1
|
Chen YH, Kao KC, Hsieh MJ, Leu SW, Huang CC. The Prognostic Value of the Muscle Regional Oxygen Saturation Index in Patients with Acute Respiratory Distress Syndrome. J Clin Med 2024; 13:7612. [PMID: 39768535 PMCID: PMC11678462 DOI: 10.3390/jcm13247612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Impaired systemic tissue oxygenation and microvascular perfusion are associated with adverse outcomes in patients with acute respiratory distress syndrome (ARDS). Tissue oxygenation and microvascular reactivity, assessed by using near-infrared spectroscopy (NIRS), are correlated with disease severity in critically ill populations. This study aimed to detect alterations in these factors and their ability to predict outcomes in patients with ARDS. Methods: We performed NIRS measurements on the first (Day 1) and third (Day 3) days after ARDS diagnosis in 29 patients. We recorded the baseline forearm muscle oxygen saturation (StO2) and calculated the deoxygenation slope (Deoxy) and reoxygenation (Reoxy) slope. We divided the subjects into 28-day survival and non-survival subgroups to compare microcirculatory and oxygenation status differences. Results: The Day 1 StO2 values were significantly higher for the survival subgroup (60.1 ± 13.5%) than the non-survival subgroup (47.2 ± 6.9%) (p = 0.025). The ROC curve showed that Day 1 StO2 was a significant predictor of 28-day mortality (p = 0.025). There was no significant difference between the Deoxy and Reoxy slopes of the two groups (p > 0.05). The ROC of the Day 1 Reoxy slope for survival prediction (AUC0.74) was not statistically significant (p = 0.074). Conclusions: Our study showed poor survival outcomes in patients who had lower skeletal muscle StO2 values in early-stage ARDS. NIRS measurements may provide prognostic value for the survival outcomes in patients with this syndrome.
Collapse
Affiliation(s)
- Yen-Huey Chen
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan; (Y.-H.C.); (M.-J.H.)
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan;
- Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kuo-Chin Kao
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan; (Y.-H.C.); (M.-J.H.)
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan;
| | - Meng-Jer Hsieh
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan; (Y.-H.C.); (M.-J.H.)
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan;
| | - Shaw-Woei Leu
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan;
| | - Chung-Chi Huang
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33301, Taiwan; (Y.-H.C.); (M.-J.H.)
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Linkou. 5, Fu-Hsin St. Gweishan, Taoyuan 33353, Taiwan;
| |
Collapse
|
2
|
Valsamaki A, Vazgiourakis V, Mantzarlis K, Stamatiou R, Makris D. MicroRNAs in Sepsis. Biomedicines 2024; 12:2049. [PMID: 39335561 PMCID: PMC11428652 DOI: 10.3390/biomedicines12092049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Sepsis is an insidious and frequent condition of severe inflammation due to infections. Several biomarkers have been established for initial screening, but the non-specific nature of the existing biomarkers has led to the investigation of more sensitive and specific tools, such as microRNAs (miRs). These non-coding RNAs are involved in several diseases, including sepsis, due to their roles in cellular homeostasis. Herein, a literature overview was attempted to distinguish the most prominent miRs identified in septic conditions and their usefulness in diagnosis, prognosis and even classification of sepsis. miRs implicated in the regulation of pro and anti-inflammatory mechanisms, such as MIR-146a, MIR-155, MIR-181b, MIR-223-5p, MIR-494-3p, MIR-2055b, MIR-150 and MIR-143 have been pinpointed as acceptable testing tools. Furthermore, the use of miRs as screening panels, specific for septic parameters, such as type of causal infection, inflammation immune pathways affected (NF-kB, STAT/JACK), organs inflicted, as well as parallel screening of certain miRs alongside other long non-coding RNAs (LNCs), as co-regulators of sepsis progression. Overall, miRs exhibit benefits in terms of specificity and sensitivity, as well as practical ease of use and test stability. Furthermore, miRs could offer valuable insights into the molecular basis of disease causality and provide valuable therapeutic information.
Collapse
Affiliation(s)
- Asimina Valsamaki
- Intensive Care Unit, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | | | | | - Rodopi Stamatiou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Demosthenes Makris
- Intensive Care Unit, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
3
|
Suc V, Starck J, Levy Y, Soreze Y, Rambaud J, Léger PL. Predictive value of microcirculation for pediatric extracorporeal membrane oxygenation weaning test: A monocentric prospective observational study. Artif Organs 2024; 48:831-838. [PMID: 38647271 DOI: 10.1111/aor.14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) is widely used for children treated for refractory respiratory failures or refractory cardiogenic shock. Its duration depends on organ functions recovery. Weaning is decided using macro-circulatory tools, but microcirculation is not well evaluated. Sidestream dark-field video imaging is used to assess the perfusion of the sublingual microvascular vessels. The aim of this study was to assess the predictive value of microcirculatory indices in ECMO weaning. METHODS This prospective monocentric study examined pediatric patients at Trousseau Hospital between March 2017 and December 2020. The study included all patients from 35 weeks of gestational age to 18 years old who were treated with ECMO. Children were divided into two groups: one with stability after weaning and the other with instability after weaning. We collected clinical and biological data, ventilation parameters, extracorporeal membrane oxygenation parameters, and drugs used at admission and after the weaning test. Microcirculations videos were taken after weaning trials with echocardiography and blood gas monitoring. RESULTS The study included 30 patients with a median age of 29 days (range: 1-770 days) at admission, including 18 patients who received venoarterial ECMO (60%). There were 19 children in the stability group and 11 in the instability group. Macrocirculatory and microcirculatory indices showed no differences between groups. The microvascular flow index was subnormal in both groups (2.3 (1.8-2.4) and 2.3 (2.3-2.6), respectively; p = 0.24). The microvascular indices were similar between cases of venovenous and venoarterial ECMO and between age groups. CONCLUSION Microcirculation monitoring at the weaning phase did not predict the failure of ECMO weaning.
Collapse
Affiliation(s)
- Violette Suc
- Neonatal and Pediatric Intensive Care Unit, Trousseau Hospital, AP-HP, Paris, France
| | - Julie Starck
- Neonatal and Pediatric Intensive Care Unit, Trousseau Hospital, AP-HP, Paris, France
| | - Yael Levy
- Neonatal and Pediatric Intensive Care Unit, Trousseau Hospital, AP-HP, Paris, France
- Medicine Department, Sorbonne University, Paris, France
| | - Yohan Soreze
- Neonatal and Pediatric Intensive Care Unit, Trousseau Hospital, AP-HP, Paris, France
- Medicine Department, Sorbonne University, Paris, France
| | - Jerome Rambaud
- Neonatal and Pediatric Intensive Care Unit, Trousseau Hospital, AP-HP, Paris, France
- Medicine Department, Sorbonne University, Paris, France
| | - Pierre-Louis Léger
- Neonatal and Pediatric Intensive Care Unit, Trousseau Hospital, AP-HP, Paris, France
- Medicine Department, Sorbonne University, Paris, France
| |
Collapse
|
4
|
Hyngstrom AS, Nguyen JN, Gutterman DD, Schmit BD, Klevenow EA, Durand MJ. Noninvasive estimation of skeletal muscle oxygen consumption rate and microvascular reactivity in chronic stroke survivors using near-infrared spectroscopy. J Appl Physiol (1985) 2024; 137:23-31. [PMID: 38601999 PMCID: PMC11389892 DOI: 10.1152/japplphysiol.00093.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Understanding post-stroke changes in skeletal muscle oxidative metabolism and microvascular reactivity could help create therapeutic targets that optimize rehabilitative interventions. Due to disuse atrophy, we hypothesized that basal muscle oxygen consumption rate and microvascular endothelial function would be impaired in the tibialis anterior (TA) muscle of the affected leg of chronic stroke survivors compared with the nonaffected leg and versus matched controls. Fifteen chronic stroke survivors (10 females) and 15 matched controls (9 females) completed this study. A near-infrared spectroscopy oximeter measured tissue oxygen saturation (StO2) of the TA in both legs of stroke survivors and the dominant leg of controls. A cuff was placed around the thigh and inflated to 225 mmHg for 5 min while StO2 was continuously measured. The rate of change in StO2 was calculated during cuff occlusion and immediately post-cuff release. The rate of oxygen desaturation was similar between the legs of the stroke survivors (paretic -0.12 ± 0.04%·s-1 vs. nonparetic -0.16 ± 011%·s-1; P = 0.49), but the paretic leg had a reduced desaturation rate versus controls (-0.25 ± 0.18%·s-1; P = 0.007 vs. paretic leg). After cuff release, there was a greater oxygen resaturation rate in the nonparetic leg compared with the paretic leg (3.13 ± 2.08%·s-1 vs. 1.60 ± 1.11%·s-1, respectively; P = 0.01). The control leg had a similar resaturation rate versus the nonparetic leg (control = 3.41 ± 1.79%·s-1; P = 0.69) but was greater than the paretic leg (P = 0.003). The TA in the paretic leg had an impaired muscle oxygen consumption rate and reduced microvascular endothelial function compared with controls.NEW & NOTEWORTHY Secondary consequences of stroke are not well described. In this study, we show that basal muscle oxidative consumption and microvascular endothelial function are reduced in the paretic tibialis anterior muscle of chronic stroke survivors compared with matched controls using near-infrared spectroscopy and the vascular occlusion technique. There was a moderately strong correlation between microvascular endothelial function and paretic leg strength.
Collapse
Affiliation(s)
- Allison S Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Jennifer N Nguyen
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Emilie A Klevenow
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Matthew J Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
5
|
Savluk OF, Yilmaz AA, Yavuz Y, Arisut S, Ukil Isildak F, Turkmen Karaagac A, Ozbek B, Cine N, Tuncer E, Ceyran H. Assessment of microcirculatory alteration by a vascular occlusion test using near-infrared spectroscopy in pediatric cardiac surgery: effect of cardiopulmonary bypass. Expert Rev Med Devices 2024; 21:249-255. [PMID: 38217402 DOI: 10.1080/17434440.2024.2306155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/10/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVES Cardiopulmonary bypass cause microcirculatory alterations. Near infrared spectroscopic measurement of tissue oxygen saturation and vascular occlusion test are novel technologies for assessing the microcirculatory function of peripheral tissue specifically in patients undergoing cardiac surgery with cardiopulmonary bypass.Our study aimed to evaluate dynamic microcirculatory function using the vascular occlusion testing during cardiac surgery in pediatric patients. METHODS 120 pediatric patients were scheduled. Children had continuous regional oxygen saturation monitoring using near infrared spectroscopy and vascular occlusion test. Vascular occlusion test was performed five times; before induction (T1), after induction (T2), then during cardiopulmonary bypass with full flow (T3), after the termination of CPB (T4) and after sternum closure (T5). RESULTS Basal value was the lowest at T3 and this value was significantly different among measurements (p < 0,01).Values for maximum and minimum tissue oxygen saturation were the lowest at T3 (83,4 and 52,9%).The occlusion slope varied significantly among measurements (p < 0,01).Reperfusion slopes were significantly different among measurements (p < 0,01) with a further progressive decrease in reperfusion slope with duration of cardiopulmonary bypass. CONCLUSION Microcirculatory function can assessed using VOT with forearm Near-infrared spectroscopy derived variables during cardiopulmonary bypass in pediatric cardiac surgery. Noninvasive assessment of microcirculatory perfusion during cardiopulmonary bypass can further help evaluate and improve circulatory support techniques. TRIAL REGISTRATION The research Project was registered at ClinicalTrials.gov (NCT06191913).
Collapse
Affiliation(s)
- Omer Faruk Savluk
- Anesthesiology and Reanimation Clinic, Kartal Kosuyolu High Education and Training Hospital, Istanbul, Turkey
| | - Abdullah Arif Yilmaz
- Pediatric Cardiac Surgery Clinic, Kartal Kosuyolu High Education and Training Hospital, Istanbul, Turkey
| | - Yasemin Yavuz
- Anesthesiology and Reanimation Clinic, Kartal Kosuyolu High Education and Training Hospital, Istanbul, Turkey
| | - Seda Arisut
- Anesthesiology and Reanimation Clinic, Kartal Kosuyolu High Education and Training Hospital, Istanbul, Turkey
| | - Fatma Ukil Isildak
- Anesthesiology and Reanimation Clinic, Kartal Kosuyolu High Education and Training Hospital, Istanbul, Turkey
| | - Aysu Turkmen Karaagac
- Anesthesiology and Reanimation Clinic, Kartal Kosuyolu High Education and Training Hospital, Istanbul, Turkey
| | - Baburhan Ozbek
- Pediatric Cardiac Surgery Clinic, Kartal Kosuyolu High Education and Training Hospital, Istanbul, Turkey
| | - Nihat Cine
- Pediatric Cardiac Surgery Clinic, Kartal Kosuyolu High Education and Training Hospital, Istanbul, Turkey
| | - Eylem Tuncer
- Pediatric Cardiac Surgery Clinic, Kartal Kosuyolu High Education and Training Hospital, Istanbul, Turkey
| | - Hakan Ceyran
- Pediatric Cardiac Surgery Clinic, Kartal Kosuyolu High Education and Training Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Ye E, Ye H, Wang S, Fang X. INITIATION TIMING OF VASOPRESSOR IN PATIENTS WITH SEPTIC SHOCK: A SYSTEMATIC REVIEW AND META-ANALYSIS. Shock 2023; 60:627-636. [PMID: 37695641 DOI: 10.1097/shk.0000000000002214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
ABSTRACT Background: Vasopressor plays a crucial role in septic shock. However, the time for vasopressor initiation remains controversial. We conducted a systematic review and meta-analysis to explore its initiation timing for septic shock patients. Methods: PubMed, Cochrane Library, Embase, and Web of Sciences were searched from inception to July 12, 2023, for relevant studies. Primary outcome was short-term mortality. Meta-analysis was performed using Stata 15.0. Results: Twenty-three studies were assessed, including 2 randomized controlled trials and 21 cohort studies. The early group resulted in lower short-term mortality than the late group (OR [95% CI] = 0.775 [0.673 to 0.893], P = 0.000, I2 = 67.8%). The significance existed in the norepinephrine and vasopressin in subgroup analysis. No significant difference was considered in the association between each hour's vasopressor delay and mortality (OR [95% CI] = 1.02 [0.99 to 1.051], P = 0.195, I2 = 57.5%). The early group had an earlier achievement of target MAP ( P < 0.001), shorter vasopressor use duration ( P < 0.001), lower serum lactate level at 24 h ( P = 0.003), lower incidence of kidney injury ( P = 0.001), renal replacement therapy use ( P = 0.022), and longer ventilation-free days to 28 days ( P < 0.001). Conclusions: Early initiation of vasopressor (1-6 h within septic shock onset) would be more beneficial to septic shock patients. The conclusion needs to be further validated by more well-designed randomized controlled trials.
Collapse
Affiliation(s)
- Enci Ye
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | |
Collapse
|
7
|
Amendola C, Buttafava M, Carteano T, Contini L, Cortese L, Durduran T, Frabasile L, Guadagno CN, Karadeinz U, Lacerenza M, Mesquida J, Parsa S, Re R, Sanoja Garcia D, Konugolu Venkata Sekar S, Spinelli L, Torricelli A, Tosi A, Weigel UM, Yaqub MA, Zanoletti M, Contini D. Assessment of power spectral density of microvascular hemodynamics in skeletal muscles at very low and low-frequency via near-infrared diffuse optical spectroscopies. BIOMEDICAL OPTICS EXPRESS 2023; 14:5994-6015. [PMID: 38021143 PMCID: PMC10659778 DOI: 10.1364/boe.502618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
In this work, we used a hybrid time domain near-infrared spectroscopy (TD-NIRS) and diffuse correlation spectroscopy (DCS) device to retrieve hemoglobin and blood flow oscillations of skeletal muscle microvasculature. We focused on very low (VLF) and low-frequency (LF) oscillations (i.e., frequency lower than 0.145 Hz), that are related to myogenic, neurogenic and endothelial activities. We measured power spectral density (PSD) of blood flow and hemoglobin concentration in four muscles (thenar eminence, plantar fascia, sternocleidomastoid and forearm) of 14 healthy volunteers to highlight possible differences in microvascular hemodynamic oscillations. We observed larger PSDs for blood flow compared to hemoglobin concentration, in particular in case of distal muscles (i.e., thenar eminence and plantar fascia). Finally, we compared the PSDs measured on the thenar eminence of healthy subjects with the ones measured on a septic patient in the intensive care unit: lower power in the endothelial-dependent frequency band, and larger power in the myogenic ones were observed in the septic patient, in accordance with previous works based on laser doppler flowmetry.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Cortese
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Claudia Nunzia Guadagno
- BioPixS Ltd – Biophotonics Standards, IPIC, Tyndall National Institute, Lee Maltings Complex, Cork, Ireland
| | - Umut Karadeinz
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | | | - Jaume Mesquida
- Critical Care Department, Parc Taulí Hospital Universitari. Institut D’Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain
| | | | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | | | | | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., Castelldefels, (Barcelona), Spain
| | - M. Atif Yaqub
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Marta Zanoletti
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| |
Collapse
|
8
|
Gao Z, Li C, Chen H, Chen D, Ma S, Xie J, Wu C, Liu L, Yang Y. Association between diastolic blood pressure during the first 24 h and 28-day mortality in patients with septic shock: a retrospective observational study. Eur J Med Res 2023; 28:329. [PMID: 37689707 PMCID: PMC10492407 DOI: 10.1186/s40001-023-01315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Although the mean arterial pressure (MAP) target of 65 mmHg was achieved, diastolic blood pressure (DBP) was still low in some septic shock patients. The effects of DBP on the prognosis and optimal target for patients with septic shock are unclear. We sought to investigate the relationship between DBP and 28-day mortality in septic shock patients. METHODS In this retrospective observational study, we obtained data from the Chinese Database in Intensive Care (CDIC). We included patients with an admission diagnosis of septic shock and shock was controlled. DBP was measured every 1 h, and the mean DBP during the first 24 h (mDBP24h) was recorded. The primary outcome was 28-day mortality. Multivariable logistic regression determined the relationship between mDBP24h and 28-day mortality. RESULTS In total, 1251 patients were finally included. The 28-day mortality of included septic shock patients was 28.3%. The mDBP24h, not mSBP24h, was higher among 28-day survivors compared with non-survivors. 28-day mortality was inversely associated with mDBP24h (unadjusted OR 0.814 per 10 mmHg higher mDBP24h, P = 0.003), with a stepwise increase in 28-day mortality at lower mDBP24h. The 28-day mortality of patients with mDBP24h < 59 mmHg had an absolute risk reduction of 9.4% (P = 0.001). And mDBP24h < 59 mmHg was the remaining high risk factor inversely associated with 28-day mortality after multivariable adjustment (adjusted OR 1.915, 95% CI 1.037-3.536, P = 0.038), while mMAP24h and mSBP24h were not. CONCLUSION In patients with septic shock after initial resuscitation, we observed an inverse association between mDBP24h and 28-day mortality. The poor outcomes in patients with mDBP24h < 59 mmHg provide indirect evidence supporting a further DBP goal of 59 mmHg for patients with septic shock after MAP of 65 mmHg was achieved.
Collapse
Affiliation(s)
- Zhiwei Gao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Emergency Intensive Care Unit, The Affiliated Huaian NO. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Cong Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Dongyu Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - ShaoLei Ma
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Changde Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
9
|
de Miranda AC, De Stefani FDC, Dal Vesco BC, Junior HC, Morello LG, Assreuy J, de Menezes IAC. Peripheral ischemic reserve in sepsis and septic shock as a new bedside prognostic enrichment tool: A Brazilian cohort study. PLoS One 2023; 18:e0288249. [PMID: 37406024 DOI: 10.1371/journal.pone.0288249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Microvascular dysfunctions are associated with poor prognosis in sepsis. However, the potential role of clinical assessment of peripheral ischemic microvascular reserve (PIMR), a parameter that characterizes the variation of peripheral perfusion index (PPI) after brief ischemia of the upper arm, as a tool to detect sepsis-induced microvascular dysfunction and for prognostic enrichment has not been established. To address this gap, this study investigated the association of high PIMR with mortality over time in patients with sepsis and its subgroups (with and without shock) and peripheral perfusion (capillary-refill time). This observational cohort study enrolled consecutive septic patients in four Intensive-care units. After fluid resuscitation, PIMR was evaluated using the oximetry-derived PPI and post-occlusive reactive hyperemia for two consecutive days in septic patients. Two hundred and twenty-six patients were included-117 (52%) in the low PIMR group and 109 (48%) in the high PIMR group. The study revealed differences in mortality between groups on the first day, which was higher in the high PIMR group (RR 1.25; 95% CI 1.00-1.55; p = 0.04) and maintained its prognostic significance after multivariate adjustment. Subsequently, this analysis was made for sepsis subgroups and showed significant differences in mortality only for the septic-shock subgroup, with was higher in the high PIMR group (RR 2.14; 95% CI 1.49-3.08; p = 0.01). The temporal ΔPPI peak values (%) analyses did not demonstrate maintenance of the predictive value over the first 48 h in either group (p > 0.05). A moderate positive correlation (r = 0.41) between ΔPPI peak (%) and capillary-refill time (s) was found within the first 24 hours of diagnosis (p < 0.001). In conclusion, detecting a high PIMR within 24 h appears to be a prognostic marker for mortality in sepsis. Furthermore, its potential as a prognostic enrichment tool seems to occur mainly in septic shock.
Collapse
Affiliation(s)
- Ana Carolina de Miranda
- Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Bruna Cassia Dal Vesco
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Hipólito Carraro Junior
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Jamil Assreuy
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | |
Collapse
|
10
|
Vago JP, Zaidan I, Perucci LO, Brito LF, Teixeira LC, Silva CMS, Miranda TC, Melo EM, Bruno AS, Queiroz-Junior CM, Sugimoto MA, Tavares LP, Grossi LC, Borges IN, Schneider AH, Baik N, Schneider AH, Talvani A, Ferreira RG, Alves-Filho JC, Nobre V, Teixeira MM, Parmer RJ, Miles LA, Sousa LP. Plasmin and plasminogen prevent sepsis severity by reducing neutrophil extracellular traps and systemic inflammation. JCI Insight 2023; 8:e166044. [PMID: 36917195 PMCID: PMC10243804 DOI: 10.1172/jci.insight.166044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.
Collapse
Affiliation(s)
- Juliana P. Vago
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Isabella Zaidan
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Luiza O. Perucci
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Larissa Froede Brito
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Lívia C.R. Teixeira
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Camila Meirelles Souza Silva
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaís C. Miranda
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Eliza M. Melo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre S. Bruno
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A. Sugimoto
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P. Tavares
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laís C. Grossi
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Isabela N. Borges
- Hospital of Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ayda Henriques Schneider
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nagyung Baik
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ayda H. Schneider
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André Talvani
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Raphael G. Ferreira
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José C. Alves-Filho
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vandack Nobre
- Hospital of Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System and University of California, San Diego, California, USA
| | - Lindsey A. Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Lirlândia P. Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| |
Collapse
|
11
|
Does the age of packed red blood cells, donor sex or sex mismatch affect the sublingual microcirculation in critically ill intensive care unit patients? A secondary interpretation of a retrospective analysis. J Clin Monit Comput 2023; 37:179-188. [PMID: 35665876 PMCID: PMC9852146 DOI: 10.1007/s10877-022-00877-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/05/2022] [Indexed: 01/24/2023]
Abstract
In vitro studies have thoroughly documented age-dependent impact of storage lesions in packed red blood cells (pRBC) on erythrocyte oxygen carrying capacity. While studies have examined the effect of pRBC age on patient outcome only few data exist on the microcirculation as their primary site of action. In this secondary analysis we examined the relationship between age of pRBC and changes of microcirculatory flow (MCF) in 54 patients based on data from the Basel Bedside assessment Microcirculation Transfusion Limit study (Ba2MiTraL) on effects of pRBC on sublingual MCF. Mean change from pre- to post-transfusion proportion of perfused vessels (∆PPV) was + 8.8% (IQR - 0.5 to 22.5), 5.5% (IQR 0.1 to 10.1), and + 4.7% (IQR - 2.1 to 6.5) after transfusion of fresh (≤ 14 days old), medium (15 to 34 days old), and old (≥ 35 days old) pRBC, respectively. Values for the microcirculatory flow index (MFI) were + 0.22 (IQR - 0.1 to 0.6), + 0.22 (IQR 0.0 to 0.3), and + 0.06 (IQR - 0.1 to 0.3) for the fresh, medium, and old pRBC age groups, respectively. Lower ∆PPV and transfusion of older blood correlated with a higher Sequential Organ Failure Assessment (SOFA) score of patients upon admission to the intensive care unit (ICU) (p = 0.01). However, regression models showed no overall significant correlation between pRBC age and ∆PPV (p = 0.2). Donor or recipient sex had no influence. We detected no significant effect of pRBC on microcirculation. Patients with a higher SOFA score upon ICU admission might experience a negative effect on the ∆PPV after transfusion of older blood.
Collapse
|
12
|
Hyngstrom AS, Nguyen JN, Uhrich TD, Wright MT, Gutterman DD, Schmit BD, Durand MJ. Quantification of Tissue Oxygen Saturation in the Vastus Lateralis Muscle of Chronic Stroke Survivors during a Graded Exercise Test. Cardiopulm Phys Ther J 2023; 34:39-50. [PMID: 36816465 PMCID: PMC9937433 DOI: 10.1097/cpt.0000000000000208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Purpose This study examined tissue oxygen saturation (StO2) of the vastus lateralis (VL) muscles of chronic stroke survivors during a graded exercise test (GXT). We hypothesized the reduction in StO2 will be blunted in the paretic vs. non-paretic VL during a maximum-effort GXT. Methods Chronic stroke survivors performed a GXT and StO2 of the VL in each leg was measured using near infrared spectroscopy. Twenty-six stroke survivors performed a GXT. Results At rest, there was no difference in StO2 between the paretic and non-paretic VL (65±9% vs. 68±7%, respectively, p=0.32). The maximum change in StO2 from rest during the GXT was greater in the non-paretic vs. the paretic VL (-16±14% vs. -9±10%, respectively, p<0.001). The magnitude of the oxygen resaturation response was also greater in the non-paretic vs. the paretic VL (29±23% vs. 18±15%, respectively, p<0.001). VO2 Peak was associated with the magnitude of the VL StO2 change during (r2=0.54, p<0.0001) and after (r2=0.56, p<0.001) the GXT. Conclusions During a GXT there is a blunted oxygen desaturation response in the paretic vs. the non-paretic VL of chronic stroke survivors. In the paretic VL there was a positive correlation between the oxygen desaturation response during the GXT and VO2 Peak.
Collapse
Affiliation(s)
| | - Jennifer N. Nguyen
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Toni D. Uhrich
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Michael T. Wright
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David D. Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew J. Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
13
|
Aksu U, Ince C, Baasner S, Hermle J, Lupp C, Heckmann D, Nocken F, Westphal M. Manipulation of Nitric Oxide Levels via a Modified Hydroxyethyl Starch Molecule. J Surg Res 2023; 281:1-12. [PMID: 36095893 DOI: 10.1016/j.jss.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/04/2022] [Accepted: 08/16/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Although the improving effect of nitric oxide (NO) donors has experimentally been demonstrated in shock, there are still no NO donor medications clinically available. Thiol-nitrosothiol-hydroxyethyl starch (S-NO-HES) is a novel molecule consisting of NO coupled to a thiolated derivative of hydroxyethyl starch (HES). It was aimed to assess the ability of S-NO-HES to serve as an NO donor under a variety of in vitro simulated physiologic conditions, which might be the first step to qualify this molecule as a novel type of NO donor-fluid. METHODS We studied the effect of temperature on NO-releasing properties of S-NO-HES in blood, at 34°C, 37°C, and 41°C. Ascorbic acid (Asc) and amylase were also tested in a medium environment. In addition, we evaluated the activity of S-NO-HES in the isolated aortic ring and Langendorff-perfused heart setup. RESULTS The NO release property of S-NO-HES was found at any temperature. Asc led to a significant increase in the production of NO compared to S-NO-HES incubation (P < 0.05). The addition of amylase together with Asc to the medium further increased the release of NO (P < 0.05). S-NO-HES exerted significant vasodilatory effects on phenylephrine precontracted aortic rings that were dose-dependent (P < 0.01). Furthermore, S-NO-HES significantly increased the heart rate and additionally reduced the duration of the cardiac action potential, as indicated by a reduction of QTc-B values (P < 0.01). CONCLUSIONS We demonstrated for the first time that the S-NO-HES molecule exhibited its NO-releasing effects. The effectiveness of this new NO donor to substitute NO deficiency under septic conditions or in other indications needs to be studied.
Collapse
Affiliation(s)
- Ugur Aksu
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey.
| | - Can Ince
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Intensive Care Medicine, Erasmus MC, University Medical Center, Rotterdam, Rotterdam, The Netherlands
| | - Silke Baasner
- Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | | | - Corinna Lupp
- Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | | | - Frank Nocken
- Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | | |
Collapse
|
14
|
Jones S, Tillin T, Williams S, Rapala A, Chaturvedi N, Hughes AD. Skeletal Muscle Tissue Saturation Changes Measured Using Near Infrared Spectroscopy During Exercise Are Associated With Post-Occlusive Reactive Hyperaemia. Front Physiol 2022; 13:919754. [PMID: 35874520 PMCID: PMC9304617 DOI: 10.3389/fphys.2022.919754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022] Open
Abstract
Measuring local haemodynamics in skeletal muscle has the potential to provide valuable insight into the oxygen delivery to tissue, especially during high demand situations such as exercise. The aim of this study was to compare the skeletal muscle microvascular response during post-occlusive reactive hyperaemia (PORH) with the response to exercise, each measured using near-infrared spectroscopy (NIRS) and to establish if associations exist between muscle measures and exercise capacity or sex. Participants were from a population-based cohort study, the Southall and Brent Revisited (SABRE) study. Skeletal muscle measures included changes in tissue saturation index at the onset of exercise (∆TSIBL-INC) and across the whole of exercise (∆TSIBL-EE), time to 50%, 95% and 100% PORH, rate of PORH recovery, area under the curve (AUC) and total oxygenated Haemoglobin (oxy-Hb) change during PORH. Exercise capacity was measured using a 6-min stepper test (6MST). Analysis was by multiple linear regression. In total, 558 participants completed the 6MST with NIRS measures of TSI (mean age±SD: 73 ± 7years, 59% male). A sub-set of 149 participants also undertook the arterial occlusion. Time to 100% PORH, recovery rate, AUC and ∆oxy-Hb were all associated with ∆TSIBL-EE (β-coefficient (95%CI): 0.05 (0.01, 0.09), p = 0.012; -47 (-85, -9.9), p = 0.014; 1.7 (0.62, 2.8), p = 0.002; 0.04 (0.002.0.108), p = 0.041, respectively). Time to 95% & 100% PORH, AUC and ∆oxy-Hb were all associated with ∆TSIBL-INC (β-coefficient (95%CI): -0.07 (-0.12,-0.02), p = 0.02; -0.03 (-0.05, -0.003), p = 0.028; 0.85 (0.18, 1.5), p = 0.013 & 0.05 (0.02, 0.09), p = 0.001, respectively). AUC and ∆Oxy-Hb were associated with steps achieved (β-coefficient (95%CI): 18.0 (2.3, 33.7), p = 0.025; 0.86 (0.10, 1.6), p = 0.027). ∆TSIBL-EE was associated with steps and highest VO2 (1.7 (0.49, 2.9), p = 0.006; 7.7 (3.2, 12.3), p = 0.001). ∆TSIBL-INC was associated with steps and VO2 but this difference was attenuated towards the null after adjustment for age, sex and ethnicity. ∆TSIBL-EE was greater in women (3.4 (0.4, 8.9) versus 2.1 (0.3, 7.4), p = 0.017) and ∆TSIBL-INC was lower in women versus men (2.4 (0.2, 10.2) versus 3.2 (0.2, 18.2), p = 0.016). These Local microvascular NIRS-measures are associated with exercise capacity in older adults and several measures can detect differences in microvascular reactivity between a community-based sample of men and women.
Collapse
Affiliation(s)
- Siana Jones
- MRC Unit for Lifelong Health & Ageing at UCL, Department of Population Science and Experimental Medicine, Institute for Cardiovascular Science, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Chhetri I, Hunt JEA, Mendis JR, Forni LG, Kirk-Bayley J, White I, Cooper J, Somasundaram K, Shah N, Patterson SD, Puthucheary ZA, Montgomery HE, Creagh-Brown BC. Safety and Feasibility Assessment of Repetitive Vascular Occlusion Stimulus (RVOS) Application to Multi-Organ Failure Critically Ill Patients: A Pilot Randomised Controlled Trial. J Clin Med 2022; 11:3938. [PMID: 35887701 PMCID: PMC9316533 DOI: 10.3390/jcm11143938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Muscle wasting is implicated in the pathogenesis of intensive care unit acquired weakness (ICU-AW), affecting 40% of patients and causing long-term physical disability. A repetitive vascular occlusion stimulus (RVOS) limits muscle atrophy in healthy and orthopaedic subjects, thus, we explored its application to ICU patients. Adult multi-organ failure patients received standard care +/- twice daily RVOS {4 cycles of 5 min tourniquet inflation to 50 mmHg supra-systolic blood pressure, and 5 min complete deflation} for 10 days. Serious adverse events (SAEs), tolerability, feasibility, acceptability, and exploratory outcomes of the rectus femoris cross-sectional area (RFCSA), echogenicity, clinical outcomes, and blood biomarkers were assessed. Only 12 of the intended 32 participants were recruited. RVOS sessions (76.1%) were delivered to five participants and two could not tolerate it. No SAEs occurred; 75% of participants and 82% of clinical staff strongly agreed or agreed that RVOS is an acceptable treatment. RFCSA fell significantly and echogenicity increased in controls (n = 5) and intervention subjects (n = 4). The intervention group was associated with less frequent acute kidney injury (AKI), a greater decrease in the total sequential organ failure assessment score (SOFA) score, and increased insulin-like growth factor-1 (IGF-1), and reduced syndecan-1, interleukin-4 (IL-4) and Tumor necrosis factor receptor type II (TNF-RII) levels. RVOS application appears safe and acceptable, but protocol modifications are required to improve tolerability and recruitment. There were signals of possible clinical benefit relating to RVOS application.
Collapse
Affiliation(s)
- Ismita Chhetri
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London SW7 2BX, UK
| | - Julie E. A. Hunt
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Jeewaka R. Mendis
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Lui G. Forni
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| | - Justin Kirk-Bayley
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
| | - Ian White
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Jonathan Cooper
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Karthik Somasundaram
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Nikunj Shah
- Intensive Care Unit, Ashford and St Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK; (I.W.); (J.C.); (K.S.); (N.S.)
| | - Stephen D. Patterson
- Faculty of Sport, Allied Health & Performance Sciences, St Mary’s University, London TW1 4SX, UK;
| | - Zudin A. Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London E1 4NS, UK;
- Institute for Sport, Exercise and Health, University College London, London W1T 7HA, UK
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
- Intensive Care Unit, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- Centre for Human and Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Hugh E. Montgomery
- Centre for Human Health and Performance, Department of Medicine, University College London, London W1T 7HA, UK;
| | - Benedict C. Creagh-Brown
- Intensive Care Unit, Royal Surrey County Hospital, NHS Foundation Trust, Guildford GU2 7XX, UK; (I.C.); (L.G.F.); (J.K.-B.)
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (J.E.A.H.); (J.R.M.)
| |
Collapse
|
16
|
Chiscano-Camón L, Plata-Menchaca E, Ruiz-Rodríguez JC, Ferrer R. Fisiopatología del shock séptico. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Spectroscopy detects skeletal muscle microvascular dysfunction during onset of sepsis in a rat fecal peritonitis model. Sci Rep 2022; 12:6339. [PMID: 35428849 PMCID: PMC9012880 DOI: 10.1038/s41598-022-10208-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/15/2022] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a dysregulated host inflammatory response to infection potentially leading to life-threatening organ dysfunction. The objectives of this study were to determine whether early microvascular dysfunction (MVD) in skeletal muscle can be detected as dynamic changes in microvascular hemoglobin (MVHb) levels using spectroscopy and whether MVD precedes organ histopathology in septic peritonitis. Skeletal muscle of male Sprague-Dawley rats was prepared for intravital microscopy. After intraperitoneal injection of fecal slurry or saline, microscopy and spectroscopy recordings were taken for 6 h. Capillary red blood cell (RBC) dynamics and SO2 were quantified from digitized microscopy frames and MVHb levels were derived from spectroscopy data. Capillary RBC dynamics were significantly decreased by 4 h after peritoneal infection and preceded macrohemodynamic changes. At the same time, low-frequency oscillations in MVHb levels exhibited a significant increase in Power in parts of the muscle and resembled oscillations in RBC dynamics and SO2. After completion of microscopy, tissues were collected. Histopathological alterations were not observed in livers, kidneys, brains, or muscles 6 h after induction of peritonitis. The findings of this study show that, in our rat model of sepsis, MVD occurs before detectable organ histopathology and includes ~ 30-s oscillations in MVHb. Our work highlights MVHb oscillations as one of the indicators of MVD onset and provides a foundation for the use of non-invasive spectroscopy to continuously monitor MVD in septic patients.
Collapse
|
18
|
Chiscano-Camón L, Plata-Menchaca E, Ruiz-Rodríguez JC, Ferrer R. [Pathophysiology of septic shock]. Med Intensiva 2022; 46 Suppl 1:1-13. [PMID: 38341256 DOI: 10.1016/j.medine.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/20/2022] [Indexed: 02/12/2024]
Abstract
Sepsis and septic shock result from an inadequate host response to an infection, which causes organ dysfunction. The progression of this condition is manifested by the occurrence of successive clinical stages, resulting from the systemic inflammatory response secondary to the activation of different inflammatory mediators, leading to organ dysfunction. There is a high burden of evidence on the role of endotoxin in the pathogenesis of sepsis and its crucial role in triggering the inflammatory response in sepsis caused by gram-negative bacteria. The coagulation cascade activation in sepsis patients is part of the host's adaptive immune response to infection. The endothelium is the main target in sepsis, which is metabolically active and can.
Collapse
Affiliation(s)
- Luis Chiscano-Camón
- Servicio de Medicina Intensiva, Hospital Universitario Vall d'Hebron, Barcelona, España; Grupo de Investigación Sepsis Organ Dysfunction and Resuscitation (SODIR), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, España; Departament de Medicina. Universitat Autònoma de Barcelona. Barcelona. España
| | - Erika Plata-Menchaca
- Servicio de Medicina Intensiva, Hospital Universitario Vall d'Hebron, Barcelona, España; Grupo de Investigación Sepsis Organ Dysfunction and Resuscitation (SODIR), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, España
| | - Juan Carlos Ruiz-Rodríguez
- Servicio de Medicina Intensiva, Hospital Universitario Vall d'Hebron, Barcelona, España; Grupo de Investigación Sepsis Organ Dysfunction and Resuscitation (SODIR), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, España; Departament de Medicina. Universitat Autònoma de Barcelona. Barcelona. España
| | - Ricard Ferrer
- Servicio de Medicina Intensiva, Hospital Universitario Vall d'Hebron, Barcelona, España; Grupo de Investigación Sepsis Organ Dysfunction and Resuscitation (SODIR), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Barcelona, España; Departament de Medicina. Universitat Autònoma de Barcelona. Barcelona. España.
| |
Collapse
|
19
|
Nam K, Jeon Y. Microcirculation during surgery. Anesth Pain Med (Seoul) 2022; 17:24-34. [PMID: 35139609 PMCID: PMC8841265 DOI: 10.17085/apm.22127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Throughout the long history of surgery, there has been great advancement in the hemodynamic management of surgical patients. Traditionally, hemodynamic management has focused on macrocirculatory monitoring and intervention to maintain appropriate oxygen delivery. However, even after optimization of macro-hemodynamic parameters, microcirculatory dysfunction, which is related to higher postoperative complications, occurs in some patients. Although the clinical significance of microcirculatory dysfunction has been well reported, little is known about interventions to recover microcirculation and prevent microcirculatory dysfunction. This may be at least partly caused by the fact that the feasibility of monitoring tools to evaluate microcirculation is still insufficient for use in routine clinical practice. However, considering recent advancements in these research fields, with more popular use of microcirculation monitoring and more clinical trials, clinicians may better understand and manage microcirculation in surgical patients in the future. In this review, we describe currently available methods for microcirculatory evaluation. The current knowledge on the clinical relevance of microcirculatory alterations has been summarized based on previous studies in various clinical settings. In the latter part, pharmacological and clinical interventions to improve or restore microcirculation are also presented.
Collapse
Affiliation(s)
| | - Yunseok Jeon
- Corresponding author: Yunseok Jeon, M.D., Ph.D. Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: 82-2-2072-3108, Fax: 82-2-747-8363 E-mail:
| |
Collapse
|
20
|
Bedside determination of microcirculatory oxygen delivery and uptake: a prospective observational clinical study for proof of principle. Sci Rep 2021; 11:24516. [PMID: 34972827 PMCID: PMC8720096 DOI: 10.1038/s41598-021-03922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
Assessment of microcirculatory functional capacity is considered to be of prime importance for therapy guidance and outcome prediction in critically ill intensive care patients. Here, we show determination of skin microcirculatory oxygen delivery and consumption rates to be a feasible approach at the patient’s bedside. Real time laser-doppler flowmetry (LDF) and white light spectrophotometry (WLS) were used for assessment of thenar skin microperfusion, regional Hb and postcapillary venous oxygen saturation before and after forearm ischemia. Adapted Fick’s principle equations allowed for calculation of microcirculatory oxygen delivery and uptake. Patient groups with expected different microcirculatory status were compared [control (n = 20), sepsis-1/2 definition criteria identified SIRS (n = 10) and septic shock patients (n = 20), and the latter group further classified according to sepsis-3 definition criteria in sepsis (n = 10) and septic shock (n = 10)], respectively. In otherwise healthy controls, microcirculatory oxygen delivery and uptake approximately doubled after ischemia with maximum values (mDO2max and mVO2max) significantly lower in SIRS or septic patient groups, respectively. Scatter plots of mVO2max and mDO2max values defined a region of unphysiological low values not observed in control but in critically ill patients with the percentage of dots within this region being highest in septic shock patients. LDF and WLS combined with vasoocclusive testing reveals significant differences in microcirculatory oxygen delivery and uptake capacity between control and critically ill patients. As a clinically feasible technique for bedside determination of microcirculatory oxygen delivery and uptake, LDF and WLS combined with vasoocclusive testing holds promise for monitoring of disease progression and/or guidance of therapy at the microcirculatory level to be tested in further clinical trials. ClinicalTrials.gov: NCT01530932.
Collapse
|
21
|
Mendelson AA, Rajaram A, Bainbridge D, Lawrence KS, Bentall T, Sharpe M, Diop M, Ellis CG. Dynamic tracking of microvascular hemoglobin content for continuous perfusion monitoring in the intensive care unit: pilot feasibility study. J Clin Monit Comput 2021; 35:1453-1465. [PMID: 33104968 PMCID: PMC7586414 DOI: 10.1007/s10877-020-00611-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE There is a need for bedside methods to monitor oxygen delivery in the microcirculation. Near-infrared spectroscopy commonly measures tissue oxygen saturation, but does not reflect the time-dependent variability of microvascular hemoglobin content (MHC) that attempts to match oxygen supply with demand. The objective of this study is to determine the feasibility of MHC monitoring in critically ill patients using high-resolution near-infrared spectroscopy to assess perfusion in the peripheral microcirculation. METHODS Prospective observational cohort of 36 patients admitted within 48 h at a tertiary intensive care unit. Perfusion was measured on the quadriceps, biceps, and/or deltoid, using the temporal change in optical density at the isosbestic wavelength of hemoglobin (798 nm). Continuous wavelet transform was applied to the hemoglobin signal to delineate frequency ranges corresponding to physiological oscillations in the cardiovascular system. RESULTS 31/36 patients had adequate signal quality for analysis, most commonly affected by motion artifacts. MHC signal demonstrates inter-subject heterogeneity in the cohort, indicated by different patterns of variability and frequency composition. Signal characteristics were concordant between muscle groups in the same patient, and correlated with systemic hemoglobin levels and oxygen saturation. Signal power was lower for patients receiving vasopressors, but not correlated with mean arterial pressure. Mechanical ventilation directly impacts MHC in peripheral tissue. CONCLUSION MHC can be measured continuously in the ICU with high-resolution near-infrared spectroscopy, and reflects the dynamic variability of hemoglobin distribution in the microcirculation. Results suggest this novel hemodynamic metric should be further evaluated for diagnosing microvascular dysfunction and monitoring peripheral perfusion.
Collapse
Affiliation(s)
- Asher A Mendelson
- Department of Medical Biophysics, Western University, London, ON, Canada
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Ajay Rajaram
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Daniel Bainbridge
- Department of Anesthesia and Peri-operative Medicine, Western University, London, ON, Canada
- Division of Critical Care, Department of Medicine, Western University, London, ON, Canada
| | - Keith St Lawrence
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Tracey Bentall
- Division of Critical Care, Department of Medicine, Western University, London, ON, Canada
| | - Michael Sharpe
- Department of Anesthesia and Peri-operative Medicine, Western University, London, ON, Canada
- Division of Critical Care, Department of Medicine, Western University, London, ON, Canada
| | - Mamadou Diop
- Department of Medical Biophysics, Western University, London, ON, Canada
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
| | - Christopher G Ellis
- Department of Medical Biophysics, Western University, London, ON, Canada.
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.
- Robarts Research Institute, Rm 3205, London, ON, N6A 5B7, Canada.
| |
Collapse
|
22
|
Rosales TO, Horewicz VV, Ferreira MA, Nardi GM, Assreuy J. Dynamics of GRK2 in the kidney: a putative mechanism for sepsis-associated kidney injury. Clin Sci (Lond) 2021; 135:2341-2356. [PMID: 34622918 DOI: 10.1042/cs20210462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 01/09/2023]
Abstract
Renal vascular reactivity to vasoconstrictors is preserved in sepsis in opposition to what happens in the systemic circulation. We studied whether this distinct behavior was related to α1 adrenergic receptor density, G protein-coupled receptor kinase 2 (GRK2) and the putative role of nitric oxide (NO). Sepsis was induced in female mice by cecal ligation and puncture (CLP). Wildtype mice were treated with prazosin 12 h after CLP or nitric oxide synthase 2 (NOS-2) inhibitor, 30 min before and 6 and 12 h after CLP. In vivo experiments and biochemistry assays were performed 24 h after CLP. Sepsis decreased the systemic mean arterial pressure (MAP) and the vascular reactivity to phenylephrine. Sepsis also reduced basal renal blood flow which was normalized by treatment with prazosin. Sepsis led to a substantial decrease in GRK2 level associated with an increase in α1 adrenergic receptor density in the kidney. The disappearance of renal GRK2 was prevented in NOS-2-KO mice or mice treated with 1400 W. Treatment of non-septic mice with an NO donor reduced GRK2 content in the kidney. Therefore, our results show that an NO-dependent reduction in GRK2 level in the kidney leads to the maintenance of a normal α1 adrenergic receptor density. The preservation of the density and/or functionality of this receptor in the kidney together with a higher vasoconstrictor tonus in sepsis lead to vasoconstriction. Thus, the increased concentration of vasoconstrictor mediators together with the preservation (and even increase) of the response to them may help to explain sepsis-induced acute kidney injury.
Collapse
Affiliation(s)
| | | | | | - Geisson Marcos Nardi
- Department of Morphological Sciences, Universidade Federal de Santa Catarina, SC, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Universidade Federal de Santa Catarina, SC, Brazil
| |
Collapse
|
23
|
Pecchiari M, Pontikis K, Alevrakis E, Vasileiadis I, Kompoti M, Koutsoukou A. Cardiovascular Responses During Sepsis. Compr Physiol 2021; 11:1605-1652. [PMID: 33792902 DOI: 10.1002/cphy.c190044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sepsis is the life-threatening organ dysfunction arising from a dysregulated host response to infection. Although the specific mechanisms leading to organ dysfunction are still debated, impaired tissue oxygenation appears to play a major role, and concomitant hemodynamic alterations are invariably present. The hemodynamic phenotype of affected individuals is highly variable for reasons that have been partially elucidated. Indeed, each patient's circulatory condition is shaped by the complex interplay between the medical history, the volemic status, the interval from disease onset, the pathogen, the site of infection, and the attempted resuscitation. Moreover, the same hemodynamic pattern can be generated by different combinations of various pathophysiological processes, so the presence of a given hemodynamic pattern cannot be directly related to a unique cluster of alterations. Research based on endotoxin administration to healthy volunteers and animal models compensate, to an extent, for the scarcity of clinical studies on the evolution of sepsis hemodynamics. Their results, however, cannot be directly extrapolated to the clinical setting, due to fundamental differences between the septic patient, the healthy volunteer, and the experimental model. Numerous microcirculatory derangements might exist in the septic host, even in the presence of a preserved macrocirculation. This dissociation between the macro- and the microcirculation might account for the limited success of therapeutic interventions targeting typical hemodynamic parameters, such as arterial and cardiac filling pressures, and cardiac output. Finally, physiological studies point to an early contribution of cardiac dysfunction to the septic phenotype, however, our defective diagnostic tools preclude its clinical recognition. © 2021 American Physiological Society. Compr Physiol 11:1605-1652, 2021.
Collapse
Affiliation(s)
- Matteo Pecchiari
- Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Konstantinos Pontikis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Emmanouil Alevrakis
- 4th Department of Pulmonary Medicine, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Ioannis Vasileiadis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Maria Kompoti
- Intensive Care Unit, Thriassio General Hospital of Eleusis, Magoula, Greece
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| |
Collapse
|
24
|
Mu Y, McManus DP, Hou N, Cai P. Schistosome Infection and Schistosome-Derived Products as Modulators for the Prevention and Alleviation of Immunological Disorders. Front Immunol 2021; 12:619776. [PMID: 33692793 PMCID: PMC7937812 DOI: 10.3389/fimmu.2021.619776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Parasitic helminths, comprising the flatworms (tapeworms and flukes) and nematodes (roundworms), have plagued humans persistently over a considerable period of time. It is now known that the degree of exposure to these and other pathogens inversely correlates with the incidence of both T helper 1 (Th1)-mediated autoimmunity and Th2-mediated allergy. Accordingly, there has been recent increased interest in utilizing active helminth worm infections and helminth-derived products for the treatment of human autoimmune and inflammatory diseases and to alleviate disease severity. Indeed, there is an accumulating list of novel helminth derived molecules, including proteins, peptides, and microRNAs, that have been shown to exhibit therapeutic potential in a variety of disease models. Here we consider the blood-dwelling schistosome flukes, which have evolved subtle immune regulatory mechanisms that promote parasite survival but at the same time minimize host tissue immunopathology. We review and discuss the recent advances in using schistosome infection and schistosome-derived products as therapeutics to treat or mitigate human immune-related disorders, including allergic asthma, arthritis, colitis, diabetes, sepsis, cystitis, and cancer.
Collapse
Affiliation(s)
- Yi Mu
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Roy TK, Secomb TW. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 2020; 28:e12673. [PMID: 33236393 DOI: 10.1111/micc.12673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill patients, which can occur even when systemic parameters, including cardiac output and arterial hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and oxygen levels. The dynamic processes of structural adaptation and flow regulation continually adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by conducted responses, which are generated and propagated by endothelial cells and signal upstream arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic measures targeted to systemic parameters may not address or may even worsen tissue oxygenation at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend on restoration of endothelial cell function, including conducted responses.
Collapse
Affiliation(s)
- Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| |
Collapse
|
26
|
Dilken O, Ergin B, Ince C. Assessment of sublingual microcirculation in critically ill patients: consensus and debate. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:793. [PMID: 32647718 PMCID: PMC7333125 DOI: 10.21037/atm.2020.03.222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main concern in shock and resuscitation is whether the microcirculation can carry adequate oxygen to the tissues and remove waste. Identification of an intact coherence between macro- and microcirculation during states of shock and resuscitation shows a functioning regulatory mechanism. However, loss of hemodynamic coherence between the macro and microcirculation can be encountered frequently in sepsis, cardiogenic shock, or any hemodynamically compromised patient. This loss of hemodynamic coherence results in an improvement in macrohemodynamic parameters following resuscitation without a parallel improvement in microcirculation resulting in tissue hypoxia and tissue compromise. Hand-held vital microscopes (HVMs) can visualize the microcirculation and help to diagnose the nature of microcirculatory shock. Although treatment with the sole aim of recruiting the microcirculation is as yet not realized, interventions can be tailored to the needs of the patient while monitoring sublingual microcirculation. With the help of the newly introduced software, called MicroTools, we believe sublingual microcirculation monitoring and diagnosis will be an essential point-of-care tool in managing shock patients.
Collapse
Affiliation(s)
- Olcay Dilken
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Intensive Care, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bulent Ergin
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Can Ince
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Islam S, Ahmed N, Rivu SF, Khalil M, Tanjia N, Lehmann C. Challenges for microcirculation research in developing countries. Clin Hemorheol Microcirc 2020; 73:599-607. [PMID: 31156150 DOI: 10.3233/ch-190611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Microvascular dysfunction is a main contributor to morbidity and mortality worldwide. Sophisticated technical tools (e.g. miniaturized hardware, automated software), along with skilled personnel are the prerequisite for quantitative observations of the microvasculature. OBJECTIVE This review aimed to get an overview about on-going microcirculatory research in developing countries, particularly of the South-East Asia region for the last five years and to project the challenges faced in microcirculation research in developing countries. METHODS Original research articles originating from 194 countries were searched in PubMed database on the field of microcirculation research for the last five years. RESULTS Our findings showed that around 1800 articles have been published from developing countries compared to more than 5000 from developed countries on different aspects of microcirculation. The overall publication per million populations for developing countries was found to be 0.37 where for developed countries it was 3.62. CONCLUSIONS Initiation and execution of sophisticated research in microcirculation is a demand of the time. Such research, initially, may seem unmanageable in developing countries with limited resources and infrastructure settings. Collaborative scientific projects may aid in establishing networks for microvascular research in developing countries.
Collapse
Affiliation(s)
- Sufia Islam
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Najneen Ahmed
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | | | - Marjana Khalil
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Nafisa Tanjia
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The present review discusses the current role of microcirculatory assessment in the hemodynamic monitoring of critically ill patients. RECENT FINDINGS Videomicroscopic techniques have demonstrated that microvascular perfusion is altered in critically ill patients, and especially in sepsis. These alterations are associated with organ dysfunction and poor outcome. Handheld microscopes can easily be applied on the sublingual area of critically ill patients. Among the specific limitations of these techniques, the most important is that these can mostly investigate the sublingual microcirculation. The representativity of the sublingual area may be questioned, especially as some areas may sometimes be more affected than the sublingual area. Also, evaluation of the sublingual area may be difficult in nonintubated hypoxemic patients. Alternative techniques include vasoreactivity tests using either transient occlusion or performing a thermal challenge. These techniques evaluate the maximal dilatory properties of the microcirculation but do not really evaluate the actual microvascular perfusion. Focusing on the glycocalyx may be another option, especially with biomarkers of glycocalyx degradation and shedding. Evaluation of the glycocalyx is still largely experimental, with different tools still in investigation and lack of therapeutic target. Venoarterial differences in PCO2 are inversely related with microvascular perfusion, and can thus be used as surrogate for microcirculation assessment. Several limitations prevent the regular use in clinical practice. The first is the difficult use of some of these techniques outside research teams, whereas nurse-driven measurements are probably desired. The second important limitation for daily practice use is the lack of uniformly defined endpoint. The final limitation is that therapeutic interventions affecting the microcirculation are not straightforward. SUMMARY Clinical and biological surrogates of microcirculatory assessment can be used at bedside. The role of microvideoscopic techniques is still hampered by the lack of clearly defined targets as well as interventions specifically targeting the microcirculation.
Collapse
|
29
|
Sublingual microcirculation does not reflect red blood cell transfusion thresholds in the intensive care unit-a prospective observational study in the intensive care unit. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:18. [PMID: 31952555 PMCID: PMC6969438 DOI: 10.1186/s13054-020-2728-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/01/2020] [Indexed: 01/28/2023]
Abstract
Purpose Hemoglobin (Hb) transfusion thresholds are established in intensive care units. A restrictive transfusion threshold (Hb 70–75 g/l) is recommended in septic patients, and a liberal transfusion threshold (Hb 90 g/l) for cardiogenic shock. It is unclear whether these historically adopted transfusion thresholds meet the challenges of individual patients. Methods We evaluated microvascular flow index (MFI) and proportion of perfused vessels (PPV) in the sublingual microcirculation with CytoCam-IDF microscopy and near-infrared spectroscopy (NIRS). A study team-independent, treating intensivist assigned a total of 64 patients to 1 of 2 two transfusion thresholds, 43 patients to the Hb 75 g/l threshold and 21 patients to the Hb 90 g/l threshold, at a surgical intensive care unit. We performed microcirculatory measurements 1 h before and 1 h after transfusion of 1 unit of red blood cells. Results Microcirculatory flow variables correlated negatively with pre-transfusion flow variables (ΔMFI: ρ = − 0.821, p < 0.001; ΔPPV: ρ = − 0.778, p < 0.001). Patients with good initial microcirculation (cutoffs: MFI > 2.84, PPV > 88%) showed a deteriorated microcirculation after red blood cell transfusion. An impaired microcirculation improved after transfusion. At both transfusion thresholds, approximately one third of the patients showed an initially impaired microcirculation. In contrast, one third in every group had good microcirculation above the cutoff variables and did not profit from the transfusion. Conclusion The data suggest that the established transfusion thresholds and other hemodynamic variables do not reflect microcirculatory perfusion of patients. Blood transfusion at both thresholds 75 g/l and 90 g/l hemoglobin can either improve or harm the microcirculatory blood flow, questioning the concept of arbitrary transfusion thresholds.
Collapse
|
30
|
[Association between peripheral perfusion, microcirculation and mortality in sepsis: a systematic review]. Rev Bras Anestesiol 2019; 69:605-621. [PMID: 31826803 DOI: 10.1016/j.bjan.2019.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/17/2019] [Accepted: 09/07/2019] [Indexed: 11/24/2022] Open
Abstract
Although increasing evidence supports the monitoring of peripheral perfusion in septic patients, no systematic review has been undertaken to explore the strength of association between poor perfusion assessed in microcirculation of peripheral tissues and mortality. A search of the most important databases was carried out to find articles published until February 2018 that met the criteria of this study using different keywords: sepsis, mortality, prognosis, microcirculation and peripheral perfusion. The inclusion criteria were studies that assessed association between peripheral perfusion/microcirculation and mortality in sepsis. The exclusion criteria adopted were: review articles, animal/pre-clinical studies, meta-analyzes, abstracts, annals of congress, editorials, letters, case-reports, duplicate and articles that did not present abstracts and/or had no text. In the 26 articles were chosen in which 2465 patients with sepsis were evaluated using at least one recognized method for monitoring peripheral perfusion. The review demonstrated a heterogeneous critically ill group with a mortality-rate between 3% and 71% (median=37% [28%-43%]). The most commonly used methods for measurement were Near-Infrared Spectroscopy (NIRS) (7 articles) and Sidestream Dark-Field (SDF) imaging (5 articles). The vascular bed most studied was the sublingual/buccal microcirculation (8 articles), followed by fingertip (4 articles). The majority of the studies (23 articles) demonstrated a clear relationship between poor peripheral perfusion and mortality. In conclusion, the diagnosis of hypoperfusion/microcirculatory abnormalities in peripheral non-vital organs was associated with increased mortality. However, additional studies must be undertaken to verify if this association can be considered a marker of the gravity or a trigger factor for organ failure in sepsis.
Collapse
|
31
|
Santos DMD, Quintans JSS, Quintans-Junior LJ, Santana-Filho VJ, Cunha CLPD, Menezes IAC, Santos MRV. Association between peripheral perfusion, microcirculation and mortality in sepsis: a systematic review. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ENGLISH EDITION) 2019. [PMID: 31826803 PMCID: PMC9391865 DOI: 10.1016/j.bjane.2019.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Jullyana S S Quintans
- Universidade Federal de Sergipe, Departamento de Fisiologia, São Cristóvão, SE, Brasil
| | | | | | | | | | - Márcio R Viana Santos
- Universidade Federal de Sergipe, Departamento de Fisiologia, São Cristóvão, SE, Brasil
| |
Collapse
|
32
|
Abstract
BACKGROUND Noninvasive evaluation of muscle perfusion using near-infrared spectroscopy (NIRS) coupled with a vascular occlusion test (VOT) may provide an early and simple marker of altered perfusion and microcirculatory function in sepsis. OBJECTIVE The aim of the study was to compare the time-course of NIRS-derived variables with systemic measures of perfusion in an experimental model of peritonitis. METHODS Peritonitis was induced in eight anesthetized, mechanically ventilated, adult sheep (24-34 kg), by injecting autologous feces into the peritoneal cavity. Animals were followed until death or for a maximum of 30 h. Muscle tissue oxygen saturation (StO2) was determined using NIRS on the right posterior leg and arterial VOTs were performed by intermittent intra-aortic balloon inflation. Microdialysis was used to measure muscle lactate and pyruvate levels. RESULTS Muscle StO2 was significantly lower than baseline values from 8 h after sepsis induction, but with considerable intersubject variability. The NIRS VOT ascending (Asc) slope decreased to values <120%/min in most animals from 12 h after sepsis induction. Muscle lactate/pyruvate ratios were higher than baseline from 16 h after sepsis induction. Mixed venous oxygen saturation (SvO2) decreased to <70% and blood lactate levels increased to >2 mmol/L in most of the animals only 24 and 28 h after sepsis induction, respectively. Muscle NIRS StO2 correlated strongly with femoral venous oxygen saturation (r = 0.820) and moderately with SvO2 (r = 0.436). CONCLUSIONS The muscle NIRS Asc slope after a VOT is altered earlier than global markers of tissue hypoperfusion during sepsis. This simple noninvasive test can detect early changes in peripheral perfusion in sepsis.
Collapse
|
33
|
Kazune S, Caica A, Luksevics E, Volceka K, Grabovskis A. Impact of increased mean arterial pressure on skin microcirculatory oxygenation in vasopressor-requiring septic patients: an interventional study. Ann Intensive Care 2019; 9:97. [PMID: 31468202 PMCID: PMC6715757 DOI: 10.1186/s13613-019-0572-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Heterogeneity of microvascular blood flow leading to tissue hypoxia is a common finding in patients with septic shock. It may be related to suboptimal systemic perfusion pressure and lead to organ failure. Mapping of skin microcirculatory oxygen saturation and relative hemoglobin concentration using hyperspectral imaging allows to identify heterogeneity of perfusion and perform targeted measurement of oxygenation. We hypothesized that increasing mean arterial pressure would result in improved oxygenation in areas of the skin with most microvascular blood pooling. METHODS We included adult patients admitted to the intensive care unit within the previous 24 h with sepsis and receiving a noradrenaline infusion. Skin oxygen saturation was measured using hyperspectral imaging-based method at baseline and after the increase in mean arterial pressure by 20 mm Hg by titration of noradrenaline doses. The primary outcome was an increase in skin oxygen saturation depending upon disease severity. RESULTS We studied 30 patients with septic shock. Median skin oxygen saturation changed from 26.0 (24.5-27.0) % at baseline to 30.0 (29.0-31.0) % after increase in mean arterial pressure (p = 0.04). After adjustment for baseline saturation, patients with higher SOFA scores achieved higher oxygen saturation after the intervention (r2 = 0.21; p = 0.02). Skin oxygen saturation measured at higher pressure was found to be marginally predictive of mortality (OR: 1.10; 95% CI 1.00-1.23; p = 0.053). CONCLUSIONS Improvement of microcirculatory oxygenation can be achieved with an increase in mean arterial pressure in most patients. Response to study intervention is proportional to disease severity.
Collapse
Affiliation(s)
- Sigita Kazune
- Department of Anesthesiology, Hospital of Traumatology and Orthopedics, 22 Duntes Street, Riga, 1013, Latvia. .,Laboratory of Biophotonics, Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas Street, Riga, 1004, Latvia.
| | - Anastasija Caica
- Laboratory of Biophotonics, Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas Street, Riga, 1004, Latvia.,Department of Human and Animal Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Street, Riga, 1004, Latvia
| | - Einars Luksevics
- Clinic of Toxicology and Sepsis, Riga East University Hospital, 2 Hipokrata Street, Riga, 1038, Latvia
| | - Karina Volceka
- Laboratory of Biophotonics, Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas Street, Riga, 1004, Latvia.,Department of Human and Animal Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Street, Riga, 1004, Latvia
| | - Andris Grabovskis
- Laboratory of Biophotonics, Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas Street, Riga, 1004, Latvia
| |
Collapse
|
34
|
Chhetri I, Hunt JEA, Mendis JR, Patterson SD, Puthucheary ZA, Montgomery HE, Creagh-Brown BC. Repetitive vascular occlusion stimulus (RVOS) versus standard care to prevent muscle wasting in critically ill patients (ROSProx):a study protocol for a pilot randomised controlled trial. Trials 2019; 20:456. [PMID: 31340849 PMCID: PMC6657179 DOI: 10.1186/s13063-019-3547-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/29/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Forty per cent of critically ill patients are affected by intensive care unit-acquired weakness (ICU-AW), to which skeletal muscle wasting makes a substantial contribution. This can impair outcomes in hospital, and can cause long-term physical disability after hospital discharge. No effective mitigating strategies have yet been identified. Application of a repetitive vascular occlusion stimulus (RVOS) a limb pressure cuff inducing brief repeated cycles of ischaemia and reperfusion, can limit disuse muscle atrophy in both healthy controls and bed-bound patients recovering from knee surgery. We wish to determine whether RVOS might be effective in mitigating against muscle wasting in the ICU. Given that RVOS can also improve vascular function in healthy controls, we also wish to assess such effects in the critically ill. We here describe a pilot study to assess whether RVOS application is safe, tolerable, feasible and acceptable for ICU patients. METHODS This is a randomised interventional feasibility trial. Thirty-two ventilated adult ICU patients with multiorgan failure will be recruited within 48 h of admission and randomised to either the intervention arm or the control arm. Intervention participants will receive RVOS twice daily (except only once on day 1) for up to 10 days or until ICU discharge. Serious adverse events and tolerability (pain score) will be recorded; feasibility of trial procedures will be assessed against pre-specified criteria and acceptability by semi-structured interview. Together with vascular function, muscle mass and quality will be assessed using ultrasound and measures of physical function at baseline, on days 6 and 11 of study enrolment, and at ICU and hospital discharge. Blood and urine biomarkers of muscle metabolism, vascular function, inflammation and DNA damage/repair mechanism will also be analysed. The Health questionnaire will be completed 3 months after hospital discharge. DISCUSSION If this study demonstrates feasibility, the derived data will be used to inform the design (and sample size) of an appropriately-powered prospective trial to clarify whether RVOS can help preserve muscle mass/improve vascular function in critically ill patients. TRIAL REGISTRATION ISRCTN Registry, ISRCTN44340629. Registered on 26 October 2017.
Collapse
Affiliation(s)
- Ismita Chhetri
- Intensive Care Unit, Royal Surrey County Hospital NHS Foundation Trust, Guildford, GU2 7XX UK
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Julie E. A. Hunt
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Jeewaka R. Mendis
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | - Zudin A. Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Institute for Sport, Exercise and Health, University College London, London, UK
- Department of Medicine, Centre for Human Health and Performance, University College London, London, UK
- Intensive Care Unit, Royal Free London NHS Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, King’s College London, London,, UK
| | - Hugh E. Montgomery
- Institute for Sport, Exercise and Health, University College London, London, UK
- Department of Medicine, Centre for Human Health and Performance, University College London, London, UK
| | - Benedict C. Creagh-Brown
- Intensive Care Unit, Royal Surrey County Hospital NHS Foundation Trust, Guildford, GU2 7XX UK
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
35
|
Hammer SM, Hueber DM, Townsend DK, Huckaby LM, Alexander AM, Didier KD, Barstow TJ. Effect of assuming constant tissue scattering on measured tissue oxygenation values during tissue ischemia and vascular reperfusion. J Appl Physiol (1985) 2019; 127:22-30. [DOI: 10.1152/japplphysiol.01138.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the effects of assuming constant tissue scattering properties on tissue oxygenation measurements during a vascular occlusion test (VOT). Twenty-one subjects (21.8 ± 1.9 yr) completed a VOT [1 min baseline (BL), 5 min of tissue ischemia (TI), and 3 min of vascular reperfusion (VR)]. Absolute concentrations of oxygenated heme (oxy-[heme]), deoxygenated heme (deoxy-[heme]), total heme (total [heme), tissue oxygen saturation (StO2), and heme difference [heme]diff) were measured using frequency domain near-infrared spectroscopy (FD-NIRS) while 1) continuously measuring and incorporating tissue scattering ([Formula: see text]) and 2) assuming scattering remained constant. FD-NIRS measured [Formula: see text] increased during TI at 692 nm ( P < 0.001) and decreased at 834 nm ( P < 0.001). During VR, [Formula: see text] decreased at 692 nm ( P < 0.001) and increased at 834 nm ( P < 0.001). When assuming constant scattering, oxy-[heme] was significantly less at TIpeak ( P < 0.05) while deoxy-[heme] and StO2 were significantly altered at BL, TIpeak, and VRpeak (all P < 0.001). Total [heme] did not change during the VOT. Absolute changes in deoxy-[heme], oxy-[heme], and StO2 in response to TI and VR were significantly exaggerated (all P < 0.001) and the rates of change during TI ( slope 1) and VR ( slope 2) in deoxy-[heme], oxy-[heme], StO2, and [heme]diff were significantly increased (all P < 0.05) when constant tissue scattering was assumed. These findings demonstrate the need for caution when interpreting NIRS data without continuously measuring tissue optical properties. Further, assuming tissue optical properties remain constant may have important consequences to experimental data and clinical conclusions made using NIRS. NEW & NOTEWORTHY NIRS measurements provide significant experimental and clinical insight. We demonstrate that absolute changes in tissue oxygenation measurements made with NIRS are overestimated and the kinetic responses of NIRS measurements are exaggerated by varying degrees among individuals if tissue scattering characteristics are assumed to remain constant during vascular occlusion tests.
Collapse
Affiliation(s)
- Shane M. Hammer
- Department of Kinesiology, Kansas State University, Manhattan Kansas
| | | | | | - Lillie M. Huckaby
- Department of Kinesiology, Kansas State University, Manhattan Kansas
| | | | - Kaylin D. Didier
- Department of Kinesiology, Kansas State University, Manhattan Kansas
| | - Thomas J. Barstow
- Department of Kinesiology, Kansas State University, Manhattan Kansas
| |
Collapse
|
36
|
Mesquida J, Espinal C, Saludes P, Cortés E, Pérez-Madrigal A, Gruartmoner G. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference (P cvaCO 2/C avO 2) reflects microcirculatory oxygenation alterations in early septic shock. J Crit Care 2019; 53:162-168. [PMID: 31247515 DOI: 10.1016/j.jcrc.2019.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/28/2019] [Accepted: 06/16/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE To explore the relationship between central venous-to-arterial carbon dioxide difference (PcvaCO2), PcvaCO2/arterial-venous oxygen content difference ratio (PcvaCO2/CavO2) and the microcirculatory status, evaluated by using near-infrared spectroscopy, in septic shock patients. METHODS Observational study in a 30-bed mixed ICU. Fifty septic shock patients within the first 24 h of ICU admission were studied. After restoration of mean arterial pressure, hemodynamic, metabolic and microcirculatory parameters were simultaneously evaluated. Local tissue oxygen saturation (StO2), and local hemoglobin index (THI) were measured on the thenar eminence by means of near-infrared spectroscopy. A transient vascular occlusion test was performed in order to obtain StO2 deoxygenation rate (DeO2), local oxygen consumption (nirVO2), and reoxgenation rate (ReO2). RESULTS At inclusion, increased PcvaCO2 values were associated with lower StO2 and THI, whereas increased PcvaCO2/CavO2 values were associated with lower DeO2, nirVO2, and ReO2. Multiple regression models confirmed the association between PcvaCO2/CavO2 and nirVO2, while PcvaCO2 was only related to CI, and not to microcirculatory parameters. CONCLUSIONS In a population of early septic shock patients, increases in PcvaCO2 and PcvaCO2/CavO2 reflected different alterations at the microcirculatory level. While PcvaCO2 was related to global flow, the PcvaCO2/CavO2 ratio was associated to impaired local oxygen utilization and diminished microvascular reactivity.
Collapse
Affiliation(s)
- J Mesquida
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - C Espinal
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - P Saludes
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - E Cortés
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain.
| | - A Pérez-Madrigal
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain
| | - G Gruartmoner
- Critical Care Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
37
|
Abstract
In this review the impact of cardiopulmonary bypass (CPB) on the microcirculation is discussed. The impact of conventional non-pulsatile perfusion is contrasted with the microcirculatory impact of pulsatile CPB which is associated with better preservation of microcirculatory function. Evidence that alterations in microcirculatory function that persist following cardiac surgery are associated with adverse clinical outcomes is reviewed. Recent studies using novel techniques employing near infrared reflectance spectroscopy (NIRS) and sublingual microscopy to explore alterations in microcirculatory function during CPB are reviewed and the implications of these observations for studies investigating minimally invasive extracorporeal circulation (MiECC) are discussed.
Collapse
Affiliation(s)
- John M Murkin
- Department of Anesthesia & Perioperative Medicine, London Health Sciences Centre, University Hospital, London, ON, Canada
| |
Collapse
|
38
|
Collet M, Huot B, Barthélémy R, Damoisel C, Payen D, Mebazaa A, Chousterman BG. Influence of systemic hemodynamics on microcirculation during sepsis. J Crit Care 2019; 52:213-218. [PMID: 31102939 DOI: 10.1016/j.jcrc.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/07/2019] [Accepted: 05/01/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE During sepsis, improvement of hemodynamic may not be related to improvement of microcirculation. The aim of this study was to investigate influence of systemic circulation on microcirculation in septic ICU patients. METHODS This is a prospective cohort study of septic ICU patients. Microcirculation was investigated with Near infrared spectrometry (NIRS) measuring tissue oxygen saturation (StO2). StO2 desaturation (desStO2) and resaturation (resStO2) slopes were determined. Analyses were made at baseline and after fluid challenges. RESULTS Seventy-two patients were included. One hundred and sixty measures were performed at baseline. StO2 was 77.8% [72.4-85.0] and resStO2 was 87.3%/min [57.8-141.7]. Univariate analysis showed an association between resStO2 and diastolic arterial pressure (DAP) (p = .001), and norepinephrine dose (p = .033). In multivariate linear regression, there was an association between resStO2 and DAP (β = 1.85 (0.64 to 3.08), p = .004). Fluid challenges (n = 60) increased CO, and resStO2 (all p < .001). In multivariate analysis, variation of stroke volume was associated with variation of resStO2 (p = .004) after fluid challenge. There was no association between CVP and resStO2. CONCLUSIONS DAP was the only independent determinant of resStO2 in septic patients. Fluid challenges may improve microcirculation. CVP did not influence resStO2.
Collapse
Affiliation(s)
- Magalie Collet
- Department of Anesthesia, Burn and Critical Care, Saint-Louis-Lariboisière University Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Benjamin Huot
- Department of Anesthesia, Burn and Critical Care, Saint-Louis-Lariboisière University Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Romain Barthélémy
- Department of Anesthesia, Burn and Critical Care, Saint-Louis-Lariboisière University Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Charles Damoisel
- Department of Anesthesia, Burn and Critical Care, Saint-Louis-Lariboisière University Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Didier Payen
- Department of Anesthesia, Burn and Critical Care, Saint-Louis-Lariboisière University Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France; INSERM U1160, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Alexandre Mebazaa
- Department of Anesthesia, Burn and Critical Care, Saint-Louis-Lariboisière University Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France; INSERM U942, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Benjamin G Chousterman
- Department of Anesthesia, Burn and Critical Care, Saint-Louis-Lariboisière University Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France; INSERM U1160, Paris, France; Paris Diderot University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
39
|
Increase of Perfusion Index During Vascular Occlusion Test is Paradoxically Associated With Higher Mortality in Septic Shock After Fluid Resuscitation: A Prospective Study. Shock 2019; 51:605-612. [DOI: 10.1097/shk.0000000000001217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Heeman W, Dijkstra K, Hoff C, Koopal S, Pierie JP, Bouma H, Boerma EC. Application of laser speckle contrast imaging in laparoscopic surgery. BIOMEDICAL OPTICS EXPRESS 2019; 10:2010-2019. [PMID: 31086715 PMCID: PMC6485013 DOI: 10.1364/boe.10.002010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 05/02/2023]
Abstract
Anastomotic leakage is a worldwide problem in gastrointestinal surgery which seems to be related to the state of microcirculation. Laser speckle contrast imaging (LSCI) could give surgeons insight in the state of microcirculation to attune the site of anastomosis. This work studies the feasibility of LSCI as a tool for this purpose. An experimental setup was developed using a commercially available laparoscopic video system. Laser speckle contrast imaging is capable of detecting ischemic areas on the large intestine. Further research and development are required before adaptation of this technique in the operating room.
Collapse
Affiliation(s)
- Wido Heeman
- University Medical Centre Groningen, Optical Molecular Imaging Groningen, Department of Surgery, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
- Leeuwarden Institute for Minimal Invasive Surgery, Henri Dunantweg 2, Leeuwarden, 8934 AD, The Netherlands
| | - Klaas Dijkstra
- NHL Stenden University of Applied Sciences, Computer vision & Data Science, Rengerslaan 10, Leeuwarden, 8917 DD, The Netherlands
| | - Christiaan Hoff
- Medical Centre Leeuwarden, Department of Surgery, Henri Dunantweg 2, Leeuwarden, 8934 AD, The Netherlands
| | - Sietze Koopal
- Medical Centre Leeuwarden, Department of Surgery, Henri Dunantweg 2, Leeuwarden, 8934 AD, The Netherlands
| | - Jean-Pierre Pierie
- Medical Centre Leeuwarden, Department of Surgery, Henri Dunantweg 2, Leeuwarden, 8934 AD, The Netherlands
| | - Hessel Bouma
- Leeuwarden Institute for Minimal Invasive Surgery, Henri Dunantweg 2, Leeuwarden, 8934 AD, The Netherlands
| | - E. Christiaan Boerma
- Medical Centre Leeuwarden, Department of Intensive care, Henri Dunantweg 2, Leeuwarden, 8934 AD, The Netherlands
| |
Collapse
|
41
|
Microvascular reactivity monitored with near-infrared spectroscopy is impaired after induction of anaesthesia in cardiac surgery patients: An observational study. Eur J Anaesthesiol 2018; 34:688-694. [PMID: 28834795 DOI: 10.1097/eja.0000000000000684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Induction of anaesthesia causes significant macrohaemodynamic changes, but little is known about its effects on the microcirculation. However, alterations in microvascular perfusion are known to be associated with impaired tissue oxygenation and organ dysfunction. Microvascular reactivity can be assessed with vascular occlusion testing, which evaluates the response of tissue oxygen saturation to transient ischaemia and reperfusion. OBJECTIVE The aim of the current study was to evaluate the effects of an opioid-based anaesthesia induction on microvascular reactivity. We hypothesised that despite minimal blood pressure changes, microvascular function would be impaired. DESIGN Prospective, observational study. SETTING Single-centre, tertiary university teaching hospital, Belgium. PATIENTS Thirty-five adult patients scheduled for elective coronary artery bypass grafting surgery. INTERVENTION Microvascular reactivity was assessed before and 30 min after anaesthesia induction by means of vascular occlusion testing and near-infrared spectroscopy. MAIN OUTCOME MEASURES Tissue oxygen saturations, desaturation rate, recovery time (time from release of cuff to the maximum value) and rate of recovery were determined. RESULTS Data are expressed as median (minimum to maximum). Tissue oxygen saturation was higher after induction of anaesthesia [70 (54 to 78) vs. 73 (55 to 94)%, P = 0.015]. Oxygen consumption decreased after induction, appreciable by the higher minimum tissue oxygen saturation [45 (29 to 69) vs. 53 (28 to 81)%, P < 0.001] and the slower desaturation rate [11 (4 to 18) vs. 9 (5 to 16)% min, P < 0.001]. After induction of anaesthesia, recovery times were longer [40 (20 to 120) vs. 48 (24 to 356) s, P = 0.004] and the rate of recovery was lower [114 (12 to 497) vs. 80 (3 to 271)% min, P < 0.001]. CONCLUSION After induction of anaesthesia, oxygen consumption was decreased. The longer recovery times and slower rates of recovery indicate impaired microvascular reactivity after induction of anaesthesia. TRIAL REGISTRATION The research project was registered at ClinicalTrials.gov (NCT02034682).
Collapse
|
42
|
Menezes IAC, Cunha CLPD, Carraro Júnior H, Luy AM. Perfusion index for assessing microvascular reactivity in septic shock after fluid resuscitation. Rev Bras Ter Intensiva 2018; 30:135-143. [PMID: 29995077 PMCID: PMC6031412 DOI: 10.5935/0103-507x.20180027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/25/2017] [Indexed: 01/08/2023] Open
Abstract
Objective Microcirculation disturbances are implicated in the prognosis of septic
shock. Microvascular hyporesponsiveness can be assessed by an
oximetry-derived perfusion index and reactive hyperemia. Using this
perfusion index, we investigated reactive hyperemia and its relationship
with peripheral perfusion and clinical-hemodynamic parameters in septic
shock. Methods Eighty-two patients were evaluated: 47 with septic shock and 35 controls.
Tests were performed within 24 hours after admission. The perfusion index
was evaluated before and after a 3-min blood flow occlusion using a
time-response analysis for 5 min. The perfusion index was also evaluated in
the hyperemic phases and was mainly derived by mechanosensitive
(ΔPI0-60) and metabolic mechanisms
(ΔPI60-120). Correlation tests were performed between
reactive hyperemia and clinical-hemodynamic data. Results Reactive hyperemia measured by the perfusion index was significantly lower in
patients with septic shock, but this was only observed for the first 45
seconds after cuff-deflation. In the remaining period, there were no
statistical differences between the groups. The peaks in the perfusion index
were similar between groups, although the peak was reached more slowly in
the septic group. Values of ΔPI0-60 were lower in shock
[01% (-19% - -40%) versus 39% (6% - 75%); p = 0.001].
However, ΔPI60-120 was similar between the groups [43%
(18% - 93%) versus 48% (18% - 98%); p = 0.58]. The
time-to-peak of the perfusion index was correlated positively with the SOFA
scores and negatively with C-reactive protein; the peak of the perfusion
index was positively correlated with vasopressor doses; and the
ΔPI60-120 values were positively correlated with
C-reactive protein and vasopressor doses. No other significant correlations
occurred. Conclusions This perfusion index-based study suggests that septic shock promotes initial
peripheral vascular hyporesponsiveness and preserves posterior vascular
reactivity to a considerable degree. These results demonstrate a
time-dependent peripheral hyperemic response and a significant ischemic
reserve in septic shock.
Collapse
Affiliation(s)
| | | | - Hipólito Carraro Júnior
- Unidade de Terapia Intensiva, Hospital de Clínicas, Universidade Federal do Paraná - Curitiba (PR), Brasil
| | - Alain Marcio Luy
- Unidade de Terapia Intensiva, Hospital de Clínicas, Universidade Federal do Paraná - Curitiba (PR), Brasil
| |
Collapse
|
43
|
Zhang Z, Li K. Curcumin attenuates high glucose-induced inflammatory injury through the reactive oxygen species-phosphoinositide 3-kinase/protein kinase B-nuclear factor-κB signaling pathway in rat thoracic aorta endothelial cells. J Diabetes Investig 2018; 9:731-740. [PMID: 29080256 PMCID: PMC6031518 DOI: 10.1111/jdi.12767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
AIMS/INTRODUCTION Endothelial cell inflammatory injury is likely required for barrier dysfunction under hyperglycemic conditions. Curcumin (CUR) is well known for its anti-inflammatory effect. However, there have been few reports about the anti-inflammatory effect of CUR induced by high glucose in endothelial cells. The aim of the present study was to investigate the inflammatory effect of high glucose and the anti-inflammatory effect of CUR induced by high glucose in rat thoracic aorta endothelial cells (TAECs). MATERIALS AND METHODS Well characterized TAECs were established and cell viability was assayed by the cell counting kit-8 method, messenger ribonucleic acid and protein expression were identified by real-time polymerase chain reaction, western blot or enzyme-linked immunosorbent assay, respectively. The production of reactive oxygen species was observed by a fluorescence microscope. RESULTS High glucose (30 mmol/L) significantly decreased the cell viability of TAECs after being co-cultivated for 12 h and showed a time-dependent manner, and increased interleukin (IL)-1β, IL-6 and tumor necrosis factor-α secretion in TAECs. The injury effect of high glucose was involved in the reactive oxygen species-phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)-nuclear factor (NF)-κB signaling pathway. Anti-oxidant N-acetylcysteine, PI3K and NF-κB-specific pathway inhibitors can abolish the secretion of these inflammatory factors; pretreatment with anti-oxidant N-acetylcysteine significantly decreased PI3K expression, the level of phosphorylated AKT and nuclear NF-κB; pretreatment of LY294002 can significantly decrease the NF-κB level in nuclei. After treatment with CUR for 12 h, IL-1β, IL-6 and tumor necrosis factor-α secretion were markedly decreased, and PI3K expression, the phosphorylation of AKT and nuclear NF-κB level were also decreased. CONCLUSION Curcumin attenuates high glucose-induced inflammatory injury through the reactive oxygen species-PI3K/AKT-NF-κB signaling pathway in rat thoracic aorta endothelial cells.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of EndocrinologyFirst People's HospitalShangqiuHenanChina
| | - Keming Li
- Department of pharmacologyResearch institute of traditional Chinese medicineJinanShandongChina
| |
Collapse
|
44
|
Mohamed H, Hosny H, Tawadros Md P, Elayashy Md Desa Fcai M, El-Ashmawi Md H. Effect of Dexmedetomidine Infusion on Sublingual Microcirculation in Patients Undergoing On-Pump Coronary Artery Bypass Graft Surgery: A Prospective Randomized Trial. J Cardiothorac Vasc Anesth 2018; 33:334-340. [PMID: 30075898 DOI: 10.1053/j.jvca.2018.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Cardiac surgery is characterized by attenuation of microcirculatory perfusion. Dexmedetomidine has been proved to attenuate the microcirculatory derangements evoked by experimental sepsis. The authors investigated the effects of dexmedetomidine infusion on sublingual microcirculation in patients undergoing on-pump coronary artery bypass graft (CABG) surgery. DESIGN Prospective, randomized blinded study. SETTINGS Tertiary university hospital. PARTICIPANTS A total of 70 adults undergoing elective on-pump CABG surgery. INTERVENTION After a standard general anesthesia, participants were allocated randomly to receive either propofol continuous intravenous infusion, 50 to 70 µg/kg/min, or propofol infusion, 50 to 70 µg/kg/min plus dexmedetomidine infusion, 0.5 µg/kg/h, during cardiopulmonary bypass. Microcirculation was studied with side-stream dark field imaging at 3 times: immediately before starting bypass (T0), 30 minutes after initiation of bypass (T1), and 30 minutes after weaning from bypass (T2). MEASUREMENTS AND MAIN RESULTS Microvascular flow index was significantly higher in the dexmedetomidine group at T2 compared to the control group (2.20 ± 0.29 and 1.47 ± 0.30, respectively; p = 0.001). The perfused vessel density was significantly higher in the dexmedetomidine group at T2 compared to the control group (6.1 [3-8.9] mm/mm² and 3.3 [2.2-4.3] mm/mm², respectively; p = 0.01). The total vascular density was significantly higher in the dexmedetomidine group compared to the control group at T1 and T2 (9.9 [7.8-12.6] mm/mm² v 7.4 [6.1-9] mm/mm², p = 0.005; and 9.27 ± 2.27 mm/mm² v 7.24 ± 1.66 mm/mm², p = 0.003, respectively). CONCLUSION This trial demonstrated that dexmedetomidine infusion improved sublingual microcirculation indices in patients undergoing on-pump CABG surgery.
Collapse
Affiliation(s)
- Hassan Mohamed
- Department of Anesthesia and Intensive Care, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hisham Hosny
- Department of Anesthesia and Intensive Care, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt.; Department of Anaesthesia, Royal Brompton Hospital, Royal Brompton and Harefield Foundation Trust, London, United Kingdom.
| | - Pierre Tawadros Md
- Department of Anesthesia and Intensive Care, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Hossam El-Ashmawi Md
- Department of Anesthesia and Intensive Care, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
45
|
Orbegozo D, Mongkolpun W, Stringari G, Markou N, Creteur J, Vincent JL, De Backer D. Skin microcirculatory reactivity assessed using a thermal challenge is decreased in patients with circulatory shock and associated with outcome. Ann Intensive Care 2018; 8:60. [PMID: 29725778 PMCID: PMC5934288 DOI: 10.1186/s13613-018-0393-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/12/2018] [Indexed: 11/24/2022] Open
Abstract
Background Shock states are characterized by impaired tissue perfusion and microcirculatory alterations, which are directly related to outcome. Skin perfusion can be noninvasively evaluated using skin laser Doppler (SLD), which, when coupled with a local thermal challenge, may provide a measure of microcirculatory reactivity. We hypothesized that this microvascular reactivity would be impaired in patients with circulatory shock and would be a marker of severity. Methods We first evaluated skin blood flow (SBF) using SLD on the forearm and on the palm in 18 healthy volunteers to select the site with maximal response. Measurements were taken at 37 °C (baseline) and repeated at 43 °C. The 43 °C/37 °C SBF ratio was calculated as a measure of microvascular reactivity. We then evaluated the SBF in 29 patients with circulatory shock admitted to a 35-bed department of intensive care and in a confirmatory cohort of 35 patients with circulatory shock. Results In the volunteers, baseline SBF was higher in the hand than in the forearm, but the SBF ratio was lower (11.2 [9.4–13.4] vs. 2.0 [1.7–2.6], p < 0.01) so we used the forearm for our patients. Baseline forearm SBF was similar in patients with shock and healthy volunteers, but the SBF ratio was markedly lower in the patients (2.6 [2.0–3.6] vs. 11.2 [9.4–13.4], p < 0.01). Shock survivors had a higher SBF ratio than non-survivors (3.2 [2.2–6.2] vs. 2.3 [1.7–2.8], p < 0.01). These results were confirmed in the second cohort of 35 patients. In multivariable analysis, the APACHE II score and the SBF ratio were independently associated with mortality. Conclusions Microcirculatory reactivity is decreased in patients with circulatory shock and has prognostic value. This simple, noninvasive test could help in monitoring the peripheral microcirculation in acutely ill patients. Electronic supplementary material The online version of this article (10.1186/s13613-018-0393-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego Orbegozo
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Wasineenart Mongkolpun
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Gianni Stringari
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Nikolaos Markou
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| | - Daniel De Backer
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|
46
|
[Prognostic relevance of tissue oxygen saturation in patients in the early stage of multiple organ dysfunction syndrome]. Med Klin Intensivmed Notfmed 2018; 114:146-153. [PMID: 29671035 DOI: 10.1007/s00063-018-0438-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 10/17/2022]
Abstract
BACKGROUND Patients in circulatory shock exhibit insufficient peripheral perfusion to ensure adequate oxygenation of vital organs such as the heart and brain. Early detection of reduced tissue oxygen saturation (StO2) could be used for rapid therapeutic intervention and thus improve the prognosis of patients in the early stage of multiple organ dysfunction syndrome (MODS). MATERIALS AND METHODS A total of 60 patients in the early stage of MODS (APACHE [Acute Physiology and Chronic Health Evaluation] II score ≥20) were investigated in a monocentric, prospective, randomized phase II study. StO2 was measured using the InSpectraTM StO2 system and compared with known indicators of hypoxia (peripheral oxygen saturation [SpO2], arterial oxygen saturation [SaO2], central venous oxygen saturation [ScvO2], pH, serum lactate). Clinical endpoints of the study were 28-day and 6‑month mortality as well as the need for invasive mechanical ventilation and renal replacement therapy during the hospital stay, respectively. RESULTS An increased 28-day and 6‑month mortality is found for patients with StO2 <75% in contrast to patients with StO2 ≥75%. Correlations of StO2 with SpO2, ScvO2, and serum lactate are confirmed. Patients with reduced StO2 tend to show a higher disease severity as measured by APACHE II score. CONCLUSION StO2 shows prognostic relevance in patients at the early stage of MODS. Thus, the rapid and noninvasive assessment of StO2 could be useful in risk stratification of these patients.
Collapse
|
47
|
Abstract
This study was conducted to explore underlying mechanism of microcirculation dysfunction and protectiverole of Xuebijing in heat stroke. Forty rats were divided into: control, vehicle + heat stress (HS), superoxide dismutase (SOD) + HS, and Xuebijing + HS groups. Rats in heat stress groups were subjected to continuous heat stress in infant incubator 1 h after tail vein injection of the tested compound and spinotrapezius preparation. Velocity of blood flow through micro-vessels and vascular diameter were detected in real time. Another 27 rats were divided into: vehicle, SOD, and Xuebijing groups, then further divided into three subgroups each: control, Tcore = 38 °C, Tcore = 41 °C. Rats were sacrificed, and spinotrapezius single-cell suspensions were prepared for detecting SOD and reactive oxygen species (ROS). The results showed that heat stress decreased SOD activity, increased ROS levels, and reduced the blood flow rate. Xuebijing increased SOD activity, decreased ROS levels and exhibited a protective effect in terms of blood flow rate but was less protective than SOD. The survival time in Xuebijing + HS group was longer than that in vehicle group but shorter than that in SOD + HS group. The results suggested Xuebijing could decrease ROS levels and have protective effects in severe heat stroke.
Collapse
|
48
|
Barcelos A, Tibirica E, Lamas C. Evaluation of microvascular endothelial function and capillary density in patients with infective endocarditis using laser speckle contrast imaging and video-capillaroscopy. Microvasc Res 2018; 118:61-68. [PMID: 29501536 DOI: 10.1016/j.mvr.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the systemic microcirculation of patients with infective endocarditis (IE). METHODS This is a comparative study of patients with definite IE by the modified Duke criteria admitted to our center for treatment. A reference group of sex- and age-matched healthy volunteers was included. Microvascular flow was evaluated in the forearm using a laser speckle contrast imaging system, for noninvasive measurement of cutaneous microvascular perfusion, in combination with skin iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) to test microvascular reactivity. Microvascular density was evaluated using skin video-capillaroscopy. RESULTS We studied 22 patients with IE; 15 were male and seven female. The mean age and standard deviation (SD) were 45.5 ± 17.3 years. Basal skin microvascular conductance was significantly increased in patients with IE, compared with healthy individuals (0.36 ± 0.13 versus 0.21 ± 0.08 APU/mmHg; P < 0.0001). The increase in microvascular conductance induced by ACh in patients was 0.21 ± 0.17 and in the reference group, it was 0.37 ± 0.14 APU/mmHg (P = 0.0012). The increase in microvascular conductance induced by SNP in patients was 0.18 ± 0.14 and it was 0.29 ± 0.15 APU/mmHg (P = 0.0140) in the reference group. The basal mean skin capillary density of patients (135 ± 24 capillaries/mm2) was significantly higher, compared with controls (97 ± 21 capillaries/mm2; P < 0.0001). CONCLUSIONS The main findings in the microcirculation of patients with IE were greater basal vasodilation and a reduction of the endothelium-dependent and -independent microvascular reactivity, as well as greater functional skin capillary density compared to healthy individuals.
Collapse
Affiliation(s)
- Amanda Barcelos
- National Institute of Cardiology, Ministry of Health, Rio de Janeiro, Brazil
| | - Eduardo Tibirica
- National Institute of Cardiology, Ministry of Health, Rio de Janeiro, Brazil; Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
| | - Cristiane Lamas
- National Institute of Cardiology, Ministry of Health, Rio de Janeiro, Brazil; National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; UnigranrioUniversity, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Jalil B, Hartwig V, Salvetti O, Potì L, Gargani L, Barskova T, Matucci Cerinic M, L'Abbate A. Assessment of hand superficial oxygenation during ischemia/reperfusion in healthy subjects versus systemic sclerosis patients by 2D near infrared spectroscopic imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 155:101-108. [PMID: 29512489 DOI: 10.1016/j.cmpb.2017.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Patients affected by systemic sclerosis (SSc) develop functional and structural microcirculatory dysfunction, which progressively evolves towards systemic tissue fibrosis (sclerosis). Disease initially affects distal extremities, which become preferential sites of diagnostic scrutiny. This pilot investigation tested the hypothesis that peripheral microcirculatory dysfunction in SSc could be non-invasively assessed by 2D Near Infrared Spectroscopic (NIRS) imaging of the hand associated with Vascular Occlusion Testing (VOT). NIRS allows measurement of hemoglobin oxygen saturation (StO2) in the blood perfusing the volume tissue under scrutiny. METHODS In five normal volunteers and five SSc patients we applied a multispectral oximetry imaging device (Kent camera, Kent Imaging, Calgary, Canada) to acquire StO2 2D maps of the whole hand palm during baseline, ischemia and reperfusion phase. RESULTS We found significant differences between controls and SSc patients in basal StO2 (82.80 ± 2.51 vs 65.44 ± 7.96%, p = 0.0016), minimum StO2 (59.35 ± 4.29 vs 40.73 ± 6.47%, p = 0.0007), final StO2 (83.83 ± 4.09 vs 68.84 ± 11.41%, p = 0.02) and time to maximum StO2 (40 ± 12.25 vs 62 ± 4.47 s, p = 0.005). CONCLUSIONS This is, to our knowledge, the first application of 2D NIRS imaging of the whole hand to the investigation of microvascular dysfunction in systemic sclerosis. The image processing presented here considered the StO2 in the entire hand allowing a comprehensive view of the spatial heterogeneity of microvascular dysfunction.
Collapse
Affiliation(s)
- Bushra Jalil
- Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" CNR, Via Moruzzi 1, 56124 Pisa, Italy
| | - Valentina Hartwig
- Institute of Clinical Physiology, Italian National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy.
| | - Ovidio Salvetti
- Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" CNR, Via Moruzzi 1, 56124 Pisa, Italy
| | - Luca Potì
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Pisa, Italy
| | - Luna Gargani
- Institute of Clinical Physiology, Italian National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Tatiana Barskova
- Department of Experimental and Clinical Medicine, Division of Rheumatology AOUC, University of Florence, Florence, Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology AOUC, University of Florence, Florence, Italy
| | - A L'Abbate
- Institute of Clinical Physiology, Italian National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy; Scuola Superiore Sant'Anna, Institute of Life Sciences, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
50
|
Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, Fan H. Exosomes from Endothelial Progenitor Cells Improve the Outcome of a Murine Model of Sepsis. Mol Ther 2018; 26:1375-1384. [PMID: 29599080 DOI: 10.1016/j.ymthe.2018.02.020] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 01/07/2023] Open
Abstract
Microvascular dysfunction leads to multi-organ failure and mortality in sepsis. Our previous studies demonstrated that administration of exogenous endothelial progenitor cells (EPCs) confers protection in sepsis as evidenced by reduced vascular leakage, improved organ function, and increased survival. We hypothesize that EPCs protect the microvasculature through the exosomes-mediated transfer of microRNAs (miRNAs). Mice were rendered septic by cecal ligation and puncture (CLP), and EPC exosomes were administered intravenously at 4 hr after CLP. EPC exosomes treatment improved survival, suppressing lung and renal vascular leakage, and reducing liver and kidney dysfunction in septic mice. EPC exosomes attenuated sepsis-induced increases in plasma levels of cytokines and chemokine. Moreover, we determined miRNA contents of EPC exosomes with next-generation sequencing and found abundant miR-126-3p and 5p. We demonstrated that exosomal miR-126-5p and 3p suppressed LPS-induced high mobility group box 1 (HMGB1) and vascular cell adhesion molecule 1 (VCAM1) levels, respectively, in human microvascular endothelial cells (HMVECs). Inhibition of microRNA-126-5p and 3p through transfection with microRNA-126-5p and 3p inhibitors abrogated the beneficial effect of EPC exosomes. The inhibition of exosomal microRNA-126 failed to block LPS-induced increase in HMGB1 and VCAM1 protein levels in HMVECs and negated the protective effect of exosomes on sepsis survival. Thus, EPC exosomes prevent microvascular dysfunction and improve sepsis outcomes potentially through the delivery of miR-126.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biopharmaceutics, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Andrew J Goodwin
- Department of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Perry V Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eugene Chang
- Department of Obstetrics-Gynecology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|