelin-APJ signal transduction pathway is widely expressed in the cardiovascular system and is an important factor in cardiovascular homeostasis. This signal transduction pathway has long been related to diseases with high morbidity in the elderly, such as atherosclerosis, coronary atherosclerotic heart disease, hypertension, calcific aortic valve disease, heart failure and atrial fibrillation. In this review, we discuss the apelin-APJ signal transduction pathway related to age-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yong Wang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Shubin Qiao
- Department of Cardiology, Cardiovascular Institute of Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liang Yin
- School of Science, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
16
|
Derangeon M, Montnach J, Cerpa CO, Jagu B, Patin J, Toumaniantz G, Girardeau A, Huang CLH, Colledge WH, Grace AA, Baró I, Charpentier F. Transforming growth factor β receptor inhibition prevents ventricular fibrosis in a mouse model of progressive cardiac conduction disease. Cardiovasc Res 2017; 113:464-474. [PMID: 28339646 DOI: 10.1093/cvr/cvx026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/16/2017] [Indexed: 01/12/2023] Open
Abstract
Aims Loss-of-function mutations in SCN5A, the gene encoding NaV1.5 channel, have been associated with inherited progressive cardiac conduction disease (PCCD). We have proposed that Scn5a heterozygous knock-out (Scn5a+/-) mice, which are characterized by ventricular fibrotic remodelling with ageing, represent a model for PCCD. Our objectives were to identify the molecular pathway involved in fibrosis development and prevent its activation. Methods and results Our study shows that myocardial interstitial fibrosis occurred in Scn5a+/- mice only after 45 weeks of age. Fibrosis was triggered by transforming growth factor β (TGF-β) pathway activation. Younger Scn5a+/- mice were characterized by a higher connexin 43 expression than wild-type (WT) mice. After the age of 45 weeks, connexin 43 expression decreased in both WT and Scn5a+/- mice, although the decrease was larger in Scn5a+/- mice. Chronic inhibition of cardiac sodium current with flecainide (50 mg/kg/day p.o) in WT mice from the age of 6 weeks to the age of 60 weeks did not lead to TGF-β pathway activation and fibrosis. Chronic inhibition of TGF-β receptors with GW788388 (5 mg/kg/day p.o.) in Scn5a+/- mice from the age of 45 weeks to the age of 60 weeks prevented the occurrence of fibrosis. However, current data could not detect reduction in QRS duration with GW788388. Conclusion Myocardial fibrosis secondary to a loss of NaV1.5 is triggered by TGF-β signalling pathway. Those events are more likely secondary to the decreased NaV1.5 sarcolemmal expression rather than the decreased Na+ current per se. TGF-β receptor inhibition prevents age-dependent development of ventricular fibrosis in Scn5a+/- mouse.
Collapse
Affiliation(s)
- Mickael Derangeon
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Jérôme Montnach
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Cynthia Ore Cerpa
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Benoit Jagu
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Justine Patin
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Gilles Toumaniantz
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Aurore Girardeau
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Christopher L H Huang
- The Section of Cardiovascular Biology, Departments of Biochemistry and Physiology, University of Cambridge, Downing street, Cambridge CB23EG, UK
| | - William H Colledge
- The Section of Cardiovascular Biology, Departments of Biochemistry and Physiology, University of Cambridge, Downing street, Cambridge CB23EG, UK
| | - Andrew A Grace
- The Section of Cardiovascular Biology, Departments of Biochemistry and Physiology, University of Cambridge, Downing street, Cambridge CB23EG, UK
| | - Isabelle Baró
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France
| | - Flavien Charpentier
- INSERM, UMR1087, l'institut du thorax, quai Moncousu, Nantes F-44000, France.,CNRS, UMR6291, quai Moncousu, Nantes F-44000, France.,Université de Nantes, quai Moncousu, Nantes F-44000, France.,CHU Nantes, Alexis Ricordeau, Nantes F-44000, France
| |
Collapse
|
17
|
Jones S, Mann A, Worley MC, Fulford L, Hall D, Karani R, Jiang M, Robbins N, Rubinstein J, Koch SE. The role of transient receptor potential vanilloid 2 channel in cardiac aging. Aging Clin Exp Res 2017; 29:863-873. [PMID: 27804106 DOI: 10.1007/s40520-016-0663-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aging heart is characterized by cellular and molecular changes leading to a decline in physiologic function and cardiac remodeling, specifically the development of myocyte hypertrophy and fibrosis. Transient receptor potential vanilloid 2 (TRPV2), a stretch-mediated channel and regulator of calcium homeostasis, plays a key role in the function and structure of the heart. TRPV2 also plays an important role in the adaptive and maladaptive compensatory mechanisms of the heart in response to pathologic and exercise-induced stress. Our current study seeks to elucidate the potential role of TRPV2 channels in the regulation of cardiac function in aging. METHODS Wild-type (WT) and TRPV2 functional knockout (FKO) mice were aged out to various time points, and their cardiac function was measured using advanced echocardiography. Furthermore, we histologically analyzed the heart morphology to determine myocyte hypertrophy, the development of fibrosis and the relative expression of TRPV2. RESULTS Our results demonstrate that even though TRPV2-FKO mice have impaired function at baseline, their cardiac function as measured via standard and advanced echocardiographic parameters (ejection fraction, cardiac output and circumferential strain) decreased less with aging in comparison with the WT group. Furthermore, there was less fibrosis and hypertrophy in the TRPV2-FKO group with aging in comparison with the WT. The expression of TRPV2 in the WT group did not significantly change with aging. CONCLUSIONS TRPV2 functional deletion is compatible with aging and associated with a decreased development of myocyte hypertrophy and fibrosis. It may be an important target for prevention of age-induced cardiac remodeling.
Collapse
Affiliation(s)
- Shannon Jones
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Adrien Mann
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Mariah C Worley
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Logan Fulford
- Department of Pathobiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - David Hall
- Department of Nutritional Sciences College of Allied Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rajiv Karani
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Min Jiang
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Nathan Robbins
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA
| | - Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML0542, Cincinnati, OH, 45267, USA.
| |
Collapse
|
18
|
Lu L, Guo J, Hua Y, Huang K, Magaye R, Cornell J, Kelly DJ, Reid C, Liew D, Zhou Y, Chen A, Xiao W, Fu Q, Wang BH. Cardiac fibrosis in the ageing heart: Contributors and mechanisms. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:55-63. [PMID: 28316086 DOI: 10.1111/1440-1681.12753] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 01/30/2023]
Abstract
Cardiac fibrosis refers to an excessive deposition of extracellular matrix (ECM) in cardiac tissue. Fibrotic tissue is stiffer and less compliant, resulting in subsequent cardiac dysfunction and heart failure. Cardiac fibrosis in the ageing heart may involve activation of fibrogenic signalling and inhibition of anti-fibrotic signalling, leading to an imbalance of ECM turnover. Excessive accumulation of ECM such as collagen in older patients contributes to progressive ventricular dysfunction. Overexpression of collagen is derived from various sources, including higher levels of fibrogenic growth factors, proliferation of fibroblasts and cellular transdifferentiation. These may be triggered by factors, such as oxidative stress, inflammation, hypertension, cellular senescence and cell death, contributing to age-related fibrotic cardiac remodelling. In this review, we will discuss the fibrogenic contributors in age-related cardiac fibrosis, and the potential mechanisms by which fibrogenic processes can be interrupted for therapeutic intent.
Collapse
Affiliation(s)
- Lu Lu
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingbin Guo
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Hua
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kevin Huang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Ruth Magaye
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Jake Cornell
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Darren J Kelly
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Vic., Australia
| | - Christopher Reid
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia.,NHMRC Cardiovascular Centre of Research Excellence, School of Public Health, Curtin University, Perth, WA, Australia
| | - Danny Liew
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Xiao
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - Qiang Fu
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Hui Wang
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
19
|
Jeevaratnam K, Chadda KR, Salvage SC, Valli H, Ahmad S, Grace AA, Huang CLH. Ion channels, long QT syndrome and arrhythmogenesis in ageing. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:38-45. [PMID: 28024120 PMCID: PMC5763326 DOI: 10.1111/1440-1681.12721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023]
Abstract
Ageing is associated with increased prevalences of both atrial and ventricular arrhythmias, reflecting disruption of the normal sequence of ion channel activation and inactivation generating the propagated cardiac action potential. Experimental models with specific ion channel genetic modifications have helped clarify the interacting functional roles of ion channels and how their dysregulation contributes to arrhythmogenic processes at the cellular and systems level. They have also investigated interactions between these ion channel abnormalities and age-related processes in producing arrhythmic tendency. Previous reviews have explored the relationships between age and loss-of-function Nav 1.5 mutations in producing arrhythmogenicity. The present review now explores complementary relationships arising from gain-of-function Nav 1.5 mutations associated with long QT3 (LQTS3). LQTS3 patients show increased risks of life-threatening ventricular arrhythmias, particularly after 40 years of age, consistent with such interactions between the ion channel abnormailities and ageing. In turn clinical evidence suggests that ageing is accompanied by structural, particularly fibrotic, as well as electrophysiological change. These abnormalities may result from biochemical changes producing low-grade inflammation resulting from increased production of reactive oxygen species and superoxide. Experimental studies offer further insights into the underlying mechanisms underlying these phenotypes. Thus, studies in genetically modified murine models for LQTS implicated action potential recovery processes in arrhythmogenesis resulting from functional ion channel abnormalities. In addition, ageing wild type (WT) murine models demonstrated both ion channel alterations and fibrotic changes with ageing. Murine models then suggested evidence for interactions between ageing and ion channel mutations and provided insights into potential arrhythmic mechanisms inviting future exploration.
Collapse
Affiliation(s)
- Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,School of Medicine, Perdana University-Royal College of Surgeons Ireland, Serdang, Selangor Darul Ehsan, Malaysia
| | - Karan R Chadda
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Physiological Laboratory, University of Cambridge, Cambridge, UK
| | | | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Andrew A Grace
- Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
The effects of ageing and adrenergic challenge on electrocardiographic phenotypes in a murine model of long QT syndrome type 3. Sci Rep 2017; 7:11070. [PMID: 28894151 PMCID: PMC5593918 DOI: 10.1038/s41598-017-11210-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/21/2017] [Indexed: 01/19/2023] Open
Abstract
Long QT Syndrome 3 (LQTS3) arises from gain-of-function Nav1.5 mutations, prolonging action potential repolarisation and electrocardiographic (ECG) QT interval, associated with increased age-dependent risk for major arrhythmic events, and paradoxical responses to β-adrenergic agents. We investigated for independent and interacting effects of age and Scn5a+/ΔKPQ genotype in anaesthetised mice modelling LQTS3 on ECG phenotypes before and following β-agonist challenge, and upon fibrotic change. Prolonged ventricular recovery was independently associated with Scn5a+/ΔKPQ and age. Ventricular activation was prolonged in old Scn5a+/ΔKPQ mice (p = 0.03). We associated Scn5a+/ΔKPQ with increased atrial and ventricular fibrosis (both: p < 0.001). Ventricles also showed increased fibrosis with age (p < 0.001). Age and Scn5a+/ΔKPQ interacted in increasing incidences of repolarisation alternans (p = 0.02). Dobutamine increased ventricular rate (p < 0.001) and reduced both atrioventricular conduction (PR segment-p = 0.02; PR interval-p = 0.02) and incidences of repolarisation alternans (p < 0.001) in all mice. However, in Scn5a+/ΔKPQ mice, dobutamine delayed the changes in ventricular repolarisation following corresponding increases in ventricular rate. The present findings implicate interactions between age and Scn5a+/ΔKPQ in prolonging ventricular activation, correlating them with fibrotic change for the first time, adding activation abnormalities to established recovery abnormalities in LQTS3. These findings, together with dynamic electrophysiological responses to β-adrenergic challenge, have therapeutic implications for ageing LQTS patients.
Collapse
|
21
|
Stöckigt F, Beiert T, Knappe V, Baris OR, Wiesner RJ, Clemen CS, Nickenig G, Andrié RP, Schrickel JW. Aging-related mitochondrial dysfunction facilitates the occurrence of serious arrhythmia after myocardial infarction. Biochem Biophys Res Commun 2017; 493:604-610. [PMID: 28867191 DOI: 10.1016/j.bbrc.2017.08.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 08/25/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND During aging a mosaic of normal cells and cells with mitochondrial deficiency develops in various tissues including the heart. Whether this contributes to higher susceptibility for arrhythmia following myocardial infarction (MI) is unknown. METHODS AND RESULTS Myocardial cryoinfarction was performed in 12-month-old transgenic mice with accelerated accumulation of deletions in mitochondrial DNA. Occurrence and pathogenesis of arrhythmia was investigated after two weeks. Holter-ECG recordings revealed higher rates of premature ventricular complexes (incidence > 10/24 h: 100% vs. 20%; p = 0.048) and more severe spontaneous arrhythmia during stress test in mutant mice with MI as compared to control mice with MI. Mice with mitochondrial dysfunction exhibited longer spontaneous AV-blocks (467 ± 26 ms vs. 377 ± 24 ms; p = 0.013), an increased probability for induction of ventricular tachycardia during in vivo electrophysiological investigation (22% vs. 9%; p = 0.044), and a reduced conduction velocity in the infarct borderzone (38.5 ± 0.5 cm/s vs. 55.3 ± 0.9 cm/s; p = 0.001). Furthermore, mutant mice exhibited a significant reduction of the phospho-Cx43/Cx43 ratio in right (0.59 ± 0.04 vs. 0.85 ± 0.01; p = 0.027) and left ventricular myocardium (0.72 ± 0.01 vs. 0.86 ± 0.02; p = 0.023). CONCLUSIONS Aging-related cardiac mosaic respiratory chain dysfunction facilitates the occurrence of spontaneous and inducible cardiac arrhythmia after myocardial infarction and is associated with slowing of electrical impulse propagation in the infarct borderzone.
Collapse
Affiliation(s)
- Florian Stöckigt
- Department of Internal Medicine II, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany.
| | - Thomas Beiert
- Department of Internal Medicine II, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Vincent Knappe
- Department of Internal Medicine II, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Olivier R Baris
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Christoph S Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany; Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - René P Andrié
- Department of Internal Medicine II, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Jan W Schrickel
- Department of Internal Medicine II, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| |
Collapse
|
22
|
Abstract
Myocardial injury, mechanical stress, neurohormonal activation, inflammation, and/or aging all lead to cardiac remodeling, which is responsible for cardiac dysfunction and arrhythmogenesis. Of the key histological components of cardiac remodeling, fibrosis either in the form of interstitial, patchy, or dense scars, constitutes a key histological substrate of arrhythmias. Here we discuss current research findings focusing on the role of fibrosis, in arrhythmogenesis. Numerous studies have convincingly shown that patchy or interstitial fibrosis interferes with myocardial electrophysiology by slowing down action potential propagation, initiating reentry, promoting after-depolarizations, and increasing ectopic automaticity. Meanwhile, there has been increasing appreciation of direct involvement of myofibroblasts, the activated form of fibroblasts, in arrhythmogenesis. Myofibroblasts undergo phenotypic changes with expression of gap-junctions and ion channels thereby forming direct electrical coupling with cardiomyocytes, which potentially results in profound disturbances of electrophysiology. There is strong evidence that systemic and regional inflammatory processes contribute to fibrogenesis (i.e., structural remodeling) and dysfunction of ion channels and Ca2+ homeostasis (i.e., electrical remodeling). Recognizing the pivotal role of fibrosis in the arrhythmogenesis has promoted clinical research on characterizing fibrosis by means of cardiac imaging or fibrosis biomarkers for clinical stratification of patients at higher risk of lethal arrhythmia, as well as preclinical research on the development of antifibrotic therapies. At the end of this review, we discuss remaining key questions in this area and propose new research approaches. © 2017 American Physiological Society. Compr Physiol 7:1009-1049, 2017.
Collapse
Affiliation(s)
- My-Nhan Nguyen
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiao-Ming Gao
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
23
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|
24
|
Padmanabhan Iyer R, Chiao YA, Flynn ER, Hakala K, Cates CA, Weintraub ST, de Castro Brás LE. Matrix metalloproteinase-9-dependent mechanisms of reduced contractility and increased stiffness in the aging heart. Proteomics Clin Appl 2015; 10:92-107. [PMID: 26415707 DOI: 10.1002/prca.201500038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/12/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE Matrix metalloproteinases (MMPs) collectively degrade all extracellular matrix (ECM) proteins. Of the MMPs, MMP-9 has the strongest link to the development of cardiac dysfunction. Aging associates with increased MMP-9 expression in the left ventricle (LV) and reduced cardiac function. We investigated the effect of MMP-9 deletion on the cardiac ECM in aged animals. EXPERIMENTAL DESIGN We used male and female middle-aged (10- to16-month old) and old (20- to 24-month old) wild-type (WT) and MMP-9 null mice (n = 6/genotype/age). LVs were decellularized to remove highly abundant mitochondrial proteins that could mask identification of relative lower abundant components, analyzed by shotgun proteomics, and proteins of interest validated by immunoblot. RESULTS Elastin microfibril interface-located protein 1 (EMILIN-1) decreased with age in WT (p < 0.05), but not in MMP-9 null. EMILIN-1 promotes integrin-dependent cell adhesion and EMILIN-1 deficiency has been associated with vascular stiffening. Talin-2, a cytoskeletal protein, was elevated with age in WT (p < 0.05), and MMP-9 deficiency blunted this increase. Talin-2 is highly expressed in adult cardiac myocytes, transduces mechanical force to the ECM, and is activated by increases in substrate stiffness. Our results suggest that MMP-9 deletion may reduce age-related myocardial stiffness, which may explain improved cardiac function in MMP-9 null animals. CONCLUSIONS We identified age-related changes in the cardiac proteome that are MMP-9 dependent, suggesting MMP-9 as a possible therapeutic target for the aging patient.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Ying Ann Chiao
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Elizabeth R Flynn
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Kevin Hakala
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Courtney A Cates
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Susan T Weintraub
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lisandra E de Castro Brás
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
25
|
QRS prolongation after premature stimulation is associated with polymorphic ventricular tachycardia in nonischemic cardiomyopathy: Results from the Leiden Nonischemic Cardiomyopathy Study. Heart Rhythm 2015; 13:860-9. [PMID: 26699238 DOI: 10.1016/j.hrthm.2015.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Progressive activation delay after premature stimulation has been associated with ventricular fibrillation in nonischemic cardiomyopathy (NICM). OBJECTIVES The objectives of this study were (1) to investigate prolongation of the paced QRS duration (QRSd) after premature stimulation as a marker of activation delay in NICM, (2) to assess its relation to induced ventricular arrhythmias, and (3) to analyze its underlying substrate by late gadolinium enhancement cardiac magnetic resonance imaging (LGE-CMR) and endomyocardial biopsy. METHODS Patients with NICM were prospectively enrolled in the Leiden Nonischemic Cardiomyopathy Study and underwent a comprehensive evaluation including LGE-CMR, electrophysiology study, and endomyocardial biopsy. Patients without structural heart disease served as controls for electrophysiology study. RESULTS Forty patients with NICM were included (mean age 57 ± 14 years; 33 men [83%]; left ventricular ejection fraction 30% ± 13%). After the 400-ms drive train and progressively premature stimulation, the maximum increase in QRSd was larger in patients with NICM than in controls (35 ± 18 ms vs. 23 ± 12 ms; P = .005) and the coupling interval window with QRSd prolongation was wider (47 ± 23 ms vs. 31 ± 14 ms; P = .005). The maximum paced QRSd exceeded the ventricular effective refractory period, allowing for pacing before the offset of the QRS complex in 20 of 39 patients with NICM vs. 1 of 20 controls (P < .001). In patients with NICM, QRSd prolongation was associated with the inducibility of polymorphic ventricular tachycardia (16 of 39 patients) and was related to long, thick strands of fibrosis in biopsies, but not to focal enhancement on LGE-CMR. CONCLUSION QRSd is a simple parameter used to quantify activation delay after premature stimulation, and its prolongation is associated with the inducibility of polymorphic ventricular tachycardia and with the pattern of myocardial fibrosis in biopsies.
Collapse
|
26
|
Tse G, Yeo JM. Conduction abnormalities and ventricular arrhythmogenesis: The roles of sodium channels and gap junctions. IJC HEART & VASCULATURE 2015; 9:75-82. [PMID: 26839915 PMCID: PMC4695916 DOI: 10.1016/j.ijcha.2015.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 01/12/2023]
Abstract
Ventricular arrhythmias arise from disruptions in the normal orderly sequence of electrical activation and recovery of the heart. They can be categorized into disorders affecting predominantly cellular depolarization or repolarization, or those involving action potential (AP) conduction. This article briefly discusses the factors causing conduction abnormalities in the form of unidirectional conduction block and reduced conduction velocity (CV). It then examines the roles that sodium channels and gap junctions play in AP conduction. Finally, it synthesizes experimental results to illustrate molecular mechanisms of how abnormalities in these proteins contribute to such conduction abnormalities and hence ventricular arrhythmogenesis, in acquired pathologies such as acute ischaemia and heart failure, as well as inherited arrhythmic syndromes.
Collapse
Affiliation(s)
- Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Jie Ming Yeo
- School of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
27
|
Hale TM. Persistent phenotypic shift in cardiac fibroblasts: impact of transient renin angiotensin system inhibition. J Mol Cell Cardiol 2015; 93:125-32. [PMID: 26631495 DOI: 10.1016/j.yjmcc.2015.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
Abstract
Fibrotic cardiac remodeling ultimately leads to heart failure - a debilitating and costly condition. Select antihypertensive agents have been effective in reducing or slowing the development of cardiac fibrosis. Moreover, some experimental studies have shown that the reduction in fibrosis induced by these agents persists long after stopping treatment. What has not been as well investigated is whether this transient treatment results in a protection against future fibrotic cardiac remodeling. In the present review, previously published studies are re-examined to assess whether the relative percent increase in collagen deposition over an off-treatment period is attenuated, relative to control, following transient antihypertensive treatment in young or adult rats. Present findings suggest that transient inhibition of the renin angiotensin system (RAS) not only produces a sustained reduction in cardiac fibrosis, but also results in a degree of protection against future collagen deposition. In addition, prior transient RAS inhibition appears to alter the cardiac fibroblast phenotype such that these cells show a muted response to myocardial injury - namely reduced proliferation, chemokine release, and collagen deposition. This review puts forth several potential mechanisms underlying this long-term cardiac protection that is afforded by transient RAS inhibition. Specifically, fibroblast phenotypic change, cardiac fibroblast apoptosis, sustained suppression of the RAS, persistent reduction in left ventricular hypertrophy, and persistent reduction in arterial pressure are each discussed. Identifying the mechanisms ultimately responsible for this change in cardiac fibroblast response to injury, hypertension, and aging may reveal novel targets for therapy.
Collapse
Affiliation(s)
- Taben M Hale
- Department of Basic Medical Sciences, University of Arizona, College of Medicine - Phoenix, 425 N 5th St, ABC1, Rm 327, USA.
| |
Collapse
|
28
|
Yu LM, Xu Y. Epigenetic regulation in cardiac fibrosis. World J Cardiol 2015; 7:784-791. [PMID: 26635926 PMCID: PMC4660473 DOI: 10.4330/wjc.v7.i11.784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/16/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this mini-review, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs.
Collapse
|
29
|
CTGF knockout does not affect cardiac hypertrophy and fibrosis formation upon chronic pressure overload. J Mol Cell Cardiol 2015; 88:82-90. [PMID: 26410398 DOI: 10.1016/j.yjmcc.2015.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND One of the main contributors to maladaptive cardiac remodeling is fibrosis. Connective tissue growth factor (CTGF), a matricellular protein that is secreted into the cardiac extracellular matrix by both cardiomyocytes and fibroblasts, is often associated with development of fibrosis. However, recent studies have questioned the role of CTGF as a pro-fibrotic factor. Therefore, we aimed to investigate the effect of CTGF on cardiac fibrosis, and on functional, structural, and electrophysiological parameters in a mouse model of CTGF knockout (KO) and chronic pressure overload. METHODS AND RESULTS A new mouse model of global conditional CTGF KO induced by tamoxifen-driven deletion of CTGF, was subjected to 16weeks of chronic pressure overload via transverse aortic constriction (TAC, control was sham surgery). CTGF KO TAC mice presented with hypertrophic hearts, and echocardiography revealed a decrease in contractility on a similar level as control TAC mice. Ex vivo epicardial mapping showed a low incidence of pacing-induced ventricular arrhythmias (2/12 in control TAC vs. 0/10 in CTGF KO TAC, n.s.) and a tendency towards recovery of the longitudinal conduction velocity of CTGF KO TAC hearts. Picrosirius Red staining on these hearts unveiled increased fibrosis at a similar level as control TAC hearts. Furthermore, genes related to fibrogenesis were also similarly upregulated in both TAC groups. Histological analysis revealed an increase in fibronectin and vimentin protein expression, a significant reduction in connexin43 (Cx43) protein expression, and no difference in NaV1.5 expression of CTGF KO ventricles as compared with sham treated animals. CONCLUSION Conditional CTGF inhibition failed to prevent TAC-induced cardiac fibrosis and hypertrophy. Additionally, no large differences were found in other parameters between CTGF KO and control TAC mice. With no profound effect of CTGF on fibrosis formation, other factors or pathways are likely responsible for fibrosis development.
Collapse
|
30
|
D'Souza KM, Biwer LA, Madhavpeddi L, Ramaiah P, Shahid W, Hale TM. Persistent change in cardiac fibroblast physiology after transient ACE inhibition. Am J Physiol Heart Circ Physiol 2015; 309:H1346-53. [PMID: 26371174 DOI: 10.1152/ajpheart.00615.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/06/2015] [Indexed: 11/22/2022]
Abstract
Transient angiotensin-converting enzyme (ACE) inhibition induces persistent changes that protect against future nitric oxide synthase (NOS) inhibitor-induced cardiac fibrosis and inflammation. Given the role of fibroblasts in mediating these effects, the present study investigates whether prior ACE inhibition produced persistent changes in cardiac fibroblast physiology. Adult male spontaneously hypertensive rats (SHRs) were treated with vehicle (C+L) or the ACE inhibitor, enalapril (E+L) for 2 wk followed by a 2-wk washout period and a subsequent 7-day challenge with the NOS inhibitor N(ω)-nitro-l-arginine methyl ester. A third set of untreated SHRs served as controls. At the end of the study period, cardiac fibroblasts were isolated from control, C+L, and E+L left ventricles to assess proliferation rate, collagen expression, and chemokine release in vitro. After 7 days of NOS inhibition, there were areas of myocardial injury but no significant change in collagen deposition in E+L and C+L hearts in vivo. In vitro, cardiac fibroblasts isolated from C+L but not E+L hearts were hyperproliferative, demonstrated increased collagen type I gene expression, and an elevated secretion of the macrophage-recruiting chemokines monocyte chemoattractant protein-1 and granulocyte macrophage-colony stimulating factor. These findings demonstrate that in vivo N(ω)-nitro-l-arginine methyl ester treatment produces phenotypic changes in fibroblasts that persist in vitro. Moreover, this is the first demonstration that transient ACE inhibition can produce a persistent modification of the cardiac fibroblast phenotype to one that is less inflammatory and fibrogenic. It may be that the cardioprotective effects of ACE inhibition are related in part to beneficial changes in cardiac fibroblast physiology.
Collapse
Affiliation(s)
- K M D'Souza
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - L A Biwer
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - L Madhavpeddi
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - P Ramaiah
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - W Shahid
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| | - T M Hale
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona
| |
Collapse
|
31
|
Abstract
Aging results in progressive deteriorations in the structure and function of the heart and is a dominant risk factor for cardiovascular diseases, the leading cause of death in Western populations. Although the phenotypes of cardiac aging have been well characterized, the molecular mechanisms of cardiac aging are just beginning to be revealed. With the continuously growing elderly population, there is a great need for interventions in cardiac aging. This article will provide an overview of the phenotypic changes of cardiac aging, the molecular mechanisms underlying these changes, and will present some of the recent advances in the development of interventions to delay or reverse cardiac aging.
Collapse
Affiliation(s)
- Ying Ann Chiao
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Peter S Rabinovitch
- Department of Pathology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
32
|
Adissu HA, Medhanie GA, Morikawa L, White JK, Newbigging S, McKerlie C. Right Ventricular Epicardial Fibrosis in Mice With Sternal Segment Dislocation. Vet Pathol 2015; 52:967-76. [PMID: 25281652 PMCID: PMC4469621 DOI: 10.1177/0300985814552108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report coincident sternal segment dislocation and focally extensive right ventricular epicardial fibrosis observed during routine histopathology evaluation of C57BL/6N mice as part of a high throughput phenotyping screen conducted between 4 and 16 weeks of age. This retrospective case series study was conducted to determine whether cardiac fibrosis was a pathological consequence of sternal segment dislocation. We identified sternal segment dislocation in 51 of the total 1103 mice (4.6%) analyzed at 16 weeks of age. Males were more frequently affected. In all cases but 2, the dislocation occurred at the fourth intersternebral joint. In 42 of the 51 cases (82.4%), the dislocation was encased by regenerative cartilaginous callus that protruded internally into the thoracic cavity (intrathoracic callus) and/or externally to the outer aspect of the sternum (extrathoracic callus). Displacement of dislocated ends of the sternum into the thoracic cavity was present in 19 of 51 cases (36.5%). Coincident minimal or mild right ventricular epicardial and subepicardial fibrosis was observed in 22 of the 51 cases (43%) but was not observed in any of the mice in the absence of sternal segment dislocation. Our data suggest that right ventricular fibrosis was likely caused by direct injury of the right ventricle by the dislocated ends of the sternum and/or by intrathoracic callus that develops post dislocation. Potential pathogenesis for the sternal and cardiac lesions and their implication for the interpretation of phenotypes in mouse models of cardiopulmonary and skeletal disease are discussed.
Collapse
Affiliation(s)
- H A Adissu
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, ON, Canada Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - G A Medhanie
- Population Medicine, University of Guelph, Ontario Veterinary College, Guelph, ON, Canada
| | - L Morikawa
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, ON, Canada Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - J K White
- Mouse Genetics Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - S Newbigging
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, ON, Canada Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - C McKerlie
- Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, ON, Canada Physiology & Experimental Medicine Research Program, The Hospital for Sick Children, Toronto, ON, Canada Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
|
34
|
Fontes MSC, Papazova DA, van Koppen A, de Jong S, Korte SM, Bongartz LG, Nguyen TQ, Bierhuizen MFA, de Boer TP, van Veen TAB, Verhaar MC, Joles JA, van Rijen HVM. Arrhythmogenic Remodeling in Murine Models of Deoxycorticosterone Acetate-Salt-Induced and 5/6-Subtotal Nephrectomy-Salt-Induced Cardiorenal Disease. Cardiorenal Med 2015. [PMID: 26195973 DOI: 10.1159/000430475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Renal failure is associated with adverse cardiac remodeling and sudden cardiac death. The mechanism leading to enhanced arrhythmogenicity in the cardiorenal syndrome is unclear. The aim of this study was to characterize electrophysiological and tissue alterations correlated with enhanced arrhythmogenicity in two distinct mouse models of renal failure. METHODS Thirty-week-old 129Sv mice received a high-salt diet and deoxycorticosterone acetate (DOCA) for 8 weeks, followed by an additional period of high-salt diet for 27 weeks (DOCA-salt aged model). Adult CD-1 mice were submitted to 5/6-subtotal nephrectomy (SNx) and treated for 11 weeks with a high-salt diet (SNx-salt adult model). Vulnerability to arrhythmia as well as conduction velocities (CVs) of the hearts were determined ex vivo with epicardial mapping. Subsequently, the hearts were characterized for connexin 43 (Cx43) and fibrosis. RESULTS DOCA-salt and SNx-salt mice developed renal dysfunction characterized by albuminuria. Heart, lung and kidney weights were increased in DOCA-salt mice. Both DOCA-salt and SNx-salt mice were highly susceptible to ventricular arrhythmias. DOCA-salt mice had a significant decrease in both longitudinal and transversal CV in the left ventricle. Histological analysis revealed a significant reduction in Cx43 expression as well as an increase in interstitial fibrosis in both DOCA-salt and SNx-salt mice. CONCLUSION DOCA-salt and SNx-salt treatment induced renal dysfunction, which resulted in structural and electrical cardiac remodeling and enhanced arrhythmogenicity. The reduced Cx43 expression and increased fibrosis levels in these hearts are likely candidates for the formation of the arrhythmogenic substrate.
Collapse
Affiliation(s)
- Magda S C Fontes
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Diana A Papazova
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arianne van Koppen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sanne de Jong
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sanne M Korte
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lennart G Bongartz
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands ; Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tri Q Nguyen
- Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marti F A Bierhuizen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harold V M van Rijen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
35
|
The role of extracellular matrix in age-related conduction disorders: a forgotten player? JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2015; 12:76-82. [PMID: 25678907 PMCID: PMC4308461 DOI: 10.11909/j.issn.1671-5411.2015.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular aging is a physiological process gradually leading to structural degeneration and functional loss of all the cardiac and vascular components. Conduction system is also deeply influenced by the aging process with relevant reflexes in the clinical side. Age-related arrhythmias carry significant morbidity and mortality and represent a clinical and economical burden. An important and unjustly unrecognized actor in the pathophysiology of aging is represented by the extracellular matrix (ECM) that not only structurally supports the heart determining its mechanical and functional properties, but also sends a biological signaling regulating cellular function and maintaining tissue homeostasis. At the biophysical level, cardiac ECM exhibits a peculiar degree of anisotropy, which is among the main determinants of the conductive properties of the specialized electrical conduction system. Age-associated alterations of cardiac ECM are therefore able to profoundly affect the function of the conduction system with striking impact on the patient clinical conditions. This review will focus on the ECM changes that occur during aging in the heart conduction system and on their translation to the clinical scenario. Potential diagnostic and therapeutical perspectives arising from the knowledge on ECM age-associated alterations are further discussed.
Collapse
|
36
|
Kessler EL, Boulaksil M, van Rijen HVM, Vos MA, van Veen TAB. Passive ventricular remodeling in cardiac disease: focus on heterogeneity. Front Physiol 2014; 5:482. [PMID: 25566084 PMCID: PMC4273631 DOI: 10.3389/fphys.2014.00482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022] Open
Abstract
Passive ventricular remodeling is defined by the process of molecular ventricular adaptation to different forms of cardiac pathophysiology. It includes changes in tissue architecture, such as hypertrophy, fiber disarray, alterations in cell size and fibrosis. Besides that, it also includes molecular remodeling of gap junctions, especially those composed by Connexin43 proteins (Cx43) in the ventricles that affect cell-to-cell propagation of the electrical impulse, and changes in the sodium channels that modify excitability. All those alterations appear mainly in a heterogeneous manner, creating irregular and inhomogeneous electrical and mechanical coupling throughout the heart. This can predispose to reentry arrhythmias and adds to a further deterioration into heart failure. In this review, passive ventricular remodeling is described in Hypertrophic Cardiomyopathy (HCM), Dilated Cardiomyopathy (DCM), Ischemic Cardiomyopathy (ICM), and Arrhythmogenic Cardiomyopathy (ACM), with a main focus on the heterogeneity of those alterations mentioned above.
Collapse
Affiliation(s)
- Elise L Kessler
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Mohamed Boulaksil
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht Utrecht, Netherlands ; Department of Cardiology, Radboud University Medical Center Nijmegen, Netherlands
| | - Harold V M van Rijen
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Marc A Vos
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Toon A B van Veen
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
37
|
Dorsch MP, Nemerovski CW, Ellingrod VL, Cowger JA, Dyke DB, Koelling TM, Wu AH, Aaronson KD, Simpson RU, Bleske BE. Vitamin D receptor genetics on extracellular matrix biomarkers and hemodynamics in systolic heart failure. J Cardiovasc Pharmacol Ther 2014; 19:439-45. [PMID: 24500905 DOI: 10.1177/1074248413517747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Vitamin D deficiency has been associated with the development of myocardial hypertrophy and inflammation. These findings suggest that vitamin D status and vitamin D receptor (VDR) genomics may play a role in myocardial fibrosis. The aim of this pilot study was to determine the association between vitamin D levels, VDR polymorphisms, and biomarkers of left ventricular remodeling and hemodynamics. METHODS In a cross-sectional pilot study, patients with ejection fraction (EF) <40% (and New York Heart Association ≥ II) undergoing right heart catheterization were included in the study. Blood was collected for determination of 25-hydroxyvitamin D level (antibody competitive immunoassay), VDR genotypes (BsmI, ApaI, TaqI, and FokI), and biomarkers (N-terminal propeptide of collagen type III [PIIINP], matrix metalloproteinase 2, and galectin 3). The vitamin D genotypes were determined through the use of pyrosequencing. RESULTS A total of 30 patients with a mean EF of 17% ± 8% were enrolled. There was a significant association between the BsmI C allele, ApaI G allele, and TaqI A allele, which formed a haplotype block (CGA) for analysis. There were no differences in baseline parameters between patients with the VDR haplotype block (n = 20) and those without (n = 10). Individual genotypes were not associated with any biomarker or hemodynamics. Patients with the CGA haplotype demonstrated significantly higher log PIIINP values (1.74 ± 0.32 mcg/mL vs 1.36 ± 0.31 mcg/mL, P = .0041). When evaluating vitamin D levels below and above the median level (19 ng/mL), there was no significant difference between these 2 groups in regard to biomarker levels for left ventricular remodeling. CONCLUSION This study has shown that a biomarker for collagen type III synthesis, PIIINP, was associated with the CGA haplotype of BsmI, ApaI, and TaqI single nucleotide polymorphisms on the VDR. These findings suggest that VDR genetics may play a role in myocardial fibrosis in patients with systolic heart failure.
Collapse
Affiliation(s)
- Michael P Dorsch
- Department of Pharmacy Services, University of Michigan Health System, Ann Arbor, Michigan, USA
| | | | - Vicki L Ellingrod
- Department of Clinical and Social Administrative Sciences, University of Michigan, College of Pharmacy, Ann Arbor, MI, USA
| | | | - D Bradley Dyke
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Health Systems, Ann Arbor, MI, USA
| | - Todd M Koelling
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Health Systems, Ann Arbor, MI, USA
| | - Audrey H Wu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Health Systems, Ann Arbor, MI, USA
| | - Keith D Aaronson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Health Systems, Ann Arbor, MI, USA
| | - Robert U Simpson
- Department of Pharmacology, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Barry E Bleske
- Department of Clinical and Social Administrative Sciences, University of Michigan, College of Pharmacy, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Abed HS, Wittert GA. Obesity and atrial fibrillation. Obes Rev 2013; 14:929-38. [PMID: 23879190 DOI: 10.1111/obr.12056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/03/2013] [Accepted: 05/24/2013] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF) is an increasing public health problem, often described as the epidemic of the new millennium. The rising health economic impact of AF, its association with poor quality of life and independent probability of increased mortality, has recently been highlighted. Although population ageing is regarded as an important contributor to this epidemic, obesity and its associated cardiometabolic comorbidities may represent the principal driving factor behind the current and projected AF epidemic. Obesity-related risk factors, such as hypertension, vascular disease, obstructive sleep apnea and pericardial fat, are thought to result in atrial electro-structural dysfunction. In addition, insulin resistance, its associated abnormalities in nutrient utilization and intermediary metabolic by-products are associated with structural and functional abnormalities, ultimately promoting AF. Recent elucidation of molecular pathways, including those responsible for atrial fibrosis, have provided mechanistic insights and the potential for targeted pharmacotherapy. In this article, we review the evidence for an obesity-related atrial electromechanical dysfunction, the mechanisms behind this and its impact on AF therapeutic outcomes. In light of the recently described mechanisms, we illustrate proposed management approaches and avenues for further investigations.
Collapse
Affiliation(s)
- H S Abed
- Department of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | |
Collapse
|
39
|
Mineralocorticoid receptors and the heart, multiple cell types and multiple mechanisms: a focus on the cardiomyocyte. Clin Sci (Lond) 2013; 125:409-21. [PMID: 23829554 DOI: 10.1042/cs20130050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MR (mineralocorticoid receptor) activation in the heart plays a central role in the development of cardiovascular disease, including heart failure. The MR is present in many cell types within the myocardium, including cardiomyocytes, macrophages and the coronary vasculature. The specific role of the MR in each of these cell types in the initiation and progression of cardiac pathophysiology is not fully understood. Cardiomyocyte MRs are increasingly recognized to play a role in regulating cardiac function, electrical conduction and fibrosis, through direct signal mediation and through paracrine MR-dependent activity. Although MR blockade in the heart is an attractive therapeutic option for the treatment of heart failure and other forms of heart disease, current antagonists are limited by side effects owing to MR inactivation in other tissues (including renal targets). This has led to increased efforts to develop therapeutics that are more selective for cardiac MRs and which may have reduced the occurrence of side effects in non-cardiac tissues. A major clinical consideration in the treatment of cardiovascular disease is of the differences between males and females in the incidence and outcomes of cardiac events. There is clinical evidence that female sensitivity to endogenous MRs is more pronounced, and experimentally that MR-targeted interventions may be more efficacious in females. Given that sex differences have been described in MR signalling in a range of experimental settings and that the MR and oestrogen receptor pathways share some common signalling intermediates, it is becoming increasingly apparent that the mechanisms of MRs need to be evaluated in a sex-selective manner. Further research targeted to identify sex differences in cardiomyocyte MR activation and signalling processes has the potential to provide the basis for the development of cardiac-specific MR therapies that may also be sex-specific.
Collapse
|
40
|
Affiliation(s)
- Carmine Savoia
- Carmine Savoia is Associate Professor of Cardiology, Cardiology Unit and Chair, Clinical and Molecular Medicine Department, Sapienza University of Rome, Italy. After a fellowship in Ernesto Schiffrin’s laboratory, he has continued his research on pathophysiology of hypertension, vascular remodeling and cardiovascular damage, the renin–angiotensin–aldosterone system, and clinical studies in diabetic and/or hypertensive patients
| | - Ernesto L Schiffrin
- Ernesto L Schiffrin is Physician-in-Chief, Jewish General Hospital, Canada Research Chair in Hypertension and Vascular Research, Lady Davis Institute for Medical Research, and Professor and Vice-Chair (Research), Department of Medicine, McGill University (Montreal, Canada). His research deals with vascular remodeling in hypertension, renal and cardiometabolic diseases, from mice to humans, and the influence of the renin–angiotensin–aldosterone and endothelin systems, nuclear receptors and immunity on
| |
Collapse
|
41
|
Smaill BH, Zhao J, Trew ML. Three-dimensional impulse propagation in myocardium: arrhythmogenic mechanisms at the tissue level. Circ Res 2013; 112:834-48. [PMID: 23449546 DOI: 10.1161/circresaha.111.300157] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impulse propagation in the heart depends on the excitability of individual cardiomyocytes, impulse transmission between adjacent myocytes, and the 3-dimensional arrangement of those cells. Here, we review the role of each of these factors in normal and aberrant cardiac electric activation, with particular emphasis on the effects of 3-dimensional myocyte architecture at the tissue scale. The analysis draws on findings from in vivo and in vitro experiments, as well as biophysically based computer models that have been used to integrate and interpret these experimental data. It indicates that discontinuous arrangement of myocytes and extracellular connective tissue at the tissue scale can give rise to current source-to-sink mismatch, spatiotemporal distribution of refractoriness, and rate-sensitive electric instability, which contribute to the initiation and maintenance of reentrant cardiac arrhythmia. This exacerbates the risk of rhythm disturbance associated with heart disease. We conclude that structure-based, multiscale computer models that incorporate accurate information about local cellular electric activity provide a powerful platform for investigating the basis of reentrant cardiac arrhythmia. However, it is important that these models capture key features of structure and related electric function at the tissue scale.
Collapse
Affiliation(s)
- Bruce H Smaill
- Auckland Bioengineering Institute, University of Auckland, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | | | |
Collapse
|
42
|
Degen KE, Gourdie RG. Embryonic wound healing: a primer for engineering novel therapies for tissue repair. ACTA ACUST UNITED AC 2013; 96:258-70. [PMID: 23109321 DOI: 10.1002/bdrc.21019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Scar is the default tissue repair used by the body in response to most injuries-a response that occurs in wounds ranging in seriousness from minor skin cuts to complete severance of the spinal cord. By contrast, before the third trimester of pregnancy embryonic mammals tend to heal without scarring due to a variety of mechanisms and factors that are uniquely in operation during development in utero. The goal of tissue engineering is to develop safe and clinically effective biological substitutes that restore, maintain, or improve tissue function in patients. This review provides a comparative overview of wound healing during development and maturation and seeks to provide a perspective on just how much the embryo may be able teach us in the engineering of new therapies for tissue repair.
Collapse
Affiliation(s)
- Katherine E Degen
- School of Biomedical Engineering Science, Virginia Tech, Blacksburg, USA
| | | |
Collapse
|
43
|
Noorman M, Hakim S, Kessler E, Groeneweg J, Cox MGPJ, Asimaki A, van Rijen HVM, van Stuijvenberg L, Chkourko H, van der Heyden MAG, Vos MA, de Jonge N, van der Smagt JJ, Dooijes D, Vink A, de Weger RA, Varro A, de Bakker JMT, Saffitz JE, Hund TJ, Mohler PJ, Delmar M, Hauer RNW, van Veen TAB. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 2013; 10:412-9. [PMID: 23178689 PMCID: PMC3608196 DOI: 10.1016/j.hrthm.2012.11.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (AC) is closely associated with desmosomal mutations in a majority of patients. Arrhythmogenesis in patients with AC is likely related to remodeling of cardiac gap junctions and increased levels of fibrosis. Recently, using experimental models, we also identified sodium channel dysfunction secondary to desmosomal dysfunction. OBJECTIVE To assess the immunoreactive signal levels of the sodium channel protein NaV1.5, as well as connexin43 (Cx43) and plakoglobin (PKG), in myocardial specimens obtained from patients with AC. METHODS Left and right ventricular free wall postmortem material was obtained from 5 patients with AC and 5 controls matched for age and sex. Right ventricular septal biopsies were taken from another 15 patients with AC. All patients fulfilled the 2010 revised Task Force Criteria for the diagnosis of AC. Immunohistochemical analyses were performed using antibodies against Cx43, PKG, NaV1.5, plakophilin-2, and N-cadherin. RESULTS N-cadherin and desmoplakin immunoreactive signals and distribution were normal in patients with AC compared to controls. Plakophilin-2 signals were unaffected unless a plakophilin-2 mutation predicting haploinsufficiency was present. Distribution was unchanged compared to that in controls. Immunoreactive signal levels of PKG, Cx43, and NaV1.5 were disturbed in 74%, 70%, and 65% of the patients, respectively. CONCLUSIONS A reduced immunoreactive signal of PKG, Cx43, and NaV1.5 at the intercalated disks can be observed in a large majority of the patients. Decreased levels of Nav1.5 might contribute to arrhythmia vulnerability and, in the future, potentially could serve as a new clinically relevant tool for risk assessment strategies.
Collapse
Affiliation(s)
- Maartje Noorman
- Department of Medical Physiology, University Medical Center Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands
| | - Sara Hakim
- Department of Medical Physiology, University Medical Center Utrecht, The Netherlands
| | - Elise Kessler
- Department of Medical Physiology, University Medical Center Utrecht, The Netherlands
| | - Judith Groeneweg
- Department of Cardiology, University Medical Center Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands
| | - Moniek GPJ Cox
- Department of Cardiology, University Medical Center Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands
| | - Angeliki Asimaki
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Harold VM van Rijen
- Department of Medical Physiology, University Medical Center Utrecht, The Netherlands
| | | | - Halina Chkourko
- The Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | | | - Marc A Vos
- Department of Medical Physiology, University Medical Center Utrecht, The Netherlands
| | - Nicolaas de Jonge
- Department of Cardiology, University Medical Center Utrecht, The Netherlands
| | | | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Roel A de Weger
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Andras Varro
- Department of Pharmacology & Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary
| | | | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, Department of Internal Medicine, Division of Cardiovascular Medicine; Department of Physiology & Cell Biology, The Ohio State University Medical Center, Columbus, OH 43210
| | - Mario Delmar
- The Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Richard NW Hauer
- Department of Cardiology, University Medical Center Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands
| | - Toon AB van Veen
- Department of Medical Physiology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
44
|
Karagueuzian HS, Nguyen TP, Qu Z, Weiss JN. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias. Front Physiol 2013; 4:19. [PMID: 23423152 PMCID: PMC3573324 DOI: 10.3389/fphys.2013.00019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/25/2013] [Indexed: 01/06/2023] Open
Abstract
Animal and clinical studies have demonstrated that oxidative stress, a common pathophysiological factor in cardiac disease, reduces repolarization reserve by enhancing the L-type calcium current, the late Na, and the Na-Ca exchanger, promoting early afterdepolarizations (EADs) that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF) in structurally remodeled hearts. Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative-stress induced EADs to manifest as triggered activity and VT/VF, since normal non-fibrotic hearts are resistant to arrhythmias when challenged with similar or higher levels of oxidative stress. The findings imply that antifibrotic therapy, in addition to therapies designed to suppress EAD formation at the cellular level, may be synergistic in reducing the risk of sudden cardiac death.
Collapse
Affiliation(s)
- Hrayr S Karagueuzian
- Cardiovascular Research Laboratory, Translational Arrhythmia Research Section, David Geffen School of Medicine at UCLA Los Angeles, CA, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Heart failure (HF) is a vicious circle in which an original insult leading to mechanical cardiac dysfunction initiates multiple morphological, biochemical and molecular pathological alterations referred to as cardiac remodelling. Remodelling leads to further deterioration of cardiac function and functional reserve. Interrupting or reversing cardiac remodelling is a major therapeutic goal of HF therapies. The role of molecules and molecular pathways in cardiac remodelling and HF has been extensively studied. Multiple approaches are now used or investigated in HF therapy, including pharmacological therapy, device therapy, gene therapy, cell therapy and biological therapy targeting cytokines and growth factors. This review explores the molecular targets and molecular bases of current and prospective therapies in HF.
Collapse
Affiliation(s)
- Elie R Chemaly
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
46
|
Jiao KL, Li YG, Zhang PP, Chen RH, Yu Y. Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction. J Cell Mol Med 2012; 16:1342-51. [PMID: 22128836 PMCID: PMC3823086 DOI: 10.1111/j.1582-4934.2011.01502.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The impact of angiotensin II receptor blockers (ARBs) on electrical remodelling after myocardial infarction (MI) remains unclear. The purpose of the present study was to evaluate the effect of valsartan on incidence of ventricular arrhythmia induced by programmed electrical stimulation (PES) and potential link to changes of myocardial connexins (Cx) 43 expression and distribution in MI rats. Fifty-nine rats were randomly divided into three groups: Sham (n = 20), MI (n = 20) and MI + Val (20 mg/kg/day per gavage, n = 19). After eight weeks, the incidence of PES-induced ventricular tachycardia (VT) and fibrillation (VF) was compared among groups. mRNA and protein expressions of Cx43, angiotensin II type 1 receptor (AT1R) in the LV border zone (BZ) and non-infarct zone (NIZ) were determined by real-time PCR and Western blot, respectively. Connexins 43 protein and collagen distribution were examined by immunohistochemistry in BZ and NIZ sections from MI hearts. Valsartan effectively improved the cardiac function, reduced the prolonged QTc (163.7 ± 3.7 msec. versus 177.8 ± 4.5 msec., P < 0.05) after MI and the incidence of VT or VF evoked by PES (21.1% versus 55%, P < 0.05). Angiotensin II type 1 receptor expression was significantly increased in BZ and NIZ sections after MI, which was down-regulated by valsartan. The mRNA and protein expressions of Cx43 in BZ were significantly reduced after MI and up-regulated by valsartan. Increased collagen deposition and reduced Cx43 expression in BZ after MI could be partly attenuated by Valsartan. Valsartan reduced the incidence of PES-induced ventricular arrhythmia, this effect was possibly through modulating the myocardial AT1R and Cx43 expression.
Collapse
Affiliation(s)
- Kun-Li Jiao
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
47
|
Potse M, Krause D, Bacharova L, Krause R, Prinzen FW, Auricchio A. Similarities and differences between electrocardiogram signs of left bundle-branch block and left-ventricular uncoupling. Europace 2012; 14 Suppl 5:v33-v39. [DOI: 10.1093/europace/eus272] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
Zannad F, Gattis Stough W, Rossignol P, Bauersachs J, McMurray JJV, Swedberg K, Struthers AD, Voors AA, Ruilope LM, Bakris GL, O'Connor CM, Gheorghiade M, Mentz RJ, Cohen-Solal A, Maggioni AP, Beygui F, Filippatos GS, Massy ZA, Pathak A, Piña IL, Sabbah HN, Sica DA, Tavazzi L, Pitt B. Mineralocorticoid receptor antagonists for heart failure with reduced ejection fraction: integrating evidence into clinical practice. Eur Heart J 2012; 33:2782-95. [PMID: 22942339 DOI: 10.1093/eurheartj/ehs257] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mineralocorticoid receptor antagonists (MRAs) improve survival and reduce morbidity in patients with heart failure, reduced ejection fraction (HF-REF), and mild-to-severe symptoms, and in patients with left ventricular systolic dysfunction and heart failure after acute myocardial infarction. These clinical benefits are observed in addition to those of angiotensin converting enzyme inhibitors or angiotensin receptor blockers and beta-blockers. The morbidity and mortality benefits of MRAs may be mediated by several proposed actions, including antifibrotic mechanisms that slow heart failure progression, prevent or reverse cardiac remodelling, or reduce arrhythmogenesis. Both eplerenone and spironolactone have demonstrated survival benefits in individual clinical trials. Pharmacologic differences exist between the drugs, which may be relevant for therapeutic decision making in individual patients. Although serious hyperkalaemia events were reported in the major MRA clinical trials, these risks can be mitigated through appropriate patient selection, dose selection, patient education, monitoring, and follow-up. When used appropriately, MRAs significantly improve outcomes across the spectrum of patients with HF-REF.
Collapse
Affiliation(s)
- Faiez Zannad
- INSERM, Centre d'Investigation Clinique 9501 and Unité 961, Centre Hospitalier Universitaire, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Groban L, Lindsey S, Wang H, Lin MS, Kassik KA, Machado FSM, Carter CS. Differential effects of late-life initiation of low-dose enalapril and losartan on diastolic function in senescent Fischer 344 x Brown Norway male rats. AGE (DORDRECHT, NETHERLANDS) 2012; 34:831-43. [PMID: 21720770 PMCID: PMC3682061 DOI: 10.1007/s11357-011-9283-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/14/2011] [Indexed: 05/14/2023]
Abstract
No proven pharmacological therapies to delay or reverse age-related diastolic dysfunction exist. We hypothesized that late-life low-dose (non-blood-pressure-lowering) angiotensin-converting enzyme inhibition vs. angiotensin II receptor blockade would be equally efficacious at mitigating diastolic dysfunction in the senescent Fischer 344 × Brown Norway rat. Enalapril (10 mg/kg/day; n = 9) initiated at 24 months of age and continued for 6 months, increased myocardial relaxation (e'), reduced Doppler-derived indices of filling pressure (E/e'), favorably lowered the ratio of phospholamban-SERCA2 and reduced oxidative stress markers, Rac1 and nitrotyrosine, in aged hearts. Treatment with losartan (15 mg/kg/day; n = 9) similarly mitigated signs of cardiac oxidative stress, but impairments in diastolic function persisted when compared with untreated rats (n = 7). Our findings favor the idea that the lusitropic benefit of low-dose angiotensin-converting enzyme inhibitor initiated late in life may be related to an antioxidant-mediated modulation of SERCA2, resulting in improved relaxation rather than via overt effects on cardiac structure or blood pressure.
Collapse
Affiliation(s)
- Leanne Groban
- />Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| | - Sarah Lindsey
- />Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Hao Wang
- />Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| | - Marina S. Lin
- />Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| | - Kimberly A. Kassik
- />Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| | - Frederico S. M. Machado
- />Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais Brazil
| | - Christy S. Carter
- />Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, 210 E. Mowry Road, P.O. Box 112610, Gainesville, FL 32611 USA
| |
Collapse
|
50
|
Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 16:1492-526. [PMID: 22229339 PMCID: PMC3329953 DOI: 10.1089/ars.2011.4179] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the major causes of death in the western world. The incidence of cardiovascular disease as well as the rate of cardiovascular mortality and morbidity increase exponentially in the elderly population, suggesting that age per se is a major risk factor of CVDs. The physiologic changes of human cardiac aging mainly include left ventricular hypertrophy, diastolic dysfunction, valvular degeneration, increased cardiac fibrosis, increased prevalence of atrial fibrillation, and decreased maximal exercise capacity. Many of these changes are closely recapitulated in animal models commonly used in an aging study, including rodents, flies, and monkeys. The application of genetically modified aged mice has provided direct evidence of several critical molecular mechanisms involved in cardiac aging, such as mitochondrial oxidative stress, insulin/insulin-like growth factor/PI3K pathway, adrenergic and renin angiotensin II signaling, and nutrient signaling pathways. This article also reviews the central role of mitochondrial oxidative stress in CVDs and the plausible mechanisms underlying the progression toward heart failure in the susceptible aging hearts. Finally, the understanding of the molecular mechanisms of cardiac aging may support the potential clinical application of several "anti-aging" strategies that treat CVDs and improve healthy cardiac aging.
Collapse
Affiliation(s)
- Dao-Fu Dai
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|