1
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
2
|
Mitra A, Bhakta K, Kar A, Roy A, Mohid SA, Ghosh A, Ghosh A. Insight into the biochemical and cell biological function of an intrinsically unstructured heat shock protein, Hsp12 of Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2023; 24:1063-1077. [PMID: 37434353 PMCID: PMC10423329 DOI: 10.1111/mpp.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 07/13/2023]
Abstract
Small heat shock proteins (sHsps) play diverse roles in the stress response and maintenance of cellular functions. The Ustilago maydis genome codes for few sHsps. Among these, Hsp12 has previously been demonstrated to be involved in the pathogenesis of the fungus by our group. In the present study we further investigated the biological function of the protein in the pathogenic development of U. maydis. Analysis of the primary amino acid sequence of Hsp12 in combination with spectroscopic methods to analyse secondary protein structures revealed an intrinsically disordered nature of the protein. We also carried out detailed analysis on the protein aggregation prevention activity associated with Hsp12. Our data suggest Hsp12 has trehalose-dependent protein aggregation prevention activity. Through assaying the interaction of Hsp12 with lipid membranes in vitro we also showed the ability of U. maydis Hsp12 to induce stability in lipid vesicles. U. maydis hsp12 deletion mutants exhibited defects in the endocytosis process and delayed completion of the pathogenic life cycle. Therefore, U. maydis Hsp12 contributes to the pathogenic development of the fungus through its ability to relieve proteotoxic stress during infection as well as its membrane-stabilizing function.
Collapse
Affiliation(s)
- Aroni Mitra
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | - Ankita Kar
- Division of Plant BiologyBose InstituteKolkataIndia
| | - Anisha Roy
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | | | | |
Collapse
|
3
|
De Maio A, Hightower L. The interaction of heat shock proteins with cellular membranes: a historical perspective. Cell Stress Chaperones 2021; 26:769-783. [PMID: 34478113 PMCID: PMC8413713 DOI: 10.1007/s12192-021-01228-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
The interaction of heat shock proteins (HSP) with cellular membranes has been an enigmatic process, initially observed by morphological studies, inferred during the purification of HSP70s, and confirmed after the detection of these proteins on the surface of cancer cells and their insertion into artificial lipid bilayers. Today, the association of several HSP with lipid membranes is well established. However, the mechanisms for membrane insertion have been elusive. There is conclusive evidence indicating that HSP70s have a great selectivity for negatively charged phospholipids, whereas other HSP have a broader spectrum of lipid specificity. HSP70 also oligomerizes upon membrane insertion, forming ion conductance channels. The functional role of HSP70 lipid interactions appears related to membrane stabilization that may play a role during cell membrane biogenesis. They could also play a role as membrane chaperones as well as during endocytosis, microautophagy, and signal transduction. Moreover, HSP membrane association is a key component in the extracellular export of these proteins. The presence of HSP70 on the surface of cancer cells and its interaction with lysosome membranes have been envisioned as potential therapeutic targets. Thus, the biology and function of HSP membrane association are reaching a new level of excitement. This review is an attempt to preserve the recollection of the pioneering contributions of many investigators that have participated in this endeavor.
Collapse
Affiliation(s)
- Antonio De Maio
- Department of Surgery, Division of Trauma, Critical Care, Burns, and Acute Care Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Investigations of Health and Education Disparities, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Lawrence Hightower
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
4
|
Mekala NK, Sasikumar S, Akula KK, Parekh Y, Rao CM, Bokara KK. HspB5 protects mouse neural stem/progenitor cells from paraquat toxicity. AMERICAN JOURNAL OF STEM CELLS 2020; 9:68-77. [PMID: 33489464 PMCID: PMC7811932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION HspB5 (αB-crystallin) is known to be involved in a variety of cellular functions, including, protection of cells from oxidative damage and inhibiting apoptosis. Neural stem/progenitor cells (NSPCs) have significant therapeutic value, especially in the NSC/NPC transplantation therapy. However, the viability of the transplanted NSPCs remains low because of various factors, including oxidative stress. OBJECTIVE The current investigation explored the possible role of HspB5 in the protection of mouse NSPCs (mNSPCs) against paraquat-induced toxicity. METHODS The recombinant human HspB5 was expressed in E.coli and was purified using gel filtration and Ion-exchange chromatography. The biophysical characterization of HspB5 was carried out using DLS, CD, and Analytical Ultracentrifugation (SV); the chaperone activity of HspB5 was determined by alcohol dehydrogenase aggregation assay. We have subjected the mNSPCs to paraquat-induced oxidative stress and monitored the protective ability of HspB5 by MTT assay and Hoechst-PI staining. Furthermore, increase in the expression of the anti-apoptotic protein, procaspase-3 was monitored using western blotting. RESULTS The recombinant HspB5 was purified to its homogeneity and was characterized using various biophysical techniques. The externally added FITC-labeled HspB5 was found to be localized within the cytoplasm of mNSPCs. Our Immunocytochemistry results showed that the externally added FITC-labeled HspB5 not only entered the cells but also conferred cytoprotection against paraquat-induced toxicity. The protective events were monitored by a decrease in the PI-positive cells and an increase in the procaspase-3 expression through Immunocytochemistry and Western blotting respectively. CONCLUSION Our results clearly demonstrate that exogenously added recombinant human HspB5 enters the mNSPCs and confers protection against paraquat toxicity.
Collapse
Affiliation(s)
| | - Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology HyderabadKandi-502285, Sangareddy, Telangana, India
| | - Kranthi Kiran Akula
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Yash Parekh
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Kiran Kumar Bokara
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| |
Collapse
|
5
|
De Maio A, Cauvi DM, Capone R, Bello I, Egberts WV, Arispe N, Boelens W. The small heat shock proteins, HSPB1 and HSPB5, interact differently with lipid membranes. Cell Stress Chaperones 2019; 24:947-956. [PMID: 31338686 PMCID: PMC6717221 DOI: 10.1007/s12192-019-01021-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence shows that heat shock proteins (hsp) escape the cytosol gaining access to the extracellular environment, acting as signaling agents. Since the majority of these proteins lack the information necessary for their export via the classical secretory pathway, attention has been focused on alternative releasing mechanisms. Crossing the plasma membrane is a major obstacle to the secretion of a cytosolic protein into the extracellular milieu. Several mechanisms have been proposed, including direct interaction with the plasma membrane or their release within extracellular vesicles (ECV). HSPB1 (Hsp27), which belongs to the small hsp family, was detected within the membrane of ECV released from stressed HepG2 cells. To further investigate this finding, we studied the interaction of HSPB1 with lipid membranes using liposomes. We found that HSPB1 interacted with liposomes made of palmitoyl oleoyl phosphatidylserine (POPS), palmitoyl oleoyl phosphatidylcholine (POPC), and palmitoyl oleoyl phosphatidylglycerol (POPG), with different characteristics. Another member of the small hsp family, HSPB5 (αB-crystallin), has also been detected within ECV released from HeLa cells transfected with this gene. This protein was found to interact with liposomes as well, but differently than HSPB1. To address the regions interacting with the membrane, proteoliposomes were digested with proteinase K and the protected domains within the liposomes were identified by mass spectroscopy. We observed that large parts of HSPB1 and HSPB5 were embedded within the liposomes, particularly the alpha-crystallin domain. These observations suggest that the interaction with lipid membranes may be part of the mechanisms of export of these proteins.
Collapse
Affiliation(s)
- Antonio De Maio
- Department of Surgery, Division of Trauma, Critical Care, Burns and Acute Care Surgery, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739 USA
- Department of Neurosciences, Division of Trauma, Critical Care, Burns and Acute, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - David M. Cauvi
- Department of Surgery, Division of Trauma, Critical Care, Burns and Acute Care Surgery, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739 USA
| | - Ricardo Capone
- Department of Surgery, Division of Trauma, Critical Care, Burns and Acute Care Surgery, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739 USA
| | - Ivan Bello
- Department of Surgery, Division of Trauma, Critical Care, Burns and Acute Care Surgery, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739 USA
| | - Wilma Vree Egberts
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nelson Arispe
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| | - Wilbert Boelens
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| |
Collapse
|
6
|
Zhang L, Jian LL, Li JY, Jin X, Li LZ, Zhang YL, Gong HY, Cui Y. Possible involvement of alpha B-crystallin in the cardioprotective effect of n-butanol extract of Potentilla anserina L. on myocardial ischemia/reperfusion injury in rat. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:320-329. [PMID: 30940361 DOI: 10.1016/j.phymed.2018.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND It has been reported that n-butanol extract of Potentilla anserina L (NP) had protective effect against acute myocardial ischemia/reperfusion (I/R) injury in mice. Because of limited phytochemical study on NP, its bioactive compounds and underlying protective mechanisms are largely unclear. PURPOSE The purpose of this study was to investigate the major bioactive compounds and possible mechanism for the cardioprotective effect of NP on rat with I/R injury. METHODS We analyzed the phytochemical isolation of NP and identified the structure of compounds, which was elucidated by a combination of spectroscopic analyses. An I/R model was established by I-30 min/R-2 h in Sprage-Dawley rats. The rats were given intragastric administration of NP (49.3, 98.6, and 197.2 mg•kg-1) continuously for 10 days before I/R operation. The morphological changes and apoptosis of cardiomyocytes were observed by H&E staining, Transmission electron microscope and TUNEL staining respectively. The activities or contents of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) in plasma were detected. Apoptosis related factors were also measured by RT-PCR and western blot. In order to discover the underlying mechanism of NP on I/R, we performed proteomic analysis using two-dimensional gel electrophoresis (2D-DIGE) and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) to describe differential proteins expression. Potential target protein resulted from 2D-DIGE coupled to MALDI-TOF/MS analysis were further confirmed by immunohistochemical staining, RT-PCR, and western blot. RESULTS We isolated and identified 14 compounds, of which 7 compounds belong to triterpenes. Rats pretreated with NP showed a significant increase on the activities of GSH, SOD and CAT, and remarkable decrease on the content of MDA. NP significantly inhibited the apoptosis of cardiomyocyte and decreased the expression of Cyt C and cleaved-caspase-3. Proteomic analysis revealed that alpha B-crystallin (CryAB) might participate in the NP protective effect against I/R. NP enhanced the level of pCryAB Ser59, whereas the expression of CryAB was decreased. CONCLUSION NP was showed to alleviate I/R injury and inhibit myocardial apoptosis, which might be associated with reduction on oxidative stress and apoptosis. CryAB as a possible target involved in the NP protective effect. This study supplied valuable information to develop novel cardioprotective agents from NP extract.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Le Le Jian
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China; Shanxi Provincial Crops Hospital, Chinese People's Armed Police Forces, Xi'an, Shanxi, China
| | - Jian Yu Li
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Xin Jin
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Ling Zhi Li
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China; Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, China.
| | - Yong Liang Zhang
- Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, China.
| | - Hai Ying Gong
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Ying Cui
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| |
Collapse
|
7
|
Fang X, Bogomolovas J, Trexler C, Chen J. The BAG3-dependent and -independent roles of cardiac small heat shock proteins. JCI Insight 2019; 4:126464. [PMID: 30830872 DOI: 10.1172/jci.insight.126464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small heat shock proteins (sHSPs) comprise an important protein family that is ubiquitously expressed, is highly conserved among species, and has emerged as a critical regulator of protein folding. While these proteins are functionally important for a variety of tissues, an emerging field of cardiovascular research reveals sHSPs are also extremely important for maintaining normal cardiac function and regulating the cardiac stress response. Notably, numerous mutations in genes encoding sHSPs have been associated with multiple cardiac diseases. sHSPs (HSPB5, HSPB6, and HSPB8) have been described as mediating chaperone functions within the heart by interacting with the cochaperone protein BCL-2-associated anthanogene 3 (BAG3); however, recent reports indicate that sHSPs (HSPB7) can perform other BAG3-independent functions. Here, we summarize the cardiac functions of sHSPs and present the notion that cardiac sHSPs function via BAG3-dependent or -independent pathways.
Collapse
|
8
|
Muranova LK, Sudnitsyna MV, Gusev NB. αB-Crystallin Phosphorylation: Advances and Problems. BIOCHEMISTRY (MOSCOW) 2018; 83:1196-1206. [DOI: 10.1134/s000629791810005x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Fung G, Wong J, Berhe F, Mohamud Y, Xue YC, Luo H. Phosphorylation and degradation of αB-crystallin during enterovirus infection facilitates viral replication and induces viral pathogenesis. Oncotarget 2017; 8:74767-74780. [PMID: 29088822 PMCID: PMC5650377 DOI: 10.18632/oncotarget.20366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/25/2017] [Indexed: 01/25/2023] Open
Abstract
Protein quality control (PQC) plays a key role in maintaining cardiomyocyte function and homeostasis, and malfunction in PQC is implicated in various forms of heart diseases. Molecular chaperones serve as the primary checkpoint for PQC; however, their roles in the pathogenesis of viral myocarditis, an inflammation of the myocardium caused by viral infection, are largely unknown. AlphaB-crystallin (CryAB) is the most abundant chaperone protein in the heart. It interacts with desmin and cytoplasmic actin to prevent protein misfolding and aggregation and to help maintain cytoskeletal integrity and cardiac function. Here we showed that coxsackievirus infection induced desminopathy-like phenotype of the myocardium, as characterized by the accumulation of protein aggregates and the disruption of desmin organization. We further demonstrated that CryAB was phosphorylated during early and downregulated at later stages of infection. Moreover, we showed that phosphorylated CryAB had a shorter half-life and was targeted to the ubiquitin-proteasome system for degradation. Lastly, we found that overexpression of CryAB significantly attenuated viral protein production and progeny release, indicating an anti-viral function for CryAB. Together, our results suggest a mechanism by which coxsackieviral infection induces CryAB degradation and loss-of-function, resulting in desmin aggregation, ultimately contributing to compromised cytoskeletal integrity and viral cardiomyopathy.
Collapse
Affiliation(s)
- Gabriel Fung
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jerry Wong
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Feaven Berhe
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yuan Chao Xue
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Yu Y, Jiang H, Li H, Song W, Xia X. Alpha-A-Crystallin Protects Lens Epithelial Cell-Derived iPSC-Like Cells Against Apoptosis Induced by Oxidative Stress. Cell Reprogram 2016; 18:327-332. [PMID: 27696911 DOI: 10.1089/cell.2016.0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yixin Yu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haibo Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haibo Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Weitao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
11
|
Venegas LA, Pershad K, Bankole O, Shah N, Kay BK. A comparison of phosphospecific affinity reagents reveals the utility of recombinant Forkhead-associated domains in recognizing phosphothreonine-containing peptides. N Biotechnol 2016; 33:537-43. [PMID: 26772725 DOI: 10.1016/j.nbt.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
Abstract
Phosphorylation is an important post-translational event that has a wide array of functional consequences. With advances in the ability of various technologies in revealing and mapping new phosphosites in proteins, it is equally important to develop affinity reagents that can monitor such post-translational modifications in eukaryotic cells. While monoclonal and polyclonal antibodies have been shown to be useful in assessing the phosphoproteome, we have expanded our efforts to exploit the Forkhead-associated 1 (FHA1) domain as scaffold for generating recombinant affinity reagents that recognize phosphothreonine-containing peptides. A phage display library of FHA1 variants was screened by affinity selection with 15 phosphothreonine-containing peptides corresponding to various human transcription factors and kinases, including human Myc, calmodulin-dependent protein kinase II (CaMKII), and extracellular-signal regulated kinases 1 and 2 (ERK1/2). The library yielded binding variants against 10 targets (66% success rate); success was largely determined by what residue occurred at the +3 position (C-terminal) to the pThr moiety (i.e., pT+3). The FHA domains binding Myc, CaMKII, and ERK1/2 were characterized and compared against commercially available antibodies. All FHA domains were shown to be phosphorylation-dependent and phosphothreonine-specific in their binding, unlike several commercial monoclonal and polyclonal antibodies. Both the pThr and the residue at the pT+3 position were major factors in defining the specificity of the FHA domains.
Collapse
Affiliation(s)
- Leon A Venegas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kritika Pershad
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Oluwadamilola Bankole
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Noman Shah
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Brian K Kay
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
12
|
Bakthisaran R, Akula KK, Tangirala R, Rao CM. Phosphorylation of αB-crystallin: Role in stress, aging and patho-physiological conditions. Biochim Biophys Acta Gen Subj 2015; 1860:167-82. [PMID: 26415747 DOI: 10.1016/j.bbagen.2015.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND αB-crystallin, once thought to be a lenticular protein, is ubiquitous and has critical roles in several cellular processes that are modulated by phosphorylation. Serine residues 19, 45 and 59 of αB-crystallin undergo phosphorylation. Phosphorylation of S45 is mediated by p44/42 MAP kinase, whereas S59 phosphorylation is mediated by MAPKAP kinase-2. Pathway involved in S19 phosphorylation is not known. SCOPE OF REVIEW The review highlights the role of phosphorylation in (i) oligomeric structure, stability and chaperone activity, (ii) cellular processes such as apoptosis, myogenic differentiation, cell cycle regulation and angiogenesis, and (iii) aging, stress, cardiomyopathy-causing αB-crystallin mutants, and in other diseases. MAJOR CONCLUSIONS Depending on the context and extent of phosphorylation, αB-crystallin seems to confer beneficial or deleterious effects. Phosphorylation alters structure, stability, size distribution and dynamics of the oligomeric assembly, thus modulating chaperone activity and various cellular processes. Phosphorylated αB-crystallin has a tendency to partition to the cytoskeleton and hence to the insoluble fraction. Low levels of phosphorylation appear to be protective, while hyperphosphorylation has negative implications. Mutations in αB-crystallin, such as R120G, Q151X and 464delCT, associated with inherited myofibrillar myopathy lead to hyperphosphorylation and intracellular inclusions. An ongoing study in our laboratory with phosphorylation-mimicking mutants indicates that phosphorylation of R120GαB-crystallin increases its propensity to aggregate. GENERAL SIGNIFICANCE Phosphorylation of αB-crystallin has dual role that manifests either beneficial or deleterious consequences depending on the extent of phosphorylation and interaction with cytoskeleton. Considering that disease-causing mutants of αB-crystallin are hyperphosphorylated, moderation of phosphorylation may be a useful strategy in disease management. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Kranthi Kiran Akula
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
13
|
Nagaraj RH, Nahomi RB, Mueller NH, Raghavan CT, Ammar DA, Petrash JM. Therapeutic potential of α-crystallin. Biochim Biophys Acta Gen Subj 2015; 1860:252-7. [PMID: 25840354 DOI: 10.1016/j.bbagen.2015.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/26/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND The findings that α-crystallins are multi-functional proteins with diverse biological functions have generated considerable interest in understanding their role in health and disease. Recent studies have shown that chaperone peptides of α-crystallin could be delivered into cultured cells and in experimental animals with beneficial effects against protein aggregation, oxidation, inflammation and apoptosis. SCOPE OF REVIEW In this review, we will summarize the latest developments on the therapeutic potential of α-crystallins and their functional peptides. MAJOR CONCLUSIONS α-Crystallins and their functional peptides have shown significant favorable effects against several diseases. Their targeted delivery to tissues would be of great therapeutic benefit. However, α-crystallins can also function as disease-causing proteins. These seemingly contradictory functions must be carefully considered prior to their therapeutic use. GENERAL SIGNIFICANCE αA and αB-Crystallin are members of the small heat shock protein family. These proteins exhibit molecular chaperone and anti-apoptotic activities. The core crystallin domain within these proteins is largely responsible for these prosperities. Recent studies have identified peptides within the crystallin domain of both α- and αB-crystallins with remarkable chaperone and anti-apoptotic activities. Administration of α-crystallin or their functional peptides has shown substantial inhibition of pathologies in several diseases. However, α-crystallins have been shown to promote disease-causing pathways. These two sides of the proteins are discussed in this review. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Ram H Nagaraj
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Rooban B Nahomi
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Niklaus H Mueller
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cibin T Raghavan
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David A Ammar
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Peart JN, Pepe S, Reichelt ME, Beckett N, See Hoe L, Ozberk V, Niesman IR, Patel HH, Headrick JP. Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp Gerontol 2014. [PMID: 24316036 DOI: 10.1016/j.exger.2013.11.015.pubmed:24316036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and mitochondrial survival-signaling. Hormesis (exemplified in ischemic preconditioning; IPC) and expression of proteins influencing signaling/stress-resistance were also assessed in mice. Mouse hearts (18 vs. 2-4 mo) and human atrial tissue (75±2 vs. 55±2 yrs) exhibited profound age-dependent reductions in I-R tolerance. In mice aging negated cardioprotection via IPC, G-protein coupled receptor (GPCR) agonism (opioid, A1 and A3 adenosine receptors) and distal protein kinase c (PKC) activation (4 nM phorbol 12-myristate 13-acetate; PMA). In contrast, p38-mitogen activated protein kinase (p38-MAPK) activation (1 μM anisomycin), mitochondrial ATP-sensitive K(+) channel (mKATP) opening (50 μM diazoxide) and permeability transition pore (mPTP) inhibition (0.2 μM cyclosporin A) retained protective efficacies in older hearts (though failed to eliminate I-R tolerance differences). A similar pattern of change in protective efficacies was observed in human tissue. Murine hearts exhibited molecular changes consistent with altered membrane control (reduced caveolin-3, cholesterol and caveolae), kinase signaling (reduced p70 ribosomal s6 kinase; p70s6K) and stress-resistance (increased G-protein receptor kinase 2, GRK2; glycogen synthase kinase 3β, GSK3β; and cytosolic cytochrome c). In summary, myocardial I-R tolerance declines with age in association with dysfunctional hormesis and transduction of survival signals from GPCRs/PKC to mitochondrial effectors. Differential changes in proteins governing caveolar and mitochondrial function may contribute to signal dysfunction and stress-intolerance.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Melissa E Reichelt
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nikkie Beckett
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Louise See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Victoria Ozberk
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | | | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, USA; Department of Anesthesiology, University of California San Diego, USA
| | - John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia.
| |
Collapse
|
15
|
Dubińska-Magiera M, Jabłońska J, Saczko J, Kulbacka J, Jagla T, Daczewska M. Contribution of small heat shock proteins to muscle development and function. FEBS Lett 2014; 588:517-30. [PMID: 24440355 DOI: 10.1016/j.febslet.2014.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022]
Abstract
Investigations undertaken over the past years have led scientists to introduce the concept of protein quality control (PQC) systems, which are responsible for polypeptide processing. The PQC system monitors proteostasis and involves activity of different chaperones such as small heat shock proteins (sHSPs). These proteins act during normal conditions as housekeeping proteins regulating cellular processes, and during stress conditions. They also mediate the removal of toxic misfolded polypeptides and thereby prevent development of pathogenic states. It is postulated that sHSPs are involved in muscle development. They could act via modulation of myogenesis or by maintenance of the structural integrity of signaling complexes. Moreover, mutations in genes coding for sHSPs lead to pathological states affecting muscular tissue functioning. This review focuses on the question how sHSPs, still relatively poorly understood proteins, contribute to the development and function of three types of muscle tissue: skeletal, cardiac and smooth.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jadwiga Jabłońska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Teresa Jagla
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| |
Collapse
|
16
|
Peart JN, Pepe S, Reichelt ME, Beckett N, See Hoe L, Ozberk V, Niesman IR, Patel HH, Headrick JP. Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp Gerontol 2013; 50:72-81. [PMID: 24316036 DOI: 10.1016/j.exger.2013.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/03/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and mitochondrial survival-signaling. Hormesis (exemplified in ischemic preconditioning; IPC) and expression of proteins influencing signaling/stress-resistance were also assessed in mice. Mouse hearts (18 vs. 2-4 mo) and human atrial tissue (75±2 vs. 55±2 yrs) exhibited profound age-dependent reductions in I-R tolerance. In mice aging negated cardioprotection via IPC, G-protein coupled receptor (GPCR) agonism (opioid, A1 and A3 adenosine receptors) and distal protein kinase c (PKC) activation (4 nM phorbol 12-myristate 13-acetate; PMA). In contrast, p38-mitogen activated protein kinase (p38-MAPK) activation (1 μM anisomycin), mitochondrial ATP-sensitive K(+) channel (mKATP) opening (50 μM diazoxide) and permeability transition pore (mPTP) inhibition (0.2 μM cyclosporin A) retained protective efficacies in older hearts (though failed to eliminate I-R tolerance differences). A similar pattern of change in protective efficacies was observed in human tissue. Murine hearts exhibited molecular changes consistent with altered membrane control (reduced caveolin-3, cholesterol and caveolae), kinase signaling (reduced p70 ribosomal s6 kinase; p70s6K) and stress-resistance (increased G-protein receptor kinase 2, GRK2; glycogen synthase kinase 3β, GSK3β; and cytosolic cytochrome c). In summary, myocardial I-R tolerance declines with age in association with dysfunctional hormesis and transduction of survival signals from GPCRs/PKC to mitochondrial effectors. Differential changes in proteins governing caveolar and mitochondrial function may contribute to signal dysfunction and stress-intolerance.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Melissa E Reichelt
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nikkie Beckett
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Louise See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Victoria Ozberk
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | | | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, USA; Department of Anesthesiology, University of California San Diego, USA
| | - John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia.
| |
Collapse
|
17
|
Jørgensen A, Foster PP, Brubakk AO, Eftedal I. Effects of hyperbaric oxygen preconditioning on cardiac stress markers after simulated diving. Physiol Rep 2013; 1:e00169. [PMID: 24400168 PMCID: PMC3871481 DOI: 10.1002/phy2.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/29/2013] [Accepted: 11/02/2013] [Indexed: 11/28/2022] Open
Abstract
Hyperbaric oxygen preconditioning (HBO-PC) can protect the heart from injury during subsequent ischemia. The presence of high loads of venous gas emboli (VGE) induced by a rapid ambient pressure reduction on ascent from diving may cause ischemia and acute heart failure. The aim of this study was to investigate the effect of diving-induced VGE formation on cardiac stress marker levels and the cardioprotective effect of HBO-PC. To induce high loads of VGE, 63 female Sprague-Dawley rats were subjected to a rapid ambient pressure reduction from a simulated saturation dive (50 min at 709 kPa) in a pressure chamber. VGE loads were measured for 60 min in anesthetized animals by the use of ultrasonography. The animals were divided into five groups. Three groups were exposed to either diving or to HBO-PC (100% oxygen, 38 min at 303 kPa) with a 45 or 180 min interval between HBO-PC and diving. Two additional groups were used as baseline controls for the measurements; one group was exposed to equal handling except for HBO-PC and diving, and the other group was completely unexposed. Diving caused high loads of VGE, as well as elevated levels of the cardiac stress markers, cardiac troponin T (cTnT), natriuretic peptide precursor B (Nppb), and αB-crystallin, in blood and cardiac tissue. There were strong positive correlations between VGE loads and stress marker levels after diving, and HBO-PC appeared to have a cardioprotective effect, as indicated by the lower levels of stress marker expression after diving-induced VGE formation.
Collapse
Affiliation(s)
- Arve Jørgensen
- Department of Circulation and Medical Imaging, Norwegian University of Science and TechnologyTrondheim, Norway
- Department of Diagnostic Imaging, St. Olavs University HospitalTrondheim, Norway
| | - Philip P Foster
- Division of Pulmonary, Sleep Medicine, and Critical Care, Departments of Internal Medicine and NanoMedicine and Biomedical Engineering, The University of Texas Health Science Center at HoustonTexas
| | - Alf O Brubakk
- Department of Circulation and Medical Imaging, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Norwegian University of Science and TechnologyTrondheim, Norway
| |
Collapse
|
18
|
Zeng L, Tan J, Lu W, Lu T, Hu Z. The potential role of small heat shock proteins in mitochondria. Cell Signal 2013; 25:2312-9. [PMID: 23917209 DOI: 10.1016/j.cellsig.2013.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 01/10/2023]
Abstract
Mitochondria play a central role in cellular metabolism, calcium homeostasis, redox signaling and cell fates. Mitochondrial homeostasis is tightly regulated, and mitochondrial dysfunction is frequently associated with severe human pathologies. Small heat shock proteins are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy. The mechanisms that lie behind the cytoprotection of small heat shock proteins are related to the regulation of mitochondrial functions. This review recapitulates the current knowledge of the expression of various small heat shock proteins in mitochondria and discusses their implication in the role of mitochondria and their regulation. Based on their involvement in mitochondrial normal physiology and pathology, a better understanding of their roles and regulation will pave the way for innovative approaches for the successful treatment of a range of stress-related syndromes whose etiology is based upon dysfunction of mitochondria.
Collapse
Affiliation(s)
- Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | | | | | | | | |
Collapse
|
19
|
Krishnamoorthy V, Donofrio AJ, Martin JL. O-GlcNAcylation of αB-crystallin regulates its stress-induced translocation and cytoprotection. Mol Cell Biochem 2013; 379:59-68. [PMID: 23543138 DOI: 10.1007/s11010-013-1627-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/21/2013] [Indexed: 01/17/2023]
Abstract
Under normal conditions, the ubiquitously expressed αB-crystallin functions as a chaperone. αB-crystallin has been implicated in a variety of pathologies, consistent with a build-up of protein aggregates, such as neuromuscular disorders, myofibrillar myopathies, and cardiomyopathies. αB-crystallins' cardioprotection is partially attributed to its translocation and binding to cytoskeletal elements in response to stress. The triggers for this translocation are not clearly understood. In the heart, αB-crystallin undergoes at least three significant post-translational modifications: phosphorylation at ser-45 and 59 and O-GlcNAcylation (O-linked attachment of the monosaccharide β-N-acetyl-glucosamine) at thr-170. Whether phosphorylation status drives translocation remains controversial. Therefore, we evaluated the role of αB-crystallins' O-GlcNAcylation in its stress-induced translocation and cytoprotection in cardiomyocytes under stress. Immunoblotting and precipitation experiments with anti-O-GlcNAc antibody (CTD110.6) and glycoprotein staining (Pro-Q Emerald) both demonstrate robust stress-induced O-GlcNAcylation of αB-crystallin. A non-O-GlcNAcylatable αB-crystallin mutant (αB-T170A) showed diminished translocation in response to heat shock and robust phosphorylation at both ser-45 and ser-59. Cell survival assays show a loss of overexpression-associated cytoprotection with the non-glycosylatable mutant to multiple stresses. While ectopic expression of wild-type αB-crystallin strongly stabilized ZsProSensor, a fusion protein rapidly degraded by the proteasome, the non-O-GlcNAcylatable version did not. Therefore, we believe the O-GlcNAcylation of αB-crystallin is a dynamic and important regulator of both its localization and function.
Collapse
Affiliation(s)
- Vigneshwaran Krishnamoorthy
- Health Sciences Division, Department of Medicine, The Cardiovascular Institute, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | |
Collapse
|
20
|
Study of αB-crystallin expression in Gerbil BCAO model of transient global cerebral ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:945071. [PMID: 23097682 PMCID: PMC3477566 DOI: 10.1155/2012/945071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/29/2022]
Abstract
αB-crystallin (α-BC), the fifth member of mammalian small heat shock protein family (HspB5), is known to be expressed in many tissues and has a distinctive interaction with cytoskeleton components. In this study, we investigated that α-BC and microtubule-associated protein-2 (MAP-2), a neuron-specific cytoskeleton protein, were coexpressed in neurons of Gerbil cortex, while in subcortex Gerbil brains, we found that several MAP-2-negative glia cells also express α-BC. When subjected to 10-minute bilateral carotid artery occlusion (BCAO), an increment was observed in α-BC-positive cells after 6-hour reperfusion and peaked at around 7 days after. In the same circumstances, the number and the staining concentration of MAP-2 positive neurons significantly decreased immediately after 6-hour reperfusion, followed by a slow recovery, which is consistent with the increase of α-BC. Our results suggested that α-BC plays an important role in brain ischemia, providing the early protection of neurons by giving intracellular supports through the maintenance of cytoskeleton and extracellular supports through the protection of glia cells.
Collapse
|
21
|
Kannan R, Sreekumar PG, Hinton DR. Novel roles for α-crystallins in retinal function and disease. Prog Retin Eye Res 2012; 31:576-604. [PMID: 22721717 DOI: 10.1016/j.preteyeres.2012.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 01/18/2023]
Abstract
α-Crystallins are key members of the superfamily of small heat shock proteins that have been studied in detail in the ocular lens. Recently, novel functions for α-crystallins have been identified in the retina and in the retinal pigmented epithelium (RPE). αB-Crystallin has been localized to multiple compartments and organelles including mitochondria, golgi apparatus, endoplasmic reticulum and nucleus. α-Crystallins are regulated by oxidative and endoplasmic reticulum stress, and inhibit apoptosis-induced cell death. α-Crystallins interact with a large number of proteins that include other crystallins, and apoptotic, cytoskeletal, inflammatory, signaling, angiogenic, and growth factor molecules. Studies with RPE from αB-crystallin deficient mice have shown that αB-crystallin supports retinal and choroidal angiogenesis through its interaction with vascular endothelial growth factor. αB-Crystallin has also been shown to have novel functions in the extracellular space. In RPE, αB-crystallin is released from the apical surface in exosomes where it accumulates in the interphotoreceptor matrix and may function to protect neighboring cells. In other systems administration of exogenous recombinant αB-crystallin has been shown to be anti-inflammatory. Another newly described function of αB-crystallin is its ability to inhibit β-amyloid fibril formation. α-Crystallin minichaperone peptides have been identified that elicit anti-apoptotic function in addition to being efficient chaperones. Generation of liposomal particles and other modes of nanoencapsulation of these minipeptides could offer great therapeutic advantage in ocular delivery for a wide variety of retinal degenerative, inflammatory and vascular diseases including age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033, United States
| | | | | |
Collapse
|
22
|
Christians ES, Ishiwata T, Benjamin IJ. Small heat shock proteins in redox metabolism: implications for cardiovascular diseases. Int J Biochem Cell Biol 2012; 44:1632-45. [PMID: 22710345 DOI: 10.1016/j.biocel.2012.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/02/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
A timely review series on small heat shock proteins has to appropriately examine their fundamental properties and implications in the cardiovascular system since several members of this chaperone family exhibit robust expression in the myocardium and blood vessels. Due to energetic and metabolic demands, the cardiovascular system maintains a high mitochondrial activity but irreversible oxidative damage might ensue from increased production of reactive oxygen species. How equilibrium between their production and scavenging is achieved becomes paramount for physiological maintenance. For example, heat shock protein B1 (HSPB1) is implicated in maintaining this equilibrium or redox homeostasis by upholding the level of glutathione, a major redox mediator. Studies of gain or loss of function achieved by genetic manipulations have been highly informative for understanding the roles of those proteins. For example, genetic deficiency of several small heat shock proteins such as HSPB5 and HSPB2 is well-tolerated in heart cells whereas a single missense mutation causes human pathology. Such evidence highlights both the profound genetic redundancy observed among the multigene family of small heat shock proteins while underscoring the role proteotoxicity plays in driving disease pathogenesis. We will discuss the available data on small heat shock proteins in the cardiovascular system, redox metabolism and human diseases. From the medical perspective, we envision that such emerging knowledge of the multiple roles small heat shock proteins exert in the cardiovascular system will undoubtedly open new avenues for their identification and possible therapeutic targeting in humans. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Elisabeth S Christians
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
23
|
McGreal RS, Kantorow WL, Chauss DC, Wei J, Brennan LA, Kantorow M. αB-crystallin/sHSP protects cytochrome c and mitochondrial function against oxidative stress in lens and retinal cells. Biochim Biophys Acta Gen Subj 2012; 1820:921-30. [PMID: 22521365 DOI: 10.1016/j.bbagen.2012.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/20/2012] [Accepted: 04/05/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND αB-crystallin/sHSP protects cells against oxidative stress damage. Here, we mechanistically examined its ability to preserve mitochondrial function in lens and retinal cells and protect cytochrome c under oxidative stress conditions. METHODS αB-crystallin/sHSP was localized in human lens (HLE-B3) and retinal (ARPE-19) cells. αB-crystallin/sHSP was stably over-expressed and its ability to preserve mitochondrial membrane potential under oxidative stress conditions was monitored. Interactions between αB-crystallin/sHSP and cytochrome c were examined by fluorescent resonance energy transfer (FRET) and by co-immune precipitation. The ability of αB-crystallin/sHSP to protect cytochrome c against methionine-80 oxidation was monitored. RESULTS αB-crystallin/sHSP is present in the mitochondria of lens and retinal cells and is translocated to the mitochondria under oxidative conditions. αB-crystallin/sHSP specifically interacts with cytochrome c in vitro and in vivo and its overexpression preserves mitochondrial membrane potential under oxidative stress conditions. αB-crystallin/sHSP directly protects cytochrome c against oxidation. GENERAL SIGNIFICANCE These data demonstrate that αB-crystallin/sHSP maintains lens and retinal cells under oxidative stress conditions at least in part by preserving mitochondrial function and by protecting cytochrome c against oxidation. Since oxidative stress and loss of mitochondrial function are associated with eye lens cataract and age-related macular degeneration, loss of these αB-crystallin/sHSP functions likely plays a key role in the development of these diseases. αB-crystallin/sHSP is expressed throughout the body and its ability to maintain mitochondrial function is likely important for the prevention of multiple degenerative diseases.
Collapse
Affiliation(s)
- Rebecca S McGreal
- Biomedical Sciences Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | | | | | | | | | | |
Collapse
|
24
|
Mackiewicz U, Czarnowska E, Brudek M, Pająk B, Duda M, Emanuel K, Csanyi G, Fedorowicz A, Grochal E, Tyrankiewicz U, Skórka T, Mende U, Lewartowski B, Chłopicki S. Preserved cardiomyocyte function and altered desmin pattern in transgenic mouse model of dilated cardiomyopathy. J Mol Cell Cardiol 2012; 52:978-87. [PMID: 22285482 DOI: 10.1016/j.yjmcc.2012.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 12/22/2011] [Accepted: 01/09/2012] [Indexed: 11/26/2022]
Abstract
Taking advantage of the unique model of slowly developing dilated cardiomyopathy in mice with cardiomyocyte-specific transgenic overexpression of activated Gαq protein (Tgαq*44 mice) we analyzed the contribution of the cardiomyocyte malfunction, fibrosis and cytoskeleton remodeling to the development of heart failure in this model. Left ventricular (LV) in vivo function, myocardial fibrosis, cytoskeletal proteins expression and distribution, Ca(2+) handling and contractile function of isolated cardiomyocytes were evaluated at the stages of the early, compensated, and late, decompensated heart failure in 4-, 12- and 14-month-old Tgαq*44 mice, respectively, and compared to age-matched wild-type FVB mice. In the 4-month-old Tgαq*44 mice significant myocardial fibrosis, moderate myocyte hypertrophy and increased expression of regularly arranged and homogenously distributed desmin accompanied by increased phosphorylation of desmin chaperone protein, αB-crystallin, were found. Cardiomyocyte shortening, Ca(2+) handling and LV function were not altered. At 12 and 14 months of age, Tgαq*44 mice displayed progressive deterioration of the LV function. The contractile performance of isolated myocytes was still preserved, and the amplitude of Ca(2+) transients was even increased probably due to impairment of Na(+)/Ca(2+) exchanger function, while fibrosis was more extensive than in younger mice. Moreover, substantial disarrangement of desmin distribution accompanied by decreasing phosphorylation of αB-crystallin appeared. In Tgαq*44 mice disarrangement of desmin, at least partly related to inadequate phosphorylation of αB-crystallin seems to be importantly involved in the progressive deterioration of contractile heart function.
Collapse
Affiliation(s)
- Urszula Mackiewicz
- Department of Clinical Physiology, Medical Center of Postgraduate Education, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Burniston JG, Kenyani J, Wastling JM, Burant CF, Qi NR, Koch LG, Britton SL. Proteomic analysis reveals perturbed energy metabolism and elevated oxidative stress in hearts of rats with inborn low aerobic capacity. Proteomics 2011; 11:3369-79. [PMID: 21751351 DOI: 10.1002/pmic.201000593] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selection on running capacity has created rat phenotypes of high-capacity runners (HCRs) that have enhanced cardiac function and low-capacity runners (LCRs) that exhibit risk factors of metabolic syndrome. We analysed hearts of HCRs and LCRs from generation 22 of selection using DIGE and identified proteins from MS database searches. The running capacity of HCRs was six-fold greater than LCRs. DIGE resolved 957 spots and proteins were unambiguously identified in 369 spots. Protein expression profiling detected 67 statistically significant (p<0.05; false discovery rate <10%, calculated using q-values) differences between HCRs and LCRs. Hearts of HCR rats exhibited robust increases in the abundance of each enzyme of the β-oxidation pathway. In contrast, LCR hearts were characterised by the modulation of enzymes associated with ketone body or amino acid metabolism. LCRs also exhibited enhanced expression of antioxidant enzymes such as catalase and greater phosphorylation of α B-crystallin at serine 59, which is a common point of convergence in cardiac stress signalling. Thus, proteomic analysis revealed selection on low running capacity is associated with perturbations in cardiac energy metabolism and provided the first evidence that the LCR cardiac proteome is exposed to greater oxidative stress.
Collapse
Affiliation(s)
- Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
Mishra S, Gray CBB, Miyamoto S, Bers DM, Brown JH. Location matters: clarifying the concept of nuclear and cytosolic CaMKII subtypes. Circ Res 2011; 109:1354-62. [PMID: 21998325 DOI: 10.1161/circresaha.111.248401] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Differential effects of δ(B) and δ(C) subtypes of Ca²⁺/calmodulin-dependent protein kinase (CaMKII) on cardiomyocyte Ca²⁺ handling and survival have been suggested to result from their respective nuclear versus cytosolic localizations. CaMKIIδ subtype localization and its relationship to enzyme activation and target phosphorylation have not, however, been systematically evaluated. OBJECTIVE To determine whether CaMKIIδ subtypes are restricted to a particular subcellular location and assess the relationship of localization to enzyme activation and function. METHODS AND RESULTS CaMKIIδ is highly expressed in mouse heart and cardiomyocytes and concentrated in sarcoplasmic reticulum (SR)/membrane and nuclear fractions. CaMKIIδ(B) and δ(C) subtypes differ by a nuclear localization sequence, but both are present in nuclear and SR/membrane fractions. Nonselective subtype distribution is also seen in mice overexpressing CaMKIIδ(B) or δ(C), even in a CaMKIIδ null background. Fluorescently tagged CaMKIIδ(B) expressed in cardiomyocytes concentrates in nuclei whereas δ(C) concentrates in cytosol, but neither localization is exclusive. Mouse hearts exposed to phenylephrine show selective CaMKIIδ activation in the nuclear (versus SR) compartment, whereas caffeine selectively activates CaMKIIδ in SR (versus nuclei), independent of subtype. Compartmentalized activation extends to functional differences in target phosphorylation at CaMKII sites: phenylephrine increases histone deacetylase 5 phosphorylation (Ser498) but not phospholamban (Thr17), whereas the converse holds for caffeine. CONCLUSIONS These studies demonstrate that CaMKIIδ(B) and δ(C) are not exclusively restricted to the nucleus and cytosol and that spatial and functional specificity in CaMKIIδ activation is elicited by mobilization of different Ca²⁺ stores rather than by compartmentalized subtype localization.
Collapse
Affiliation(s)
- Shikha Mishra
- Department of Pharmacology, University of California San Diego, CA, USA
| | | | | | | | | |
Collapse
|
27
|
Pasupuleti N, Matsuyama S, Voss O, Doseff AI, Song K, Danielpour D, Nagaraj RH. The anti-apoptotic function of human αA-crystallin is directly related to its chaperone activity. Cell Death Dis 2011; 1:e31. [PMID: 21364639 PMCID: PMC3032290 DOI: 10.1038/cddis.2010.3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
αA-crystallin is a molecular chaperone and an antiapoptotic protein. This study investigated the mechanism of inhibition of apoptosis by human αA-crystallin and determined if the chaperone activity of αA-crystallin is required for the antiapoptotic function. αA-crystallin inhibited chemical-induced apoptosis in Chinese hamster ovary (CHO) cells and HeLa cells by inhibiting activation of caspase-3 and -9. In CHO cells, it inhibited apoptosis induced by the overexpression of human proapoptotic proteins, Bim and Bax. αA-crystallin inhibited doxorubicin-mediated activation of human procaspase-3 in CHO cells and it activated the PI3K/Akt cell survival pathway by promoting the phosphorylation of PDK1, Akt and phosphatase tensin homologue in HeLa cells. The phosphoinositide 3 kinase (PI3K) activity was increased by αA-crystallin overexpression but the protein content was unaltered. Downregulation of PI3K by the expression of a dominant-negative mutant or inhibition by LY294002 abrogated the ability of αA-crystallin to phosphorylate Akt. These antiapoptotic functions of αA-crystallin were enhanced in a mutant protein (R21A) that shows increased chaperone activity than the wild-type (Wt) protein. Interestingly, a mutant protein (R49A) that shows decreased chaperone activity was far weaker than the Wt protein in its antiapoptotic functions. Together, our study results show that αA-crystallin inhibits apoptosis by enhancing PI3K activity and inactivating phosphatase tensin homologue and that the antiapoptotic function is directly related to its chaperone activity.
Collapse
Affiliation(s)
- N Pasupuleti
- Department of Ophthalmology and Visual Sciences, Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Huke S, Desantiago J, Kaetzel MA, Mishra S, Brown JH, Dedman JR, Bers DM. SR-targeted CaMKII inhibition improves SR Ca²+ handling, but accelerates cardiac remodeling in mice overexpressing CaMKIIδC. J Mol Cell Cardiol 2010; 50:230-8. [PMID: 20971119 DOI: 10.1016/j.yjmcc.2010.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
Cardiac myocyte overexpression of CaMKIIδ(C) leads to cardiac hypertrophy and heart failure (HF) possibly caused by altered myocyte Ca(2+) handling. A central defect might be the marked CaMKII-induced increase in diastolic sarcoplasmic reticulum (SR) Ca(2+) leak which decreases SR Ca(2+) load and Ca(2+) transient amplitude. We hypothesized that inhibition of CaMKII near the SR membrane would decrease the leak, improve Ca(2+) handling and prevent the development of contractile dysfunction and HF. To test this hypothesis we crossbred CaMKIIδ(C) overexpressing mice (CaMK) with mice expressing the CaMKII-inhibitor AIP targeted to the SR via a modified phospholamban (PLB)-transmembrane-domain (SR-AIP). There was a selective decrease in the amount of activated CaMKII in the microsomal (SR/membrane) fraction prepared from these double-transgenic mice (CaMK/SR-AIP) mice. In ventricular cardiomyocytes from CaMK/SR-AIP mice, SR Ca(2+) leak, assessed both as diastolic Ca(2+) shift into SR upon tetracaine in intact myocytes or integrated Ca(2+) spark release in permeabilized myocytes, was significantly reduced. The reduced leak was accompanied by enhanced SR Ca(2+) load and twitch amplitude in double-transgenic mice (vs. CaMK), without changes in SERCA expression or NCX function. However, despite the improved myocyte Ca(2+) handling, cardiac hypertrophy and remodeling was accelerated in CaMK/SR-AIP and cardiac function worsened. We conclude that while inhibition of SR localized CaMKII in CaMK mice improves Ca(2+) handling, it does not necessarily rescue the HF phenotype. This implies that a non-SR CaMKIIδ(C) exerts SR-independent effects that contribute to hypertrophy and HF, and this CaMKII pathway may be exacerbated by the global enhancement of Ca transients.
Collapse
Affiliation(s)
- Sabine Huke
- Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Constitutively active calcineurin induces cardiac endoplasmic reticulum stress and protects against apoptosis that is mediated by alpha-crystallin-B. Proc Natl Acad Sci U S A 2010; 107:18481-6. [PMID: 20937869 DOI: 10.1073/pnas.1013555107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cardiac-specific overexpression of a constitutively active form of calcineurin A (CNA) leads directly to cardiac hypertrophy in the CNA mouse model. Because cardiac hypertrophy is a prominent characteristic of many cardiomyopathies, we deduced that delineating the proteomic profile of ventricular tissue from this model might identify novel, widely applicable therapeutic targets. Proteomic analysis was carried out by subjecting fractionated cardiac samples from CNA mice and their WT littermates to gel-free liquid chromatography linked to shotgun tandem mass spectrometry. We identified 1,918 proteins with high confidence, of which 290 were differentially expressed. Microarray analysis of the same tissue provided us with alterations in the ventricular transcriptome. Because bioinformatic analyses of both the proteome and transcriptome demonstrated the up-regulation of endoplasmic reticulum stress, we validated its occurrence in adult CNA hearts through a series of immunoblots and RT-PCR analyses. Endoplasmic reticulum stress often leads to increased apoptosis, but apoptosis was minimal in CNA hearts, suggesting that activated calcineurin might protect against apoptosis. Indeed, the viability of cultured neonatal mouse cardiomyocytes (NCMs) from CNA mice was higher than WT after serum starvation, an apoptotic trigger. Proteomic data identified α-crystallin B (Cryab) as a potential mediator of this protective effect and we showed that silencing of Cryab via lentivector-mediated transduction of shRNAs in NCMs led to a significant reduction in NCM viability and loss of protection against apoptosis. The identification of Cryab as a downstream effector of calcineurin-induced protection against apoptosis will permit elucidation of its role in cardiac apoptosis and its potential as a therapeutic target.
Collapse
|
30
|
Saraswathy S, Rao NA. Mitochondrial proteomics in experimental autoimmune uveitis oxidative stress. Invest Ophthalmol Vis Sci 2009; 50:5559-66. [PMID: 19578012 DOI: 10.1167/iovs.08-2842] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Photoreceptor mitochondrial oxidative stress is the initial pathologic event in experimental autoimmune uveitis. In this study, the authors determined alterations in retinal mitochondrial protein levels in response to oxidative stress during the early phase of experimental autoimmune uveitis (EAU). METHODS Retinal mitochondrial fractions during early EAU were prepared and subjected to two-dimensional difference in gel electrophoresis (2D-DIGE). Protein spots showing differential expression were excised and subjected to matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for peptide identification. Levels of these proteins were also confirmed by Western blot analysis. mRNA expression of these proteins was confirmed by real-time PCR. TUNEL staining was performed to detect apoptosis. RESULTS 2D-DIGE analysis revealed differential expression of 13 proteins. Ten proteins were overexpressed, including manganese-SOD, alphaA crystallin, beta crystallin, and four proteins were downregulated, including adenosine triphosphate (ATP) synthase, malate dehydrogenase, and calretinin. Increased levels of alphaA crystallin, betaB2 crystallin, MnSOD, and aconitase and decreased levels of ATP synthase were confirmed by Western blot analysis. qPCR also confirmed the increased expression of alphaA crystallin, betaB2 crystallin, MnSOD, and Hsp70. Apoptosis was absent during this phase. CONCLUSIONS The presence of mitochondrial-specific oxidative stress-related proteins in the early EAU retina along with the downregulation of ATP synthase provides early evidence of stress-related retinal damage. The presence of high levels of alphaA and betaB2 crystallin in the mitochondria may prevent cell death during early EAU.
Collapse
Affiliation(s)
- Sindhu Saraswathy
- Doheny Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|